JP2000355654A - Heat-conductive silicone molding and its use - Google Patents

Heat-conductive silicone molding and its use

Info

Publication number
JP2000355654A
JP2000355654A JP11168817A JP16881799A JP2000355654A JP 2000355654 A JP2000355654 A JP 2000355654A JP 11168817 A JP11168817 A JP 11168817A JP 16881799 A JP16881799 A JP 16881799A JP 2000355654 A JP2000355654 A JP 2000355654A
Authority
JP
Japan
Prior art keywords
heat
skeleton
conductive silicone
thermally conductive
silicone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11168817A
Other languages
Japanese (ja)
Other versions
JP4446514B2 (en
Inventor
Kazuyoshi Ikeda
和義 池田
Mitsuru Shiiba
満 椎葉
Taku Kawasaki
卓 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP16881799A priority Critical patent/JP4446514B2/en
Publication of JP2000355654A publication Critical patent/JP2000355654A/en
Application granted granted Critical
Publication of JP4446514B2 publication Critical patent/JP4446514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a silicone molding having softness enough to absorb excessive force during fastening or compression and having a very high heat conductivity and surface pressure-sensitive adhesiveness, which molding is prepared so that it is composed of a skeleton and a resin part, there is a difference between the heat conductivity of the skeleton and that of the resin part, and it has a specified pressure-sensitive adhesive part on the surface. SOLUTION: The heat-conductive silicone molding base 1 is prepared so that it is composed of a skeleton 2 and a resin part 3 integrally formed with part or whole of the skeleton 2, there is a difference between the heat conductivity of the skeleton 2 and that of the part 3, and it has a pressure-sensitive adhesive part of at least 5 N/m on at least part of the surface. Although it is arbitrary, the difference between the heat conductivities is, say, at least 2 W/m.K. It is desirable that pressure-sensitive adhesive parts are present on the upper and lower surfaces perpendicular to the direction of the thickness of the molding and that there is a difference of at least 5 N/m between their pressure-sensitive adhesiveness. It is desirable that the coverage of the skeleton 2 or the part 3 is 50-98% in terms of a ratio by a sectional area. The molding is used as a heat-dissipating member of an electronic device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱伝導性シリコー
ン成形体及びその用途に関する。
[0001] The present invention relates to a thermally conductive silicone molding and its use.

【0002】[0002]

【従来の技術】電子機器においては、使用時に発生する
熱をどのように除去するかが重要な課題であり、それを
解決するため、従来よりトランジスタやサイリスタ等の
発熱電子部品は、熱伝導性シート等の放熱部材を介して
放熱フインや放熱板等のヒートシンクに取り付けられて
いる。熱伝導性シートとしては、樹脂に窒化ホウ素(B
N)等の熱伝導性フィラーを分散含有させたものが広く
賞用されており、また最近では、その柔軟性を例えばア
スカーC硬度で50以下までに著しく柔らかくした高柔
軟性放熱スペーサーも使用されるようになってきてい
る。
2. Description of the Related Art In electronic equipment, how to remove heat generated during use is an important issue. To solve this problem, heat-generating electronic components such as transistors and thyristors have been used in the past. It is attached to a heat sink such as a radiating fin or a radiating plate via a radiating member such as a sheet. As a heat conductive sheet, boron nitride (B
N) and the like in which a heat conductive filler is dispersed and contained have been widely used. Recently, a highly flexible heat radiation spacer whose flexibility has been remarkably softened to, for example, Asker C hardness of 50 or less has also been used. It is becoming.

【0003】今日、このような放熱部材においては、更
なる熱伝導性の向上が要求されており、それをBNの充
填率を高めることによって対応しているが、その反面、
シートの機械的強度が低下するので充填率を高める方法
には限界がある。
[0003] Today, in such a heat dissipating member, further improvement in thermal conductivity is required, and this is addressed by increasing the BN filling rate.
Since the mechanical strength of the sheet is reduced, there is a limit to a method for increasing the filling rate.

【0004】BNは鱗片状粒子であり、その熱伝導率は
面方向では約110W/mK、面方向に対して垂直な方
向では約2W/mK程度であり、面方向の熱伝導性は数
十倍優れていることが知られている。したがって、BN
粒子の面方向を熱の伝達方向であるシートの厚み方向と
同じにする(すなわち、BN粒子をシート厚み方向に立
たせる)ことによって、シートの熱伝導性が飛躍的に向
上することが期待されるが、従来のカレンダーロール
法、ドクターブレード法、押し出し法等の成形方法で
は、シート成形時にBN粒子の配向が起こり、図3のよ
うに鱗片状粒子の面方向がシート面方向と同一となって
しまい、BN粒子の面方向の優れた熱伝導性を活かされ
ないままとなっていた。
BN is a scaly particle having a thermal conductivity of about 110 W / mK in a plane direction, about 2 W / mK in a direction perpendicular to the plane direction, and a thermal conductivity in the plane direction of several tens. It is known to be twice as good. Therefore, BN
By setting the plane direction of the particles to be the same as the thickness direction of the sheet, which is the direction of heat transfer, (that is, making the BN particles stand in the sheet thickness direction), it is expected that the thermal conductivity of the sheet will be dramatically improved. However, in conventional molding methods such as a calendar roll method, a doctor blade method, and an extrusion method, the orientation of BN particles occurs during sheet molding, and the plane direction of the flaky particles becomes the same as the sheet plane direction as shown in FIG. As a result, the excellent thermal conductivity in the plane direction of the BN particles was not utilized.

【0005】このような問題を解決するため、特公平6
−12643号公報には、BN粒子をランダムに配向さ
せることが提案されているが、この場合であってもシー
ト面方向に配向したBN粒子も依然として多く存在して
いるので、十分に熱伝導性が高められているとはいえな
い。
In order to solve such a problem, Japanese Patent Publication No.
Japanese Patent Application Publication No. -12463 proposes that BN particles are randomly oriented, but even in this case, there are still many BN particles oriented in the sheet surface direction. Cannot be said to have been raised.

【0006】そこで、シート厚み方向に配向しているB
N粒子の割合を、シート面方向に配向している割合より
も多くさせるため、特公平6−38460号公報が提案
されている。この方法は、BN粒子の充填されたシリコ
ーン固化物を成型機でまずブロック化し、次いでそれを
垂直方向にスライスしてシート化するものであるので、
ブロック寸法が大きくなると成型金型の側面ではBN粒
子が配向するものの、内側ではBN粒子がランダムに配
向するので、熱伝導性の十分な向上は望めない。
[0006] Therefore, B, which is oriented in the sheet thickness direction,
Japanese Patent Publication No. 6-38460 has been proposed in order to increase the ratio of N particles to the ratio of orientation in the sheet surface direction. In this method, a silicone solid product filled with BN particles is first blocked by a molding machine, and then sliced in a vertical direction to form a sheet.
When the block size is increased, the BN particles are oriented on the side surface of the molding die, but the BN particles are randomly oriented on the inside, so that a sufficient improvement in thermal conductivity cannot be expected.

【0007】BN粒子を内側まで十分に配向させるため
には、BN粒子を含有するシリコーン組成物を小さな断
面積で棒状に押し出すことが必要であり、成形された棒
状成形物は複数本集結させ、押し出し方向で使用するこ
とにより、押し出し方向で良好な放熱性を有する放熱部
材を得ることができる。
[0007] In order to sufficiently orient the BN particles to the inside, it is necessary to extrude the silicone composition containing the BN particles into a rod shape with a small cross-sectional area. By using in the extrusion direction, a heat radiating member having good heat radiation in the extrusion direction can be obtained.

【0008】また、最近の放熱部材においては、熱伝導
性以外に放熱フィンや発熱体への取り付けやすさや、放
熱部材を取り付けた部品を組み込む際、放熱部材の落下
や位置ズレをなくすることが要求されている。このよう
な背景から、当該分野においては、表面粘着性を有し、
しかも柔軟性と高熱伝導性を併せ持つ放熱部材の出現が
待たれていた。
In recent heat dissipating members, in addition to heat conductivity, ease of attachment to a heat dissipating fin or a heating element, and when incorporating a component to which the heat dissipating member is attached, dropping and displacement of the heat dissipating member are eliminated. Has been requested. Against this background, in the field, having surface tackiness,
In addition, the appearance of a heat dissipating member having both flexibility and high thermal conductivity has been awaited.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記に鑑み
てなされたものであり、その目的は、締め付け又は圧縮
時の余分な力を吸収できるような柔らかさを有し、しか
も極めて高い熱伝導性と表面粘着性を有する、放熱部材
として好適な熱伝導性シリコーン成形体を提供すること
である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and an object of the present invention is to provide a soft and extremely high heat capable of absorbing an excessive force during tightening or compression. An object of the present invention is to provide a thermally conductive silicone molded body having conductivity and surface adhesiveness, which is suitable as a heat dissipation member.

【0010】[0010]

【課題を解決するための手段】すなわち、本発明は、骨
格部と、該骨格部の一部又は全部と一体的に形成された
樹脂部とからなるものであって、骨格部と樹脂部の熱伝
導率は異なっており、しかもその表面の少なくとも一部
に5N/m以上の粘着部があることを特徴とする熱伝導
性シリコーン成形体である。特に、成形体の厚み方向に
対して、垂直な上下両面に粘着部を有し、その差が5N
/m以上であり、また骨格部又は樹脂部の割合が断面積
比で50〜98%であることを特徴とするものである。
That is, the present invention comprises a skeleton portion and a resin portion integrally formed with a part or all of the skeleton portion, wherein the skeleton portion and the resin portion are combined. A thermally conductive silicone molded article having different thermal conductivity and having an adhesive portion of 5 N / m or more on at least a part of its surface. Particularly, it has adhesive portions on both upper and lower surfaces perpendicular to the thickness direction of the molded product, and the difference is 5N.
/ M or more, and the ratio of the skeleton portion or the resin portion is 50 to 98% in cross-sectional area ratio.

【0011】また、本発明は、上記熱伝導性シリコーン
成形体からなることを特徴とする電子機器の放熱部材で
あり、特に熱抵抗が0.5℃/W・mm以下、アスカー
C硬度が60以下であることを特徴とするものである。
The present invention is also a heat dissipating member for an electronic device characterized by comprising the above-mentioned heat conductive silicone molded body, and particularly has a heat resistance of 0.5 ° C./W·mm or less and an Asker C hardness of 60 ° C. It is characterized by the following.

【0012】[0012]

【発明の実施の形態】以下、図面に従い、更に詳しく本
発明について説明する。図1は、本発明に係る熱伝導性
シリコーン成形体の基本体の斜視図、図2は、そのA−
A断面図である。符号の1は熱伝導性シリコーン成形体
の基本体、2は骨格部、3は樹脂部、4は熱伝導性フィ
ラーである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 is a perspective view of a basic body of a thermally conductive silicone molded article according to the present invention, and FIG.
It is A sectional drawing. Reference numeral 1 is a basic body of a thermally conductive silicone molded body, 2 is a skeleton, 3 is a resin part, and 4 is a thermally conductive filler.

【0013】図1、図2に示されるように、本発明に係
る熱伝導性シリコーン成形体の基本体1は、骨格部2
と、該骨格部の一部又は全部と一体的に形成された樹脂
部3とから構成されており、熱伝導性フィラー4は成形
体の厚み方向に配向している割合が著しく多いものであ
り、しかも骨格部と樹脂部の熱伝導率が異なっているも
のである。本発明は、このような熱伝導性シリコーン成
形体の基本体であって、その表面の少なくとも一部に5
N/m以上の粘着部があることを特徴とするものであ
る。
As shown in FIGS. 1 and 2, the basic body 1 of the thermally conductive silicone molding according to the present invention has a skeleton 2
And a resin part 3 integrally formed with a part or the whole of the skeleton part, and the ratio of the thermally conductive filler 4 oriented in the thickness direction of the molded article is extremely large. Moreover, the skeleton portion and the resin portion have different thermal conductivity. The present invention relates to a basic body of such a thermally conductive silicone molded article, wherein at least a part of the surface thereof has
It is characterized by having an adhesive portion of N / m or more.

【0014】本発明に係る熱伝導性シリコーン成形体の
基本体それ自体については、本出願人が提案した特願平
10−367159号明細書に記載されている。以下、
それを概説する。
The basic body of the thermally conductive silicone molded article according to the present invention itself is described in Japanese Patent Application No. 10-67159 proposed by the present applicant. Less than,
I will outline it.

【0015】骨格部と樹脂部の形成に使用されるシリコ
ーン原料としては、付加反応型液状シリコーンゴム、過
酸化物を加硫に用いる熱硬化型ミラブルタイプのシリコ
ーンゴム等が使用されるが、電子機器の放熱部材では、
発熱電子部品の発熱面とヒートシンク面との密着性が要
求されるため、付加反応型液状シリコーンゴムが望まし
い。その具体例としては、一分子中にビニル基とH−S
i基の両方を有する一液性のシリコーンや、末端又は側
鎖にビニル基を有するオルガノポリシロキサンと末端又
は側鎖に2個以上のH−Si基を有するオルガノポリシ
ロキサンとの二液性のシリコーンなどがあり、市販品と
しては、東レダウコーニング社製、商品名「SE−18
85」等がある。シリコーン硬化物の柔軟性は、シリコ
ーンの架橋密度や熱伝導性フィラーの充填量によって調
整することができる。
As the silicone raw material used for forming the skeleton and the resin, an addition-reaction liquid silicone rubber, a thermosetting millable silicone rubber using peroxide for vulcanization, and the like are used. In the heat dissipation member of the equipment,
Since adhesion between the heat generating surface of the heat generating electronic component and the heat sink surface is required, an addition reaction type liquid silicone rubber is desirable. As a specific example, a vinyl group and an HS
One-part silicone having both i groups and two-part silicone composed of an organopolysiloxane having a vinyl group at a terminal or a side chain and an organopolysiloxane having two or more H-Si groups at a terminal or a side chain. There are silicone and the like, and as a commercial product, product name “SE-18” manufactured by Toray Dow Corning Co., Ltd.
85 "and the like. The flexibility of the cured silicone can be adjusted by the crosslink density of the silicone and the amount of the thermally conductive filler.

