JPH0977124A - Packing bag composed of polylactic acid polymer - Google Patents

Packing bag composed of polylactic acid polymer

Info

Publication number
JPH0977124A
JPH0977124A JP24186495A JP24186495A JPH0977124A JP H0977124 A JPH0977124 A JP H0977124A JP 24186495 A JP24186495 A JP 24186495A JP 24186495 A JP24186495 A JP 24186495A JP H0977124 A JPH0977124 A JP H0977124A
Authority
JP
Japan
Prior art keywords
film
δhm
polylactic acid
δhc
fusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24186495A
Other languages
Japanese (ja)
Other versions
JP3167595B2 (en
Inventor
Jun Takagi
潤 高木
Shigenori Terada
滋憲 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17080667&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0977124(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP24186495A priority Critical patent/JP3167595B2/en
Publication of JPH0977124A publication Critical patent/JPH0977124A/en
Application granted granted Critical
Publication of JP3167595B2 publication Critical patent/JP3167595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Bag Frames (AREA)
  • Wrappers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a packing bag having sufficient practical characteristics and capable of being decomposed under natural environment. SOLUTION: A packing bag is formed by fusing and sealing an oriented crystallized film composed of a crystalline polylactic acid polymer with a wt. average mol.wt. of 100000 or more. In a pref. film, a surface orientation index ΔP is 3.0×10<-3> or more, the difference (ΔHm-ΔHc) between crystal fusion calorie ΔHm at a time of the temp. rise of the film and crystallizing calorie ΔHc generated by crystallization during temp. rise is 20J/g or more and (ΔHm-ΔHc)/ΔHm} is 0.75 or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、自然環境下で分解
する包装袋、詳しくはポリ乳酸系重合体からなるフイル
ムを溶断シールしてなる包装袋に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a packaging bag that decomposes in a natural environment, and more particularly to a packaging bag formed by fusing and sealing a film made of a polylactic acid polymer.

【0002】[0002]

【従来の技術とその課題】包装用の袋、例えば食料品、
衣料品、日用雑貨などを収納、包装する袋として、ポリ
エチレン、ポリプロピレンなどのポリオレフイン系樹脂
やその他の熱可塑性樹脂からなるフイルムを製袋したも
のが知られている。そしてヒートシール性が良好なポリ
オレフイン系樹脂フイルムからなるものにおいては、い
わゆる溶断シールにより製袋したものもある。
2. Description of the Related Art Packaging bags, such as food products,
BACKGROUND ART A bag made of a film made of a polyolefin resin such as polyethylene or polypropylene or another thermoplastic resin is known as a bag for storing and packaging clothes, daily necessities and the like. Some of the polyolefin resin films having a good heat-sealing property are produced by so-called fusing sealing.

【0003】しかし、上記のような樹脂は化学的、生物
的に安定なため自然環境下に放置されてもほとんど分解
されることなく残留、蓄積される。そして自然環境中に
散乱して動植物の生活環境を汚染するだけでなく、ゴミ
として埋められた場合にもほとんど分解せずに残り、埋
立地の寿命を短くするという問題がある。このため、こ
れらの問題を生じない自然分解性を有する重合体からな
る包装袋が望まれる。
However, since the above resins are chemically and biologically stable, they remain and accumulate with almost no decomposition even if they are left in a natural environment. Further, there is a problem that not only is it scattered in the natural environment to contaminate the living environment of plants and animals, but when it is buried as garbage, it is hardly decomposed and remains, which shortens the life of the landfill. Therefore, a packaging bag made of a polymer having a spontaneously degrading property that does not cause these problems is desired.

【0004】自然分解性を有する重合体としてポリ乳酸
系重合体が注目されている。ポリ乳酸系重合体は土壌中
において自然に加水分解が進行し土中に原形が残らず、
微生物により無害な分解物となる。ところが、ポリ乳酸
系重合体はそれ自体脆性を有し、柔軟性、強靭性を要求
される包装袋としては必ずしも好適とはいい難い。また
ポリ乳酸系重合体はポリエステル樹脂の一種であり一般
に結晶性を有しているので、これをヒートシールするこ
とは困難と予測されるためヒートシールによる製袋は試
みられていなかった。
Polylactic acid-based polymers have been attracting attention as polymers having natural degradability. Polylactic acid-based polymer is naturally hydrolyzed in the soil and the original shape does not remain in the soil,
It becomes harmless decomposition products by microorganisms. However, the polylactic acid-based polymer itself has brittleness and is not necessarily suitable as a packaging bag which is required to have flexibility and toughness. Further, since polylactic acid-based polymer is a kind of polyester resin and generally has crystallinity, it is expected that it will be difficult to heat seal the polylactic acid polymer, and therefore heat-sealing bags have not been tried.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題に対
して、自然分解性を有するポリ乳酸系重合体からなる包
装袋を提供するものであって、その要旨は、重量平均分
子量が10万以上の結晶性ポリ乳酸系重合体からなる配
向結晶化フイルムを溶断シールしてなる包装袋にある。
Means for Solving the Problems The present invention provides a packaging bag made of a polylactic acid-based polymer having a spontaneously degrading property with respect to the above-mentioned problems, the gist of which is a weight average molecular weight of 10 It is a packaging bag formed by fusion-sealing an oriented crystallized film made of more than 10,000 crystalline polylactic acid-based polymers.

【0006】ここでポリ乳酸系重合体からなるフイルム
としては、面配向指数ΔPが3.0×10-3以上であ
り、かつ、フイルムを昇温したときの結晶融解熱量ΔH
mと昇温中の結晶化により生じる結晶化熱量ΔHcとの
差(ΔHm−ΔHc)が20J/g以上、{(ΔHm−
ΔHc)/ΔHm}が0.75以上であるものが好適に
用いられる。
The film made of a polylactic acid-based polymer has a plane orientation index ΔP of 3.0 × 10 −3 or more and a heat of crystal fusion ΔH when the film is heated.
The difference (ΔHm-ΔHc) between m and the heat of crystallization ΔHc generated by crystallization during heating is 20 J / g or more, {(ΔHm-
The one having ΔHc) / ΔHm} of 0.75 or more is preferably used.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳しく説明する。
本発明に用いられるポリ乳酸系重合体とは、ポリ乳酸ま
たは乳酸と他のヒドロキシカルボン酸との共重合体、も
しくはこれらの混合物であり、本発明の効果を阻害しな
い範囲で他の高分子材料を混入できる。乳酸としては、
L−乳酸、D−乳酸があり、ヒドロキシカルボン酸とし
てはグリコ−ル酸、3−ヒドロキシ酪酸、4−ヒドロキ
シ酪酸、3−ヒドロキシ吉草酸、4−ヒドロキシ吉草
酸、6−ヒドロキシカプロン酸などが代表的に挙げられ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
The polylactic acid-based polymer used in the present invention is polylactic acid or a copolymer of lactic acid and another hydroxycarboxylic acid, or a mixture thereof, and other polymer materials within a range that does not impair the effects of the present invention. Can be mixed. As lactic acid,
There are L-lactic acid and D-lactic acid, and typical examples of hydroxycarboxylic acid are glyco-lactic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid, 6-hydroxycaproic acid and the like. It can be cited as a specific example.

【0008】ポリ乳酸系重合体の構成単位には、乳酸の
構造単位がL−乳酸であるポリ(L−乳酸)、構造単位
がD−乳酸であるポリ(D−乳酸)、L−乳酸とD−乳
酸の共重合体であるポリ(DL−乳酸)、さらにはこれ
らの混合体もあるが、本発明に使用されるポリ乳酸系重
合体は結晶性であることが必要であり、そのためには、
L−乳酸とD−乳酸との組成比が100:0〜94:6
または6:94〜0:100とする。この範囲に入れ
ば、後述するが、結晶化温度以上の温度で熱処理するこ
とにより、結晶性の高いフイルムを得ることができる。
The constitutional units of the polylactic acid-based polymer include poly (L-lactic acid) whose lactic acid structural unit is L-lactic acid, poly (D-lactic acid) whose structural unit is D-lactic acid, and L-lactic acid. Poly (DL-lactic acid), which is a copolymer of D-lactic acid, and a mixture thereof are also available, but the polylactic acid-based polymer used in the present invention needs to be crystalline, and therefore Is
The composition ratio of L-lactic acid and D-lactic acid is 100: 0 to 94: 6.
Alternatively, it is set to 6:94 to 0: 100. Within this range, a film having high crystallinity can be obtained by heat treatment at a temperature equal to or higher than the crystallization temperature, which will be described later.

【0009】ポリ乳酸系重合体の重合法としては、縮重
合法、開環重合法など公知のいずれの方法を採用するこ
とができる。例えば、縮重合法ではL−乳酸またはD−
乳酸あるいはこれらの混合物を直接脱水宿重合して任意
の組成を持ったポリ乳酸を得ることができる。
As a method for polymerizing the polylactic acid-based polymer, any known method such as a condensation polymerization method and a ring-opening polymerization method can be adopted. For example, in the polycondensation method, L-lactic acid or D-
Polylactic acid having an arbitrary composition can be obtained by directly subjecting lactic acid or a mixture thereof to dehydration and in-situ polymerization.

【0010】また、開環重合法では乳酸の環状2量体で
あるラクチドを、必要に応じて重合調整剤等を用いなが
ら、選ばれた触媒を使用してポリ乳酸を得ることができ
る。ラクチドにはL−乳酸の2量体であるL−ラクチ
ド、D−乳酸の2量体であるD−ラクチド、さらにL−
乳酸とD−乳酸からなるDL−ラクチドがあり、これら
を必要に応じて混合して重合することにより所望の結晶
性をもつポリ乳酸を得ることができる。
In the ring-opening polymerization method, polylactic acid can be obtained by using lactide, which is a cyclic dimer of lactic acid, and a catalyst selected as necessary while using a polymerization modifier and the like. Lactide is L-lactide which is a dimer of L-lactic acid, D-lactide which is a dimer of D-lactic acid, and further L-
There is DL-lactide composed of lactic acid and D-lactic acid, and polylactic acid having desired crystallinity can be obtained by mixing and polymerizing these as needed.

【0011】また分子量増大を目的として少量の鎖延長
剤、例えば、ジイソシアネート化合物、エポキシ化合
物、酸無水物などを使用できることもできる。また、成
形加工性、フイルムの物性を調整する目的で、可塑剤、
滑剤、無機フイラー、紫外線吸収剤などの添加剤、改質
剤を添加することも可能である。
It is also possible to use a small amount of a chain extender such as a diisocyanate compound, an epoxy compound or an acid anhydride for the purpose of increasing the molecular weight. Further, for the purpose of adjusting the molding processability and the physical properties of the film, a plasticizer,
It is also possible to add additives such as lubricants, inorganic fillers and ultraviolet absorbers, and modifiers.

【0012】本発明における重合体は、重量平均分子量
が10万以上であることが重要であり、好適にはフイル
ムへの成形加工性も考慮して10万〜30万の範囲、さ
らに好ましくは、15万〜25万であることが望まし
い。
It is important that the polymer in the present invention has a weight average molecular weight of 100,000 or more, preferably in the range of 100,000 to 300,000, more preferably in consideration of moldability into a film. It is preferably 150,000 to 250,000.

【0013】重量平均分子量が上記範囲を下回る場合
は、溶断シール強度が低くなり安定したシールが困難に
なる。これは重合体自体の強度が低くなることと、分子
量が低くなることにより結晶化速度が速くなり、溶断部
において不規則な結晶が生成して脆さが著しくなること
によるものと考えられる。
If the weight average molecular weight is below the above range, the fusing seal strength becomes low and stable sealing becomes difficult. It is considered that this is because the strength of the polymer itself is low and the crystallization rate is high due to the low molecular weight, and irregular crystals are formed in the fusing part to make brittleness remarkable.

【0014】また、本発明包装袋の素材となるフイルム
は、分子配向し、かつ配向結晶化していることが重要で
ある。一般に熱によるシールに際しては、分子配向や配
向結晶化はヒートシール性を損なうものと考えられてい
るが、本発明においては、袋全体の強度と対温度寸法安
定性を得るために、ある範囲の分子配向と結晶化が必要
となる。
It is important that the film used as the material of the packaging bag of the present invention is molecularly oriented and oriented and crystallized. Generally, in sealing by heat, molecular orientation and oriented crystallization are considered to impair the heat sealing property, but in the present invention, in order to obtain strength and dimensional stability against temperature of the entire bag, a certain range of Molecular orientation and crystallization are required.

【0015】分子配向していないポリ乳酸系重合体フイ
ルムは、脆いこと、分子配向のための延伸処理を経てい
ないので薄いフイルムが得にくいこと、経時的に球晶が
生長してフイルムの脆化、白化を生じやすいことなどの
問題がある。また、分子配向していても結晶化程度が低
いフイルムは、高温にさらされると収縮するため、包装
袋の素材としては用途が極めて限られてしまう。またこ
のようなフイルムは、結晶化度が低いので良好な溶断シ
ール性を示すはずであるが、溶断シール時にフイルムが
熱収縮して不規則な変形をするためにシール外観を損な
い、またシール強度低下を招くこともある。
The polylactic acid polymer film having no molecular orientation is fragile, and it is difficult to obtain a thin film because it has not undergone the stretching treatment for molecular orientation. The spherulites grow over time to make the film brittle. However, there is a problem that whitening is likely to occur. Further, a film having a low degree of crystallization even if it is molecularly oriented shrinks when exposed to a high temperature, so that its use as a packaging bag material is extremely limited. Also, such a film should have good fusing sealability due to its low crystallinity, but the film will suffer heat shrinkage and irregular deformation during fusing sealing, which will impair the seal appearance and seal strength. It may cause a decrease.

【0016】分子配向の程度としては、フイルムの面配
向指数ΔPが3.0×10-3以上であることが好まし
い。ここで面配向指数ΔPは、フイルムの厚み方向に対
する面方向の配向度を表し、通常直交3方向の屈折率を
測定して、以下の式で算出される。 ΔP={(γ+β)/2}−α (α<β<
γ) ここで、γ、βがフイルム面に平行な直交2軸の屈折
率、αはフイルム厚さ方向の屈折率である。
With respect to the degree of molecular orientation, the plane orientation index ΔP of the film is preferably 3.0 × 10 −3 or more. Here, the plane orientation index ΔP represents the degree of orientation in the plane direction with respect to the thickness direction of the film, and is usually calculated by the following formula by measuring the refractive index in three orthogonal directions. ΔP = {(γ + β) / 2} −α (α <β <
γ) where γ and β are refractive indices of two orthogonal axes parallel to the film surface, and α is a refractive index in the film thickness direction.

【0017】ΔPは結晶化度や配向結晶にも依存する
が、大きくはフイルム面内の分子配向に依存する。すな
わちΔPは、フイルムの面方向、通常はフイルム製造時
の流れ方向および/またはその直交方向(幅方向)に分
子配向を増大させることにより高めることができる。
ΔP depends on the crystallinity and the oriented crystal, but largely depends on the molecular orientation in the film plane. That is, ΔP can be increased by increasing the molecular orientation in the plane direction of the film, usually the flow direction during film production and / or the direction (width direction) orthogonal thereto.

【0018】ΔPを増大させる最も実用的な方法は延伸
である。以下その好適な条件を説明すると、まず、ポリ
乳酸系重合体を十分に乾燥させて、押出機で溶融して未
延伸シートを得る。溶融温度は140〜250℃の範囲
が好ましい。シート状に溶融成形されたシートは、回転
するキヤステイングドラム(冷却ドラム)に接触させて
急冷するのが好ましい。キヤステイングドラムの温度
は、高すぎるとポリマがドラムに粘着して引取りが困難
になる。また結晶化が促進されて、球晶が発達し延伸で
きなくなるため、ガラス転移温度以下、好適には50℃
以下に設定して急冷し、実質上非晶質の未延伸シートと
することが好ましい。
The most practical method of increasing ΔP is stretching. The preferred conditions will be described below. First, the polylactic acid-based polymer is sufficiently dried and melted in an extruder to obtain an unstretched sheet. The melting temperature is preferably in the range of 140 to 250 ° C. It is preferable that the sheet melt-formed into a sheet is brought into contact with a rotating casting drum (cooling drum) to be rapidly cooled. If the temperature of the casting drum is too high, the polymer sticks to the drum and it becomes difficult to take it back. Also, since crystallization is promoted and spherulites develop and stretching becomes impossible, the glass transition temperature or lower, preferably 50 ° C.
It is preferable to set the temperature below and quench it to obtain a substantially amorphous unstretched sheet.

【0019】延伸方法は、1軸延伸もしくは逐次2軸延
伸または同時2軸延伸のいずれでもかまわないが、使用
目的上、縦横両方向の物性の改良が必要なので、2軸延
伸することが望ましい。未延伸シートの延伸倍率は、縦
(長手)方向、横(幅)方向それぞれ1.5倍〜5倍の
範囲で、延伸温度は50〜90℃の範囲で適宜選択する
ことにより、未延伸シートでは1.0×10-3以下であ
る面配向指数ΔPを1.0×10-3以上に増大させ、薄
肉でも強靭なフイルムを得ることができる。また延伸に
より、フイルムの厚さ均一性、透明度、光沢なども併せ
て向上する。
The stretching method may be either uniaxial stretching, sequential biaxial stretching or simultaneous biaxial stretching, but biaxial stretching is desirable because it is necessary to improve physical properties in both longitudinal and transverse directions for the purpose of use. The stretching ratio of the unstretched sheet is in the range of 1.5 to 5 times in each of the longitudinal (longitudinal) direction and the transverse (width) direction, and the stretching temperature is appropriately selected in the range of 50 to 90 ° C. in can be a plane orientation index ΔP is 1.0 × 10 -3 or less is increased to 1.0 × 10 -3 or more, to obtain a tough film in thin. The stretching also improves the film thickness uniformity, transparency, and gloss.

【0020】なお、ΔPの上限は実際上30×10-3
度であり、これよりもΔPを高めようとすると、延伸が
不安定ないし不可能になるという不利が生じる。このよ
うに、ΔPを高めるとフイルムの強度は増すが、反面、
フイルムの熱寸法安定性は低下する。具体的には、夏の
暑い時期にフイルムが収縮したり、あるいはフイルムを
ロール状態で保存中に自然収縮しフイルムにたるみや波
打ちが生じるなどの欠点も生じる。また、溶断シール時
にシール部近傍のフイルムが収縮して変形し、シール強
度とシール外観を損なうことになる。
The upper limit of ΔP is practically about 30 × 10 -3 , and if ΔP is made higher than this, there is a disadvantage that the stretching becomes unstable or impossible. Thus, increasing ΔP increases the film strength, but on the other hand,
The thermal dimensional stability of the film is reduced. Specifically, there are drawbacks such that the film shrinks during the hot summer months, or the film naturally shrinks during storage in a rolled state, resulting in sagging or waviness of the film. Further, the film in the vicinity of the seal portion is contracted and deformed at the time of fusing and sealing, and the seal strength and the seal appearance are impaired.

【0021】これを防止するには、ΔPが3.0×10
-3以上のフイルムにおいては、フイルムを昇温したとき
の結晶融解熱量ΔHmと昇温中の結晶化により生じる結
晶化熱量ΔHcとの差(ΔHm−ΔHc)が20J/g
以上、{(ΔHm−ΔHc)/ΔHm}が0.75以上
となるように制御することが重要である。
To prevent this, ΔP is 3.0 × 10
-3 or more films, the difference (ΔHm-ΔHc) between the heat of crystal melting ΔHm when the film is heated and the heat of crystallization ΔHc generated by crystallization during the heating is 20 J / g.
As described above, it is important to control {(ΔHm-ΔHc) / ΔHm} to be 0.75 or more.

【0022】すなわち、この条件を下回る場合は、フイ
ルムの熱寸法安定性が不良となり、保管中にフイルムが
自然収縮するなどの問題がある。また包装袋としたとき
に温度により寸法が変化するなどの現象が生じ、使用条
件や用途が大きく制約されることになる。
That is, below this condition, there is a problem that the thermal dimensional stability of the film becomes poor and the film naturally shrinks during storage. In addition, when the packaging bag is used, a phenomenon such as a change in size occurs depending on the temperature, and usage conditions and applications are greatly restricted.

【0023】ΔHm、ΔHcは、フイルムサンプルの示
差走査熱量測定(DSC)により求められるもので、Δ
Hmは昇温速度10℃/分で昇温したときの全結晶を融
解させるのに必要な熱量であって、重合体の結晶融点付
近に現れる結晶融解による吸熱ピークの面積から求めら
れる。またΔHcは、昇温過程で生じる結晶化の際に発
生する発熱ピークの面積から求められる。
ΔHm and ΔHc are obtained by differential scanning calorimetry (DSC) of the film sample, and ΔHm and ΔHc are
Hm is the amount of heat required to melt all the crystals when the temperature is raised at a rate of 10 ° C./min, and is determined from the area of the endothermic peak due to crystal melting which appears near the crystal melting point of the polymer. ΔHc is determined from the area of the exothermic peak generated during crystallization that occurs during the temperature rise process.

【0024】ΔHmは主に重合体そのものの結晶性に依
存し、結晶性が大きい重合体では大きな値をとる。ちな
みに共重合のないL−乳酸またはD−乳酸の完全ホモポ
リマでは60J/g以上であり、これら2種の乳酸の共
重合体ではその組成によりΔHmは変化する。
ΔHm mainly depends on the crystallinity of the polymer itself, and takes a large value in a polymer having a large crystallinity. Incidentally, the complete homopolymer of L-lactic acid or D-lactic acid without copolymerization is 60 J / g or more, and in the copolymer of these two kinds of lactic acid, ΔHm changes depending on its composition.

【0025】ΔHcは、重合体の結晶性に対するその時
のフイルムの結晶化度に関係する指標であり、ΔHcが
大きいときには、昇温過程でフイルムの結晶化が進行す
る、すなわち、重合体が有する結晶性を基準にフイルム
の結晶化度が相対的に低かったことを表す。
ΔHc is an index related to the crystallinity of the film at that time with respect to the crystallinity of the polymer, and when ΔHc is large, the crystallization of the film progresses during the temperature rising process, that is, the crystal of the polymer. The crystallinity of the film was relatively low based on the property.

【0026】(ΔHm−ΔHc)を増大させるための1
つの方向は、結晶性が高い重合体を原料に、結晶化度の
比較的高いフイルムを作ることである。フイルムの結晶
化度は、重合体の組成に少なからず依存し、重合体その
もののΔHmを20J/g以上にするには前述の通り、
L−乳酸とD−乳酸の組成比が100:0〜94:6の
範囲内、または0:100〜6:94の範囲内にするの
が重要である。
1 for increasing (ΔHm-ΔHc)
One direction is to make a film with a relatively high degree of crystallinity from a polymer with a high crystallinity. The crystallinity of the film depends to a large extent on the composition of the polymer, and the ΔHm of the polymer itself should be 20 J / g or more as described above.
It is important that the composition ratio of L-lactic acid and D-lactic acid is within the range of 100: 0 to 94: 6 or within the range of 0: 100 to 6:94.

【0027】またΔHcを低下させるためには、すなわ
ちフイルムの結晶化度を高めるためにはフイルムの成形
加工条件を選定する必要がある。成形加工工程、特にテ
ンター法2軸延伸においてフイルムの結晶化度を上げる
には、延伸倍率を上げて配向結晶化を促進する、延伸後
に結晶化温度以上の雰囲気で熱処理するなどが有用であ
る。
In order to reduce ΔHc, that is, in order to increase the crystallinity of the film, it is necessary to select the film processing conditions. In order to increase the crystallinity of the film in the molding process step, particularly in the biaxial stretching by the tenter method, it is useful to increase the stretching ratio to promote oriented crystallization, and to perform heat treatment after stretching in an atmosphere at a crystallization temperature or higher.

【0028】なお、ΔPが大きいほど結晶化温度が低下
する傾向があり、本発明の場合には少なくとも70℃以
上で、好適には90〜170℃の範囲で3秒以上熱処理
することで熱寸法安定性が付与できる。この範囲内で熱
処理温度が高いほど、また熱処理時間が長いほど熱寸法
安定性は向上する。
The larger the ΔP, the lower the crystallization temperature tends to be. In the case of the present invention, the thermal dimension is at least 70 ° C., preferably 90 to 170 ° C. for 3 seconds or more. Stability can be imparted. Within this range, the higher the heat treatment temperature and the longer the heat treatment time, the better the thermal dimensional stability.

【0029】本発明包装袋として使用されるフイルムの
厚さは、特に制限されるものではないが、用途に応じて
概ね10〜500μmの範囲で選択される。本発明の包
装袋は、上述の強度を有し熱寸法安定性を有するポリ乳
酸系重合体フイルムを溶断シールしてなるものである。
溶断シールは、フイルムを熱により切断すると同時に切
断部を融着するシール方法であって、電熱線や先端が鋭
角になった溶断刃により2枚重ねたフイルムを融着、切
断する。電熱線や溶断刃の対向面には、シリコーンゴム
などの弾性体を配置するのが好ましい。
The thickness of the film used as the packaging bag of the present invention is not particularly limited, but is selected within the range of about 10 to 500 μm depending on the application. The packaging bag of the present invention is formed by fusing and sealing the polylactic acid polymer film having the above-mentioned strength and thermal dimensional stability.
The fusing seal is a sealing method in which the cut portion is fused at the same time when the film is cut by heat, and two films are fused and cut by a heating wire or a fusing blade having an acute tip. An elastic body such as silicone rubber is preferably arranged on the surface facing the heating wire or the fusing blade.

【0030】溶断シールは、融着部(シール部)に幅が
なく線状となるためすっきりした外観を有するととも
に、溶融が極く幅の狭い局部にとどまるため、その部分
の重合体を十分に溶融させることができ、またフイルム
の特性に悪影響を及ぼすことが少ない。ポリ乳酸系重合
体の場合、ポリエチレンテレフタレートなどのポリエス
テル樹脂とは異なり、溶断することにより、フイルムが
結晶化していても予想外の高いシール強度を得ることが
できた。溶断シール温度は、重合体の融点、溶断シール
時間によっても異なるが、180〜400℃の範囲が好
適である。
The fusing seal has a neat appearance because the fusion-bonded portion (seal portion) has no width and is linear, and the fusion is limited to a very narrow local portion, so that the polymer in that portion is sufficiently filled. It can be melted and has less adverse effect on film properties. Unlike the polyester resin such as polyethylene terephthalate, the polylactic acid-based polymer was able to obtain an unexpectedly high seal strength even if the film was crystallized by fusing. The fusing and sealing temperature varies depending on the melting point of the polymer and the fusing and sealing time, but is preferably in the range of 180 to 400 ° C.

【0031】包装袋の製造にあたっては、従来知られて
いる方法を支障なく適用することができる。例えば、長
尺の配向結晶化フイルムを2枚重ねで送りだし、あるい
は中央から2つ折りの半折フイルムとして送りだし、回
転するリング状のシール刃、上下動する電熱線や溶断刃
などにより溶断シールすることができる。また包装袋を
予め一辺開口で製袋して後から内容物を詰めることもで
きるし、製袋と同時に内容物を詰めることもできる。ま
た少量であれば、いわゆるL型シーラーで手動で製袋し
ながら包装することもできる。
In manufacturing the packaging bag, conventionally known methods can be applied without any trouble. For example, send out a long oriented crystallization film as a stack of two, or send it out as a half-folded film that is folded in half from the center, and perform a fusing seal with a rotating ring-shaped sealing blade, a vertically moving heating wire or a fusing blade, etc. You can Further, the packaging bag can be preliminarily formed with one side opening and then the contents can be filled later, or the contents can be filled simultaneously with the bag making. In addition, if the amount is small, it can be packaged while making a bag manually with a so-called L-type sealer.

【0032】包装袋の形態としては、袋周囲の3方(内
容物収納前)または4方(内容物収納後)を溶断シール
するのが通常であるが、内容物収納用の開口辺には再剥
離性粘着剤を使用することもできる。また、フイルムを
長さ方向に溶断シールして筒状とし、90゜ねじって溶
断シールが中央部にくるようにすることもできる。
The form of the packaging bag is usually three sides (before storing the contents) or four sides (after storing the contents) around the bag by fusing and sealing, but the opening side for storing the contents has A removable adhesive can also be used. It is also possible to make the film into a tubular shape by fusing and sealing it in the lengthwise direction, and twist it by 90 ° so that the fusing seal comes to the center.

【0033】[0033]

【実施例】以下に実施例を述べるが、本発明はこれに限
定されるものではない。なお、各種測定値は次に示すよ
うな条件で測定を行って求めた。 (1)面配向指数ΔP アツベ屈折計によって直交3軸方向の屈折率(α、β、
γ)を測定し、次式で算出した。 ΔP={(γ+β)/2}−α (α<β<
γ) γ:フイルム面内の最大屈折率 β:それに直交するフイルム面内方向の屈折率 α:フイルム厚さ方向の屈折率 (2)重量平均分子量Mw 以下の測定条件で、ゲルパーミエーシヨンクロマトグラ
フイーHLC−8120GPC(東ソー(株)社製)を
用い、標準ポリスチレンと分子量を比較して求めた。
EXAMPLES Examples will be described below, but the present invention is not limited to these examples. In addition, various measured values were obtained by performing measurement under the following conditions. (1) Plane orientation index ΔP The refractive index (α, β,
γ) was measured and calculated by the following equation. ΔP = {(γ + β) / 2} −α (α <β <
γ) γ: Maximum refractive index in the film plane β: Refractive index in the in-plane direction of the film orthogonal to it α: Refractive index in the film thickness direction (2) Weight average molecular weight Mw Under the following measurement conditions, gel permeation chromatography Graffiti HLC-8120GPC (manufactured by Tosoh Corporation) was used to determine the molecular weight by comparison with standard polystyrene.

【0034】クロマトカラム:Shim−Packシリ
ーズ((株)島津製作所製) 溶媒 :クロロホルム サンプル溶液濃度:0.2wt/vol% サンプル溶液注入量:200μl 溶媒流速:1.0ml/分 ポンプ・カラム・検出器温度:40℃ (3)(ΔHm−ΔHc)および(ΔHm−ΔHc)/
ΔHm パーキンエルマー社製DSC−7を用い、フイルムサン
プル10mgをJIS−K7122に基づいて、昇温速
度10℃/分で昇温したときのサーモグラムから結晶融
解熱量ΔHmと結晶化熱量ΔHcをもとめ、算出した。
Chromatography column: Shim-Pack series (manufactured by Shimadzu Corporation) Solvent: Chloroform Sample solution concentration: 0.2 wt / vol% Sample solution injection amount: 200 μl Solvent flow rate: 1.0 ml / min Pump / column / detection Chamber temperature: 40 ° C (3) (ΔHm-ΔHc) and (ΔHm-ΔHc) /
ΔHm Perkin-Elmer DSC-7 was used to determine the heat of crystal fusion ΔHm and the heat of crystallization ΔHc from the thermogram when 10 mg of the film sample was heated at a heating rate of 10 ° C./min based on JIS-K7122. It was calculated.

【0035】(4)溶断シール強度 溶断シール部が、中央部で試料長さ方向に垂直になるよ
うに、フイルムから10mm×100mm長さの短冊状
試料を切り出して、インテスコ万能試験機205型を用
いて、チヤツク間距離40mm、引張り速度100mm
/分で引張り試験を行い、シール部が破断する応力(k
g/cm)を読み取った。
(4) Fusing Seal Strength A 10 mm × 100 mm long strip-shaped sample was cut out from the film so that the fusing seal portion was perpendicular to the sample length direction at the central portion, and the Intesco Universal Testing Machine Model 205 was used. Using, distance between check 40mm, pulling speed 100mm
The tensile test is performed at the speed of 1 / min, and the stress (k
g / cm) was read.

【0036】(5)耐熱性 100mm×100mmのフイルムサンプルを、80℃
の恒温槽中に5時間放置しておいた後の(寸法)変化を
測定し、収縮率(%)を算出した。
(5) Heat resistance A film sample measuring 100 mm × 100 mm is heated at 80 ° C.
After being left in the constant temperature bath for 5 hours, the (dimensional) change was measured, and the shrinkage rate (%) was calculated.

【0037】(6)耐衝撃性 ハイドロショット高速衝撃試験機HTM−1型((株)
島津製作所製)を用いて耐衝撃性を測定した。100m
m×100mmに切り出した試料片をクランプで固定
し、試料片の中央に錘を落として衝撃を与え、試料が破
壊する時の破壊エネルギーを読取った。測定温度は23
℃、落錘の落下速度は3m/secである。
(6) Impact resistance Hydroshot high-speed impact tester HTM-1 type (Co., Ltd.)
The impact resistance was measured using Shimadzu Corporation). 100m
A sample piece cut out into m × 100 mm was fixed with a clamp, a weight was dropped at the center of the sample piece to give an impact, and the breaking energy when the sample was broken was read. Measurement temperature is 23
The falling velocity of the falling weight is 3 m / sec.

【0038】(実験例1)L−乳酸とD−乳酸との組成
比が98:2で、ガラス転移温度Tgが58℃、融解温
度Tmが175℃、重量平均分子量が18万であるポリ
乳酸重合体を、60mmφ単軸エクストルーダーにて2
10℃でTダイより押し出し、キヤスティングロール
(ロール温度58℃)にて急冷して、厚み約200μm
の透明なポリ乳酸重合体からなる未延伸シートを得た。
Experimental Example 1 Polylactic acid having a composition ratio of L-lactic acid and D-lactic acid of 98: 2, a glass transition temperature Tg of 58 ° C., a melting temperature Tm of 175 ° C. and a weight average molecular weight of 180,000. The polymer is 2 with a 60mmφ single-screw extruder.
Extruded from a T-die at 10 ° C and quenched with a casting roll (roll temperature 58 ° C) to a thickness of about 200 μm
An unstretched sheet of transparent polylactic acid polymer was obtained.

【0039】そのシートを三菱重工業(株)製テンター
を用い、表1に示す条件で延伸、熱処理してポリ乳酸フ
イルム(厚さ29μm)を得た。なお、熱処理時間は3
0秒であった。
Using a tenter manufactured by Mitsubishi Heavy Industries, Ltd., the sheet was stretched and heat-treated under the conditions shown in Table 1 to obtain a polylactic acid film (thickness: 29 μm). The heat treatment time is 3
It was 0 seconds.

【0040】そのフイルムを、トタニ技研工業(株)製
サイドウエルド製袋機HK−65Vを用い、溶断シール
バーの設定温度350℃、シヨツト数180枚/分で溶
断シールして、280mm×320mmの袋を作成し
た。フイルムおよび袋の性能を表2に示す。
The film was fused and sealed using a side weld bag making machine HK-65V manufactured by Totani Giken Kogyo Co., Ltd. at a fusing seal bar set temperature of 350 ° C. and a number of shots of 180 sheets / min, and then 280 mm × 320 mm. I made a bag. The performance of the film and bag is shown in Table 2.

【0041】(実験例2〜4)表1に示す組成のポリ乳
酸系重合体を用い、表1中の条件で厚さ29μmのフイ
ルムを得た。そして実験例1と同様にして袋を得た。各
フイルムおよび袋の性能を表2に示す。
(Experimental Examples 2 to 4) Using the polylactic acid polymer having the composition shown in Table 1, a film having a thickness of 29 μm was obtained under the conditions shown in Table 1. Then, a bag was obtained in the same manner as in Experimental Example 1. The performance of each film and bag is shown in Table 2.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】フイルムが配向、結晶化しているNo.1
のフイルムを用いた袋は、溶断シール強度が高く、フイ
ルム強度、耐熱性ともに優れていた。それに対し、配向
も結晶化もしていないNo.2は、溶断シール強度はあ
る程度あるものの、フイルム自体の耐衝撃性が乏しいと
いう欠点があり、また、配向しているが結晶化程度が低
いNo.3は熱寸法安定性が悪く、また溶断シール時加
熱部周辺が収縮し、シワが発生するという問題があるた
め、包装袋としては実用性に欠けている。また、重量平
均分子量が低いNo.4では実用的な溶断シール強度が
得られなかった。
Film No. in which the film is oriented and crystallized 1
The bag using the film No. 2 had high fusing seal strength, and was excellent in both film strength and heat resistance. On the other hand, No. 1 which is neither oriented nor crystallized. No. 2 has a melt-sealing strength to some extent, but has a drawback that the film itself has poor impact resistance, and it is oriented but has a low degree of crystallization. No. 3 is not practical as a packaging bag because it has a problem that the thermal dimensional stability is poor and that the periphery of the heating portion shrinks at the time of fusing and sealing to cause wrinkles. Moreover, No. 1 having a low weight average molecular weight. No. 4, a practical fusing seal strength could not be obtained.

【0045】[0045]

【発明の効果】本発明によれば、分解性を有するポリ乳
酸系重合体から、実用上十分なフイルム強度、熱寸法安
定性およびシール強度をもった包装袋が得られる。
According to the present invention, a packaging bag having a practically sufficient film strength, thermal dimensional stability and sealing strength can be obtained from a polylactic acid polymer having degradability.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量平均分子量が10万以上の結晶性ポ
リ乳酸系重合体からなる配向結晶化フイルムを溶断シー
ルしてなる包装袋。
1. A packaging bag obtained by fusing and sealing an oriented crystallization film made of a crystalline polylactic acid-based polymer having a weight average molecular weight of 100,000 or more.
【請求項2】 ポリ乳酸系重合体からなるフイルムの面
配向指数ΔPが3.0×10-3以上であり、かつ、フイ
ルムを昇温したときの結晶融解熱量ΔHmと昇温中の結
晶化により生じる結晶化熱量ΔHcとの差(ΔHm−Δ
Hc)が20J/g以上、{(ΔHm−ΔHc)/ΔH
m}が0.75以上である請求項1記載の包装袋。
2. A film made of a polylactic acid-based polymer having a plane orientation index ΔP of 3.0 × 10 −3 or more, and a heat of crystal melting ΔHm when the film is heated and crystallization during heating. Difference (ΔHm-Δ) from the heat of crystallization ΔHc caused by
Hc) is 20 J / g or more, {(ΔHm-ΔHc) / ΔH
The packaging bag according to claim 1, wherein m} is 0.75 or more.
JP24186495A 1995-09-20 1995-09-20 Packaging bag made of polylactic acid polymer Expired - Lifetime JP3167595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24186495A JP3167595B2 (en) 1995-09-20 1995-09-20 Packaging bag made of polylactic acid polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24186495A JP3167595B2 (en) 1995-09-20 1995-09-20 Packaging bag made of polylactic acid polymer

Publications (2)

Publication Number Publication Date
JPH0977124A true JPH0977124A (en) 1997-03-25
JP3167595B2 JP3167595B2 (en) 2001-05-21

Family

ID=17080667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24186495A Expired - Lifetime JP3167595B2 (en) 1995-09-20 1995-09-20 Packaging bag made of polylactic acid polymer

Country Status (1)

Country Link
JP (1) JP3167595B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187964A (en) * 2000-12-21 2002-07-05 Toray Ind Inc Polyester film for molding
US6506873B1 (en) 1997-05-02 2003-01-14 Cargill, Incorporated Degradable polymer fibers; preparation product; and, methods of use
US6713175B1 (en) 1999-10-26 2004-03-30 Mitsubishi Plastics, Inc. Biaxially stretched biodegradable film
JP2006192666A (en) * 2005-01-12 2006-07-27 Asahi Kasei Life & Living Corp Biodegradable multilayered film having sealing function
JP2008062984A (en) * 2006-09-09 2008-03-21 Tohcello Co Ltd Packaging bag made of oriented polylactic acid-based film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256480A (en) * 1993-03-04 1994-09-13 Toyobo Co Ltd Biodegradable packaging film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256480A (en) * 1993-03-04 1994-09-13 Toyobo Co Ltd Biodegradable packaging film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506873B1 (en) 1997-05-02 2003-01-14 Cargill, Incorporated Degradable polymer fibers; preparation product; and, methods of use
US6713175B1 (en) 1999-10-26 2004-03-30 Mitsubishi Plastics, Inc. Biaxially stretched biodegradable film
JP2002187964A (en) * 2000-12-21 2002-07-05 Toray Ind Inc Polyester film for molding
JP2006192666A (en) * 2005-01-12 2006-07-27 Asahi Kasei Life & Living Corp Biodegradable multilayered film having sealing function
JP4522868B2 (en) * 2005-01-12 2010-08-11 旭化成ケミカルズ株式会社 Biodegradable multilayer film with sealing function
JP2008062984A (en) * 2006-09-09 2008-03-21 Tohcello Co Ltd Packaging bag made of oriented polylactic acid-based film

Also Published As

Publication number Publication date
JP3167595B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
JP3258302B2 (en) Biodegradable biaxially stretched film
US6326440B1 (en) Biodegradable film and process for producing the same
US7175917B2 (en) Biaxially oriented polylactic acid-based resin films
KR100675606B1 (en) Biodegradable bag
JP3217240B2 (en) Polylactic acid based molded body
JP3463792B2 (en) Biodegradable film for heat sealing and method for producing the same
JPH09157408A (en) Stretched polylactic acid film or sheet
JP3388052B2 (en) Degradable laminate material
JPH08198955A (en) Oriented polylactic acid film and sheet and their production
JP3328418B2 (en) Heat-shrinkable polylactic acid film
KR101695926B1 (en) Polyester film and preparation method thereof
JP3182077B2 (en) Biodegradable film
JP2001114912A (en) Stretched aromatic polyester film and preparation method thereof
JP3167595B2 (en) Packaging bag made of polylactic acid polymer
AU781686B2 (en) Biodegradable oriented aromatic polyester film and method of manufacture
JP2002249603A (en) Aliphatic polyester film
JP3739311B2 (en) Biodegradable film
JP2003136592A (en) Biodegradable biaxially stretched film
JP3664969B2 (en) Heat-shrinkable polylactic acid polymer film
JP3670912B2 (en) Polylactic acid-based shrink film or sheet
JP3330273B2 (en) Heat-shrinkable polylactic acid-based film and method for producing the same
JP2006335904A (en) Polylactic acid-based oriented film
JP3459585B2 (en) Easy tear polylactic acid based biaxially stretched film
JP4790920B2 (en) Stretched molded product for packaging materials
JP2006069218A (en) Polylactic acid based biodegradable gas barrier film