JP2002237554A - Heat conductive resin formation and its use - Google Patents

Heat conductive resin formation and its use

Info

Publication number
JP2002237554A
JP2002237554A JP2001030737A JP2001030737A JP2002237554A JP 2002237554 A JP2002237554 A JP 2002237554A JP 2001030737 A JP2001030737 A JP 2001030737A JP 2001030737 A JP2001030737 A JP 2001030737A JP 2002237554 A JP2002237554 A JP 2002237554A
Authority
JP
Japan
Prior art keywords
conductive resin
heat
skeleton
silicone
resin molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001030737A
Other languages
Japanese (ja)
Other versions
JP4514344B2 (en
Inventor
Tetsumi Otsuka
哲美 大塚
Yasuhiko Itabashi
康彦 板橋
Taku Kawasaki
卓 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001030737A priority Critical patent/JP4514344B2/en
Publication of JP2002237554A publication Critical patent/JP2002237554A/en
Application granted granted Critical
Publication of JP4514344B2 publication Critical patent/JP4514344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat conductive resin formation and a heat dissipation member for further improving heat-dissipation characteristic in an electronic apparatus. SOLUTION: A heat conductive resin formation is composed of a plurality of skeletal parts (2), made of heat conductive resin hardening material and a resin part (3), with which part of or all of the follow part formed by the skeletal parts (2) is filled. The skeletal part (2) has Asker C hardness of 55 or below, and the heat dissipation member is made of this heat conductive resin formation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子機器の放熱部
材に好適な熱伝導性樹脂成形体及びその用途に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermally conductive resin molded article suitable for a heat dissipating member of an electronic device and its use.

【0002】[0002]

【従来の技術】電子機器においては、使用時に発生する
熱をどのように除去するかが重要な課題であり、それを
解決するため、従来よりIC、LSI、CPU、MPU
等の半導体素子は、熱伝導性シート等の放熱部材を介し
て放熱フインや放熱板等のヒートシンクに取り付けられ
ている。熱伝導性シートとしては、シリコーン硬化物に
窒化ホウ素(BN)等の熱伝導性フィラーを分散含有さ
せたものが広く賞用されており、また最近では、その柔
軟性をアスカーC硬度で50以下までに柔らかくした高
柔軟性放熱スペーサーも使用されるようになってきてい
る。
2. Description of the Related Art In an electronic device, how to remove heat generated during use is an important issue. To solve the problem, an IC, an LSI, a CPU, an MPU have been conventionally used.
Are mounted on a heat sink such as a heat radiating fin or a heat radiating plate via a heat radiating member such as a heat conductive sheet. As the heat conductive sheet, a material obtained by dispersing and containing a heat conductive filler such as boron nitride (BN) in a cured silicone material has been widely used, and recently, its flexibility is reduced to 50 or less in Asker C hardness. By now, soft and flexible heat radiation spacers have been used.

【0003】今日、このような放熱部材においては、更
なる放熱特性の向上が要求されており、それをBNの充
填率を高めることによって対応しているが、その反面、
シートの機械的強度が低下するので充填率を高める方法
には限界があった。
[0003] Today, in such heat dissipating members, further improvement in heat dissipating characteristics is required, and this is addressed by increasing the BN filling rate.
Since the mechanical strength of the sheet is reduced, there is a limit to a method for increasing the filling rate.

【0004】ところで、BNは鱗片状粒子であり、その
熱伝導率は面方向(a軸)では約110W/mK、面方
向に垂直な方向(c軸)では約2W/mK程度であり、
面方向が数十倍優れているので、BN粒子の面方向を熱
の伝達方向であるシートの厚み方向と同じにする(すな
わち、BN粒子をシート厚み方向に立たせて充填する)
ことによって、放熱部材の放熱特性が飛躍的に向上する
ことが期待される。しかし、従来のカレンダーロール
法、ドクターブレード法等の成形方法では、シート成形
時にBN粒子が配向し、図3のように鱗片状粒子の面方
向がシート面方向と同一となってしまい、BN粒子のc
軸方向の熱伝導性を活かされないままとなっていた。
By the way, BN is a scaly particle, and its thermal conductivity is about 110 W / mK in the plane direction (a-axis) and about 2 W / mK in the direction perpendicular to the plane direction (c-axis).
Since the plane direction is several tens times better, the plane direction of the BN particles is made the same as the thickness direction of the sheet which is the direction of heat transfer (that is, the BN particles are filled upright in the sheet thickness direction).
This is expected to dramatically improve the heat radiation characteristics of the heat radiation member. However, in conventional molding methods such as a calender roll method and a doctor blade method, the BN particles are oriented during sheet molding, and the plane direction of the flaky particles becomes the same as the sheet surface direction as shown in FIG. Of c
The axial thermal conductivity remained unutilized.

【0005】そこで、特公平6−12643号公報に
は、BN粒子をランダムに配向させることが提案されて
いるが、この場合にあってもシート面方向に配向したB
N粒子も依然として多く存るので、十分に放熱特性が高
められていない。
Japanese Patent Publication No. 6-12643 proposes randomly aligning BN particles. Even in this case, the BN particles are oriented in the sheet surface direction.
Since there are still many N particles, the heat radiation characteristics are not sufficiently improved.

【0006】また、特公平6−38460号公報には、
BN粒子の充填されたシリコーン固化物をブロック化
し、次いでそれを垂直方向にスライスしてシート化する
ことによって、シート厚み方向に配向しているBN粒子
の割合を、シート面方向に配向している割合よりも多く
することが提案されている。しかし、この方法では、ブ
ロック寸法が大きくなるとBN粒子がランダムに配向す
るので、これまた放熱特性の十分な向上は望めない。
Further, Japanese Patent Publication No. 6-38460 discloses that
By blocking the solidified silicone filled with BN particles and then slicing it vertically to form a sheet, the proportion of BN particles oriented in the sheet thickness direction is oriented in the sheet plane direction. It is proposed to make it higher than the percentage. However, in this method, when the block size becomes large, the BN particles are randomly oriented, so that a sufficient improvement in the heat radiation characteristics cannot be expected.

【0007】この問題を解決するため、特開平2000
−355654号公報等には、複数の骨格部と、該複数
の骨格部によって形成された空隙の少なくとも一部又は
全部に充填硬化された樹脂部とから構成されてなる高柔
軟性・高熱伝導性の放熱部材が提案されている。この放
熱部材は、BN粒子を含有した樹脂コンパウンドを小さ
な断面を有する棒状物に押し出し成形し、それらの複数
本を集結させて骨格部とするものであるから、BN粒子
の面方向を熱の伝達方向であるシートの厚み方向と同じ
にすることができるので高熱伝導性となる。しかも、高
柔軟性であるので、電子機器に組み込む際、放熱フイン
等のヒートシンクとの密着性が高まる。これらの結果、
その放熱部材の組み込まれた電子機器の放熱特性が極め
て良好となる。
In order to solve this problem, Japanese Patent Laid-Open No. 2000-2000
Japanese Patent Application Laid-Open No. 355654/1992 discloses a high flexibility and high thermal conductivity composed of a plurality of skeleton portions and a resin portion filled and cured in at least a part or all of the voids formed by the plurality of skeleton portions. Has been proposed. Since the heat dissipating member is formed by extruding a resin compound containing BN particles into a rod having a small cross section and assembling a plurality of such members into a skeleton, heat is transferred in the plane direction of the BN particles. Since the direction can be the same as the thickness direction of the sheet, the heat conductivity is high. In addition, since it is highly flexible, the adhesiveness to a heat sink such as a heat radiation fin is increased when the electronic device is incorporated into an electronic device. As a result of these,
The heat radiation characteristics of the electronic device in which the heat radiation member is incorporated become extremely good.

【0008】しかしながら、近年の電子機器の高集積
化、高熱密度化のスピードは目覚ましく速く、一部の機
器においては、特開平2000−355654号公報等
の構造ではもはや十分とは言えなくなってきており、更
なる放熱特性の改善が要求されている。
However, in recent years, the speed of high integration and high heat density of electronic devices is remarkably high, and in some devices, the structure disclosed in Japanese Patent Application Laid-Open No. 2000-355654 is no longer sufficient. Further, there is a demand for further improvement in heat radiation characteristics.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、上記
特開平2000−355654号公報等の構造の放熱部
材においてその柔軟性を改善し、もって電子機器に組み
込む際の密着性を高め、電子機器の放熱特性を一段と向
上させることができる熱伝導性樹脂成形体と、電子機器
の放熱部材とを提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to improve the flexibility of a heat dissipating member having the structure disclosed in Japanese Patent Application Laid-Open No. 2000-355654, thereby improving the adhesion when incorporated into an electronic device, and An object of the present invention is to provide a thermally conductive resin molded body capable of further improving the heat radiation characteristics of a device and a heat radiation member of an electronic device.

【0010】[0010]

【課題を解決するための手段】すなわち、本発明は、熱
伝導性樹脂硬化物からなる複数の骨格部(2)と、該複
数の骨格部によって形成された空隙の一部又は全部に充
填硬化された樹脂部(3)からなるものであって、上記
骨格部のアスカーC硬度が55以下であることを特徴と
する熱伝導性樹脂成形体である。この場合において、骨
格部が、(a)窒化ホウ素(BN)粒子、(b)シリコ
ーン硬化物、(c、シリコーンオイル及び/又はエチレ
ン又はブチレンとプロピレンとの共重合体からなる柔軟
性付与剤とを含み、(a)が40体積%以上、(b)が
5体積%以上、(c)が0.05≦(c)/{(b)+
(c)}≦0.4であることが好ましい。
That is, the present invention relates to a method of filling and curing a plurality of skeletons (2) made of a thermally conductive resin cured product and a part or all of the voids formed by the plurality of skeletons. A heat conductive resin molded article, characterized in that the skeleton part has an Asker C hardness of 55 or less. In this case, the skeleton portion comprises (a) boron nitride (BN) particles, (b) a cured silicone material, (c, a silicone oil and / or a flexibility imparting agent comprising a copolymer of ethylene or butylene and propylene, (A) is 40% by volume or more, (b) is 5% by volume or more, (c) is 0.05 ≦ (c) / {(b) +
(C) It is preferable that} ≦ 0.4.

【0011】また、本発明は、上記熱伝導性樹脂成形体
の熱抵抗が0.2℃/W以下、厚みが0.05〜5.0
mmであることを特徴とする電子機器の放熱部材であ
る。
Further, according to the present invention, the thermal conductive resin molded article has a thermal resistance of 0.2 ° C./W or less and a thickness of 0.05 to 5.0.
mm, which is a heat radiation member of an electronic device.

【0012】[0012]

【発明の実施の形態】以下、図面に従い、更に詳しく本
発明について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the drawings.

【0013】図1は本発明の熱伝導性樹脂成形体の一例
を示す斜視図、図2はそのA−A断面図である。符号の
1は熱伝導性樹脂成形体、2は骨格部、3は樹脂部、4
は熱伝導性フィラーである。図3は、従来の熱伝導性シ
ートの厚み方向における断面図である。
FIG. 1 is a perspective view showing an example of the thermally conductive resin molded article of the present invention, and FIG. 2 is a sectional view taken along line AA of FIG. 1 is a thermally conductive resin molded body, 2 is a skeleton, 3 is a resin, 4
Is a thermally conductive filler. FIG. 3 is a cross-sectional view in the thickness direction of a conventional heat conductive sheet.

【0014】本発明の熱伝導性樹脂成形体1は、複数の
骨格部2と、該複数の骨格部によって形成された空隙の
一部又は全部に充填硬化された樹脂部3とから構成され
ており、樹脂成形体の厚み方向に配向している熱伝導性
フィラー4の割合が著しく多いものである。
The thermally conductive resin molded article 1 of the present invention comprises a plurality of skeleton parts 2 and a resin part 3 which is filled and cured in a part or all of the voids formed by the plurality of skeleton parts. That is, the proportion of the thermally conductive filler 4 oriented in the thickness direction of the resin molded product is extremely large.

【0015】本発明の熱伝導性樹脂成形体は、その骨格
部のアスカーC硬度が55以下である点において、特開
平2000−355654号公報等の樹脂成形体と異な
っている。特開平2000−355654号公報の樹脂
成形体では、その開示された樹脂配合においては、骨格
部のアスカーC硬度は小さくても70程度である。
The thermally conductive resin molded article of the present invention is different from the resin molded article disclosed in Japanese Patent Application Laid-Open No. 2000-355654 in that the Asker C hardness of the skeleton is 55 or less. In the resin molded body disclosed in JP-A-2000-355654, the Asker C hardness of the skeleton is as small as about 70 in the disclosed resin composition.

【0016】アスカーC硬度が55以下の高柔軟性を有
し、しかも高熱伝導性である骨格部2は、例えば(a)
窒化ホウ素(BN)粒子、(b)シリコーン硬化物の原
料及び(c)柔軟性付与剤の特定割合からなる混練物を
棒状に押し出し成形し、それらの複数本を集結し硬化す
ることによって得ることができる。
The skeletal portion 2 having high flexibility with an Asker C hardness of 55 or less and high thermal conductivity includes, for example, (a)
A kneaded product consisting of boron nitride (BN) particles, (b) a raw material of a cured silicone material, and (c) a specific ratio of a softening agent is extruded into a rod shape, and a plurality of the kneaded products are collected and cured. Can be.

【0017】BN粒子(a)としては、c軸方向の厚み
が0.1μm以上であることが好ましく、0.1μmを
未満ではシリコーンに分散させる際に粒子が破壊する恐
れがある。また、BN粒子のアスペクト比(縦/横比)
はできるだけ大きいことが好ましく、20以上であるこ
とが熱伝導性を向上させる点で好ましい。平均粒径は1
0〜100μm程度のものが使用される。骨格部のBN
粒子の割合は40体積%以上であり、これよりも少ない
と熱伝導性が不十分となる。
The BN particles (a) preferably have a thickness in the c-axis direction of 0.1 μm or more, and if less than 0.1 μm, the particles may be broken when dispersed in silicone. In addition, the aspect ratio (length / width ratio) of BN particles
Is preferably as large as possible, and is preferably 20 or more from the viewpoint of improving thermal conductivity. Average particle size is 1
Those having a size of about 0 to 100 μm are used. Skeleton BN
The proportion of the particles is at least 40% by volume, and if less than this, the thermal conductivity becomes insufficient.

【0018】このようなBN粒子は、例えば粗製BN粉
末をアルカリ金属又はアルカリ土類金属のほう酸塩の存
在下、窒素雰囲気中、1700〜2200℃×3〜15
時間加熱処理してBN結晶を十分に発達させ、粉砕後、
必要に応じて硫酸、硝酸等の強酸によって精製すること
によって製造することができる(例えば特開平9−20
2663号公報参照)。
Such BN particles can be prepared by, for example, mixing crude BN powder in the presence of an alkali metal or alkaline earth metal borate in a nitrogen atmosphere at 1700 to 2200 ° C. × 3 to 15 ° C.
Heat treatment for enough time to develop BN crystals sufficiently, and after grinding,
If necessary, it can be produced by purifying with a strong acid such as sulfuric acid or nitric acid (for example, see JP-A-9-20).
No. 2663).

【0019】シリコーン硬化物(b)の形成に使用され
る原料としては、付加反応型液状シリコーン樹脂、過酸
化物を加硫に用いる熱加硫型ミラブルタイプのシリコー
ン樹脂等が好適である。その具体例としては、一分子中
にビニル基とH−Si基の両方を有する一液性のシリコ
ーンや、末端又は側鎖にビニル基を有するオルガノポリ
シロキサンと末端又は側鎖に2個以上のH−Si基を有
するオルガノポリシロキサンとの二液性のシリコーン樹
脂等をあげることができ、市販品としては、東レダウコ
−ニング社製、商品名「SE−1886」等がある。
As a raw material used for forming the silicone cured product (b), an addition-reaction liquid silicone resin, a heat-curable millable silicone resin using a peroxide for vulcanization, and the like are suitable. Specific examples thereof include a one-part silicone having both a vinyl group and an H-Si group in one molecule, or an organopolysiloxane having a vinyl group at a terminal or a side chain and two or more at the terminal or a side chain. A two-part silicone resin with an organopolysiloxane having an H-Si group can be used. Examples of commercially available products include "SE-1886" (trade name, manufactured by Dow Corning Toray Co., Ltd.).

【0020】柔軟性付与剤(c)は、骨格部のアスカー
C硬度を55以下とするために用いられるものであり、
これを用いないと骨格部のアスカーC硬度が70以上と
なる。柔軟付与剤としては、骨格部の主材がシリコーン
硬化物である場合、それとの相溶性が高く、しかも化学
的活性の小さいものが好ましく、例えばジメチルシリコ
ーンオイル、フェニルメチルシリコーンオイル、クロロ
フェニルシリコーンオイル、アルキルシリコーンオイ
ル、フロロシリコーンオイル、脂肪酸エステル変性シリ
コーンオイル等のシリコーンオイルや、エチレン・プロ
ピレン共重合体、ブチレン・プロピレン共重合体等のエ
チレン又はブチレンとプロピレンとの共重合体から選ば
れた1種又は2種以上が使用される。
The flexibility-imparting agent (c) is used to reduce Asker C hardness of the skeleton to 55 or less.
If this is not used, the Asker C hardness of the skeleton will be 70 or more. As the softening agent, when the main material of the skeleton is a silicone cured product, those having high compatibility with it and low chemical activity are preferable, for example, dimethyl silicone oil, phenylmethyl silicone oil, chlorophenyl silicone oil, One selected from silicone oils such as alkyl silicone oils, fluorosilicone oils, fatty acid ester-modified silicone oils, and copolymers of ethylene or butylene and propylene such as ethylene-propylene copolymers and butylene-propylene copolymers Alternatively, two or more are used.

【0021】シリコーン硬化物(b)と柔軟性付与剤
(c)との割合は、0.05≦(c)/{(b)+
(c)}≦0.4であることが好ましい。該比が0.0
5未満では、骨格部の柔軟性の改善効果が不十分であ
り、電子機器に組み込む際の密着性が高まらず、放熱特
性が向上しない。また、該比が0.4超であると、骨格
部の柔軟性が過剰となり、樹脂成形体の保形性が保てな
くなる。骨格部のシリコーン硬化物(b)の割合は、5
体積%以上であることが好ましい。5体積%未満では、
骨格部の保形性が十分ではなく充填されたBN粒子が欠
落して高熱伝導性を発揮できなくなることがある。
The ratio between the silicone cured product (b) and the softening agent (c) is 0.05 ≦ (c) / {(b) +
(C) It is preferable that} ≦ 0.4. The ratio is 0.0
If it is less than 5, the effect of improving the flexibility of the skeletal portion is insufficient, the adhesion when incorporated into an electronic device is not increased, and the heat radiation characteristics are not improved. On the other hand, when the ratio is more than 0.4, the flexibility of the skeleton becomes excessive, and the shape retention of the resin molded product cannot be maintained. The proportion of the silicone cured product (b) in the skeleton is 5
It is preferably at least volume%. If it is less than 5% by volume,
In some cases, the shape retention of the skeleton portion is not sufficient, and the filled BN particles are lost, and high thermal conductivity cannot be exhibited.

【0022】本発明の熱伝導性樹脂成形体の樹脂部3
は、骨格部2によって形成された空隙の一部又は全部に
樹脂が充填硬化されて、構成されている。樹脂部の材質
は、骨格部との密着性を高めるために骨格部の主材と同
種であることが好ましく、骨格部の主材がシリコーン硬
化物である場合、付加反応型液状シリコーン樹脂、過酸
化物を加硫に用いる熱加硫型ミラブルタイプのシリコー
ン樹脂、縮合反応型シリコーン樹脂等であることが好ま
しい。
The resin part 3 of the thermally conductive resin molded article of the present invention
Is formed by filling and hardening a resin in part or all of the voids formed by the skeleton portion 2. The material of the resin portion is preferably of the same type as the main material of the skeleton portion in order to enhance the adhesion to the skeleton portion. When the main material of the skeleton portion is a cured silicone, an addition-reaction liquid silicone resin is used. It is preferable to use a heat-curable millable type silicone resin using an oxide for vulcanization, a condensation reaction type silicone resin, or the like.

【0023】樹脂部には、柔軟性を著しく損なわせない
範囲で熱伝導性フィラーが含有されていることが好まし
い。熱伝導性フィラーとしては、絶縁性を要求する場合
は、窒化珪素、窒化アルミニウム、シリカ、アルミナ、
マグネシア等のセラミックス粉末が用いられ、絶縁性を
問わない場合には、これらのセラミックス粉末の他に、
アルミニウム、銅、銀、金等の金属粉末や、炭化珪素粉
末、炭素粉末等が使用される。熱伝導性フィラーの形状
は、破砕形状、球状、繊維状、針状、鱗片状などいずれ
でもよく、また平均粒径が0.5〜100μm程度のも
のが使用される。
It is preferable that the resin portion contains a thermally conductive filler as long as the flexibility is not significantly impaired. As the heat conductive filler, when insulating properties are required, silicon nitride, aluminum nitride, silica, alumina,
When ceramic powders such as magnesia are used and insulation is not required, besides these ceramic powders,
Metal powders such as aluminum, copper, silver, and gold, silicon carbide powders, and carbon powders are used. The shape of the heat conductive filler may be any of a crushed shape, a spherical shape, a fibrous shape, a needle shape, a scale shape and the like, and those having an average particle size of about 0.5 to 100 μm are used.

【0024】本発明の熱伝導性樹脂成形体の骨格部又は
樹脂部の構成比率(%)には制限はなく、断面積中の骨
格部の占める面積比(骨格部の断面積/全断面積)が5
0〜98%であるものが例示される。
The composition ratio (%) of the skeleton portion or the resin portion of the thermally conductive resin molded article of the present invention is not limited, and the area ratio of the skeleton portion in the cross-sectional area (cross-sectional area of skeleton portion / total cross-sectional area) ) Is 5
Those having 0 to 98% are exemplified.

【0025】骨格部又は樹脂部の断面形状は、三角形、
四角形、六角形、格子状、菱形、台形等の多角形、円
形、楕円形、波形、同心円形、放射形、渦巻形等及びそ
の形状の任意の組み合わせが可能である。
The cross-sectional shape of the skeleton portion or the resin portion is triangular,
A polygon such as a square, a hexagon, a lattice, a rhombus, and a trapezoid, a circle, an ellipse, a waveform, a concentric circle, a radial shape, a spiral shape, and any combination of the shapes are possible.

【0026】本発明の熱伝導性樹脂成形体の用途につい
ては種々考えられるが、とりわけ熱抵抗が0.2℃/W
以下、厚みが0.05〜5.0mmであるものは、電子
機器の放熱部材として好適である。とくに、放熱部材の
厚み方向にX線を照射して得られたX線回折図におい
て、<100>面(a軸)に対する<002>面(c
軸)のピーク比(<002>/<100>)が1以下で
あるものが好ましい。
Various uses of the heat conductive resin molded article of the present invention can be considered, and particularly, the heat resistance is 0.2 ° C./W.
Hereinafter, those having a thickness of 0.05 to 5.0 mm are suitable as heat dissipating members for electronic devices. In particular, in the X-ray diffraction diagram obtained by irradiating X-rays in the thickness direction of the heat radiating member, the <002> plane (c
The peak ratio (<002> / <100>) is preferably 1 or less.

【0027】[0027]

【実施例】以下、実施例と比較例をあげて更に具体的に
本発明を説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0028】実施例1 A液(ビニル基を有するオルガノポリシロキサン):B
液(H−Si基を有するオルガノポリシロキサン)の混
合体積比を1:1の割合で混合した二液性付加反応型液
状シリコーン(東レダウコーニング社製、商品名「SE
−1886」)28体積%、エチレン・プロピレン共重
合体(三井化学社製、商品名「LUCANT」)からな
る柔軟性付与剤7体積%、平均粒子径20μm、平均粒
子厚み1μmのBN粉末(電気化学工業社製、商品名
「デンカボロンナイトライド」)65体積%を市販ミキ
サーで混合し、骨格部形成用コンパウンドを調製した。
Example 1 Liquid A (organopolysiloxane having a vinyl group): B
Liquid (silicone-containing organopolysiloxane having an H-Si group) at a mixing volume ratio of 1: 1 in a two-part addition reaction type liquid silicone (trade name "SE" manufactured by Dow Corning Toray Co., Ltd.).
-1886 ") 28% by volume, 7% by volume of a flexibility-imparting agent composed of an ethylene-propylene copolymer (trade name" LUCANT "manufactured by Mitsui Chemicals, Inc.), BN powder having an average particle diameter of 20 μm and an average particle thickness of 1 μm (electricity 65% by volume of “Dencaboron nitride” (trade name, manufactured by Chemical Industry Co., Ltd.) was mixed with a commercially available mixer to prepare a skeleton-forming compound.

【0029】これを、直径2.5mmの穴が横に20個
設けられたダイスから押し出して未硬化の棒状シリコー
ン成形物を成形し、長さ10cmに切断後、樹脂製枠内
に積み重ね集結体(側面寸法50×50mm)とした。
This is extruded from a die provided with 20 holes of 2.5 mm in diameter on the side to form an uncured rod-shaped silicone molded product, cut to a length of 10 cm, and then stacked in a resin frame to form an aggregate. (Side dimensions 50 × 50 mm).

【0030】ついで、枠内に上記A液:B液=1:1の
割合で混合した二液性付加反応型液状シリコーンを流し
込み、真空中、20分間保持した後、熱風乾燥機で10
0℃、10時間加硫硬化させた。その後、厚み1mmに
切断して、図1に示すような本発明の熱伝導性樹脂成形
体を作製した。
Next, the two-component addition reaction type liquid silicone mixed in the ratio of the above-mentioned liquid A: liquid B = 1: 1 was poured into the frame, and the silicone was kept in a vacuum for 20 minutes.
It was vulcanized and cured at 0 ° C. for 10 hours. Then, it cut | disconnected to 1 mm in thickness, and produced the thermally conductive resin molded object of this invention as shown in FIG.

【0031】実施例2 比較例1〜4 骨格部形成用コンパウンドを表1に示すものを用いたこ
と以外は、実施例1と同様にして熱伝導樹脂成形体を作
製した。なお、実施例2では柔軟性付与剤として、シリ
コーンオイル(東レダウコーニング社製、商品名「SH
200」)を用いた。
Example 2 Comparative Examples 1 to 4 A heat conductive resin molded article was produced in the same manner as in Example 1 except that the compounds shown in Table 1 were used as the skeleton forming compounds. In Example 2, silicone oil (trade name “SH” manufactured by Dow Corning Toray Co., Ltd.) was used as the flexibility-imparting agent.
200 ") was used.

【0032】上記で得られた熱伝導性樹脂成形体の熱抵
抗及びアスカーC硬度と、骨格部のアスカーC硬度とを
以下に従い測定し、表1に示した。
The thermal resistance and Asker C hardness of the heat conductive resin molded article obtained above and Asker C hardness of the skeleton were measured in the following manner, and are shown in Table 1.

【0033】(1)熱抵抗:熱伝導性樹脂成形体をTO
−3形状(面積6cm2)に切断し、これをTO−3型
の銅製ヒーターケースと銅板との間にはさみ、締付けト
ルク5kgf−cmにてセットした後、銅製ヒーターケ
ースに電力20Wをかけて4分間保持し、銅製ヒーター
ケースと銅板との温度差を測定し、次式により算出し
た。
(1) Thermal resistance: The thermally conductive resin molded body is made of TO
After cutting into a -3 shape (area 6 cm 2 ), sandwiching it between a TO-3 type copper heater case and a copper plate, setting with a tightening torque of 5 kgf-cm, a power of 20 W was applied to the copper heater case. After holding for 4 minutes, the temperature difference between the copper heater case and the copper plate was measured and calculated by the following equation.

【0034】 熱抵抗(℃/W)=温度差(℃)/電力(W)Thermal resistance (° C./W)=temperature difference (° C.) / Power (W)

【0035】(2)アスカーC硬度 骨格部のアスカーC硬度は、未硬化の棒状シリコーン成
形物を樹脂部の面積比率が0となるように成形した後加
硫硬化し、高さ10mm×直径29mmの大きさに切り
出したものを試験片として、また熱伝導性樹脂成形体に
ついてはそのままを試験片として、それぞれアスカーC
型スプリング式硬さ試験機を用い、SRIS 0101
に準拠して測定した。
(2) Asker C hardness The Asker C hardness of the skeleton portion is determined by molding an uncured rod-shaped silicone molded product such that the area ratio of the resin portion becomes 0, followed by vulcanization and curing, and a height of 10 mm × a diameter of 29 mm. Each of the test pieces was cut out to the size shown in FIG.
SRIS 0101 using a type spring hardness tester
It measured according to.

【0036】[0036]

【表1】 [Table 1]

【0037】表1より、実施例の熱伝導性樹脂成形体
は、比較例に比べて熱抵抗が小さく、柔軟性に優れてい
ることがわかる。
From Table 1, it can be seen that the thermally conductive resin molded products of the examples have lower thermal resistance and are superior in flexibility as compared with the comparative examples.

【0038】実施例1、2で得られた熱伝導性樹脂成形
体(30mm角×0.5mm)をアルミニウム製放熱フ
ィンの平板面に貼り付け、それを発熱性電子部品に装着
荷重0.2MPaで組み込んだところ、いずれもその動
作時の放熱特性は極めて良好であった。
The thermally conductive resin molded product (30 mm square × 0.5 mm) obtained in Examples 1 and 2 was adhered to the flat surface of an aluminum radiating fin, and was mounted on a heat-generating electronic component with a load of 0.2 MPa. In each case, the heat radiation characteristics during operation were extremely good.

【0039】[0039]

【発明の効果】本発明によれば、電子機器の放熱特性を
一段と向上させることができる熱伝導性樹脂成形体と、
電子機器の放熱部材とが提供される。
According to the present invention, a heat conductive resin molded article capable of further improving the heat radiation characteristics of an electronic device,
A heat dissipating member for an electronic device is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱伝導性樹脂成形体の斜視図FIG. 1 is a perspective view of a thermally conductive resin molded article of the present invention.

【図2】図1のA−A断面図FIG. 2 is a sectional view taken along line AA of FIG. 1;

【図3】従来の熱伝導性シートの厚み方向における断面
FIG. 3 is a cross-sectional view of a conventional heat conductive sheet in a thickness direction.

【符号の説明】[Explanation of symbols]

1 熱伝導性樹脂成形体 2 骨格部 3 樹脂部 4 熱伝導性フィラー DESCRIPTION OF SYMBOLS 1 Thermal conductive resin molded body 2 Frame part 3 Resin part 4 Thermal conductive filler

フロントページの続き Fターム(参考) 4J002 BB143 BB153 CP033 CP042 CP083 CP141 DK006 FD016 FD023 GM00 5F036 AA01 BA23 BB21 BD21 Continued on front page F-term (reference) 4J002 BB143 BB153 CP033 CP042 CP083 CP141 DK006 FD016 FD023 GM00 5F036 AA01 BA23 BB21 BD21

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱伝導性樹脂硬化物からなる複数の骨格
部(2)と、該複数の骨格部によって形成された空隙の
一部又は全部に充填硬化された樹脂部(3)からなるも
のであって、上記骨格部のアスカーC硬度が55以下で
あることを特徴とする熱伝導性樹脂成形体。
1. A plurality of skeletons (2) made of a cured product of a thermally conductive resin, and a resin part (3) filled and cured in a part or all of a void formed by the plurality of skeletons. Wherein the Asker C hardness of the skeleton is 55 or less.
【請求項2】 骨格部が、(a)窒化ホウ素粒子、
(b)シリコーン硬化物、(c)シリコーンオイル及び
/又はエチレン又はブチレンとプロピレンとの共重合体
からなる柔軟性付与剤とを含み、(a)が40体積%以
上、(b)が5体積%以上、(c)が0.05≦(c)
/{(b)+(c)}≦0.4であることを特徴とする
請求項1記載の熱伝導性樹脂成形体。
2. A skeleton comprising (a) boron nitride particles,
(B) a silicone cured product, (c) a silicone oil and / or a flexibility-imparting agent comprising a copolymer of ethylene or butylene and propylene, wherein (a) is 40% by volume or more and (b) is 5% by volume % Or more, (c) is 0.05 ≦ (c)
2. The thermally conductive resin molded body according to claim 1, wherein /{(b)+(c)}≦0.4.
【請求項3】 請求項1又は2記載の熱伝導性樹脂成形
体の熱抵抗が0.2℃/W以下、厚みが0.05〜5.
0mmであることを特徴とする電子機器の放熱部材。
3. The heat conductive resin molded article according to claim 1, which has a thermal resistance of 0.2 ° C./W or less and a thickness of 0.05 to 5.0.
A heat dissipating member for electronic equipment, which is 0 mm.
JP2001030737A 2001-02-07 2001-02-07 Thermally conductive resin molding and its use Expired - Lifetime JP4514344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001030737A JP4514344B2 (en) 2001-02-07 2001-02-07 Thermally conductive resin molding and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001030737A JP4514344B2 (en) 2001-02-07 2001-02-07 Thermally conductive resin molding and its use

Publications (2)

Publication Number Publication Date
JP2002237554A true JP2002237554A (en) 2002-08-23
JP4514344B2 JP4514344B2 (en) 2010-07-28

Family

ID=18894913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001030737A Expired - Lifetime JP4514344B2 (en) 2001-02-07 2001-02-07 Thermally conductive resin molding and its use

Country Status (1)

Country Link
JP (1) JP4514344B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006527912A (en) * 2003-06-17 2006-12-07 キュラミック エレクトロニックス ゲーエムベーハー A device comprising at least one heat source formed by a functional element to be cooled, at least one heat sink, and at least one intermediate layer made of a heat-conducting material placed between the heat source and the heat sink, and in particular Materials used in such devices
JP2008195850A (en) * 2007-02-14 2008-08-28 Nitto Denko Corp Method for producing resin molded article
JP2012049493A (en) * 2010-01-29 2012-03-08 Nitto Denko Corp Imaging part
JP2012049495A (en) * 2010-01-29 2012-03-08 Nitto Denko Corp Light-emitting diode device
JP2012109312A (en) * 2010-11-15 2012-06-07 Hitachi Chem Co Ltd Heat conducting sheet, method for producing heat conducting sheet, and heat radiator
JPWO2018030430A1 (en) * 2016-08-08 2019-03-22 積水化学工業株式会社 Thermal conductive sheet and method of manufacturing the same
JP6989675B1 (en) * 2020-10-21 2022-01-05 デクセリアルズ株式会社 Method for manufacturing a heat conductive sheet and a heat conductive sheet
WO2024070068A1 (en) * 2022-09-26 2024-04-04 富士高分子工業株式会社 Thermally conductive grease composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102258178B1 (en) * 2017-10-27 2021-06-03 주식회사 엘지에너지솔루션 Battery module simplified cooling and assembling structure and Method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000343577A (en) * 1999-06-02 2000-12-12 Denki Kagaku Kogyo Kk Manufacture of heat conductive silicone molding
JP2000355654A (en) * 1999-06-15 2000-12-26 Denki Kagaku Kogyo Kk Heat-conductive silicone molding and its use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000343577A (en) * 1999-06-02 2000-12-12 Denki Kagaku Kogyo Kk Manufacture of heat conductive silicone molding
JP2000355654A (en) * 1999-06-15 2000-12-26 Denki Kagaku Kogyo Kk Heat-conductive silicone molding and its use

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006527912A (en) * 2003-06-17 2006-12-07 キュラミック エレクトロニックス ゲーエムベーハー A device comprising at least one heat source formed by a functional element to be cooled, at least one heat sink, and at least one intermediate layer made of a heat-conducting material placed between the heat source and the heat sink, and in particular Materials used in such devices
JP4711956B2 (en) * 2003-06-17 2011-06-29 キュラミック エレクトロニックス ゲーエムベーハー A device comprising at least one heat source formed by a functional element to be cooled, at least one heat sink, and at least one intermediate layer made of a heat-conducting material placed between the heat source and the heat sink, and in particular Materials used in such devices
JP2008195850A (en) * 2007-02-14 2008-08-28 Nitto Denko Corp Method for producing resin molded article
JP2012049493A (en) * 2010-01-29 2012-03-08 Nitto Denko Corp Imaging part
JP2012049495A (en) * 2010-01-29 2012-03-08 Nitto Denko Corp Light-emitting diode device
JP2012109312A (en) * 2010-11-15 2012-06-07 Hitachi Chem Co Ltd Heat conducting sheet, method for producing heat conducting sheet, and heat radiator
JPWO2018030430A1 (en) * 2016-08-08 2019-03-22 積水化学工業株式会社 Thermal conductive sheet and method of manufacturing the same
JP2020205426A (en) * 2016-08-08 2020-12-24 積水化学工業株式会社 Heat conductive sheet and manufacturing method of the same
JP7168617B2 (en) 2016-08-08 2022-11-09 積水化学工業株式会社 Heat-conducting sheet and manufacturing method thereof
JP6989675B1 (en) * 2020-10-21 2022-01-05 デクセリアルズ株式会社 Method for manufacturing a heat conductive sheet and a heat conductive sheet
WO2022085284A1 (en) * 2020-10-21 2022-04-28 デクセリアルズ株式会社 Thermally conductive sheet and method for manufacturing thermally conductive sheet
JP2022067780A (en) * 2020-10-21 2022-05-09 デクセリアルズ株式会社 Heat conductive sheet and manufacturing method thereof
WO2024070068A1 (en) * 2022-09-26 2024-04-04 富士高分子工業株式会社 Thermally conductive grease composition

Also Published As

Publication number Publication date
JP4514344B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
EP1342747B1 (en) Sheet for conducting heat
JP3654743B2 (en) Heat dissipation spacer
JP2002237554A (en) Heat conductive resin formation and its use
JP3568401B2 (en) High thermal conductive sheet
JP2005054099A (en) Thermally conductive grease
JP4446514B2 (en) Thermally conductive silicone molded body heat dissipation member
JP4481019B2 (en) Mixed powder and its use
JP3721272B2 (en) Method for producing thermally conductive resin molding
JP3585385B2 (en) Method for producing thermally conductive silicone molded article
JP4749631B2 (en) Heat dissipation member
JP3283454B2 (en) Heat radiation spacer
JP3558548B2 (en) Resin molding, method of manufacturing the same, and heat radiating member for electronic component using the same
JP2002299534A (en) Heat radiation material and manufacturing method therefor
JP3739335B2 (en) Heat dissipation member and power module
EP4307363A1 (en) Thermally conductive resin sheet
JP4545247B2 (en) Method for producing thermally conductive silicone molded body
JP3183502B2 (en) Heat radiation spacer
JP3640524B2 (en) Heat dissipation spacer
JP3606767B2 (en) High thermal conductive silicone molding and its use
JPH05299545A (en) Heat dissipation body
JP3354087B2 (en) Method of manufacturing heat-radiating spacer having high flexibility and high thermal conductivity
JP4137288B2 (en) Method for producing thermally conductive silicone molding
JPH1121388A (en) Polymeric material molding and its use
JP3933341B2 (en) Thermally conductive spacer
JP3285705B2 (en) Insulation heat dissipation sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

R150 Certificate of patent or registration of utility model

Ref document number: 4514344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

EXPY Cancellation because of completion of term