【0016】また、骨格部又は樹脂部の形成に使用され
る熱伝導性フィラーは、BN粉末単独又はBN粉末と他
の熱伝導性フィラーとの混合粉末である。BNは、鱗片
状粒子の面方向(a軸)と垂直方向(c軸)とでは熱伝
導性が数十倍程度異なっているが、本発明によってその
面方向の高熱伝導性を十分に利用することができる。
The thermally conductive filler used for forming the skeleton portion or the resin portion is BN powder alone or a mixed powder of BN powder and another thermally conductive filler. BN differs in thermal conductivity by several tens of times between the plane direction (a-axis) and the vertical direction (c-axis) of the flaky particles, but the present invention makes full use of the high thermal conductivity in the plane direction. be able to.

【0017】BN以外の熱伝導性フィラーとしては、絶
縁性が必要な場合には、窒化珪素、窒化アルミニウム、
アルミナ、マグネシア等のセラミックス粉末が用いら
れ、また絶縁性を問わない場合には、これらのセラミッ
クス粉末の他に、アルミニウム、銅、銀、金等の金属粉
末や、炭化珪素粉末、炭素粉末等が使用される。熱伝導
性フィラーの形状は、破砕形状、球状、繊維状、針状、
鱗片状などいずれでもよく、また粒度は、平均粒径1〜
100μm程度のものが使用される。
As the heat conductive filler other than BN, when insulating properties are required, silicon nitride, aluminum nitride,
Ceramic powders such as alumina and magnesia are used, and when insulating properties are not required, in addition to these ceramic powders, metal powders such as aluminum, copper, silver, and gold, silicon carbide powders, and carbon powders may be used. used. The shape of the thermally conductive filler is crushed, spherical, fibrous, acicular,
Any shape such as scaly may be used.
Those having a size of about 100 μm are used.

【0018】BN粒子の厚み(c軸方向)は、0.1μ
m以上であることが好ましく、0.1μmを未満では、
シリコーンに分散させる際に粒子が破壊する恐れがあ
る。また、BN粒子のアスペクト比(縦/横比)はでき
るだけ大きい方が熱伝導性を向上させる点で好ましく、
20以上が好ましい。
The thickness (c-axis direction) of the BN particles is 0.1 μm.
m or more, and less than 0.1 μm,
Particles may be destroyed when dispersed in silicone. Further, the aspect ratio (length / width ratio) of the BN particles is preferably as large as possible from the viewpoint of improving thermal conductivity,
20 or more are preferable.

【0019】このようなBN粉末は、例えば粗製BN粉
末をアルカリ金属又はアルカリ土類金属のほう酸塩の存
在下、窒素雰囲気中、2000℃×3〜7時間加熱処理
してBN結晶を十分に発達させ、粉砕後、必要に応じて
硝酸等の強酸によって精製することによって製造するこ
とができる。
Such a BN powder can be sufficiently developed, for example, by subjecting a crude BN powder to heat treatment at 2000 ° C. for 3 to 7 hours in a nitrogen atmosphere in the presence of an alkali metal or alkaline earth metal borate. After pulverization, if necessary, it can be produced by purifying with a strong acid such as nitric acid.

【0020】本発明に係る熱伝導性シリコーン成形体の
基本体において、その(1)骨格部と樹脂部の構成比
率、(2)骨格部と樹脂部の熱伝導率差の大きさ、
(3)一つの中空部内部に形成される樹脂部の割合、
(4)骨格部ないしは樹脂部の断面形状等については、
特に制限はない。以下、これらについて更に詳しく説明
する。
In the basic body of the thermally conductive silicone molded article according to the present invention, (1) the composition ratio of the skeleton portion and the resin portion, (2) the difference in thermal conductivity between the skeleton portion and the resin portion,
(3) The ratio of the resin portion formed inside one hollow portion,
(4) Regarding the cross-sectional shape of the skeleton or resin part,
There is no particular limitation. Hereinafter, these will be described in more detail.

【0021】骨格部又は樹脂部の構成比率(%)は、断
面積中の骨格部又は樹脂部の占める面積比(=骨各部又
は樹脂部の断面積/全断面積×100)で表され、50
〜98%であることが好ましい。
The composition ratio (%) of the skeleton portion or the resin portion is represented by an area ratio occupied by the skeleton portion or the resin portion in the cross-sectional area (= cross-sectional area of each bone or resin portion / total cross-sectional area × 100). 50
Preferably it is ~ 98%.

【0022】骨格部と樹脂部のどちらの熱伝導率を大き
くするかは、使用目的に応じて決定される。また、両者
の熱伝導率の差についても任意であるが、その一例は2
W/m・K以上である。
Whether to increase the thermal conductivity of the skeleton or the resin is determined according to the purpose of use. The difference in thermal conductivity between the two is also arbitrary, but one example is 2.
W / m · K or more.

【0023】骨格部と樹脂部の間に熱伝導率の差を設け
る方法としては、BN粉末の充填量かその配向のさせ
方、又はその両方で行うことができる。BN粉末の充填
量によって行う場合は、BN含有量の異なるシリコーン
組成物を用いることによって容易に行うことができる。
この場合、伝熱の主要部(骨格部又は樹脂部)における
熱伝導性フィラーの含有量は、35〜60体積%特に4
0〜55体積%にすることが好ましい。35体積%未満
では、シリコーン成形体に十分な熱伝導性を付与するこ
とができず、60体積%をこえると機械的強度が低下す
る。本発明のように、骨格部と樹脂部の熱伝導率を違え
た理由は、熱伝導率の高い部分で高熱伝導性を、低い部
分で高柔軟性を負担させるためである。
As a method for providing a difference in thermal conductivity between the skeleton portion and the resin portion, it is possible to carry out the method based on the filling amount of the BN powder, the orientation of the BN powder, or both. When the BN powder is used according to the filling amount, it can be easily performed by using silicone compositions having different BN contents.
In this case, the content of the thermally conductive filler in the main part of heat transfer (skeleton part or resin part) is 35 to 60% by volume, particularly 4%.
It is preferable to set it to 0 to 55% by volume. If it is less than 35% by volume, sufficient thermal conductivity cannot be imparted to the silicone molded body, and if it exceeds 60% by volume, the mechanical strength decreases. The reason why the thermal conductivity of the skeleton portion is different from that of the resin portion as in the present invention is that high thermal conductivity is borne by a portion having high thermal conductivity, and high flexibility is borne by a low portion.

【0024】骨格部の中空部内部に形成される樹脂部に
ついて説明すると、骨格部が伝熱の主要部となる場合に
おいては、樹脂部が柔軟性に富むものほど、締め付け又
は圧縮時に生じる骨格部の変形を吸収でき、発熱体表面
への密着性が増すことから、良好な熱伝導性が得られ
る。骨格部と樹脂部との硬度差は限定されるものではな
いが、アスカーC硬度で5以上あることが好ましい。ま
た、樹脂部は部分的に空隙状態となっていても何ら問題
はなく、用途によってはこのような構造が好都合である
こともある。骨格部と樹脂部の間に硬度差を設ける方法
としては、フィラーの充填量、シリコーンの種類及び架
橋密度などによって行うことができる。
The resin portion formed inside the hollow portion of the skeleton portion will be described. In the case where the skeleton portion is a main portion of heat transfer, the more flexible the resin portion, the more the skeleton portion generated during tightening or compression. Deformation can be absorbed, and the adhesion to the surface of the heating element increases, so that good thermal conductivity can be obtained. The hardness difference between the skeleton portion and the resin portion is not limited, but is preferably 5 or more in Asker C hardness. In addition, there is no problem even if the resin portion is partially in a void state, and such a structure may be advantageous depending on the application. The method of providing a difference in hardness between the skeleton portion and the resin portion can be performed depending on the amount of filler, the type of silicone, the crosslink density, and the like.

【0025】骨格部又は樹脂部の断面形状は、三角形、
四角形、六角形、格子状、菱形、台形等の多角形、円
形、楕円形、波形、同心円形、放射形、渦巻形などが可
能である。
The cross-sectional shape of the skeleton portion or the resin portion is triangular,
Polygons such as a square, a hexagon, a lattice, a rhombus, and a trapezoid, a circle, an ellipse, a waveform, a concentric circle, a radial shape, and a spiral shape are possible.

【0026】本発明の大きな特徴は、上記熱伝導性シリ
コーン成形体の基本体において、その表面の少なくとも
一部に5N/m以上の粘着部を設けたことである。特
に、成形体の厚み方向に対して、垂直な上下両面に粘着
部を形成させ、その差を5N/m以上とすることが好ま
しい。
A major feature of the present invention is that an adhesive portion of 5 N / m or more is provided on at least a part of the surface of the heat-conductive silicone molded body. In particular, it is preferable that the adhesive portions are formed on both upper and lower surfaces perpendicular to the thickness direction of the molded body, and the difference is preferably 5 N / m or more.

【0027】粘着部の形成方法としては、(1)骨格部
と樹脂部のうち、どちらか一方又は両方のシリコーンの
種類とその架橋密度を調整して粘着部を設ける、(2)
熱伝導性シリコーン成形体の表面に粘着剤を塗布するな
どがある。後者で使用される粘着剤としては、アクリル
系粘着剤、シリコーン系粘着剤、熱伝導性グリース、熱
伝導性フィラーを含有又は含有しない低架橋密度のシリ
コーン組成物などがある。このような粘着剤は、樹脂部
形成用原料に配合しておくこともできる。
As the method of forming the adhesive portion, (1) the adhesive portion is provided by adjusting the type of one or both of the skeleton portion and the resin portion and the crosslinking density thereof, and (2)
For example, an adhesive may be applied to the surface of the thermally conductive silicone molded article. Examples of the pressure-sensitive adhesive used in the latter include an acrylic pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, a thermally conductive grease, and a low-crosslinking density silicone composition containing or not containing a thermally conductive filler. Such an adhesive can also be blended in the raw material for forming the resin part.

【0028】粘着剤の塗布は、スクリーン印刷、ロール
コーター等によって行うことができる。粘着部を限られ
た一部分に形成する場合や、複雑形状に形成する場合に
は、スクリーン印刷を用いる方が有効である。
The application of the pressure-sensitive adhesive can be performed by screen printing, a roll coater or the like. When the adhesive portion is formed in a limited portion or when the adhesive portion is formed in a complicated shape, it is more effective to use screen printing.

【0029】粘着部は、厚い方が高い粘着力を得られる
が、熱抵抗が上昇するので、10〜100μm程度、特
に10〜50μmの厚みが好ましい。
The thicker the adhesive portion, the higher the adhesive strength, but the higher the thermal resistance. Therefore, the thickness is preferably about 10 to 100 μm, particularly preferably 10 to 50 μm.

【0030】一方、前者のシリコーンの種類やその架橋
密度の調節によって粘着部を形成させる方法において
は、粘着部を形成させない部分に、波長100〜280
nmの電磁波(UV−C領域の紫外線)を照射すること
によって、好適に行うことができる。
On the other hand, in the former method of forming an adhesive portion by adjusting the type of silicone and the crosslinking density thereof, the portion where the adhesive portion is not formed has a wavelength of 100 to 280.
Irradiation with an electromagnetic wave of nm (ultraviolet light in the UV-C region) can be suitably performed.

【0031】粘着部の粘着性の程度は、放熱部材を発熱
素子に貼り付ける際の落下ないしは位置ズレを起こさせ
ないこと、また放熱部材を挟んで発熱素子を放熱フィン
や筐体等で放冷する電子部品においては、その点検や修
理の際に放熱部材が発熱部材か放熱フィンのどちらか一
方に粘着していることが好ましいことなどを考慮して、
5N/m以上は必要である。その上限には特に制約がな
く、脱着できる程度の大きさであればよい。
The degree of adhesiveness of the adhesive portion is such that the heat radiating member is not dropped or displaced when the heat radiating member is attached to the heat generating element, and the heat radiating member is cooled by a heat radiating fin or a housing with the heat radiating member interposed therebetween. In the electronic parts, considering that it is preferable that the heat radiating member is adhered to either the heat generating member or the heat radiating fin at the time of inspection or repair,
5 N / m or more is required. The upper limit is not particularly limited, and may be any size as long as it can be detached.

【0032】本発明の熱伝導性シリコーン成形体の形状
については制約はなく、用途に応じて適切な形状が選択
される。シート状ないしは矩形状のものは、熱伝導性シ
ートや高柔軟性放熱スペーサー等の電子機器の放熱部材
として使用される。
The shape of the thermally conductive silicone molded article of the present invention is not limited, and an appropriate shape is selected according to the application. The sheet or rectangular member is used as a heat dissipating member of an electronic device such as a heat conductive sheet or a highly flexible heat dissipating spacer.

【0033】本発明の放熱部材は、本発明の熱伝導性シ
リコーン成形体で構成されてなるものであり、その熱抵
抗が0.5℃/W・mm以下、アスカーC硬度が60以
下であることが好ましい。また、熱伝導性フィラーとし
て、BN粉末単独又はBN粉末と他の熱伝導性フィラー
との混合粉末を使用した場合、放熱部材の厚み方向にX
線を照射して得られたX線回折図において、〈100〉
面(a軸)に対する〈002〉面(c軸)のピーク比
(〈002〉/〈100〉)が1以下であることが好ま
しい。
The heat dissipating member of the present invention is constituted by the heat conductive silicone molding of the present invention, and has a heat resistance of 0.5 ° C./W·mm or less and an Asker C hardness of 60 or less. Is preferred. When a BN powder alone or a mixed powder of a BN powder and another heat conductive filler is used as the heat conductive filler, X in the thickness direction of the heat radiating member.
In the X-ray diffraction diagram obtained by irradiating X-rays, <100>
The peak ratio (<002> / <100>) of the <002> plane (c-axis) to the plane (a-axis) is preferably 1 or less.

【0034】[0034]

【実施例】以下、実施例と比較例をあげて更に具体的に
本発明を説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0035】実施例1 骨格部を成形するため、A液(ビニル基を有するオルガ
ノポリシロキサン)対B液(H−Si基を有するオルガ
ノポリシロキサン)の体積比をA液:B液=1:1の割
合で混合して得られた二液性の付加反応型液状シリコー
ン(東レダウコーニング社製、商品名「SE−188
5」)45体積%と、平均粒子径15μm、平均粒子厚
み1μmのBN粉末(電気化学工業社製、商品名「デン
カボロンナイトライド」)55体積%とを、市販ミキサ
ーで混合して熱伝導性コンパウンドを調製した。
Example 1 In order to form the skeleton, the volume ratio of the liquid A (organopolysiloxane having a vinyl group) to the liquid B (organopolysiloxane having an H-Si group) was changed to liquid A: liquid B = 1: 1. A two-component addition reaction type liquid silicone obtained by mixing at a ratio of 1 (trade name “SE-188” manufactured by Toray Dow Corning Co., Ltd.)
5 ") 45% by volume and 55% by volume of BN powder (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name" Dencaboron Nitride ") having an average particle diameter of 15 μm and an average particle thickness of 1 μm were mixed with a commercially available mixer to conduct heat conduction. A sex compound was prepared.

【0036】このコンパウンドを、直径3mmの孔が横
に20個開けられたダイスから、押し出して未硬化の棒
状シリコーン成形物を成形し、長さ6cmに切断後、用
意した樹脂製外枠内に積み重ねて集結体とした。この集
結体は、未硬化の骨格部と、樹脂部となる中空部から構
成されてなるものであり、その平面形状は60×60m
m程度である。
This compound was extruded from a die having 20 holes each having a diameter of 3 mm and formed into an uncured rod-shaped silicone molding, cut into a length of 6 cm, and placed in a prepared resin outer frame. Stacked into an aggregate. This aggregate is composed of an uncured skeleton portion and a hollow portion serving as a resin portion, and has a planar shape of 60 × 60 m.
m.

【0037】次に、粘着性を有する樹脂部を形成するた
め、液性付加反応型液状シリコーンをA液:B液=1.
2:1の体積割合で混合し、粘着力が発現されるように
調整した。これを棒状シリコーン成形物の充填された型
枠に流し込み、真空で10分間処理した後、熱風乾燥機
で120℃、5時間加硫硬化させた。その後、厚み1m
mに切断して本発明の熱伝導性シリコーン成形体を作製
した。
Next, in order to form an adhesive resin portion, a liquid addition reaction type liquid silicone was mixed with liquid A: liquid B = 1.
The mixture was mixed at a volume ratio of 2: 1 and adjusted so as to exhibit an adhesive force. This was poured into a mold filled with a rod-shaped silicone molded product, treated in a vacuum for 10 minutes, and then vulcanized and cured with a hot air drier at 120 ° C. for 5 hours. After that, thickness 1m
m to prepare a thermally conductive silicone molded article of the present invention.

【0038】実施例2 骨格部に粘着性を持たせるため、骨格部の形成に使用し
た二液性付加反応型液状シリコーンの混合割合をA液:
B液=1.2:1の体積比にしたこと以外は、実施例1
と同様な方法で熱伝導性シリコーン成形体を作製した。
Example 2 In order to make the skeleton part sticky, the mixing ratio of the two-component addition reaction type liquid silicone used for forming the skeleton part was as follows:
Example 1 except that the volume ratio of solution B was 1.2: 1.
A thermally conductive silicone molded body was produced in the same manner as in the above.

【0039】実施例3 樹脂部の形成に使用するスラリーとして、上記二液性付
加反応型液状シリコーンの体積比をA液:B液=1:1
としてなるもの80体積%とシリカ粉末20体積%との
混合物を使用したこと以外は、実施例1に準じて、図1
に示される熱伝導性シリコーン成形体の基本体を成形
し、その厚み方向に対して垂直となる上面全体に、シリ
コーン系粘着剤(東芝シリコーン社製、商品名「PSA
6574」)を厚さ10〜20μmに塗布して、本発明
の熱伝導性シリコーン成形体を作製した。
Example 3 As the slurry used for forming the resin part, the volume ratio of the two-component addition-reaction type liquid silicone was set at A: B = 1: 1.
1 according to Example 1 except that a mixture of 80% by volume of silica powder and 20% by volume of silica powder was used.
And a silicone-based pressure-sensitive adhesive (trade name “PSA, manufactured by Toshiba Silicone Co., Ltd.”) is formed on the entire upper surface perpendicular to the thickness direction.
6574 ”) was applied to a thickness of 10 to 20 μm to prepare a thermally conductive silicone molded article of the present invention.

【0040】実施例4 シリコーン系粘着剤のかわりに、上記二液性付加反応型
液状シリコーンの体積比をA液:B液=1.2:1とし
てなるもの70体積%と窒化ケイ素粉末30体積%とを
混合して得られたスラリーを用い、それをスクリーン印
刷により厚さ50μmに塗布した後、120℃の熱風乾
燥機で硬化させたこと以外は、実施例3と同様にして、
熱伝導性シリコーン成形体を作製した。
Example 4 In place of the silicone-based pressure-sensitive adhesive, 70% by volume of the two-component addition reaction type liquid silicone in which the volume ratio of the liquid A: liquid B = 1.2: 1 and 30 volumes of silicon nitride powder were used. %, Using a slurry obtained by mixing the resulting slurry with a thickness of 50 μm by screen printing, followed by curing with a hot air dryer at 120 ° C., in the same manner as in Example 3.
A heat conductive silicone molding was produced.

【0041】実施例5 シリコーン系粘着剤のかわりに、市販の熱伝導性グリー
ス(信越化学工業社製、商品名「G−747」)を用
い、スクリーン印刷により厚さ50μmに塗布したこと
以外は、実施例3と同様にして、熱伝導性シリコーン成
形体を作製した。
Example 5 A commercially available heat conductive grease (trade name "G-747", manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of the silicone-based pressure-sensitive adhesive, and was applied to a thickness of 50 μm by screen printing. In the same manner as in Example 3, a thermally conductive silicone molded body was produced.

【0042】実施例6 実施例1で作製された本発明の熱伝導性シリコーン成形
体の片面に、実施例4で調整されたスラリーをスクリー
ン印刷により厚さ50μmに塗布・硬化させて、熱伝導
性シリコーン成形体を作製した。
Example 6 The slurry prepared in Example 4 was applied to one side of the thermally conductive silicone molded article of the present invention prepared in Example 1 by screen printing to a thickness of 50 μm and cured to obtain a heat conductive material. A silicone molding was prepared.

【0043】比較例1 実施例1で調製された熱伝導性コンパウンドを、押し出
し口が平面形状であるダイスを用い、平面形状の未硬化
シリコーン成形物を押し出し、それを硬化させたこと以
外は、実施例1と同様にして熱伝導性シリコーン成形体
を製造した。
Comparative Example 1 The thermally conductive compound prepared in Example 1 was extruded using a die having a flat extrusion port, and an uncured silicone molded article having a planar shape was extruded and cured. In the same manner as in Example 1, a thermally conductive silicone molded body was produced.

【0044】比較例2 シリコーン系粘着剤を塗布しなかったこと以外は、実施
例3と同様にして、熱伝導性シリコーン成形体の基本体
を成形し、それを熱伝導性シリコーン成形体とした。
Comparative Example 2 A basic heat-conductive silicone molded body was formed in the same manner as in Example 3 except that the silicone-based pressure-sensitive adhesive was not applied, and was used as a heat-conductive silicone molded body. .

【0045】上記で得られた熱伝導性シリコーン成形体
について、樹脂部の構成比率、粘着力、厚み方向の熱抵
抗及びアスカ−C硬度を以下に従い測定した。また、ア
ルミニウム製放熱フィンへの取り付け性についても評価
した。それらの結果を表1に示す。
With respect to the thermally conductive silicone molded body obtained above, the composition ratio of the resin part, adhesive strength, thermal resistance in the thickness direction, and Asker-C hardness were measured as follows. In addition, the attachment property to the aluminum radiation fin was also evaluated. Table 1 shows the results.

【0046】(1)樹脂部の構成比率 熱伝導性シリコーン成形体の断面積当たりの樹脂部の占
有面積率を顕微鏡で測定した。
(1) Composition Ratio of Resin Portion The occupied area ratio of the resin portion per sectional area of the thermally conductive silicone molded article was measured with a microscope.

【0047】(2)粘着力 125mm×25mm×1mmの熱伝導性シリコーン成
形体を、200mm×40mmのSUS板に載せ、50
0g荷重のローラーを約300mm/minの速さで一
往復させて圧着する。その後、引張試験機にて、引張速
度50mm/minで90゜剥離強度を測定した。
(2) Adhesive Strength A heat-conductive silicone molded product having a size of 125 mm × 25 mm × 1 mm was placed on a 200 mm × 40 mm SUS plate.
A roller with a load of 0 g is reciprocated once at a speed of about 300 mm / min to perform pressure bonding. Thereafter, 90 ° peel strength was measured at a tensile speed of 50 mm / min using a tensile tester.

【0048】(3)熱抵抗 厚さ1mmの熱伝導性シリコーン成形体をTO−3形状
に切断し、これをTO−3型の銅製ヒーターケースと銅
板との間にはさみ、締付けトルク5kgf−cmにてセ
ットした後、銅製ヒーターケースに電力15Wをかけて
4分間保持し、銅製ヒーターケースと銅板との温度差を
測定し、式、熱抵抗(℃/W・mm)={温度差(℃)
/電力(W)}/シート厚(mm)、により算出した。
(3) Thermal Resistance A thermally conductive silicone molded article having a thickness of 1 mm is cut into a TO-3 shape, which is sandwiched between a TO-3 type copper heater case and a copper plate, and a tightening torque of 5 kgf-cm. After setting at, a power of 15 W was applied to the copper heater case, and the temperature was maintained for 4 minutes. The temperature difference between the copper heater case and the copper plate was measured, and the equation, thermal resistance (° C./W·mm)={temperature difference (° C.) )
/ Power (W)} / sheet thickness (mm).

【0049】(4)アスカーC硬度 厚さ1mmの熱伝導性シリコーン成形体を円形状(直径
29mm)に切断した後、10枚重ねて厚さ10mmの
試験片とした後、アスカーC硬度計(高分子計器社製)
により、測定荷重500gを加えて硬度を測定した。
(4) Asker C hardness A 1 mm thick thermally conductive silicone molded article was cut into a circular shape (diameter 29 mm), and ten pieces were stacked to form a 10 mm thick test piece. (Manufactured by Kobunshi Keiki Co., Ltd.)
By applying a measurement load of 500 g, the hardness was measured.

【0050】(5)アルミニウム製放熱フィンへの取り
付け性 市販のアルミニウム製放熱フィンに、30mm×30m
m×1mmの熱伝導性シリコーン成形体を貼り付けた
後、横方向に10回往復させて位置ズレの有無を確認し
た。また、放熱フィンを裏返しにして落下の有無を確認
した。
(5) Attaching property to aluminum radiating fins Commercially available aluminum radiating fins have a size of 30 mm × 30 m.
After adhering the thermally conductive silicone molded article of mx 1 mm, it was reciprocated 10 times in the lateral direction to confirm the presence / absence of positional deviation. In addition, the radiation fins were turned upside down to check for a drop.

【0051】[0051]

【表1】 [Table 1]

【0052】表1より、実施例1〜6の熱伝導性シリコ
ーン成形体は、比較例1に比べて熱伝導性が大幅に向上
している、また、比較例1〜2と比べて、表面に粘着部
が形成されていることから取り付け性に優れていること
がわかる。
From Table 1, it can be seen that the thermally conductive silicone molded articles of Examples 1 to 6 have significantly improved thermal conductivity as compared with Comparative Example 1, and have a higher surface conductivity than Comparative Examples 1 and 2. It can be seen that the adhesive portion is excellent in the attachment property because the adhesive portion is formed on the adhesive.

【0053】次に、実施例で作製された熱伝導性シリコ
ーン成形体を放熱部材とし、ヒートシンク側に貼って、
ボールグッリドアレイ式のSRAM等の発熱素子に取り
付けたところ、落下や位置ズレもなく組み立てることが
できた。また、作動時においても、温度上昇を低く抑え
ることができ、高信頼性の電子機器をつくることができ
た。
Next, the heat conductive silicone molded body produced in the example was used as a heat radiating member, and was attached to the heat sink side.
When it was attached to a heating element such as a ball-grid array type SRAM, it could be assembled without dropping or misalignment. In addition, even during operation, temperature rise can be suppressed low, and a highly reliable electronic device can be manufactured.

【0054】[0054]

【発明の効果】本発明によれば、放熱部材に適した粘着
性を有し、しかも高柔軟性かつ高熱伝導性のシリコーン
成形体を提供することができる。本発明の熱伝導性シリ
コーン成形体は、熱伝導性シート、柔軟性放熱スペーサ
ー等の電子機器の放熱部材として好適なものである。
According to the present invention, it is possible to provide a silicone molded body having adhesiveness suitable for a heat radiation member, and having high flexibility and high thermal conductivity. The heat-conductive silicone molded article of the present invention is suitable as a heat-radiating member for electronic devices such as a heat-conductive sheet and a flexible heat-radiating spacer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る熱伝導性シリコーン成形体の基本
体の斜視図
FIG. 1 is a perspective view of a basic body of a thermally conductive silicone molding according to the present invention.

【図2】図1のA−A断面図FIG. 2 is a sectional view taken along line AA of FIG. 1;

【図3】従来の熱伝導性シートの厚み方向における断面
FIG. 3 is a cross-sectional view of a conventional heat conductive sheet in a thickness direction.

【符号の説明】[Explanation of symbols]

1 熱伝導性シリコーン成形体の基本体 2 骨格部 3 樹脂部 4 熱伝導性フィラー DESCRIPTION OF SYMBOLS 1 Basic body of a heat conductive silicone molded object 2 Skeleton part 3 Resin part 4 Heat conductive filler

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 骨格部と、該骨格部の一部又は全部と一
体的に形成された樹脂部とからなるものであって、骨格
部と樹脂部の熱伝導率は異なっており、しかもその表面
の少なくとも一部に5N/m以上の粘着部があることを
特徴とする熱伝導性シリコーン成形体。
1. A skeleton part and a resin part formed integrally with a part or all of the skeleton part, wherein the skeleton part and the resin part have different thermal conductivity, and furthermore, A thermally conductive silicone molded product, characterized in that at least a part of the surface has an adhesive portion of 5 N / m or more.
【請求項2】 成形体の厚み方向に対して、垂直な上下
両面に粘着部を有し、その差が5N/m以上であること
を特徴とする請求項1記載の熱伝導性シリコーン成形
体。
2. The thermally conductive silicone molded product according to claim 1, wherein the molded product has adhesive portions on both upper and lower surfaces perpendicular to the thickness direction, and the difference is 5 N / m or more. .
【請求項3】 骨格部又は樹脂部の割合が断面積比で5
0〜98%であることを特徴とする請求項2記載の熱伝
導性シリコーン成形体。
3. The ratio of the skeleton portion or the resin portion is 5 in cross-sectional area ratio.
The thermally conductive silicone molded product according to claim 2, wherein the content is 0 to 98%.
【請求項4】 請求項1、2又は3記載のいずれかの熱
伝導性シリコーン成形体からなることを特徴とする電子
機器の放熱部材。
4. A heat dissipating member for an electronic device, comprising the heat conductive silicone molded product according to claim 1, 2 or 3.
【請求項5】 熱抵抗が0.5℃/W・mm以下、アス
カーC硬度が60以下であることを特徴とする請求項4
記載の放熱部材。
5. The heat resistance is 0.5 ° C./W·mm or less and Asker C hardness is 60 or less.
A heat dissipating member according to any one of the preceding claims.
JP16881799A 1999-06-15 1999-06-15 Thermally conductive silicone molded body heat dissipation member Expired - Fee Related JP4446514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16881799A JP4446514B2 (en) 1999-06-15 1999-06-15 Thermally conductive silicone molded body heat dissipation member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16881799A JP4446514B2 (en) 1999-06-15 1999-06-15 Thermally conductive silicone molded body heat dissipation member

Publications (2)

Publication Number Publication Date
JP2000355654A true JP2000355654A (en) 2000-12-26
JP4446514B2 JP4446514B2 (en) 2010-04-07

Family

ID=15875064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16881799A Expired - Fee Related JP4446514B2 (en) 1999-06-15 1999-06-15 Thermally conductive silicone molded body heat dissipation member

Country Status (1)

Country Link
JP (1) JP4446514B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237554A (en) * 2001-02-07 2002-08-23 Denki Kagaku Kogyo Kk Heat conductive resin formation and its use
JP2006089675A (en) * 2004-09-27 2006-04-06 Dow Corning Toray Co Ltd Thermally-conductive silicone elastomer and thermally-conductive silicone elastomer composition
JP2008112894A (en) * 2006-10-31 2008-05-15 Denki Kagaku Kogyo Kk Adhesive heat dissipating sheet
JP2009234112A (en) * 2008-03-27 2009-10-15 Shin Etsu Chem Co Ltd Heat conductive laminate and its manufacturing method
JP2012031242A (en) * 2010-07-29 2012-02-16 Nitto Denko Corp Heat-conductive sheet
JP2012049493A (en) * 2010-01-29 2012-03-08 Nitto Denko Corp Imaging part
JP2012049495A (en) * 2010-01-29 2012-03-08 Nitto Denko Corp Light-emitting diode device
JP2012109312A (en) * 2010-11-15 2012-06-07 Hitachi Chem Co Ltd Heat conducting sheet, method for producing heat conducting sheet, and heat radiator
WO2012147801A1 (en) * 2011-04-27 2012-11-01 三洋電機株式会社 Power supply device and vehicle equipped with power supply device
JP7057845B1 (en) 2021-02-09 2022-04-20 デクセリアルズ株式会社 Supply form of heat conductive sheet and heat conductive sheet body
WO2022176628A1 (en) * 2021-02-17 2022-08-25 デクセリアルズ株式会社 Method for producing heat transfer sheet, heat transfer sheet package, and method for producing heat transfer sheet package

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161699A (en) * 1980-05-16 1981-12-12 Denki Kagaku Kogyo Kk Method of mounting electric part and insulating heat dissipating sheet used therefor
JPS62154410A (en) * 1985-12-25 1987-07-09 信越化学工業株式会社 Heat conductive insulating sheet
JPH01164099A (en) * 1987-12-21 1989-06-28 Shin Etsu Chem Co Ltd Heat-dissipating shield sheet
JPH0282559A (en) * 1988-09-19 1990-03-23 Denki Kagaku Kogyo Kk Highly heat-conductive insulating laminate
JPH03151658A (en) * 1989-11-08 1991-06-27 Tokai Rubber Ind Ltd Cooling sheet
JPH05259671A (en) * 1992-01-07 1993-10-08 Toshiba Corp Heat radiating sheet and manufacture thereof
JPH06291226A (en) * 1993-02-02 1994-10-18 Denki Kagaku Kogyo Kk Heat dissipating sheet
WO1995002313A1 (en) * 1993-07-06 1995-01-19 Kabushiki Kaisha Toshiba Heat dissipating sheet
JPH091738A (en) * 1995-06-22 1997-01-07 Shin Etsu Chem Co Ltd Thermally conductive composite silicone rubber sheet
JPH10150132A (en) * 1996-04-30 1998-06-02 Denki Kagaku Kogyo Kk Heat dissipating spacer, its use, and silicon composition
JPH1119948A (en) * 1997-07-02 1999-01-26 Denki Kagaku Kogyo Kk Manufacture of radiation member for electronic part
JPH1177795A (en) * 1997-09-12 1999-03-23 Denki Kagaku Kogyo Kk Production of rubber sheet
JPH1187578A (en) * 1997-07-09 1999-03-30 Kitagawa Ind Co Ltd Heat conduction spacer and heat sink
JPH11302545A (en) * 1998-02-18 1999-11-02 Nippon Mitsubishi Oil Corp Silicone rubber composite
JP2000101005A (en) * 1998-09-17 2000-04-07 Kitagawa Ind Co Ltd Heat radiative material
JP2000185328A (en) * 1998-12-24 2000-07-04 Denki Kagaku Kogyo Kk Heat conductive silicone moldings and manufacture thereof and use applications
JP2000212441A (en) * 1999-01-27 2000-08-02 Denki Kagaku Kogyo Kk Silicone solidified material
JP2000286370A (en) * 1999-03-31 2000-10-13 Denki Kagaku Kogyo Kk Heat radiation member of electronic component
JP2000345039A (en) * 1999-06-02 2000-12-12 Denki Kagaku Kogyo Kk Highly heat-conductive silicone molding and its usage
JP2000345040A (en) * 1999-06-02 2000-12-12 Denki Kagaku Kogyo Kk Manufacture of heat-conductive silicone molding
JP2000349919A (en) * 1999-06-01 2000-12-15 Canon Inc Information transmitter and sound signal generator

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161699A (en) * 1980-05-16 1981-12-12 Denki Kagaku Kogyo Kk Method of mounting electric part and insulating heat dissipating sheet used therefor
JPS62154410A (en) * 1985-12-25 1987-07-09 信越化学工業株式会社 Heat conductive insulating sheet
JPH0612643B2 (en) * 1985-12-25 1994-02-16 信越化学工業株式会社 Thermally conductive insulation sheet
JPH01164099A (en) * 1987-12-21 1989-06-28 Shin Etsu Chem Co Ltd Heat-dissipating shield sheet
JPH0282559A (en) * 1988-09-19 1990-03-23 Denki Kagaku Kogyo Kk Highly heat-conductive insulating laminate
JPH03151658A (en) * 1989-11-08 1991-06-27 Tokai Rubber Ind Ltd Cooling sheet
JPH05259671A (en) * 1992-01-07 1993-10-08 Toshiba Corp Heat radiating sheet and manufacture thereof
JPH06291226A (en) * 1993-02-02 1994-10-18 Denki Kagaku Kogyo Kk Heat dissipating sheet
WO1995002313A1 (en) * 1993-07-06 1995-01-19 Kabushiki Kaisha Toshiba Heat dissipating sheet
JPH091738A (en) * 1995-06-22 1997-01-07 Shin Etsu Chem Co Ltd Thermally conductive composite silicone rubber sheet
JPH10150132A (en) * 1996-04-30 1998-06-02 Denki Kagaku Kogyo Kk Heat dissipating spacer, its use, and silicon composition
JPH1119948A (en) * 1997-07-02 1999-01-26 Denki Kagaku Kogyo Kk Manufacture of radiation member for electronic part
JPH1187578A (en) * 1997-07-09 1999-03-30 Kitagawa Ind Co Ltd Heat conduction spacer and heat sink
JPH1177795A (en) * 1997-09-12 1999-03-23 Denki Kagaku Kogyo Kk Production of rubber sheet
JPH11302545A (en) * 1998-02-18 1999-11-02 Nippon Mitsubishi Oil Corp Silicone rubber composite
JP2000101005A (en) * 1998-09-17 2000-04-07 Kitagawa Ind Co Ltd Heat radiative material
JP2000185328A (en) * 1998-12-24 2000-07-04 Denki Kagaku Kogyo Kk Heat conductive silicone moldings and manufacture thereof and use applications
JP2000212441A (en) * 1999-01-27 2000-08-02 Denki Kagaku Kogyo Kk Silicone solidified material
JP2000286370A (en) * 1999-03-31 2000-10-13 Denki Kagaku Kogyo Kk Heat radiation member of electronic component
JP2000349919A (en) * 1999-06-01 2000-12-15 Canon Inc Information transmitter and sound signal generator
JP2000345039A (en) * 1999-06-02 2000-12-12 Denki Kagaku Kogyo Kk Highly heat-conductive silicone molding and its usage
JP2000345040A (en) * 1999-06-02 2000-12-12 Denki Kagaku Kogyo Kk Manufacture of heat-conductive silicone molding

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237554A (en) * 2001-02-07 2002-08-23 Denki Kagaku Kogyo Kk Heat conductive resin formation and its use
JP4514344B2 (en) * 2001-02-07 2010-07-28 電気化学工業株式会社 Thermally conductive resin molding and its use
JP2006089675A (en) * 2004-09-27 2006-04-06 Dow Corning Toray Co Ltd Thermally-conductive silicone elastomer and thermally-conductive silicone elastomer composition
JP2008112894A (en) * 2006-10-31 2008-05-15 Denki Kagaku Kogyo Kk Adhesive heat dissipating sheet
JP2009234112A (en) * 2008-03-27 2009-10-15 Shin Etsu Chem Co Ltd Heat conductive laminate and its manufacturing method
JP4572243B2 (en) * 2008-03-27 2010-11-04 信越化学工業株式会社 Thermally conductive laminate and method for producing the same
KR101488029B1 (en) 2008-03-27 2015-01-29 신에쓰 가가꾸 고교 가부시끼가이샤 Thermal conductive laminate and method for preparing the same
JP2012049495A (en) * 2010-01-29 2012-03-08 Nitto Denko Corp Light-emitting diode device
JP2012049493A (en) * 2010-01-29 2012-03-08 Nitto Denko Corp Imaging part
JP2012031242A (en) * 2010-07-29 2012-02-16 Nitto Denko Corp Heat-conductive sheet
JP2012109312A (en) * 2010-11-15 2012-06-07 Hitachi Chem Co Ltd Heat conducting sheet, method for producing heat conducting sheet, and heat radiator
WO2012147801A1 (en) * 2011-04-27 2012-11-01 三洋電機株式会社 Power supply device and vehicle equipped with power supply device
JP7057845B1 (en) 2021-02-09 2022-04-20 デクセリアルズ株式会社 Supply form of heat conductive sheet and heat conductive sheet body
WO2022172795A1 (en) * 2021-02-09 2022-08-18 デクセリアルズ株式会社 Thermal conductive sheet supply mode, and thermal conductive sheet body
JP2022121838A (en) * 2021-02-09 2022-08-22 デクセリアルズ株式会社 Heat conductive sheet supply form and heat conductive sheet body
WO2022176628A1 (en) * 2021-02-17 2022-08-25 デクセリアルズ株式会社 Method for producing heat transfer sheet, heat transfer sheet package, and method for producing heat transfer sheet package

Also Published As

Publication number Publication date
JP4446514B2 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
JPH1126661A (en) Radiation spacer
WO2020162164A1 (en) Heat-conducting sheet, method for mounting heat-conducting sheet, and method for producing electronic equipment
WO2020017350A1 (en) Heat-conductive sheet, method for manufacturing same, and method for mounting heat-conductive sheet
JP2020013872A (en) Manufacturing method of heat conductive sheet
JP2000355654A (en) Heat-conductive silicone molding and its use
CN113348077A (en) Method for producing thermal conductive sheet
JPH06209057A (en) Heat radiating body having high thermal conductivity and its manufacture
JP3891969B2 (en) Thermally conductive grease
JP4514344B2 (en) Thermally conductive resin molding and its use
JP4610764B2 (en) Heat dissipation spacer
JP3721272B2 (en) Method for producing thermally conductive resin molding
JP4481019B2 (en) Mixed powder and its use
JP2000185328A (en) Heat conductive silicone moldings and manufacture thereof and use applications
JP4749631B2 (en) Heat dissipation member
JP2002299534A (en) Heat radiation material and manufacturing method therefor
JP3558548B2 (en) Resin molding, method of manufacturing the same, and heat radiating member for electronic component using the same
JP4101391B2 (en) Heat dissipation member for electronic parts
JP2000345040A (en) Manufacture of heat-conductive silicone molding
JPH1119948A (en) Manufacture of radiation member for electronic part
JP3092699B2 (en) Heat radiation spacer, its use and silicone composition
JP3606767B2 (en) High thermal conductive silicone molding and its use
JP3183502B2 (en) Heat radiation spacer
JP3464752B2 (en) Molded polymer material and its use
JP2000344919A (en) Production of thermo-conductive silicone molding product
JP4137288B2 (en) Method for producing thermally conductive silicone molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees