JP3933341B2 - Thermally conductive spacer - Google Patents
Thermally conductive spacer Download PDFInfo
- Publication number
- JP3933341B2 JP3933341B2 JP9600199A JP9600199A JP3933341B2 JP 3933341 B2 JP3933341 B2 JP 3933341B2 JP 9600199 A JP9600199 A JP 9600199A JP 9600199 A JP9600199 A JP 9600199A JP 3933341 B2 JP3933341 B2 JP 3933341B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- spacer
- thermally conductive
- thermal conductivity
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、コンピューター、ワードプロセッサーなどの情報処理機器におけるIC、LSI、CPU、MPU等の半導体素子より発生する熱を効率よく放出するのに有用な熱伝導性スペーサーに関する。
【0002】
【従来の技術】
近年、コンピューターやワードプロセッサー等の情報処理機器は、携帯用使用の薄型サイズのものが好まれるようになっている。それに伴い、半導体素子も高密度化・小型化され、そこから発生する熱も増加の一途をたどり、それを効率良く除去することが重要な課題となっている。
【0003】
従来より、半導体素子より発生した熱の除去は、半導体素子を熱伝導性シート介して放熱フィンや金属板に取り付けることによって行われている。しかしながら、情報処理機器の小型化、薄型化により、放熱フィン等を取り付けるスペースがない場合も多くなり、その場合には情報処理機器のケース等に直接伝熱して放熱する方式が取られている。
【0004】
このような方式においては、半導体素子とケースの間に、そのスペースを埋める厚みを有した、シリコーン等の樹脂硬化物に熱伝導性フィラーの充填された柔らかな熱伝導性スペーサーが用いられており、更なる高熱伝導性を付与したものが要求されている。
【0005】
熱伝導性スペーサー(以下、単に「スペーサー」ともいう。)の高熱伝導化を達成するには、スペーサー内に存在する熱伝導性フィラーを連続的に接触させればよく、その一法として熱伝導性フィラーの充填量を多くすることが行われているものの、この方法では、スペーサーの柔らかさが低下し、情報処理機器のケース等との接触が悪くなって、熱伝導性が著しく低下する等、この方法では限界があった。
【0006】
また、熱伝導性フィラーとして、六方晶窒化ホウ素(hBN)粉末を用いられることが多い。しかし、hBN粉末は、混合、混練、成形時に剪断応力を受けてスペーサーにしたときに粒子は横に配向した状態になる。この状態では、hBN粒子の面方向(a軸方向)の熱伝導率が110W/m・Kあるにも関わらず、粒子の厚み方向(c軸方向)の熱伝導率2W/m・Kしか利用することができず、十分に満足された放熱特性を有するスペーサーを得ることが困難であった。
【0007】
例えば特公平6−12643号公報等にあるように、窒化ホウ素粒子をランダムに並ばせることによって、熱伝導性がかなり高められているが、まだまだ不十分であり改善の余地がある。
【0008】
【発明が解決しようとする課題】
そこで、本発明者らは、スペーサーの熱伝導性と柔軟性を更に高めることを目的として、種々検討した結果、六方晶窒化ホウ素で被覆されたマグネシウム及び/又はカルシウムのホウ酸塩粉末(以下、「BN被覆ホウ酸塩粉末」という。)と、扁平度が10以上のhBN粉末(以下、「扁平BN粉末」という。)を併用すれば、扁平BN粒子の一部がBN被覆ホウ酸塩粒子間に挟まり、粒子の接触点ないしは接触面が多くなり、スペーサーの熱伝導性がかなり向上することを見いだし、そして、スペーサーの柔軟性を高めるために、BN充填量を低減しても著しく高い熱伝導性を発現することをあわせ見いだし、本発明を完成させるに至った。
【0009】
【課題を解決するための手段】
すなわち、本発明は、樹脂に熱伝導性フィラーを含有させてなる熱伝導性スペーサーにおいて、上記熱伝導性フィラーとして、BN被覆ホウ酸塩粉末25〜50体積%、扁平BN粉末5〜25体積%を樹脂に含有させたものであることを特徴とする熱伝導性スペーサーである。
【0010】
【発明の実施の形態】
以下、本発明を更に詳細に説明する。
【0011】
本発明の高熱伝導性スペーサーのマトリックスとして用いられる樹脂としては、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、ポリイミド樹脂、ビスマレイミドトリアジン等を不都合なく用いることができるが、通常の使用に対してはシリコーン樹脂が好適である。
【0012】
本発明で使用されるBN被覆ホウ酸塩粉末は、マグネシウム又はカルシウムのホウ酸塩粒子のコア部と、その表面の全部又は一部を覆っている鱗片状hBNからなるシェル部とで構成されている。マグネシウム又はカルシウムのホウ酸塩とhBNの確認は、エネルギー分散型蛍光X線測定器を用いて行うことができる。コア部の割合は、粒子断面の面積占有率で10〜80%であることが好ましく、またシェル部の厚みは数〜十数μmであることが好ましい。
【0013】
BN被覆ホウ酸塩粉末は、例えば次のようにして製造することができる。すなわち、メラミン、ホウ酸、並びにマグネシウム、カルシウムの水酸化物及び炭酸塩から選ばれた少なくとも一種の無機化合物のモル百分率の三元組成図(メラミン,ホウ酸,無機化合物)において、点A(35,60,5)、B(25,70,5)、C(5,80,15)、D(5,5,90)を結ぶ線で囲まれた範囲内にある混合物を、そのままもしくは300kgf/cm2以下、好ましくは100kgf/cm2以下の圧力で成型した後、窒素、アンモニア等の非酸化性雰囲気下、温度1700〜2200℃で0.5〜24時間、好ましくは2〜10時間焼成すると、BN被覆ホウ酸塩粒子とhBNとが含まれた混合粉末を製造することができるので、この混合粉末を水等の溶剤中に超音波分散させ、24μmJIS篩いで篩い上残分を選別することによって、BN被覆ホウ酸塩粒子の割合を高めた混合粉末を製造することができる。(特願平10−352519号参照)。
【0014】
扁平BN粉末における扁平度とは、1個の粒子の平均粒子径(Da)[(長径+短径)/2]をその粒子の最大粒子厚み(Dc)で割ることによって求められた値であり、200個の平均値である。本発明においては、扁平度が10以上あることが必要であり、扁平度が10未満では、BN被覆ホウ酸塩粒子との接触が十分でなくなり、熱伝導の向上は少ない。
【0015】
本発明のスペーサーを構成する熱伝導性フィラーとしては、BN被覆ホウ酸塩粉末と扁平BN粉末が必須成分となる。その比率を樹脂への混入率で示すと、BN被覆ホウ酸塩粉末が25〜50体積%、扁平BN粉末が5〜25体積%である。BN被覆ホウ酸塩粉末が50体積%をこえると、熱伝導率は向上するものの柔軟性の低下が著しく、逆に25体積%未満では熱伝導性が向上しない。一方、扁平BN粉末が25体積%をこえると、横に向くBNが多くなって熱伝導性が逆に低下し、また5体積%未満では、BN被覆ホウ酸塩粉末との接触が不十分となり熱伝導性が低下する。
【0016】
平均粒子径については、BN被覆ホウ酸塩粉末、扁平BN粉末共に、限定されるものではないが、BN被覆ホウ酸塩粉末については5〜25μm、扁平BN粉末については5〜15μmの範囲にあることが望ましい。
【0017】
本発明のスペーサーの平面形状は、発熱素子を埋没できる形状であれば、制限されるものではなく、例えば三角形、四角形、五角形などの多角形、円形、楕円形等が挙げられる。更には、発熱素子が埋没しやすいように凹凸を設けてもかまわない。スペーサーの厚みとしては、0.05〜5mm、特に0.2〜2mmが一般的である。
【0018】
本発明のスペーサーを製造するに際しては、扁平BN粉末とシリコーン樹脂を、BN被覆ホウ酸塩粉末とシリコーン樹脂を、それぞれ予め混合した後、それぞれの混合物を所定の割合で再度混合する方法が、最も良好な熱伝導性と柔軟性を付与されたスペーサーが得られる点で最適である。
【0019】
混合には、ロールミル、ニーダー、バンバリーミキサー等の公知の混合機を用いることができる。また、成形は、押出し成形法が好ましい。プレス法では、扁平度の高い扁平BN粉末が横に配向し易くなる。また、ドクターブレード法では、使用可能な粘度となるまで有機溶剤を添加しなければならず、成形後有機溶剤を除去する工程が必要となり、生産性に劣る。
【0020】
加硫温度は、80〜200℃の範囲にあることが望ましい。80℃未満ではシートが十分に加硫されず、逆に200℃をこえるとスペーサーの一部が劣化する。また、加硫には、一般的な熱風乾燥機、遠赤外乾燥機、マイクロ波乾燥機等を用いることができる。
【0021】
【実施例】
以下、実施例、比較例をあげて更に具体的に本発明を説明する。
【0022】
実施例1〜5 比較例1〜3
付加反応型型シリコーン樹脂(東芝シリコーン社製 商品名「SE1885」)と表1に示されるBN被覆ホウ酸塩粉末とを、また上記シリコーン樹脂と扁平BN粉末である市販のhBN粉末(電気化学工業社製 商品名「デンカボロンナイトライド GPグレード」)とを、個別に混合した後、それらを表1に示した所定の割合となるよう配合して更に混合を行った。
【0023】
得られた混合物を、真空押出機にて厚さ1mmとなるように押出し成形した後、140℃の乾燥機中に15時間静置して加硫・硬化させ、スペーサーを作製した。得られたスペーサーの、熱伝導率と圧縮率を以下に従い測定した。その結果を表1に示す。
【0024】
参考値として、扁平BN粉末単独で作製したスペーサーの物性を表1に記す。
【0025】
(1)熱伝導率:
スペーサーをTO−3型銅製ヒーターケースと銅板との間に挟み、スペーサー厚みの10%を圧縮した後、銅製ヒーターケースに電力5Wかけて4分間保持し、銅製ヒーターケースと銅板との温度差を測定し、熱伝導率(W/m・K)={電力(W)×厚み(m)}/{温度差(K)×測定面積(m2 )}、にて熱伝導率を算出した。
(2)圧縮率:
スペーサーを1cm2角に打ち抜いた後、精密万能試験機(島津製作所製商品名「オートグラフ」)により、厚さ方向に1kgfの荷重をかけたときの圧縮変形量を計測し、圧縮率(%)={圧縮変形量(mm)×100}/元の厚さ(mm)にて、圧縮率を算出した。
(3)扁平BN粉末の扁平度:
液体窒素により冷却した状態でスペーサーを切断し、破断面を露出させ、その破断面をSEM観察により扁平BN粉の平均粒子径(Da)及び最大粒子厚み(Dc)を測定し、扁平度を求めた。
【0026】
【表1】
【0027】
実施例6
BN被覆ホウ酸塩粉末として、BN被覆ホウ酸カルシウムの代わりにBN被覆ホウ酸マグネシウムを用いたこと以外は、実施例1に準じてスペーサーを作製したところ、実施例1とほぼ同等の好結果が得られた。
【0028】
【発明の効果】
本発明のスペーサーは、放熱特性及び柔軟性に優れたものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermally conductive spacer useful for efficiently releasing heat generated from semiconductor elements such as ICs, LSIs, CPUs, and MPUs in information processing equipment such as computers and word processors.
[0002]
[Prior art]
In recent years, information processing devices such as computers and word processors have come to be favored for portable use. Accordingly, the density and size of semiconductor elements have also been increased, and the heat generated therefrom has been increasing, and it has become an important issue to efficiently remove them.
[0003]
Conventionally, heat generated from a semiconductor element is removed by attaching the semiconductor element to a heat radiating fin or a metal plate via a heat conductive sheet. However, due to the downsizing and thinning of information processing equipment, there are many cases where there is no space for attaching heat radiating fins and the like.
[0004]
In such a system, a soft thermally conductive spacer filled with a thermally conductive filler in a cured resin such as silicone having a thickness to fill the space between the semiconductor element and the case is used. There is a demand for a material with further high thermal conductivity.
[0005]
In order to achieve high thermal conductivity of the thermal conductive spacer (hereinafter also simply referred to as “spacer”), it is only necessary to continuously contact the thermal conductive filler present in the spacer. In this method, the softness of the spacer is reduced, the contact with the case of the information processing device is deteriorated, and the thermal conductivity is significantly reduced. This method has its limits.
[0006]
In addition, hexagonal boron nitride (hBN) powder is often used as the thermally conductive filler. However, when the hBN powder is subjected to shear stress during mixing, kneading and molding to form a spacer, the particles are in a horizontally oriented state. In this state, although the thermal conductivity in the surface direction (a-axis direction) of the hBN particles is 110 W / m · K, only the thermal conductivity 2 W / m · K in the thickness direction (c-axis direction) of the particles is used. It was difficult to obtain a spacer having a sufficiently satisfied heat dissipation characteristic.
[0007]
For example, as disclosed in Japanese Patent Publication No. 6-12463, the thermal conductivity is considerably improved by arranging boron nitride particles randomly, but there is still room for improvement because of insufficient thermal conductivity.
[0008]
[Problems to be solved by the invention]
Therefore, the present inventors have made various studies for the purpose of further increasing the thermal conductivity and flexibility of the spacer, and as a result, magnesium and / or calcium borate powder coated with hexagonal boron nitride (hereinafter, referred to as the following). "BN coated borate powder") and hBN powder having a flatness of 10 or more (hereinafter referred to as "flat BN powder") are used together, and a part of the flat BN particles are BN coated borate particles. It has been found that the contact point or contact surface of the particles is increased, the thermal conductivity of the spacer is significantly improved, and even if the BN filling amount is reduced in order to increase the flexibility of the spacer, the heat is extremely high. The inventors have found that conductivity is exhibited and have completed the present invention.
[0009]
[Means for Solving the Problems]
That is, the present invention relates to a thermally conductive spacer in which a thermally conductive filler is contained in a resin. As the thermally conductive filler, BN-coated borate powder is 25 to 50% by volume, flat BN powder is 5 to 25% by volume. Is a heat conductive spacer characterized in that it is contained in a resin.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0011]
As the resin used as the matrix of the high thermal conductivity spacer of the present invention, epoxy resin, phenol resin, silicone resin, polyimide resin, bismaleimide triazine and the like can be used without any problem, but for normal use, silicone resin Is preferred.
[0012]
The BN-coated borate powder used in the present invention is composed of a core part of magnesium or calcium borate particles and a shell part made of scaly hBN covering all or part of the surface thereof. Yes. Confirmation of magnesium or calcium borate and hBN can be performed using an energy dispersive X-ray fluorescence spectrometer. The ratio of the core part is preferably 10 to 80% in terms of the area occupancy of the particle cross section, and the thickness of the shell part is preferably several to tens of μm.
[0013]
The BN-coated borate powder can be produced, for example, as follows. That is, in the ternary composition diagram (melamine, boric acid, inorganic compound) of the mole percentage of at least one inorganic compound selected from melamine, boric acid and magnesium, calcium hydroxide and carbonate, point A (35 , 60, 5), B (25, 70, 5), C (5, 80, 15), D (5, 5, 90), the mixture within the range surrounded by the line is directly or 300 kgf / cm 2 or less, preferably after molding at 100 kgf / cm 2 or less of pressure, nitrogen, non-oxidizing atmosphere such as ammonia, from 0.5 to 24 hours at a temperature 1,700-2,200 ° C., and preferably calcined 2-10 hours Therefore, a mixed powder containing BN-coated borate particles and hBN can be produced, and this mixed powder is ultrasonically dispersed in a solvent such as water and left on a sieve with a 24 μm JIS sieve. By sorting, it is possible to manufacture a mixed powder having an increased proportion of BN coated borate particles. (See Japanese Patent Application No. 10-352519).
[0014]
The flatness in the flat BN powder is a value obtained by dividing the average particle diameter (Da) [(major axis + minor axis) / 2] of one particle by the maximum particle thickness (Dc) of the particle. The average value of 200 pieces. In the present invention, the flatness is required to be 10 or more. When the flatness is less than 10, the contact with the BN-coated borate particles is not sufficient, and the heat conduction is not improved.
[0015]
As the thermally conductive filler constituting the spacer of the present invention, BN-coated borate powder and flat BN powder are essential components. When the ratio is represented by the mixing ratio in the resin, the BN-coated borate powder is 25 to 50% by volume, and the flat BN powder is 5 to 25% by volume. When the BN-coated borate powder exceeds 50% by volume, the thermal conductivity is improved, but the flexibility is remarkably lowered. Conversely, when the BN-coated borate powder is less than 25% by volume, the thermal conductivity is not improved. On the other hand, if the flat BN powder exceeds 25% by volume, the amount of BN facing sideways increases, and the thermal conductivity decreases, and if it is less than 5% by volume, the contact with the BN-coated borate powder becomes insufficient. Thermal conductivity decreases.
[0016]
The average particle size is not limited for both BN-coated borate powder and flat BN powder, but is in the range of 5 to 25 μm for BN-coated borate powder and 5 to 15 μm for flat BN powder. It is desirable.
[0017]
The planar shape of the spacer of the present invention is not limited as long as the heat generating element can be embedded, and examples thereof include a polygon such as a triangle, a quadrangle, and a pentagon, a circle, and an ellipse. Furthermore, unevenness may be provided so that the heating element is easily buried. The thickness of the spacer is generally 0.05 to 5 mm, particularly 0.2 to 2 mm.
[0018]
In producing the spacer of the present invention, the most common method is to mix the flat BN powder and the silicone resin, the BN-coated borate powder and the silicone resin in advance, and then mix the respective mixtures again at a predetermined ratio. It is optimal in that a spacer with good thermal conductivity and flexibility can be obtained.
[0019]
For mixing, a known mixer such as a roll mill, a kneader, or a Banbury mixer can be used. The molding is preferably an extrusion molding method. In the pressing method, flat BN powder having a high flatness is easily oriented horizontally. Further, in the doctor blade method, an organic solvent must be added until a usable viscosity is obtained, and a process for removing the organic solvent after molding is required, resulting in poor productivity.
[0020]
The vulcanization temperature is desirably in the range of 80 to 200 ° C. If the temperature is less than 80 ° C, the sheet is not sufficiently vulcanized. Conversely, if the temperature exceeds 200 ° C, a part of the spacer deteriorates. Moreover, a general hot air dryer, a far-infrared dryer, a microwave dryer, etc. can be used for vulcanization | cure.
[0021]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
[0022]
Examples 1-5 Comparative Examples 1-3
An addition reaction type silicone resin (trade name “SE1885” manufactured by Toshiba Silicone Co., Ltd.) and a BN-coated borate powder shown in Table 1, and a commercially available hBN powder (Electrochemical Industry) which is the silicone resin and flat BN powder. The product name “DENCABORON NITRIDE GP GRADE”) manufactured by the company was mixed individually, and then mixed so as to have a predetermined ratio shown in Table 1.
[0023]
The obtained mixture was extruded using a vacuum extruder so as to have a thickness of 1 mm, and then allowed to stand in a dryer at 140 ° C. for 15 hours to be vulcanized and cured to produce a spacer. The thermal conductivity and compressibility of the obtained spacer were measured according to the following. The results are shown in Table 1.
[0024]
As a reference value, the physical properties of the spacers produced with flat BN powder alone are shown in Table 1.
[0025]
(1) Thermal conductivity:
A spacer is sandwiched between a TO-3 type copper heater case and a copper plate, and after compressing 10% of the spacer thickness, the copper heater case is held for 4 minutes by applying electric power of 5 W, and the temperature difference between the copper heater case and the copper plate is determined. The thermal conductivity was calculated by the following formula: thermal conductivity (W / m · K) = {power (W) × thickness (m)} / {temperature difference (K) × measured area (m 2 )}.
(2) Compression rate:
After punching the spacer into a 1 cm 2 square, the amount of compressive deformation when a load of 1 kgf is applied in the thickness direction is measured by a precision universal testing machine (trade name “Autograph” manufactured by Shimadzu Corporation). ) = {Compression deformation amount (mm) × 100} / original thickness (mm).
(3) Flatness of flat BN powder:
The spacer is cut in a state cooled with liquid nitrogen to expose the fracture surface, and the average particle diameter (Da) and maximum particle thickness (Dc) of the flat BN powder are measured by SEM observation of the fracture surface to obtain the flatness. It was.
[0026]
[Table 1]
[0027]
Example 6
A spacer was produced according to Example 1 except that BN-coated magnesium borate was used in place of BN-coated calcium borate as the BN-coated borate powder. Obtained.
[0028]
【The invention's effect】
The spacer of the present invention is excellent in heat dissipation characteristics and flexibility.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9600199A JP3933341B2 (en) | 1999-04-02 | 1999-04-02 | Thermally conductive spacer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9600199A JP3933341B2 (en) | 1999-04-02 | 1999-04-02 | Thermally conductive spacer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000294698A JP2000294698A (en) | 2000-10-20 |
JP3933341B2 true JP3933341B2 (en) | 2007-06-20 |
Family
ID=14152886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9600199A Expired - Lifetime JP3933341B2 (en) | 1999-04-02 | 1999-04-02 | Thermally conductive spacer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3933341B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3927388B2 (en) | 2000-09-27 | 2007-06-06 | 株式会社リコー | Image processing apparatus, image processing method, and recording medium |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0638460B2 (en) * | 1989-11-08 | 1994-05-18 | 東海ゴム工業株式会社 | Heat dissipation sheet |
JP3316590B2 (en) * | 1992-01-08 | 2002-08-19 | 川崎製鉄株式会社 | Hexagonal boron nitride powder and method for producing the same |
JPH07121835B2 (en) * | 1993-04-09 | 1995-12-25 | 東芝タンガロイ株式会社 | Cubic boron nitride coating |
JP3461651B2 (en) * | 1996-01-24 | 2003-10-27 | 電気化学工業株式会社 | Hexagonal boron nitride powder and its use |
JPH1036105A (en) * | 1996-07-26 | 1998-02-10 | Mitsui Petrochem Ind Ltd | Water-resistant boron nitride and its production |
JP3654743B2 (en) * | 1997-07-01 | 2005-06-02 | 電気化学工業株式会社 | Heat dissipation spacer |
JP3685629B2 (en) * | 1998-12-11 | 2005-08-24 | 電気化学工業株式会社 | Borate particles, method for producing inorganic powder containing the particles, and use thereof |
-
1999
- 1999-04-02 JP JP9600199A patent/JP3933341B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000294698A (en) | 2000-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108463882B (en) | Thermally conductive sheet, method for manufacturing thermally conductive sheet, heat dissipating member, and semiconductor device | |
CN110945647B (en) | Heat conducting fin | |
EP2871205A1 (en) | Method for producing thermally conductive sheet | |
JP7096723B2 (en) | Method for manufacturing a heat conductive sheet | |
WO2020162164A1 (en) | Heat-conducting sheet, method for mounting heat-conducting sheet, and method for producing electronic equipment | |
EP3667718B1 (en) | Low-dielectric-constant thermally-conductive heat dissipation member | |
JP3568401B2 (en) | High thermal conductive sheet | |
JP6393816B2 (en) | HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE SHEET MANUFACTURING METHOD, HEAT DISSIBLING MEMBER AND SEMICONDUCTOR DEVICE | |
CN113348549A (en) | Thermally conductive sheet, method for manufacturing same, and method for mounting thermally conductive sheet | |
JP3721272B2 (en) | Method for producing thermally conductive resin molding | |
JP4446514B2 (en) | Thermally conductive silicone molded body heat dissipation member | |
JP6473597B2 (en) | Method for producing high thermal conductivity organic / inorganic composite material | |
JP4514344B2 (en) | Thermally conductive resin molding and its use | |
JP4330739B2 (en) | Aluminum nitride powder for resin filling and its use | |
JP3933341B2 (en) | Thermally conductive spacer | |
JP4481019B2 (en) | Mixed powder and its use | |
JP2020196892A (en) | Thermoconductive sheet | |
JP3585385B2 (en) | Method for producing thermally conductive silicone molded article | |
JPH1119948A (en) | Manufacture of radiation member for electronic part | |
JP3685629B2 (en) | Borate particles, method for producing inorganic powder containing the particles, and use thereof | |
WO2022176725A1 (en) | Thermally-conductive sheet, and electronic device | |
JP2001158609A (en) | Aluminum nitride powder for filling resin and use thereof | |
JP3558548B2 (en) | Resin molding, method of manufacturing the same, and heat radiating member for electronic component using the same | |
JP4313920B2 (en) | High thermal conductivity spacer | |
JP3606767B2 (en) | High thermal conductive silicone molding and its use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060428 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070313 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070313 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110330 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120330 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130330 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130330 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140330 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |