WO2020162164A1 - Heat-conducting sheet, method for mounting heat-conducting sheet, and method for producing electronic equipment - Google Patents

Heat-conducting sheet, method for mounting heat-conducting sheet, and method for producing electronic equipment Download PDF

Info

Publication number
WO2020162164A1
WO2020162164A1 PCT/JP2020/001962 JP2020001962W WO2020162164A1 WO 2020162164 A1 WO2020162164 A1 WO 2020162164A1 JP 2020001962 W JP2020001962 W JP 2020001962W WO 2020162164 A1 WO2020162164 A1 WO 2020162164A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
heat conductive
release film
sheet body
heat
Prior art date
Application number
PCT/JP2020/001962
Other languages
French (fr)
Japanese (ja)
Inventor
佑介 久保
義知 宮崎
荒巻 慶輔
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2020162164A1 publication Critical patent/WO2020162164A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present technology relates to a heat conductive sheet that is attached to an electronic component or the like to improve its heat dissipation, a mounting method of the heat conductive sheet, and a manufacturing method of an electronic device.
  • a heat conductive sheet is provided between the semiconductor element and the heat sink in order to efficiently dissipate the heat of the semiconductor element when a heat sink is attached to the semiconductor element for cooling.
  • the heat conductive sheet one in which a filler such as a heat conductive filler such as carbon fiber is dispersedly contained in a silicone resin is widely used (see Patent Document 1).
  • These heat conductive fillers have anisotropy of heat conduction.
  • the fiber direction is about 600 W/m ⁇ K to 1200 W/m ⁇ K.
  • the sliced sheet surface When thinly slicing a heat conductive molded body to form a heat conductive sheet, the sliced sheet surface has irregularities and poor adhesion to electronic parts. Poor adhesion may cause problems such as dropping from the component due to lack of close contact with the component during the mounting process.Also, air may be included due to poor adhesion to heat-dissipating elements such as electronic components and heat sinks. Therefore, there is a problem that the thermal resistance cannot be reduced sufficiently.
  • Patent Document 2 proposes a technique for improving the adhesion between the heat conductive sheet and the electronic component by exuding the uncured component on the surface.
  • the release film is peeled off from the sheet body when the heat conductive sheet is mounted on an electronic component such as a semiconductor device. Becomes difficult and the workability is impaired. That is, when using the heat conductive sheet, it is necessary to peel off the release film from the sheet body, but when peeling off one release film, while the sheet body is attached to this one release film If it is peeled from the release film, the workability will be impaired.
  • the present technology provides a heat conductive sheet that can easily peel the release film from the sheet body having tackiness on the sheet surface and has improved workability, a mounting method of the heat conductive sheet, and a manufacturing method of an electronic device.
  • the purpose is to do.
  • the heat conductive sheet according to the present technology includes a sheet main body having a tack on the surface, a first release film attached to one surface of the sheet main body, and the sheet main body including the first release film. It has a 2nd peeling film stuck on the other side of the side opposite to one side, and the 1st peeling film and the 2nd peeling film differ in peeling strength from the sheet body. ..
  • the mounting method of the heat conductive sheet which concerns on this technique WHEREIN:
  • the 1st peeling film is affixed on one surface of a sheet main body, and the 2nd peeling is carried out on the other surface of the said sheet main body on the opposite side.
  • the manufacturing method of the electronic device which concerns on this technique is a manufacturing method of the electronic device which has the electronic component with which the heat conductive sheet was stuck,
  • the 1st peeling film is stuck on one surface of a sheet main body,
  • the said sheet main body A step of preparing a heat conductive sheet having a second release film attached to the other surface opposite to the one surface of the sheet, and applying a magnetic force from the other surface of the sheet body to perform the first release.
  • the method includes a step of peeling the film, a step of attaching the one surface of the sheet body to an electronic component, and a step of peeling the second peeling film.
  • the sheet body by peeling the heat conductive sheet from the peeling film having a small peel strength from the sheet body, the sheet body does not adhere to and peel off from the peeling film, which does not impair workability.
  • FIG. 1 is a cross-sectional view showing a heat conductive sheet to which the present technology is applied.
  • FIG. 2 is a perspective view showing an example of a step of slicing the heat conductive molded body.
  • FIG. 3 is a cross-sectional view showing a step of removing the first release film from one surface of the heat conductive sheet.
  • FIG. 4 is a sectional view showing an example of a semiconductor device.
  • the heat conductive sheet to which the present technology is applied includes a sheet main body having a tack on the surface, a first release film attached to one surface of the sheet main body, and an opposite side of the one main surface of the sheet main body. It has the 2nd exfoliation film stuck on the other side, and the 1st exfoliation film and the 2nd exfoliation film are characterized by different exfoliation strength from the sheet body.
  • the heat conductive sheet is peeled from the peeling film having a small peeling strength from the sheet body, so that the sheet body does not adhere to the peeling film and peel off, and the workability is not impaired.
  • the peel strength of the release film from the sheet body differs depending on the thickness and material of the release film. Therefore, the peel strength from the sheet body can be made different by making the first and second release films attached to the sheet body different in thickness and/or material.
  • a plastic film can be preferably used, and examples thereof include polyethylene terephthalate film and polyethylene film.
  • the first and second release films may be formed of the same material with different thicknesses, or may be formed of different materials with the same or different thicknesses. Further, the first and second release films may be subjected to either or both of a release treatment and an embossing treatment in order to easily release them from the sheet body. The peeling strength from the sheet body can also be adjusted by such processing and processing.
  • Examples of such first and second release films include an embossed polyethylene film, a wax-treated PET film, and a fluorine-treated PET film.
  • the peel strength of the first and second release films from the sheet body can be appropriately set in relation to the tack developed in the sheet body, but the peel strength when peeled 180 degrees is 0.01 to It is preferably 0.1N.
  • the bending radius (R) of the first and second release films when they are peeled by 180 degrees is appropriately set according to the thickness and material of the film, but is preferably 10 mm or less, for example.
  • the sheet body one obtained by curing a heat conductive resin composition containing at least a polymer matrix component and a fibrous heat conductive filler can be preferably used, and as the polymer matrix component, A silicone gel can be preferably used.
  • the sheet body contains magnetic powder.
  • the heat conductive sheet can be peeled off only the peeling film while applying a magnetic force, and can also be peeled from the peeling film having a large peeling strength from the sheet body.
  • the seat body preferably has a Shore OO hardness of 50 or less and a thickness of 0.5 mm or less.
  • the heat conductive sheet has flexibility such that the Shore OO hardness is 50 or less, so that the heat conductive sheet enhances adhesion with a heat dissipation member such as an electronic component or a heat sink, and has a thickness as thin as 0.5 mm or less, thereby improving heat resistance.
  • the conductivity can be increased.
  • peeling is performed from the peeling film having a smaller peel strength from the sheet body, for example, the second peeling film.
  • the other surface of the sheet body is exposed while being supported by the first release film without being attached to the second release film and peeling off the entire sheet body from the first release film.
  • the heat conductive sheet is attached to the other surface of the exposed sheet body on an electronic component such as a semiconductor device or a heat dissipation member such as a heat sink, and then the first release film is released from one surface of the sheet body.
  • a magnetic force is applied from the other surface side of the sheet body, and the peeling strength is peeled from the first peeling film that is equal to or higher than that of the second peeling film.
  • the sheet main body is pulled toward the second release film side. Therefore, even when the first peeling film whose peel strength from the sheet body is equal to or higher than the second peeling film is peeled off, the entire sheet body adheres to the first peeling film and peels off from the second peeling film. Without doing so, one surface of the sheet body can be exposed while being supported by the second release film.
  • one surface of the exposed sheet body is attached to an electronic component such as a semiconductor device or a heat dissipation member such as a heat sink, and then the second release film is released from the other surface of the sheet body.
  • an electronic component such as a semiconductor device or a heat dissipation member such as a heat sink
  • the sheet body of the heat conductive sheet contains magnetic powder. Since the sheet body contains the magnetic powder, the sheet body is more reliably attracted to the second release film side when a magnetic field is applied from the other surface side of the sheet body through the second release film. Only the first release film can be released from the sheet body.
  • FIG. 1 shows a configuration example of a heat conductive sheet to which the present technology is applied.
  • the heat conductive sheet 1 shown in FIG. 1 has a sheet body 2 obtained by curing a binder resin containing at least a polymer matrix component and a fibrous heat conductive filler.
  • the first release film 3 is attached to one surface 2a of the sheet body 2
  • the second release film 4 is attached to the other surface 2b of the sheet body 2.
  • the resin coating layer 5 is formed between the first and second release films 3 and 4 and the sheet body 2 by the uncured component of the polymer matrix component exuded from the sheet body 2. ing.
  • the heat conductive sheet 1 has a tack (adhesiveness) due to the resin coating layer 5 being formed on the one surface 2a and the other surface 2b, and when used, the first and second release films 3 and 4 are provided.
  • the sheet body 2 can be attached to a predetermined position by peeling the sheet.
  • the peelability of the first and second release films 3 and 4 is improved, and the workability and handleability are excellent.
  • the heat conductive sheet 1 is also excellent in reworkability such as correcting a positional deviation when assembling the electronic component and the heat radiating member, or disassembling after being assembled for some reason and reassembling. ..
  • the polymer matrix component that constitutes the sheet body 2 is a polymer component that serves as a base material of the heat conductive sheet 1.
  • the type is not particularly limited, and a known polymer matrix component can be appropriately selected.
  • one of the polymer matrix components is a thermosetting polymer.
  • thermosetting polymer examples include crosslinked rubber, epoxy resin, polyimide resin, bismaleimide resin, benzocyclobutene resin, phenol resin, unsaturated polyester, diallyl phthalate resin, silicone resin, polyurethane, polyimide silicone, and thermosetting type.
  • thermosetting polymer examples include polyphenylene ether and thermosetting modified polyphenylene ether. These may be used alone or in combination of two or more.
  • crosslinked rubber examples include natural rubber, butadiene rubber, isoprene rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene propylene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, butyl rubber, halogenated butyl rubber, and fluorine.
  • examples thereof include rubber, urethane rubber, acrylic rubber, polyisobutylene rubber and silicone rubber. These may be used alone or in combination of two or more.
  • thermosetting polymers it is preferable to use a silicone resin from the viewpoints of excellent moldability and weather resistance, as well as adhesion and conformability to electronic parts.
  • the silicone resin is not particularly limited, and the type of silicone resin can be appropriately selected according to the purpose.
  • the silicone resin is preferably a silicone resin composed of a main component of liquid silicone gel and a curing agent.
  • a silicone resin include an addition reaction type liquid silicone resin and a heat vulcanizable millable type silicone resin using a peroxide for vulcanization.
  • the addition reaction type liquid silicone resin is particularly preferable as the heat dissipation member of the electronic device, because adhesion between the heat generating surface of the electronic component and the heat sink surface is required.
  • addition reaction type liquid silicone resin it is preferable to use a two-component addition reaction type silicone resin having a vinyl group-containing polyorganosiloxane as a main agent and a Si—H group-containing polyorganosiloxane as a curing agent. ..
  • the liquid silicone component has a silicone A liquid component as a main component and a silicone B liquid component containing a curing agent, and the silicone A liquid component and the silicone B liquid component are mixed in a predetermined ratio.
  • the blending ratio of the silicone A liquid component and the silicone B liquid component can be adjusted as appropriate, but it imparts flexibility to the sheet main body 2 and between the both surfaces 2a and 2b of the sheet main body 2 and the first and second release films. It is preferable that the uncured component of the polymer matrix component is bleeded to the above so that the resin coating layer 5 is formed.
  • the content of the polymer matrix component in the heat conductive sheet 1 is not particularly limited and can be appropriately selected according to the purpose. From the viewpoint of ensuring sheet formability, sheet adhesion, and the like. Therefore, it is preferably about 15 to 50% by volume, and more preferably 20 to 45% by volume.
  • the fibrous heat conductive filler contained in the heat conductive sheet 1 is a component for improving the heat conductivity of the sheet.
  • the kind of the heat conductive filler is not particularly limited as long as it is a fibrous material having high heat conductivity, but it is preferable to use carbon fiber from the viewpoint of obtaining higher heat conductivity.
  • thermally conductive filler one kind may be used alone, or two or more kinds may be mixed and used. Further, when using two or more kinds of heat conductive filler, both may be a fibrous heat conductive filler, or a fibrous heat conductive filler and a different shape of heat conductive filler. You may mix and use with a filler.
  • the thermally conductive filler having another shape include metals such as silver, copper and aluminum, ceramics such as alumina, aluminum nitride, silicon carbide and graphite.
  • the kind of the carbon fiber is not particularly limited and can be appropriately selected according to the purpose.
  • pitch type PAN type
  • graphitized PBO fiber arc discharge method, laser evaporation method, CVD method (chemical vapor deposition method), CCVD method (catalytic chemical vapor deposition method), etc.
  • CVD method chemical vapor deposition method
  • CCVD method catalytic chemical vapor deposition method
  • carbon fibers obtained by graphitizing PBO fibers and pitch-based carbon fibers are more preferable because high thermal conductivity can be obtained.
  • the carbon fiber may be used by partially or entirely surface-treating it, if necessary.
  • the surface treatment include oxidation treatment, nitriding treatment, nitration, sulfonation, or a functional group introduced on the surface by these treatments or the surface of carbon fiber to which a metal, a metal compound, an organic compound or the like is attached or Examples of the processing include binding.
  • the functional group include a hydroxyl group, a carboxyl group, a carbonyl group, a nitro group, and an amino group.
  • the average fiber length (average major axis length) of the carbon fibers can be appropriately selected without any limitation, but it is in the range of 50 ⁇ m to 300 ⁇ m from the viewpoint of surely obtaining high thermal conductivity. Is more preferable, the range of 75 ⁇ m to 275 ⁇ m is more preferable, and the range of 90 ⁇ m to 250 ⁇ m is particularly preferable.
  • the average fiber diameter (average minor axis length) of the carbon fibers is not particularly limited and may be appropriately selected, but is in the range of 4 ⁇ m to 20 ⁇ m from the viewpoint of reliably obtaining high thermal conductivity. It is preferable that the thickness is in the range of 5 ⁇ m to 14 ⁇ m.
  • the aspect ratio (average major axis length/average minor axis length) of the carbon fibers is preferably 8 or more, and more preferably 9 to 30 from the viewpoint of reliably obtaining high thermal conductivity. .. If the aspect ratio is less than 8, the fiber length (major axis length) of the carbon fibers may be short, and the thermal conductivity may decrease. On the other hand, if it exceeds 30, in the heat conductive sheet 1. Since the dispersibility of is reduced, sufficient thermal conductivity may not be obtained.
  • the average major axis length and the average minor axis length of the carbon fibers can be measured by, for example, a microscope, a scanning electron microscope (SEM), etc., and an average can be calculated from a plurality of samples.
  • SEM scanning electron microscope
  • the content of the fibrous heat conductive filler in the heat conductive sheet 1 is not particularly limited and may be appropriately selected depending on the purpose, but is preferably 4% by volume to 40% by volume. It is more preferably from 5% by volume to 35% by volume. When the content is less than 4% by volume, it may be difficult to obtain a sufficiently low thermal resistance, and when it exceeds 40% by volume, the moldability of the heat conductive sheet 1 and the fibrous heat conduction may be increased. There is a possibility that the orientation of the functional filler may be affected.
  • the content of the heat conductive filler containing the fibrous heat conductive filler in the heat conductive sheet 1 is preferably 15% by volume to 75% by volume.
  • the fibrous heat conductive filler is exposed on both surfaces 2a and 2b of the sheet body 2 and makes thermal contact with a heat source such as an electronic component or a heat dissipation member such as a heat sink.
  • a heat source such as an electronic component or a heat dissipation member such as a heat sink.
  • the heat conductive sheet 1 has a fibrous heat resistance when mounted on an electronic component or the like. The contact thermal resistance between the conductive filler and the electronic component can be reduced.
  • the heat conductive sheet 1 may further contain an inorganic filler as a heat conductive filler.
  • an inorganic filler By including the inorganic filler, the thermal conductivity of the thermal conductive sheet 1 can be further increased and the strength of the sheet can be improved.
  • the shape, material, average particle size, etc. of the inorganic filler are not particularly limited and can be appropriately selected depending on the purpose. Examples of the shape include a spherical shape, an elliptic spherical shape, a lump shape, a granular shape, a flat shape, and a needle shape. Among these, spherical shape and elliptical shape are preferable from the viewpoint of filling property, and spherical shape is particularly preferable.
  • Examples of the material of the inorganic filler include aluminum nitride (aluminum nitride: AlN), silica, alumina (aluminum oxide), boron nitride, titania, glass, zinc oxide, silicon carbide, silicon (silicon), silicon oxide, metal particles. Etc. These may be used alone or in combination of two or more. Among these, alumina, boron nitride, aluminum nitride, zinc oxide and silica are preferable, and alumina and aluminum nitride are particularly preferable from the viewpoint of thermal conductivity.
  • the inorganic filler may be surface-treated.
  • the inorganic filler is treated with a coupling agent as the surface treatment, the dispersibility of the inorganic filler is improved and the flexibility of the heat conductive sheet 1 is improved.
  • the average particle diameter of the inorganic filler can be appropriately selected according to the type of inorganic material.
  • the average particle diameter thereof is preferably 1 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m, and particularly preferably 4 ⁇ m to 5 ⁇ m.
  • the average particle diameter is less than 1 ⁇ m, the viscosity is increased, and mixing may be difficult.
  • the average particle size exceeds 10 ⁇ m, the thermal resistance of the heat conductive sheet 1 may increase.
  • the average particle size thereof is preferably 0.3 ⁇ m to 6.0 ⁇ m, more preferably 0.3 ⁇ m to 2.0 ⁇ m, and 0.5 ⁇ m to 1. Particularly preferably, it is 5 ⁇ m. If the average particle diameter is less than 0.3 ⁇ m, the viscosity may increase and mixing may become difficult, and if it exceeds 6.0 ⁇ m, the thermal resistance of the heat conductive sheet 1 may increase.
  • the average particle size of the inorganic filler can be measured by, for example, a particle size distribution meter or a scanning electron microscope (SEM).
  • the heat conductive sheet 1 may appropriately contain other components according to the purpose in addition to the polymer matrix component, the fibrous heat conductive filler, and the appropriately contained inorganic filler described above.
  • Other components include, for example, magnetic powder, thixotropic agent, dispersant, curing accelerator, retarder, slight tackifier, plasticizer, flame retardant, antioxidant, stabilizer, colorant and the like. ..
  • the heat conductive sheet 1 contains magnetic powder, the sheet body 2 is more surely attached to the second release film 4 side when a magnetic field is applied from the other surface 2b side of the sheet body 2 as described later. Therefore, only the first release film 3 can be released from the sheet body 2. Further, the heat conductive sheet 1 may impart electromagnetic wave absorbing performance to the heat conductive sheet 1 by adjusting the content of the magnetic powder.
  • the type of the magnetic powder is not particularly limited except that it has magnetic properties, and a known magnetic powder can be appropriately selected.
  • amorphous metal powder or crystalline metal powder can be used.
  • the amorphous metal powder for example, Fe-Si-B-Cr system, Fe-Si-B system, Co-Si-B system, Co-Zr system, Co-Nb system, Co-Ta system, etc.
  • the crystalline metal powder for example, pure iron, Fe-based, Co-based, Ni-based, Fe-Ni-based, Fe-Co-based, Fe-Al-based, Fe-Si-based, Fe-Si-Al-based , Fe-Ni-Si-Al type, and the like.
  • a microcrystalline metal obtained by adding minute amounts of N (nitrogen), C (carbon), O (oxygen), B (boron), etc. to the crystalline metal powder Powder may be used.
  • the magnetic metal powder may be made of different materials or a mixture of two or more kinds having different average particle diameters.
  • the shape of the magnetic metal powder such as a spherical shape or a flat shape.
  • spherical magnetic metal powder having a particle size of several ⁇ m to several tens ⁇ m.
  • Such magnetic metal powder can be produced by, for example, an atomizing method or a method of thermally decomposing metal carbonyl.
  • the atomization method has the advantage that spherical powder is easy to make. It is a method of making powder.
  • the amorphous magnetic metal powder is produced by the atomization method, it is preferable to set the cooling rate to about 1 ⁇ 10 6 (K/s) in order to prevent the molten metal from being crystallized.
  • the surface of the amorphous alloy powder can be made smooth.
  • the filling property for the polymer matrix component can be enhanced. Further, the filling property can be further improved by performing the coupling treatment.
  • a heat conductive resin composition containing a polymer matrix component containing a fibrous heat conductive filler is molded into a predetermined shape and cured, A step of forming a heat conductive molded body (step A); a step of slicing the heat conductive molded body into a sheet to form a molded body sheet (step B); The step (Step C) of smoothing the surface of the molded body sheet and forming the resin coating layer 5 by sandwiching and pressing with the release film (1).
  • the heat conductive resin composition is prepared by mixing the above-mentioned polymer matrix component, the fibrous heat conductive filler, the appropriately contained inorganic filler, the magnetic powder and other components.
  • the procedure for blending and preparing each component is not particularly limited, and for example, a polymer matrix component is added with a fibrous thermally conductive filler, an inorganic filler, a magnetic powder, and other components, and mixed.
  • the heat conductive resin composition is prepared.
  • the fibrous heat conductive filler such as carbon fiber is oriented in one direction.
  • the method for orienting the filler is not particularly limited as long as it can be oriented in one direction. For example, by extruding or press-fitting the heat conductive resin composition under high shear into a hollow mold, the fibrous heat conductive filler can be oriented in one direction relatively easily.
  • the orientation of the fibrous thermally conductive filler is the same (within ⁇ 10°).
  • an extrusion molding method or a mold molding method As a method of extruding or press-fitting the heat conductive resin composition into the hollow mold described above under a high shearing force, specifically, an extrusion molding method or a mold molding method can be mentioned.
  • the extrusion molding method when the heat conductive resin composition is extruded from a die, or in the mold molding method, when the heat conductive resin composition is pressed into a mold, the heat conductive resin composition is It flows and the fibrous thermally conductive filler is oriented along the flow direction. At this time, if a slit is attached to the tip of the die, the fibrous heat conductive filler is more easily oriented.
  • the heat conductive resin composition extruded or press-fitted into a hollow mold is molded into a block shape according to the shape and size of the mold, and maintains the orientation state of the fibrous heat conductive filler.
  • a heat conductive molded body is formed.
  • the heat conductive molded body refers to a base material (molded body) for cutting out a sheet which is a source of the heat conductive sheet 1 obtained by cutting into a predetermined size.
  • the size and shape of the hollow mold and the heat conductive molded body can be determined according to the required size and shape of the heat conductive sheet 1.
  • the vertical size of the cross section is 0.5 cm to 15 cm.
  • An example is a rectangular parallelepiped having a horizontal size of 0.5 cm to 15 cm. The length of the rectangular parallelepiped may be determined as needed.
  • the method and conditions for curing the polymer matrix component can be changed according to the type of polymer matrix component.
  • the curing temperature in thermosetting can be adjusted.
  • the thermosetting resin contains a main component of liquid silicone gel and a curing agent, it is preferable to perform curing at a curing temperature of 80°C to 120°C.
  • the curing time in heat curing is not particularly limited, but can be 1 hour to 10 hours.
  • Step B As shown in FIG. 2, in the step B of slicing the heat conductive molded body 6 into a sheet and forming the molded body sheet 7, the oriented fibrous heat conductive filler is 0 in the longitudinal direction.
  • the heat conductive molded body 6 is cut into a sheet shape so as to form an angle of 90° to 90°. Thereby, the fibrous thermally conductive filler is oriented in the thickness direction of the sheet body 2.
  • cutting of the heat conductive molded body 6 is performed using a slicing device.
  • the slicing device is not particularly limited as long as it is a means capable of cutting the heat conductive molded body 6, and a known slicing device can be appropriately used.
  • a known slicing device can be appropriately used.
  • an ultrasonic cutter, a planer or the like can be used.
  • the slice thickness of the heat conductive molded body 6 is the thickness of the sheet body 2 of the heat conductive sheet 1, and can be set appropriately according to the application of the heat conductive sheet 1, and is, for example, 0.5 to 3.0 mm.
  • step B the molded body sheet 7 cut out from the heat conductive molded body 6 may be cut into a plurality of molded body sheets 7 to make small pieces.
  • step C the first release film 3 is attached to one surface of the molded sheet 7, the second release film 4 is attached to the other surface of the molded sheet 7, and the sheet surface is pressed.
  • the resin coating layer 5 is formed between the sheet surface and the first and second release films 3 and 4 by smoothing and bleeding the uncured component of the polymer matrix component.
  • the heat-conducting sheet 1 reduces irregularities on the surface of the sheet, covers the exposed fibrous heat-conducting filler, improves the adhesion to the heat source and the heat-dissipating member, and makes an interface contact at a light load. The resistance can be reduced and the heat transfer efficiency can be improved.
  • the pressing can be performed using, for example, a pair of pressing devices including a flat plate and a press head having a flat surface. Moreover, you may press using a pinch roll.
  • the pressure at the time of pressing is not particularly limited and can be appropriately selected depending on the purpose, but if it is too low, the thermal resistance tends to be the same as when not pressing, and if it is too high, the sheet stretches. Since there is a tendency, the pressure range of 0.1 MPa to 100 MPa is preferable, and the pressure range of 0.5 MPa to 95 MPa is more preferable.
  • first and second release films 3 and 4 attached to both surfaces of the molded sheet 7 for example, plastic films such as PET film and polyethylene film can be used.
  • the first and second release films 3 and 4 may be subjected to a release treatment such as a wax treatment or a fluorine treatment on the surface to be attached to the surface of the molded body sheet 7. Further, the first and second release films 3 and 4 may be embossed.
  • the first and second release films 3 and 4 are formed so as to have different peel strengths (N) from the sheet body 2 by changing the thickness and/or the material.
  • N peel strengths
  • the heat conductive sheet 1 of 30 mm ⁇ 30 mm a PET film having a thickness of 25 ⁇ m which is wax-treated is used as the first release film 3, and an embossed thickness of 80 ⁇ m is used as the second release film 4.
  • a peeling strength (N) from the sheet main body 2 is as follows when a 180 degree peel test is performed in a tensile/compression tester under the conditions of load cell: 50 (N) and speed: 300 mm/min.
  • the release film 3 of No. 1 has 0.03 (N) (bending radius 3 mm)
  • the second release film 4 has 0.05 (N) (bending radius of 0.5 mm or less).
  • the heat conductive sheet 1 is mounted on, for example, electronic components such as a semiconductor device or various heat dissipation members such as a heat sink. At this time, the heat conductive sheet 1 is peeled from the peeling film having a smaller peel strength from the sheet body 2, for example, the first peeling film 3 in the above example. As a result, the entire sheet body 2 does not adhere to the first release film 3 and is not peeled off from the second release film 4, and one of the sheet body 2 is supported by the second release film 4. The surface 2a can be exposed.
  • one surface 2a of the sheet body 2 with the resin coating layer 5 exposed is attached to an electronic component such as a semiconductor device or a heat dissipation member such as a heat sink, and then the second release film 4 is attached to the sheet body 2. From the other surface 2b.
  • the peel strength (N) of the first release film 3 is the peel strength (N) of the second release film 4 contrary to the example described above.
  • the magnetic force may be applied from the other surface side 2b of the sheet body 2 to peel from the first peeling film 3.
  • the sheet main body 2 is pulled toward the second release film 4 side. Therefore, the heat conductive sheet 1 adheres to the first release film 3 even when the first release film 3 having a peel strength of the second release film 4 or more is peeled off, and the entire sheet body 2 has the first release film 3. It is possible to expose one surface 2a of the sheet main body 2 in a state of being supported by the second release film 4 without being released from the second release film 4.
  • a method of applying a magnetic force from the other surface 2b side of the sheet body 2 for example, as shown in FIG. 3, a method of closely attaching a magnet 8 to a second release film 4 or a coil in which a magnetic field is generated in the heat conductive sheet 1 is used. There is a method of placing the second release film 4 side on a support table in which is embedded.
  • the heat conductive sheet 1 has magnetic powder contained in the sheet body 2.
  • the sheet body 2 is more surely magnetically attracted to the second release film 4 side, Only the release film 3 of No. 1 can be released from the sheet body 2.
  • one surface 2a of the sheet body 2 with the resin coating layer 5 exposed is attached to an electronic component such as a semiconductor device or a heat dissipation member such as a heat sink, and then the second release film 4 is attached to the sheet body 2. From the other surface 2b.
  • the heat conductive sheet 1 is mounted on a semiconductor device 50 incorporated in various electronic devices, for example, as shown in FIG. 4, and is sandwiched between a heat source and a heat radiating member.
  • a semiconductor device 50 shown in FIG. 4 includes at least an electronic component 51, a heat spreader 52, and a heat conductive sheet 1, and the heat conductive sheet 1 is sandwiched between the heat spreader 52 and the electronic component 51.
  • the semiconductor device 50 has a high heat dissipation property and also has an excellent electromagnetic wave suppressing effect depending on the content of the magnetic powder in the sheet body 2.
  • the electronic component 51 is not particularly limited and can be appropriately selected according to the purpose, and examples thereof include various semiconductor elements such as CPU, MPU, graphic operation element, image sensor, antenna element, and battery.
  • the heat spreader 52 is not particularly limited as long as it is a member that radiates the heat generated by the electronic component 51, and can be appropriately selected according to the purpose.
  • the heat conductive sheet 1 is sandwiched between the heat spreader 52 and the electronic component 51. Further, the heat conductive sheet 1 is sandwiched between the heat spreader 52 and the heat sink 53 to form a heat dissipation member that dissipates heat of the electronic component 51 together with the heat spreader 52.
  • the mounting location of the heat conductive sheet 1 is not limited to the space between the heat spreader 52 and the electronic component 51 or the space between the heat spreader 52 and the heat sink 53, and can be selected appropriately according to the configuration of the electronic device or the semiconductor device. ..
  • the heat dissipating member may be one that conducts heat generated from a heat source and dissipates it to the outside.
  • a heat radiator, a cooler, a die pad, a printed circuit board, a cooling fan. A Peltier element, a heat pipe, a metal cover, a case, and the like.
  • a first embodiment of the present technology will be described.
  • 47 vol% of magnetic powder and 18.5 vol% of pitch-based carbon fiber having an average fiber length of 200 ⁇ m as a fibrous filler were mixed with two-component addition reaction type liquid silicone to prepare a silicone composition.
  • two-component addition reaction type liquid silicone resin one containing organopolysiloxane as a main component is used, and the compounding ratio of the silicone agent A as a main agent and the agent B containing a curing agent is 18.7 vol%: It is mixed so as to be 15.3% by volume.
  • the obtained silicone composition was extruded into a hollow quadrangular metal mold (50 mm ⁇ 50 mm) on which a film that had been peeled off was adhered, and then extrusion-molded to form a 50 mm ⁇ silicone molded body and then oven-molded. It was heated at 100° C. for 6 hours to obtain a silicone cured product.
  • the silicone cured product heat conductive molded product
  • the first release film was peeled from the sheet body of the obtained heat conductive sheet, and the workability was confirmed and evaluated. After that, the workability was also confirmed when the second release film was peeled off after the sheet body was brought into close contact with the aluminum plate.
  • the evaluation is good when only the release film is peeled from the sheet body ( ⁇ ), normal when a part of the sheet body is attached to the peeled release film ( ⁇ ), and the entire sheet body is attached to the peeled release film When it did, it was regarded as defective (x).
  • load cell 50 (N)
  • speed 300 mm/min in a tensile/compression tester (Precision universal tester AGS-50NX manufactured by Shimadzu Corporation)
  • the peeling film was subjected to a 180-degree peeling test under the above conditions, and the peeling strength (N) and the bending radius (R) were measured.
  • Example 1 In Example 1, a 25 ⁇ m-thick PET film (peeling strength: 0.03 N) peeled with wax was used as the first peeling film, and an embossed polyethylene film having a thickness of 80 ⁇ m was used as the second peeling film. (Peeling strength: 0.05 N) was used.
  • Example 2 In Example 2, a 300 ⁇ m-thick polyethylene film (peeling strength: 0.015 N) that was embossed was used as the first release film, and a 25 ⁇ m-thick PET film that was release-treated with wax was used as the second release film. (Peeling strength: 0.03N) was used.
  • Example 3 In Example 3, a 25 ⁇ m-thick PET film (peeling strength: 0.03 N) peeled with wax was used as the first peeling film, and a 50 ⁇ m-thick wax-peeled film was used as the second peeling film. PET film (peeling strength: 0.06N) was used.
  • Example 4 In Example 4, a 300 ⁇ m-thick polyethylene film (peeling strength: 0.015 N) that had been embossed was used as the first release film, and a 50 ⁇ m-thick PET that was release-treated with wax was used as the second release film. A film (peeling strength: 0.06N) was used.
  • Comparative Example 1 In Comparative Example 1, a 50 ⁇ m-thick PET film (peeling strength: 0.06 N) peeled with wax was used as the first peeling film, and a thickness of 50 ⁇ m peeled with wax was used as the second peeling film. PET film (peeling strength: 0.06N) was used.
  • Comparative example 2 In Comparative Example 2, a 50 ⁇ m-thick PET film (peeling strength: 0.06 N) peeled with wax was used as the first peeling film, and a thickness of 25 ⁇ m peeled with wax was used as the second peeling film. PET film (peeling strength: 0.03N) was used.
  • the peel strength of the first release film from the sheet body was smaller than the peel strength of the second release film from the sheet body.
  • the sheet body did not adhere to the release film and the sheet body did not separate from the second release film. That is, only the first release film could be released, and good workability could be realized.
  • the sheet body was peeled from the aluminum plate when the second release film was peeled from the sheet body attached to the aluminum plate, there was no problem in the peelability of the first release film, too. Also, the peelability of the second release film is due to the relationship between the tack of the sheet body with respect to the aluminum plate and the peel strength of the second release film, and the workability in the work of attaching the heat conductive sheet to the aluminum plate is good. Met.
  • the peel strength from the sheet body was the same between the first release film and the second release film, so part of the sheet body adhered to the peeled first release film. Further, in Comparative Example 2, the peel strength of the first release film from the sheet body is greater than the peel strength of the second release film from the sheet body. Adhered.
  • the first release film is applied while applying a magnetic force from the other surface side of the sheet body by bringing a magnet into close contact with the second release film.
  • the workability was confirmed and evaluated.
  • the workability was also confirmed when the second release film was peeled off after the exposed one surface of the sheet body was brought into close contact with the aluminum plate.
  • the evaluation is good when only the release film is peeled from the sheet body ( ⁇ ), normal when a part of the sheet body is attached to the peeled release film ( ⁇ ), and the entire sheet body is attached to the peeled release film When it did, it was regarded as defective (x).
  • Example 5 In Example 5, a 50 ⁇ m-thick PET film (peeling strength: 0.06 N) peeled with wax was used as the first peeling film, and an embossed 300 ⁇ m-thick polyethylene film was used as the second peeling film. (Peeling strength: 0.015N) was used.
  • Comparative Example 3 In Comparative Example 3, a PET film having a thickness of 50 ⁇ m (peeling strength: 0.06 N) peeled with wax was used as the first peeling film, and an embossed 300 ⁇ m thick polyethylene film was used as the second peeling film. (Peeling strength: 0.015N) was used.
  • the first release film was peeled off from the other surface side of the sheet body without applying a magnetic force.
  • Example 5 the first peeling film was peeled off while the magnetic force was applied from the other surface side of the sheet body by bringing the magnet into close contact with the second peeling film. Although the first release film was larger than the second release film, only the first release film could be released.

Abstract

Provided is a heat-conducting sheet which has improved usability and in which a release film can be easily peeled from a sheet body having a tacky sheet surface. The sheet has: a sheet body 2 having a tacky surface; a first release film 3 affixed to one surface 2a of the sheet body 2; and a second release film 4 affixed to the other surface 2b of the sheet body 2 on the side opposite the one surface 2a. The first release film 3 and the second release film 4 have different peel strengths from the sheet body 2.

Description

熱伝導シート、熱伝導シートの実装方法、電子機器の製造方法Thermal conductive sheet, mounting method of thermal conductive sheet, manufacturing method of electronic device
 本技術は、電子部品等に貼り付け、その放熱性を向上させる熱伝導シート、熱伝導シートの実装方法及び電子機器の製造方法に関する。本出願は、日本国において2019年2月9日に出願された日本特許出願番号特願2019-022184を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。 The present technology relates to a heat conductive sheet that is attached to an electronic component or the like to improve its heat dissipation, a mounting method of the heat conductive sheet, and a manufacturing method of an electronic device. This application claims priority based on Japanese Patent Application No. 2019-022184 filed on Feb. 9, 2019 in Japan, and this application is incorporated into the present application by reference. Incorporated.
 従来、パーソナルコンビュータ等の各種電気機器やその他の機器に搭載されている半導体素子においては、駆動により熱が発生し、発生した熱が蓄積されると半導体素子の駆動や周辺機器へ悪影響が生じることから、各種冷却手段が用いられている。半導体素子等の電子部品の冷却方法としては、当該機器にファンを取り付け、機器筐体内の空気を冷却する方式や、その冷却すべき半導体素子に放熱フィンや放熱板等のヒートシンクを取り付ける方法等が知られている。 Conventionally, in semiconductor elements mounted on various electric devices such as personal computers and other devices, heat is generated by driving, and if the generated heat is accumulated, it may adversely affect the driving of semiconductor elements and peripheral devices. Therefore, various cooling means are used. As a method of cooling electronic components such as semiconductor elements, there is a method of attaching a fan to the equipment to cool the air in the equipment casing, a method of attaching a heat sink such as a heat radiation fin or a heat radiation plate to the semiconductor element to be cooled, and the like. Are known.
 半導体素子にヒートシシクを取り付けて冷却する場合、半導体素子の熱を効率よく放出させるために、半導体素子とヒートシンクとの間に熱伝導シートが設けられている。熱伝導シートとしては、シリコーン樹脂に炭素繊維等の熱伝導性フィラー等の充填剤を分散含有させたものが広く用いられている(特許文献1参照)。これら熱伝導性フィラーは、熱伝導の異方性を有しており、例えは熱伝導性フィラーとして炭素繊維を用いた場合、繊維方向には約600W/m・K~1200W/m・Kの熱伝導率を有し、窒化ホウ素を用いた場合には、面方向では約110W/m・K、面方向に垂直な方向では約2W/m・Kの熱伝導率を有し、異方性を有することが知られている。 A heat conductive sheet is provided between the semiconductor element and the heat sink in order to efficiently dissipate the heat of the semiconductor element when a heat sink is attached to the semiconductor element for cooling. As the heat conductive sheet, one in which a filler such as a heat conductive filler such as carbon fiber is dispersedly contained in a silicone resin is widely used (see Patent Document 1). These heat conductive fillers have anisotropy of heat conduction. For example, when carbon fiber is used as the heat conductive filler, the fiber direction is about 600 W/m·K to 1200 W/m·K. It has a thermal conductivity, and when boron nitride is used, it has a thermal conductivity of about 110 W/m·K in the plane direction and about 2 W/m·K in the direction perpendicular to the plane direction. Is known to have.
特開2014-031501号公報JP, 2014-031501, A 特開2017-175080号公報JP, 2017-175080, A
 ここで、パーソナルコンビュータのCPUなどの電子部品はその高速化、高性能化に伴って、その放熱量は年々増大する傾向にある。しかしながら、反対にプロセッサ等のチップサイズは微細シリコン回路技術の進歩によって、従来と同等サイズかより小さいサイズとなり、単位面積あたりの熱流速は高くなっている。したがって、その温度上昇による不具合などを回避するために、CPUなどの電子部品をより効率的に放熱、冷却することが求められている。 ▽ Here, the heat dissipation of electronic parts such as CPUs of personal computers tends to increase year by year as their speed and performance increase. However, on the contrary, the chip size of a processor or the like has become equal to or smaller than the conventional size due to the progress of fine silicon circuit technology, and the heat flow rate per unit area has increased. Therefore, in order to avoid problems caused by the temperature rise, it is required to more efficiently radiate and cool electronic components such as CPU.
 熱伝導シートの放熱特性を向上するためには、熱の伝わりにくさを示す指標である熱抵抗を下げることが求められる。熱抵抗を下げるためには、発熱体である電子部品や、ヒートシシク等の放熱部品に対する密着性の向上や、熱伝導シートを薄くして熱抵抗を下げさせることが有効となる。 ▽ In order to improve the heat dissipation characteristics of the heat conductive sheet, it is necessary to lower the thermal resistance, which is an indicator of the difficulty of transmitting heat. In order to reduce the thermal resistance, it is effective to improve the adhesion to electronic components that are heating elements and heat-radiating components such as heat sink, and to reduce the thermal resistance by thinning the heat conductive sheet.
 熱伝導性成形体を薄くスライスし熱伝導シートとした場合、スライスしたシート表面は凹凸があり、電子部品との密着性が乏しい。密着性が乏しいと実装工程において部品に対して密着しないことによって部品から落下する等の不具合が生じ、また、発熱体である電子部品やヒートシシク等の放熱体と密着性が悪いことにより空気を含んでしまい、熱抵抗を十分に下げることができないといった問題がある。 When thinly slicing a heat conductive molded body to form a heat conductive sheet, the sliced sheet surface has irregularities and poor adhesion to electronic parts. Poor adhesion may cause problems such as dropping from the component due to lack of close contact with the component during the mounting process.Also, air may be included due to poor adhesion to heat-dissipating elements such as electronic components and heat sinks. Therefore, there is a problem that the thermal resistance cannot be reduced sufficiently.
 このような問題に対して、熱伝導性成形体をスライスして作製した熱伝導シートを剥離フィルムで挟持しプレスすることで、シート表面を平滑化させるとともに、シート本体を構成する高分子マトリックス成分の未硬化成分を表面に滲み出させて熱伝導シートと電子部品の密着性を改善する技術も提案されている(特許文献2)。 For such a problem, by sandwiching and pressing a heat conductive sheet produced by slicing a heat conductive molded body with a release film, the sheet surface is smoothed and a polymer matrix component constituting the sheet main body is used. There is also proposed a technique for improving the adhesion between the heat conductive sheet and the electronic component by exuding the uncured component on the surface (Patent Document 2).
 一方で、薄くて柔らかいシート本体において、シート表面に高分子マトリックス成分の未硬化成分が滲み出ると、熱伝導シートを半導体装置等の電子部品に実装する際に、シート本体から剥離フィルムを剥離することが困難となり、作業性を損なってしまう。すなわち、熱伝導シートを使用する際には、シート本体から剥離フィルムを剥離する必要があるが、一方の剥離フィルムを剥離する際に、この一方の剥離フィルムにシート本体が付着した状態で他方の剥離フィルムから剥離してしまうと、作業性を損なうこととなる。 On the other hand, in the thin and soft sheet body, when the uncured component of the polymer matrix component oozes out on the sheet surface, the release film is peeled off from the sheet body when the heat conductive sheet is mounted on an electronic component such as a semiconductor device. Becomes difficult and the workability is impaired. That is, when using the heat conductive sheet, it is necessary to peel off the release film from the sheet body, but when peeling off one release film, while the sheet body is attached to this one release film If it is peeled from the release film, the workability will be impaired.
 そこで、本技術は、シート表面にタック性を有するシート本体から剥離フィルムを容易に剥離でき、作業性が向上された熱伝導シート、この熱伝導シートの実装方法、及び電子機器の製造方法を提供することを目的とする。 Therefore, the present technology provides a heat conductive sheet that can easily peel the release film from the sheet body having tackiness on the sheet surface and has improved workability, a mounting method of the heat conductive sheet, and a manufacturing method of an electronic device. The purpose is to do.
 上述した課題を解決するために、本技術に係る熱伝導シートは、表面にタックを有するシート本体と、前記シート本体の一方の面に貼付された第1の剥離フィルム、及び前記シート本体の前記一方の面と反対側の他方の面に貼付された第2の剥離フィルムを有し、前記第1の剥離フィルムと前記第2の剥離フィルムは、前記シート本体からの剥離強度が異なるものである。 In order to solve the above-described problems, the heat conductive sheet according to the present technology includes a sheet main body having a tack on the surface, a first release film attached to one surface of the sheet main body, and the sheet main body including the first release film. It has a 2nd peeling film stuck on the other side of the side opposite to one side, and the 1st peeling film and the 2nd peeling film differ in peeling strength from the sheet body. ..
 また、本技術に係る熱伝導シートの実装方法は、シート本体の一方の面に第1の剥離フィルムが貼付され、前記シート本体の前記一方の面と反対側の他方の面に第2の剥離フィルムが貼付された熱伝導シートを用意する工程と、前記シート本体の前記他方の面側から磁力を印加し、前記第1の剥離フィルムを剥離する工程と、前記シート本体の前記一方の面を電子部品に貼付する工程と、前記第2の剥離フィルムを剥離する工程を有するものである。 Moreover, the mounting method of the heat conductive sheet which concerns on this technique WHEREIN: The 1st peeling film is affixed on one surface of a sheet main body, and the 2nd peeling is carried out on the other surface of the said sheet main body on the opposite side. A step of preparing a heat conductive sheet having a film attached thereto, a step of applying a magnetic force from the other surface side of the sheet body to peel off the first release film, and a step of removing the one surface of the sheet body. It has a step of sticking to an electronic component and a step of peeling off the second peeling film.
 また、本技術に係る電子機器の製造方法は、熱伝導シートが貼付された電子部品を有する電子機器の製造方法において、シート本体の一方の面に第1の剥離フィルムが貼付され、前記シート本体の前記一方の面と反対側の他方の面に第2の剥離フィルムが貼付された熱伝導シートを用意する工程と、前記シート本体の前記他方の面から磁力を印加し、前記第1の剥離フィルムを剥離する工程と、前記シート本体の前記一方の面を電子部品に貼付する工程と、前記第2の剥離フィルムを剥離する工程を有するものである。 Moreover, the manufacturing method of the electronic device which concerns on this technique is a manufacturing method of the electronic device which has the electronic component with which the heat conductive sheet was stuck, The 1st peeling film is stuck on one surface of a sheet main body, The said sheet main body A step of preparing a heat conductive sheet having a second release film attached to the other surface opposite to the one surface of the sheet, and applying a magnetic force from the other surface of the sheet body to perform the first release. The method includes a step of peeling the film, a step of attaching the one surface of the sheet body to an electronic component, and a step of peeling the second peeling film.
 本技術によれば、熱伝導シートは、シート本体からの剥離強度が小さい剥離フィルムから剥離することで、当該剥離フィルムにシート本体が付着して剥がれることがなく、作業性を損なうことがない。 According to the present technology, by peeling the heat conductive sheet from the peeling film having a small peel strength from the sheet body, the sheet body does not adhere to and peel off from the peeling film, which does not impair workability.
図1は、本技術が適用された熱伝導シートを示す断面図である。FIG. 1 is a cross-sectional view showing a heat conductive sheet to which the present technology is applied. 図2は、熱伝導性成形体をスライスする工程の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of a step of slicing the heat conductive molded body. 図3は、熱伝導シートの一方の表面から第1の剥離フィルムを除去する工程を示す断面図である。FIG. 3 is a cross-sectional view showing a step of removing the first release film from one surface of the heat conductive sheet. 図4は、半導体装置の一例を示す断面図である。FIG. 4 is a sectional view showing an example of a semiconductor device.
 以下、本技術が適用された熱伝導シート、熱伝導シートの実装方法、及び電子機器の製造方法について、図面を参照しながら詳細に説明する。なお、本技術は、以下の実施形態のみに限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 The following is a detailed description of a heat conductive sheet to which the present technology is applied, a method of mounting the heat conductive sheet, and a method of manufacturing an electronic device, with reference to the drawings. It should be noted that the present technology is not limited to the following embodiments, and various modifications can be made without departing from the gist of the present technology. Also, the drawings are schematic, and the ratios of the respective dimensions may differ from the actual ones. Specific dimensions should be judged in consideration of the following description. Further, it is needless to say that the drawings include portions in which dimensional relationships and ratios are different from each other.
 本技術が適用された熱伝導シートは、表面にタックを有するシート本体と、前記シート本体の一方の面に貼付された第1の剥離フィルム、及び前記シート本体の前記一方の面と反対側の他方の面に貼付された第2の剥離フィルムを有し、前記第1の剥離フィルムと第2の剥離フィルムは、前記シート本体からの剥離強度が異なることを特徴とする。 The heat conductive sheet to which the present technology is applied includes a sheet main body having a tack on the surface, a first release film attached to one surface of the sheet main body, and an opposite side of the one main surface of the sheet main body. It has the 2nd exfoliation film stuck on the other side, and the 1st exfoliation film and the 2nd exfoliation film are characterized by different exfoliation strength from the sheet body.
 これにより、熱伝導シートは、シート本体からの剥離強度が小さい剥離フィルムから剥離することで、当該剥離フィルムにシート本体が付着して剥がれることがなく、作業性を損なうことがない。 Due to this, the heat conductive sheet is peeled from the peeling film having a small peeling strength from the sheet body, so that the sheet body does not adhere to the peeling film and peel off, and the workability is not impaired.
 また、剥離フィルムのシート本体からの剥離強度は、剥離フィルムの厚みや材質に応じても異なる。したがって、シート本体に貼付される第1、第2の剥離フィルムは、それぞれ厚み及び/又は材質を異ならせることにより、シート本体からの剥離強度を異ならせることができる。 Also, the peel strength of the release film from the sheet body differs depending on the thickness and material of the release film. Therefore, the peel strength from the sheet body can be made different by making the first and second release films attached to the sheet body different in thickness and/or material.
 第1、第2の剥離フィルムの材質としては、プラスチックフィルムを好適に用いることができ、ポリエチレンテレフタレートフィルムやポリエチレンフィルム等を例示できる。第1、第2の剥離フィルムは、同じ材質で異なる厚みで形成されてもよく、異なる材質で同じ又は異なる厚みで形成されてもよい。また、第1、第2の剥離フィルムは、シート本体からの剥離を容易に行うために剥離処理やエンボス加工のいずれか又は両方を施してもよい。かかる処理や加工によってもシート本体からの剥離強度を調整することができる。このような第1、第2の剥離フィルムとしては、例えばエンボス加工されたポリエチレンフィルム、ワックス処理されたPETフィルム、又はフッ素処理されたPETフィルム等を例示できる。 As the material for the first and second release films, a plastic film can be preferably used, and examples thereof include polyethylene terephthalate film and polyethylene film. The first and second release films may be formed of the same material with different thicknesses, or may be formed of different materials with the same or different thicknesses. Further, the first and second release films may be subjected to either or both of a release treatment and an embossing treatment in order to easily release them from the sheet body. The peeling strength from the sheet body can also be adjusted by such processing and processing. Examples of such first and second release films include an embossed polyethylene film, a wax-treated PET film, and a fluorine-treated PET film.
 なお、第1、第2の剥離フィルムのシート本体からの剥離強度は、シート本体に発現するタックとの関係で適宜設定することができるが、180度剥離した時の剥離強度が0.01~0.1Nとすることが好ましい。また、第1、第2の剥離フィルムの180度剥離した時の屈曲半径(R)は、フィルムの厚さや材質に応じて適宜設定されるが、例えば10mm以下とすることが好ましい。 The peel strength of the first and second release films from the sheet body can be appropriately set in relation to the tack developed in the sheet body, but the peel strength when peeled 180 degrees is 0.01 to It is preferably 0.1N. The bending radius (R) of the first and second release films when they are peeled by 180 degrees is appropriately set according to the thickness and material of the film, but is preferably 10 mm or less, for example.
 シート本体としては、少なくとも高分子マトリックス成分と繊維状の熱伝導性充填剤とを含む熱伝導性樹脂組成物が硬化されてなるものを好適に用いることができ、また、高分子マトリックス成分としてはシリコーンゲルであるものを好適に用いることができる。 As the sheet body, one obtained by curing a heat conductive resin composition containing at least a polymer matrix component and a fibrous heat conductive filler can be preferably used, and as the polymer matrix component, A silicone gel can be preferably used.
 さらに、シート本体は、磁性粉を含むことが好ましい。後述するように、磁性粉を含有することにより、熱伝導シートは、磁力を印加させながら剥離フィルムだけを剥離することができ、シート本体からの剥離強度の大きい剥離フィルムから剥離することもできる。 Furthermore, it is preferable that the sheet body contains magnetic powder. As will be described later, by containing the magnetic powder, the heat conductive sheet can be peeled off only the peeling film while applying a magnetic force, and can also be peeled from the peeling film having a large peeling strength from the sheet body.
 また、シート本体は、ショアOO硬度が50以下、かつ厚みが0.5mm以下であることが好ましい。熱伝導シートは、ショアOO硬度が50以下の柔軟性を有することで、電子部品やヒートシンク等の放熱部材との密着性を高め、また、厚さを0.5mm以下と薄くすることで、熱伝導率を高めることができる。 Also, the seat body preferably has a Shore OO hardness of 50 or less and a thickness of 0.5 mm or less. The heat conductive sheet has flexibility such that the Shore OO hardness is 50 or less, so that the heat conductive sheet enhances adhesion with a heat dissipation member such as an electronic component or a heat sink, and has a thickness as thin as 0.5 mm or less, thereby improving heat resistance. The conductivity can be increased.
 本技術が適用された熱伝導シートの実装工程は、シート本体からの剥離強度が小さい方の剥離フィルム、例えば第2の剥離フィルムから剥離する。これにより、第2の剥離フィルムに付着してシート本体の全部が第1の剥離フィルムから剥離することがなく、第1の剥離フィルムに支持された状態でシート本体の他方の面を露出させることができる。熱伝導シートは、露出したシート本体の他方の面を半導体装置等の電子部品又はヒートシンク等の放熱部材に貼り付け、その後、第1の剥離フィルムをシート本体の一方の面から剥離する。 In the mounting process of the heat conductive sheet to which the present technology is applied, peeling is performed from the peeling film having a smaller peel strength from the sheet body, for example, the second peeling film. Thereby, the other surface of the sheet body is exposed while being supported by the first release film without being attached to the second release film and peeling off the entire sheet body from the first release film. You can The heat conductive sheet is attached to the other surface of the exposed sheet body on an electronic component such as a semiconductor device or a heat dissipation member such as a heat sink, and then the first release film is released from one surface of the sheet body.
 ここで、本技術が適用された熱伝導シートの実装工程は、シート本体の他方の面側から磁力を印加し、剥離強度が第2の剥離フィルム以上である第1の剥離フィルムから剥離してもよい。第2の剥離フィルムが貼付されているシート本体の他方の面側から磁力を印加することにより、シート本体が第2の剥離フィルム側に引き寄せられる。したがって、シート本体からの剥離強度が第2の剥離フィルム以上である第1の剥離フィルムを剥離する場合にも、シート本体の全部が第1の剥離フィルムに付着して第2の剥離フィルムから剥離することがなく、第2の剥離フィルムに支持された状態でシート本体の一方の面を露出させることができる。 Here, in the mounting step of the heat conductive sheet to which the present technology is applied, a magnetic force is applied from the other surface side of the sheet body, and the peeling strength is peeled from the first peeling film that is equal to or higher than that of the second peeling film. Good. By applying a magnetic force from the other surface side of the sheet main body to which the second release film is attached, the sheet main body is pulled toward the second release film side. Therefore, even when the first peeling film whose peel strength from the sheet body is equal to or higher than the second peeling film is peeled off, the entire sheet body adheres to the first peeling film and peels off from the second peeling film. Without doing so, one surface of the sheet body can be exposed while being supported by the second release film.
 熱伝導シートは、露出したシート本体の一方の面を半導体装置等の電子部品又はヒートシンク等の放熱部材に貼り付け、その後、第2の剥離フィルムをシート本体の他方の面から剥離する。 For the heat conductive sheet, one surface of the exposed sheet body is attached to an electronic component such as a semiconductor device or a heat dissipation member such as a heat sink, and then the second release film is released from the other surface of the sheet body.
 また、熱伝導シートは、シート本体に磁性粉が含有されていることが好ましい。シート本体に磁性粉が含有されることにより、シート本体の他方の面側から第2の剥離フィルムを介して磁界を印加したときに、より確実にシート本体が第2の剥離フィルム側に引き寄せられ、第1の剥離フィルムのみをシート本体から剥離することができる。 Also, it is preferable that the sheet body of the heat conductive sheet contains magnetic powder. Since the sheet body contains the magnetic powder, the sheet body is more reliably attracted to the second release film side when a magnetic field is applied from the other surface side of the sheet body through the second release film. Only the first release film can be released from the sheet body.
 [熱伝導シートの構成例]
 図1に本技術が適用された熱伝導シートの構成例を示す。図1に示す熱伝導シート1は、少なくとも高分子マトリックス成分と繊維状の熱伝導性充填剤とを含むバインダ樹脂が硬化されてなるシート本体2を有する。シート本体2の一方の面2aは、第1の剥離フィルム3が貼着され、シート本体2の他方の面2bは、第2の剥離フィルム4が貼着されている。また、シート本体2は、第1、第2の剥離フィルム3,4とシート本体2との間に、シート本体2から滲み出た高分子マトリックス成分の未硬化成分によって樹脂被覆層5が形成されている。
[Example of configuration of heat conductive sheet]
FIG. 1 shows a configuration example of a heat conductive sheet to which the present technology is applied. The heat conductive sheet 1 shown in FIG. 1 has a sheet body 2 obtained by curing a binder resin containing at least a polymer matrix component and a fibrous heat conductive filler. The first release film 3 is attached to one surface 2a of the sheet body 2, and the second release film 4 is attached to the other surface 2b of the sheet body 2. In addition, in the sheet body 2, the resin coating layer 5 is formed between the first and second release films 3 and 4 and the sheet body 2 by the uncured component of the polymer matrix component exuded from the sheet body 2. ing.
 熱伝導シート1は、一方の面2a及び他方の面2bに樹脂被覆層5が形成されることによりタック(粘着性)を有し、使用の際に第1、第2の剥離フィルム3,4を剥離することによりシート本体2を所定の位置に貼付可能とされている。このとき、上述したように、熱伝導シート1は、第1、第2の剥離フィルム3,4の剥離性が向上され作業性、取り扱い性に優れる。また、熱伝導シート1は、電子部品と放熱部材との組み立て時の位置ズレを修正したり、一旦組み立てた後に何らかの事情で解体し、再度組み立てることを可能としたりするなどのリワーク性にも優れる。 The heat conductive sheet 1 has a tack (adhesiveness) due to the resin coating layer 5 being formed on the one surface 2a and the other surface 2b, and when used, the first and second release films 3 and 4 are provided. The sheet body 2 can be attached to a predetermined position by peeling the sheet. At this time, as described above, in the heat conductive sheet 1, the peelability of the first and second release films 3 and 4 is improved, and the workability and handleability are excellent. Further, the heat conductive sheet 1 is also excellent in reworkability such as correcting a positional deviation when assembling the electronic component and the heat radiating member, or disassembling after being assembled for some reason and reassembling. ..
 [高分子マトリックス成分]
 シート本体2を構成する高分子マトリックス成分は、熱伝導シート1の基材となる高分子成分のことである。その種類については、特に限定されず、公知の高分子マトリックス成分を適宜選択することができる。例えば、高分子マトリックス成分の一つとして、熱硬化性ポリマーが挙げられる。
[Polymer matrix component]
The polymer matrix component that constitutes the sheet body 2 is a polymer component that serves as a base material of the heat conductive sheet 1. The type is not particularly limited, and a known polymer matrix component can be appropriately selected. For example, one of the polymer matrix components is a thermosetting polymer.
 前記熱硬化性ポリマーとしては、例えば、架橋ゴム、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ベンゾシクロブテン樹脂、フェノール樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、シリコーン樹脂、ポリウレタン、ポリイミドシリコーン、熱硬化型ポリフェニレンエーテル、熱硬化型変性ポリフェニレンエーテル等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of the thermosetting polymer include crosslinked rubber, epoxy resin, polyimide resin, bismaleimide resin, benzocyclobutene resin, phenol resin, unsaturated polyester, diallyl phthalate resin, silicone resin, polyurethane, polyimide silicone, and thermosetting type. Examples thereof include polyphenylene ether and thermosetting modified polyphenylene ether. These may be used alone or in combination of two or more.
 なお、前記架橋ゴムとしては、例えば、天然ゴム、ブタジエンゴム、イソプレンゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、エチレンプロピレンゴム、塩素化ポリエチレン、クロロスルホン化ポリエチレン、ブチルゴム、ハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、アクリルゴム、ポリイソブチレンゴム、シリコーンゴム等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of the crosslinked rubber include natural rubber, butadiene rubber, isoprene rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene propylene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, butyl rubber, halogenated butyl rubber, and fluorine. Examples thereof include rubber, urethane rubber, acrylic rubber, polyisobutylene rubber and silicone rubber. These may be used alone or in combination of two or more.
 また、これら熱硬化性ポリマーの中でも、成形加工性及び耐候性に優れるとともに、電子部品に対する密着性及び追従性の点から、シリコーン樹脂を用いることが好ましい。前記シリコーン樹脂としては、特に制限はなく、目的に応じてシリコーン樹脂の種類を適宜選択することができる。 Among these thermosetting polymers, it is preferable to use a silicone resin from the viewpoints of excellent moldability and weather resistance, as well as adhesion and conformability to electronic parts. The silicone resin is not particularly limited, and the type of silicone resin can be appropriately selected according to the purpose.
 上述した成形加工性、耐候性、密着性等を得る観点からは、前記シリコーン樹脂として、液状シリコーンゲルの主剤と、硬化剤とから構成されるシリコーン樹脂であることが好ましい。そのようなシリコーン樹脂としては、例えば、付加反応型液状シリコーン樹脂、過酸化物を加硫に用いる熱加硫型ミラブルタイプのシリコーン樹脂等が挙げられる。これらの中でも、電子機器の放熱部材としては、電子部品の発熱面とヒートシンク面との密着性が要求されるため、付加反応型液状シリコーン樹脂が特に好ましい。 From the viewpoint of obtaining the above-mentioned molding processability, weather resistance, adhesion, etc., the silicone resin is preferably a silicone resin composed of a main component of liquid silicone gel and a curing agent. Examples of such a silicone resin include an addition reaction type liquid silicone resin and a heat vulcanizable millable type silicone resin using a peroxide for vulcanization. Among these, the addition reaction type liquid silicone resin is particularly preferable as the heat dissipation member of the electronic device, because adhesion between the heat generating surface of the electronic component and the heat sink surface is required.
 前記付加反応型液状シリコーン樹脂としては、ビニル基を有するポリオルガノシロキサンを主剤、Si-H基を有するポリオルガノシロキサンを硬化剤とした、2液性の付加反応型シリコーン樹脂等を用いることが好ましい。 As the addition reaction type liquid silicone resin, it is preferable to use a two-component addition reaction type silicone resin having a vinyl group-containing polyorganosiloxane as a main agent and a Si—H group-containing polyorganosiloxane as a curing agent. ..
 ここで、液状シリコーン成分は、主剤となるシリコーンA液成分と硬化剤が含まれるシリコーンB液成分を有し、シリコーンA液成分とシリコーンB液成分とが所定の割合で配合されている。シリコーンA液成分とシリコーンB液成分との配合割合は適宜調整できるが、シート本体2に柔軟性を付与するとともに、シート本体2の両面2a,2bと第1、第2の剥離フィルムとの間に高分子マトリックス成分の未硬化成分をブリードさせ、樹脂被覆層5を形成できる配合割合とすることが好ましい。 Here, the liquid silicone component has a silicone A liquid component as a main component and a silicone B liquid component containing a curing agent, and the silicone A liquid component and the silicone B liquid component are mixed in a predetermined ratio. The blending ratio of the silicone A liquid component and the silicone B liquid component can be adjusted as appropriate, but it imparts flexibility to the sheet main body 2 and between the both surfaces 2a and 2b of the sheet main body 2 and the first and second release films. It is preferable that the uncured component of the polymer matrix component is bleeded to the above so that the resin coating layer 5 is formed.
 また、熱伝導シート1における前記高分子マトリックス成分の含有量は、特に制限されず、目的に応じて適宜選択することができるが、シートの成形加工性や、シートの密着性等を確保する観点からは、15体積%~50体積%程度であることが好ましく、20体積%~45体積%であることがより好ましい。 The content of the polymer matrix component in the heat conductive sheet 1 is not particularly limited and can be appropriately selected according to the purpose. From the viewpoint of ensuring sheet formability, sheet adhesion, and the like. Therefore, it is preferably about 15 to 50% by volume, and more preferably 20 to 45% by volume.
 [繊維状熱伝導性充填剤]
 熱伝導シート1に含まれる繊維状の熱伝導性充填剤は、シートの熱伝導性を向上させるための成分である。熱伝導性充填剤の種類については、熱伝導性の高い繊維状の材料であれば特に限定はされないが、より高い熱伝導性を得られる点からは、炭素繊維を用いることが好ましい。
[Fibrous heat conductive filler]
The fibrous heat conductive filler contained in the heat conductive sheet 1 is a component for improving the heat conductivity of the sheet. The kind of the heat conductive filler is not particularly limited as long as it is a fibrous material having high heat conductivity, but it is preferable to use carbon fiber from the viewpoint of obtaining higher heat conductivity.
 なお、熱伝導性充填剤については、一種単独でもよいし、二種以上を混合して用いてもよい。また、二種以上の熱伝導性充填剤を用いる場合には、いずれも繊維状の熱伝導性充填剤であってもよいし、繊維状の熱伝導性充填剤と別の形状の熱伝導性充填剤とを混合して用いてもよい。別の形状の熱伝導性充填剤としては、銀、銅、アルミニウム等の金属、アルミナ、窒化アルミニウム、炭化ケイ素、グラファイト等のセラミックス等が挙げられる。 Regarding the thermally conductive filler, one kind may be used alone, or two or more kinds may be mixed and used. Further, when using two or more kinds of heat conductive filler, both may be a fibrous heat conductive filler, or a fibrous heat conductive filler and a different shape of heat conductive filler. You may mix and use with a filler. Examples of the thermally conductive filler having another shape include metals such as silver, copper and aluminum, ceramics such as alumina, aluminum nitride, silicon carbide and graphite.
 前記炭素繊維の種類について特に制限はなく、目的に応じて適宜選択することができる。例えば、ピッチ系、PAN系、PBO繊維を黒鉛化したもの、アーク放電法、レーザー蒸発法、CVD法(化学気相成長法)、CCVD法(触媒化学気相成長法)等で合成されたものを用いることができる。これらの中でも、高い熱伝導性が得られる点から、PBO繊維を黒鉛化した炭素繊維、ピッチ系炭素繊維がより好ましい。 The kind of the carbon fiber is not particularly limited and can be appropriately selected according to the purpose. For example, pitch type, PAN type, graphitized PBO fiber, arc discharge method, laser evaporation method, CVD method (chemical vapor deposition method), CCVD method (catalytic chemical vapor deposition method), etc. Can be used. Among these, carbon fibers obtained by graphitizing PBO fibers and pitch-based carbon fibers are more preferable because high thermal conductivity can be obtained.
 また、前記炭素繊維は、必要に応じて、その一部又は全部を表面処理して用いることができる。前記表面処理としては、例えば、酸化処理、窒化処理、ニトロ化、スルホン化、あるいはこれらの処理によって表面に導入された官能基若しくは炭素繊維の表面に、金属、金属化合物、有機化合物等を付着あるいは結合させる処理等が挙げられる。前記官能基としては、例えば、水酸基、カルボキシル基、カルボニル基、ニトロ基、アミノ基等が挙げられる。 The carbon fiber may be used by partially or entirely surface-treating it, if necessary. Examples of the surface treatment include oxidation treatment, nitriding treatment, nitration, sulfonation, or a functional group introduced on the surface by these treatments or the surface of carbon fiber to which a metal, a metal compound, an organic compound or the like is attached or Examples of the processing include binding. Examples of the functional group include a hydroxyl group, a carboxyl group, a carbonyl group, a nitro group, and an amino group.
 さらに、前記炭素繊維の平均繊維長(平均長軸長さ)についても、特に制限はなく適宜選択することができるが、確実に高い熱伝導性を得る点から、50μm~300μmの範囲であることが好ましく、75μm~275μmの範囲であることがより好ましく、90μm~250μmの範囲であることが特に好ましい。 Further, the average fiber length (average major axis length) of the carbon fibers can be appropriately selected without any limitation, but it is in the range of 50 μm to 300 μm from the viewpoint of surely obtaining high thermal conductivity. Is more preferable, the range of 75 μm to 275 μm is more preferable, and the range of 90 μm to 250 μm is particularly preferable.
 さらにまた、前記炭素繊維の平均繊維径(平均短軸長さ)についても、特に制限はなく適宜選択することができるが、確実に高い熱伝導性を得る点から、4μm~20μmの範囲であることが好ましく、5μm~14μmの範囲であることがより好ましい。 Furthermore, the average fiber diameter (average minor axis length) of the carbon fibers is not particularly limited and may be appropriately selected, but is in the range of 4 μm to 20 μm from the viewpoint of reliably obtaining high thermal conductivity. It is preferable that the thickness is in the range of 5 μm to 14 μm.
 前記炭素繊維のアスペクト比(平均長軸長さ/平均短軸長さ)については、確実に高い熱伝導性を得る点から、8以上であることが好ましく、9~30であることがより好ましい。前記アスペクト比が8未満であると、炭素繊維の繊維長(長軸長さ)が短いため、熱伝導率が低下してしまうおそれがあり、一方、30を超えると、熱伝導シート1中での分散性が低下するため、十分な熱伝導率を得られないおそれがある。 The aspect ratio (average major axis length/average minor axis length) of the carbon fibers is preferably 8 or more, and more preferably 9 to 30 from the viewpoint of reliably obtaining high thermal conductivity. .. If the aspect ratio is less than 8, the fiber length (major axis length) of the carbon fibers may be short, and the thermal conductivity may decrease. On the other hand, if it exceeds 30, in the heat conductive sheet 1. Since the dispersibility of is reduced, sufficient thermal conductivity may not be obtained.
 ここで、前記炭素繊維の平均長軸長さ、及び平均短軸長さは、例えばマイクロスコープ、走査型電子顕微鏡(SEM)等によって測定し、複数のサンプルから平均を算出することができる。 Here, the average major axis length and the average minor axis length of the carbon fibers can be measured by, for example, a microscope, a scanning electron microscope (SEM), etc., and an average can be calculated from a plurality of samples.
 また、熱伝導シート1における前記繊維状の熱伝導性充填剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、4体積%~40体積%であることが好ましく、5体積%~35体積%であることがより好ましい。前記含有量が、4体積%未満であると、十分に低い熱抵抗を得ることが困難になるおそれがあり、40体積%を超えると、熱伝導シート1の成型性及び前記繊維状の熱伝導性充填剤の配向性に影響を与えてしまうおそれがある。また、熱伝導シート1における繊維状の熱伝導性充填剤を含む熱伝導性充填剤の含有量は、15体積%~75体積%であることが好ましい。 The content of the fibrous heat conductive filler in the heat conductive sheet 1 is not particularly limited and may be appropriately selected depending on the purpose, but is preferably 4% by volume to 40% by volume. It is more preferably from 5% by volume to 35% by volume. When the content is less than 4% by volume, it may be difficult to obtain a sufficiently low thermal resistance, and when it exceeds 40% by volume, the moldability of the heat conductive sheet 1 and the fibrous heat conduction may be increased. There is a possibility that the orientation of the functional filler may be affected. The content of the heat conductive filler containing the fibrous heat conductive filler in the heat conductive sheet 1 is preferably 15% by volume to 75% by volume.
 なお、繊維状の熱伝導性充填剤は、シート本体2の両面2a,2bに露出し、電子部品等の熱源やヒートシンク等の放熱部材と熱的に接触する。熱伝導シート1は、シート本体2の両面2a,2bに露出する繊維状熱伝導性充填剤が高分子マトリックス成分の未硬化成分で被覆される場合、電子部品等に搭載した際に繊維状熱伝導性充填剤と電子部品等との接触熱抵抗を下げることができる。 Note that the fibrous heat conductive filler is exposed on both surfaces 2a and 2b of the sheet body 2 and makes thermal contact with a heat source such as an electronic component or a heat dissipation member such as a heat sink. When the fibrous heat conductive filler exposed on both surfaces 2a and 2b of the sheet body 2 is covered with the uncured component of the polymer matrix component, the heat conductive sheet 1 has a fibrous heat resistance when mounted on an electronic component or the like. The contact thermal resistance between the conductive filler and the electronic component can be reduced.
 [無機物フィラー]
 熱伝導シート1は、熱伝導性充填剤として、無機物フィラーをさらに含有させてもよい。無機物フィラーを含有させることにより、熱伝導シート1の熱伝導性をより高め、シートの強度を向上できる。前記無機物フィラーとしては、形状、材質、平均粒径等については特に制限がされず、目的に応じて適宜選択することができる。前記形状としては、例えば、球状、楕円球状、塊状、粒状、扁平状、針状等が挙げられる。これらの中でも、球状、楕円形状が充填性の点から好ましく、球状が特に好ましい。
[Inorganic filler]
The heat conductive sheet 1 may further contain an inorganic filler as a heat conductive filler. By including the inorganic filler, the thermal conductivity of the thermal conductive sheet 1 can be further increased and the strength of the sheet can be improved. The shape, material, average particle size, etc. of the inorganic filler are not particularly limited and can be appropriately selected depending on the purpose. Examples of the shape include a spherical shape, an elliptic spherical shape, a lump shape, a granular shape, a flat shape, and a needle shape. Among these, spherical shape and elliptical shape are preferable from the viewpoint of filling property, and spherical shape is particularly preferable.
 前記無機物フィラーの材料としては、例えば、窒化アルミニウム(窒化アルミ:AlN)、シリカ、アルミナ(酸化アルミニウム)、窒化ホウ素、チタニア、ガラス、酸化亜鉛、炭化ケイ素、ケイ素(シリコン)、酸化珪素、金属粒子等が挙げられる。これらは、一種単独で使用してもよいし、二種以上を併用してもよい。これらの中でも、アルミナ、窒化ホウ素、窒化アルミニウム、酸化亜鉛、シリカが好ましく、熱伝導率の点から、アルミナ、窒化アルミニウムが特に好ましい。 Examples of the material of the inorganic filler include aluminum nitride (aluminum nitride: AlN), silica, alumina (aluminum oxide), boron nitride, titania, glass, zinc oxide, silicon carbide, silicon (silicon), silicon oxide, metal particles. Etc. These may be used alone or in combination of two or more. Among these, alumina, boron nitride, aluminum nitride, zinc oxide and silica are preferable, and alumina and aluminum nitride are particularly preferable from the viewpoint of thermal conductivity.
 また、前記無機物フィラーは、表面処理が施されたものを用いることができる。前記表面処理としてカップリング剤で前記無機物フィラーを処理すると、前記無機物フィラーの分散性が向上し、熱伝導シート1の柔軟性が向上する。 Also, the inorganic filler may be surface-treated. When the inorganic filler is treated with a coupling agent as the surface treatment, the dispersibility of the inorganic filler is improved and the flexibility of the heat conductive sheet 1 is improved.
 前記無機物フィラーの平均粒径については、無機物の種類等に応じて適宜選択することができる。前記無機物フィラーがアルミナの場合、その平均粒径は、1μm~10μmであることが好ましく、1μm~5μmであることがより好ましく、4μm~5μmであることが特に好ましい。前記平均粒径が1μm未満であると、粘度が大きくなり、混合しにくくなるおそれがある。一方、前記平均粒径が10μmを超えると、熱伝導シート1の熱抵抗が大きくなるおそれがある。 The average particle diameter of the inorganic filler can be appropriately selected according to the type of inorganic material. When the inorganic filler is alumina, the average particle diameter thereof is preferably 1 μm to 10 μm, more preferably 1 μm to 5 μm, and particularly preferably 4 μm to 5 μm. When the average particle diameter is less than 1 μm, the viscosity is increased, and mixing may be difficult. On the other hand, if the average particle size exceeds 10 μm, the thermal resistance of the heat conductive sheet 1 may increase.
 さらに、前記無機物フィラーが窒化アルミニウムの場合、その平均粒径は、0.3μm~6.0μmであることが好ましく、0.3μm~2.0μmであることがより好ましく、0.5μm~1.5μmであることが特に好ましい。前記平均粒径が、0.3μm未満であると、粘度が大きくなり、混合しにくくなるおそれがあり、6.0μmを超えると、熱伝導シート1の熱抵抗が大きくなるおそれがある。 Further, when the inorganic filler is aluminum nitride, the average particle size thereof is preferably 0.3 μm to 6.0 μm, more preferably 0.3 μm to 2.0 μm, and 0.5 μm to 1. Particularly preferably, it is 5 μm. If the average particle diameter is less than 0.3 μm, the viscosity may increase and mixing may become difficult, and if it exceeds 6.0 μm, the thermal resistance of the heat conductive sheet 1 may increase.
 なお、前記無機物フィラーの平均粒径は、例えば、粒度分布計、走査型電子顕微鏡(SEM)により測定することができる。 The average particle size of the inorganic filler can be measured by, for example, a particle size distribution meter or a scanning electron microscope (SEM).
 [その他の成分]
 熱伝導シート1は、上述した、高分子マトリックス成分及び繊維状熱伝導性充填剤、適宜含有される無機物フィラーに加えて、目的に応じてその他の成分を適宜含むこともできる。その他の成分としては、例えば、磁性粉、チキソトロピー性付与剤、分散剤、硬化促進剤、遅延剤、微粘着付与剤、可塑剤、難燃剤、酸化防止剤、安定剤、着色剤等が挙げられる。
[Other ingredients]
The heat conductive sheet 1 may appropriately contain other components according to the purpose in addition to the polymer matrix component, the fibrous heat conductive filler, and the appropriately contained inorganic filler described above. Other components include, for example, magnetic powder, thixotropic agent, dispersant, curing accelerator, retarder, slight tackifier, plasticizer, flame retardant, antioxidant, stabilizer, colorant and the like. ..
 [磁性粉]
 熱伝導シート1は、磁性粉を含有することにより、後述するように、シート本体2の他方の面2b側から磁界を印加したときに、より確実にシート本体2が第2の剥離フィルム4側に引き寄せられ、第1の剥離フィルム3のみをシート本体2から剥離することができる。また、熱伝導シート1は、磁性粉の含有量を調整することにより、熱伝導シート1に電磁波吸収性能を付与してもよい。
[Magnetic powder]
Since the heat conductive sheet 1 contains magnetic powder, the sheet body 2 is more surely attached to the second release film 4 side when a magnetic field is applied from the other surface 2b side of the sheet body 2 as described later. Therefore, only the first release film 3 can be released from the sheet body 2. Further, the heat conductive sheet 1 may impart electromagnetic wave absorbing performance to the heat conductive sheet 1 by adjusting the content of the magnetic powder.
 前記磁性粉の種類については、磁性性を有すること以外は、特に限定されず、公知の磁性粉を適宜選択することができる。例えば、アモルファス金属粉や、結晶質の金属粉末を用いることができる。アモルファス金属粉としては、例えば、Fe-Si-B-Cr系、Fe-Si-B系、Co-Si-B系、Co-Zr系、Co-Nb系、Co-Ta系のもの等が挙げられ、結晶質の金属粉としては、例えば、純鉄、Fe系、Co系、Ni系、Fe-Ni系、Fe-Co系、Fe-Al系、Fe-Si系、Fe-Si-Al系、Fe-Ni-Si-Al系のもの等が挙げられる。さらに、前記結晶質の金属粉としては、結晶質の金属粉に、N(窒素)、C(炭素)、O(酸素)、B(ホウ素)等を微量加えて微細化させた微結晶質金属粉を用いてもよい。 The type of the magnetic powder is not particularly limited except that it has magnetic properties, and a known magnetic powder can be appropriately selected. For example, amorphous metal powder or crystalline metal powder can be used. As the amorphous metal powder, for example, Fe-Si-B-Cr system, Fe-Si-B system, Co-Si-B system, Co-Zr system, Co-Nb system, Co-Ta system, etc. As the crystalline metal powder, for example, pure iron, Fe-based, Co-based, Ni-based, Fe-Ni-based, Fe-Co-based, Fe-Al-based, Fe-Si-based, Fe-Si-Al-based , Fe-Ni-Si-Al type, and the like. Further, as the crystalline metal powder, a microcrystalline metal obtained by adding minute amounts of N (nitrogen), C (carbon), O (oxygen), B (boron), etc. to the crystalline metal powder Powder may be used.
 なお、前記磁性金属粉については、材料が異なるものや、平均粒径が異なるものを二種以上混合したものを用いてもよい。 The magnetic metal powder may be made of different materials or a mixture of two or more kinds having different average particle diameters.
 また、前記磁性金属粉については、球状、扁平状等の形状を調整することが好ましい。例えば、充填性を高くする場合には、粒径が数μm~数十μmであって、球状である磁性金属粉を用いることが好ましい。このような磁性金属粉末は、例えばアトマイズ法や、金属カルボニルを熱分解する方法により製造することができる。アトマイズ法とは、球状の粉末が作りやすい利点を有し、溶融金属をノズルから流出させ、流出させた溶融金属に空気、水、不活性ガス等のジェット流を吹き付けて液滴として凝固させて粉末を作る方法である。アトマイズ法によりアモルファス磁性金属粉末を製造する際には、溶融金属が結晶化しないようにするために、冷却速度を1×10(K/s)程度にすることが好ましい。 Further, it is preferable to adjust the shape of the magnetic metal powder such as a spherical shape or a flat shape. For example, in order to improve the filling property, it is preferable to use spherical magnetic metal powder having a particle size of several μm to several tens μm. Such magnetic metal powder can be produced by, for example, an atomizing method or a method of thermally decomposing metal carbonyl. The atomization method has the advantage that spherical powder is easy to make. It is a method of making powder. When the amorphous magnetic metal powder is produced by the atomization method, it is preferable to set the cooling rate to about 1×10 6 (K/s) in order to prevent the molten metal from being crystallized.
 上述したアトマイズ法により、アモルファス合金粉を製造した場合には、アモルファス合金粉の表面を滑らかな状態とすることができる。このように表面凹凸が少なく、比表面積が小さいアモルファス合金粉を磁性金属粉として用いると、高分子マトリックス成分に対して充填性を高めることができる。さらに、カップリング処理を行うことで充填性をより向上できる。 When the amorphous alloy powder is manufactured by the atomizing method described above, the surface of the amorphous alloy powder can be made smooth. Thus, when the amorphous alloy powder having a small surface irregularity and a small specific surface area is used as the magnetic metal powder, the filling property for the polymer matrix component can be enhanced. Further, the filling property can be further improved by performing the coupling treatment.
 [熱伝導シートの製造方法]
 次いで、熱伝導シート1の製造工程について説明する。本技術が適用された熱伝導シート1の製造工程は、高分子マトリックス成分に繊維状の熱伝導性充填剤等が含有された熱伝導性樹脂組成物を所定の形状に成型して硬化させ、熱伝導性成形体を形成する工程(工程A)と、前記熱伝導性成形体をシート状にスライスし、成形体シートを形成する工程(工程B)と、成形体シートを第1、第2の剥離フィルムで挟持しプレスすることにより、成形体シート表面を平滑化するとともに樹脂被覆層5を形成する工程(工程C)とを有する。
[Method of manufacturing heat conductive sheet]
Next, the manufacturing process of the heat conductive sheet 1 will be described. In the manufacturing process of the heat conductive sheet 1 to which the present technology is applied, a heat conductive resin composition containing a polymer matrix component containing a fibrous heat conductive filler is molded into a predetermined shape and cured, A step of forming a heat conductive molded body (step A); a step of slicing the heat conductive molded body into a sheet to form a molded body sheet (step B); The step (Step C) of smoothing the surface of the molded body sheet and forming the resin coating layer 5 by sandwiching and pressing with the release film (1).
 [工程A]
 この工程Aでは、上述した高分子マトリックス成分及び繊維状熱伝導性充填剤、適宜含有される無機物フィラー、磁性粉その他の成分を配合し、熱伝導性樹脂組成物を調製する。なお、各成分を配合、調製する手順については特に限定はされず、例えば、高分子マトリックス成分に、繊維状熱伝導性充填剤、適宜、無機物フィラー、磁性粉、その他成分を添加し、混合することにより、熱伝導性樹脂組成物の調製が行われる。
[Process A]
In this step A, the heat conductive resin composition is prepared by mixing the above-mentioned polymer matrix component, the fibrous heat conductive filler, the appropriately contained inorganic filler, the magnetic powder and other components. The procedure for blending and preparing each component is not particularly limited, and for example, a polymer matrix component is added with a fibrous thermally conductive filler, an inorganic filler, a magnetic powder, and other components, and mixed. Thus, the heat conductive resin composition is prepared.
 次いで、炭素繊維等の繊維状の熱伝導性充填剤を一方向に配向させる。この充填剤の配向方法は、一方向に配向させることができる手段であれば特に限定はされない。例えば、中空状の型内に前記熱伝導性樹脂組成物を高剪断力下で押し出すこと又は圧入することによって、比較的容易に繊維状の熱伝導性充填剤を一方向に配向させることができ、前記繊維状の熱伝導性充填剤の配向は同一(±10°以内)となる。 Next, the fibrous heat conductive filler such as carbon fiber is oriented in one direction. The method for orienting the filler is not particularly limited as long as it can be oriented in one direction. For example, by extruding or press-fitting the heat conductive resin composition under high shear into a hollow mold, the fibrous heat conductive filler can be oriented in one direction relatively easily. The orientation of the fibrous thermally conductive filler is the same (within ±10°).
 上述した、中空状の型内に前記熱伝導性樹脂組成物を高剪断力下で押し出すこと又は圧入する方法として、具体的には、押出し成型法又は金型成型法が挙げられる。前記押出し成型法において、前記熱伝導性樹脂組成物をダイより押し出す際、あるいは前記金型成型法において、前記熱伝導性樹脂組成物を金型へ圧入する際、前記熱伝導性樹脂組成物が流動し、その流動方向に沿って繊維状熱伝導性充填剤が配向する。この際、ダイの先端にスリットを取り付けると繊維状熱伝導性充填剤がより配向されやすくなる。 As a method of extruding or press-fitting the heat conductive resin composition into the hollow mold described above under a high shearing force, specifically, an extrusion molding method or a mold molding method can be mentioned. In the extrusion molding method, when the heat conductive resin composition is extruded from a die, or in the mold molding method, when the heat conductive resin composition is pressed into a mold, the heat conductive resin composition is It flows and the fibrous thermally conductive filler is oriented along the flow direction. At this time, if a slit is attached to the tip of the die, the fibrous heat conductive filler is more easily oriented.
 中空状の型内に押出し又は圧入された前記熱伝導性樹脂組成物は、当該型の形状、大きさに応じたブロック形状に成型され、繊維状の熱伝導性充填剤の配向状態を維持したまま前記高分子マトリックス成分を硬化させることによって、熱伝導性成形体が形成される。熱伝導性成形体とは、所定のサイズに切断して得られる熱伝導シート1の元となるシート切り出し用の母材(成形体)のことをいう。 The heat conductive resin composition extruded or press-fitted into a hollow mold is molded into a block shape according to the shape and size of the mold, and maintains the orientation state of the fibrous heat conductive filler. By curing the polymer matrix component as it is, a heat conductive molded body is formed. The heat conductive molded body refers to a base material (molded body) for cutting out a sheet which is a source of the heat conductive sheet 1 obtained by cutting into a predetermined size.
 中空状の型及び熱伝導性成形体の大きさ及び形状は、求められる熱伝導シート1の大きさ、形状に応じて決めることができ、例えば、断面の縦の大きさが0.5cm~15cmで横の大きさが0.5cm~15cmの直方体が挙げられる。直方体の長さは必要に応じて決定すればよい。 The size and shape of the hollow mold and the heat conductive molded body can be determined according to the required size and shape of the heat conductive sheet 1. For example, the vertical size of the cross section is 0.5 cm to 15 cm. An example is a rectangular parallelepiped having a horizontal size of 0.5 cm to 15 cm. The length of the rectangular parallelepiped may be determined as needed.
 前記高分子マトリックス成分を硬化させる方法や条件については、高分子マトリックス成分の種類に応じて変えることができる。例えば、前記高分子マトリックス成分が熱硬化樹脂の場合、熱硬化における硬化温度を調整することができる。さらに、該熱硬化性樹脂が、液状シリコーンゲルの主剤と、硬化剤とを含有するものである場合、80℃~120℃の硬化温度で硬化を行うことが好ましい。また、熱硬化における硬化時間としては、特に制限はないが、1時間~10時間とすることができる。 The method and conditions for curing the polymer matrix component can be changed according to the type of polymer matrix component. For example, when the polymer matrix component is a thermosetting resin, the curing temperature in thermosetting can be adjusted. Further, when the thermosetting resin contains a main component of liquid silicone gel and a curing agent, it is preferable to perform curing at a curing temperature of 80°C to 120°C. The curing time in heat curing is not particularly limited, but can be 1 hour to 10 hours.
 [工程B]
 図2に示すように、熱伝導性成形体6をシート状にスライスし、成形体シート7を形成する工程Bでは、配向した繊維状の熱伝導性充填剤の長軸方向に対して、0°~90°の角度となるように、熱伝導性成形体6をシート状に切断する。これにより、繊維状熱伝導性充填剤は、シート本体2の厚み方向に配向される。
[Step B]
As shown in FIG. 2, in the step B of slicing the heat conductive molded body 6 into a sheet and forming the molded body sheet 7, the oriented fibrous heat conductive filler is 0 in the longitudinal direction. The heat conductive molded body 6 is cut into a sheet shape so as to form an angle of 90° to 90°. Thereby, the fibrous thermally conductive filler is oriented in the thickness direction of the sheet body 2.
 また、熱伝導性成形体6の切断については、スライス装置を用いて行われる。スライス装置については、前記熱伝導性成形体6を切断できる手段であれば特に限定はされず、公知のスライス装置を適宜用いることができる。例えば、超音波カッター、かんな(鉋)等を用いることができる。 Also, cutting of the heat conductive molded body 6 is performed using a slicing device. The slicing device is not particularly limited as long as it is a means capable of cutting the heat conductive molded body 6, and a known slicing device can be appropriately used. For example, an ultrasonic cutter, a planer or the like can be used.
 熱伝導性成形体6のスライス厚みは、熱伝導シート1のシート本体2の厚みとなり、熱伝導シート1の用途に応じて適宜設定することができ、例えば0.5~3.0mmである。 The slice thickness of the heat conductive molded body 6 is the thickness of the sheet body 2 of the heat conductive sheet 1, and can be set appropriately according to the application of the heat conductive sheet 1, and is, for example, 0.5 to 3.0 mm.
 なお、工程Bでは、熱伝導性成形体6から切り出された成形体シート7に切れ込みを入れることにより、複数の成形体シート7に小片化してもよい。 In step B, the molded body sheet 7 cut out from the heat conductive molded body 6 may be cut into a plurality of molded body sheets 7 to make small pieces.
 [工程C]
 工程Cでは、成形体シート7の一方の面に第1の剥離フィルム3を貼付し、成形体シート7の他方の面に第2の剥離フィルム4を貼付してプレスすることにより、シート表面を平滑化するとともに高分子マトリックス成分の未硬化成分をブリードさせることによってシート表面と第1、第2の剥離フィルム3,4との間に樹脂被覆層5を形成する。これにより、熱伝導シート1は、シート表面の凹凸を低減させるとともに、露出する繊維状の熱伝導性充填剤を被覆させ、熱源や放熱部材との密着性を向上し、軽荷重時の界面接触抵抗を軽減させ、熱伝導効率を向上させることができる。
[Step C]
In step C, the first release film 3 is attached to one surface of the molded sheet 7, the second release film 4 is attached to the other surface of the molded sheet 7, and the sheet surface is pressed. The resin coating layer 5 is formed between the sheet surface and the first and second release films 3 and 4 by smoothing and bleeding the uncured component of the polymer matrix component. As a result, the heat-conducting sheet 1 reduces irregularities on the surface of the sheet, covers the exposed fibrous heat-conducting filler, improves the adhesion to the heat source and the heat-dissipating member, and makes an interface contact at a light load. The resistance can be reduced and the heat transfer efficiency can be improved.
 前記プレスについては、例えば、平盤と表面が平坦なプレスヘッドとからなる一対のプレス装置を使用して行うことができる。また、ピンチロールを使用してプレスを行ってもよい。 The pressing can be performed using, for example, a pair of pressing devices including a flat plate and a press head having a flat surface. Moreover, you may press using a pinch roll.
 前記プレスの際の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、低すぎるとプレスをしない場合と熱抵抗が変わらない傾向があり、高すぎるとシートが延伸する傾向があるため、0.1MPa~100MPaの圧力範囲とすることが好ましく、0.5MPa~95MPaの圧力範囲とすることがより好ましい。 The pressure at the time of pressing is not particularly limited and can be appropriately selected depending on the purpose, but if it is too low, the thermal resistance tends to be the same as when not pressing, and if it is too high, the sheet stretches. Since there is a tendency, the pressure range of 0.1 MPa to 100 MPa is preferable, and the pressure range of 0.5 MPa to 95 MPa is more preferable.
 成形体シート7の両面に貼付される第1、第2の剥離フィルム3,4としては、例えばPETフィルムやポリエチレンフィルム等のプラスチックフィルムを用いることができる。この場合、第1、第2の剥離フィルム3,4は、成形体シート7の表面への貼付面にワックス処理やフッ素処理等の剥離処理を施してもよい。また、第1、第2の剥離フィルム3,4は、エンボス加工が施されていてもよい。 As the first and second release films 3 and 4 attached to both surfaces of the molded sheet 7, for example, plastic films such as PET film and polyethylene film can be used. In this case, the first and second release films 3 and 4 may be subjected to a release treatment such as a wax treatment or a fluorine treatment on the surface to be attached to the surface of the molded body sheet 7. Further, the first and second release films 3 and 4 may be embossed.
 また、第1、第2の剥離フィルム3,4は、厚さ及び/又は材質を異ならせることにより、シート本体2からの剥離強度(N)が異なるように形成される。例えば、30mm×30mmの熱伝導シート1において、第1の剥離フィルム3としてワックス処理が施された厚さ25μmのPETフィルムを使用し、第2の剥離フィルム4としてエンボス処理された厚さ80μmのポリエチレンフィルムを使用した場合、引張・圧縮試験機において、ロードセル:50(N)、速度:300mm/minの条件で180度剥離試験を行うと、シート本体2からの剥離強度(N)は、第1の剥離フィルム3が0.03(N)(屈曲半径3mm)、第2の剥離フィルム4が0.05(N)(屈曲半径0.5mm以下)となる。 Further, the first and second release films 3 and 4 are formed so as to have different peel strengths (N) from the sheet body 2 by changing the thickness and/or the material. For example, in the heat conductive sheet 1 of 30 mm×30 mm, a PET film having a thickness of 25 μm which is wax-treated is used as the first release film 3, and an embossed thickness of 80 μm is used as the second release film 4. When a polyethylene film is used, a peeling strength (N) from the sheet main body 2 is as follows when a 180 degree peel test is performed in a tensile/compression tester under the conditions of load cell: 50 (N) and speed: 300 mm/min. The release film 3 of No. 1 has 0.03 (N) (bending radius 3 mm), and the second release film 4 has 0.05 (N) (bending radius of 0.5 mm or less).
 [熱伝導シートの実装工程]
 実使用時においては、熱伝導シート1は、例えば、半導体装置等の電子部品や、ヒートシンク等の各種放熱部材に実装される。このとき、熱伝導シート1は、シート本体2からの剥離強度が小さい方の剥離フィルム、例えば上述した例で言えば、第1の剥離フィルム3から剥離する。これにより、第1の剥離フィルム3に付着してシート本体2の全部が第2の剥離フィルム4から剥離することがなく、第2の剥離フィルム4に支持された状態でシート本体2の一方の面2aを露出させることができる。熱伝導シート1は、樹脂被覆層5が露出したシート本体2の一方の面2aを半導体装置等の電子部品又はヒートシンク等の放熱部材に貼り付け、その後、第2の剥離フィルム4をシート本体2の他方の面2bから剥離する。
[Mounting process of thermal conductive sheet]
In actual use, the heat conductive sheet 1 is mounted on, for example, electronic components such as a semiconductor device or various heat dissipation members such as a heat sink. At this time, the heat conductive sheet 1 is peeled from the peeling film having a smaller peel strength from the sheet body 2, for example, the first peeling film 3 in the above example. As a result, the entire sheet body 2 does not adhere to the first release film 3 and is not peeled off from the second release film 4, and one of the sheet body 2 is supported by the second release film 4. The surface 2a can be exposed. In the heat conductive sheet 1, one surface 2a of the sheet body 2 with the resin coating layer 5 exposed is attached to an electronic component such as a semiconductor device or a heat dissipation member such as a heat sink, and then the second release film 4 is attached to the sheet body 2. From the other surface 2b.
 ここで、本技術が適用された熱伝導シート1の実装工程は、上述した例とは逆に、第1の剥離フィルム3の剥離強度(N)が第2の剥離フィルム4の剥離強度(N)以上である場合において、シート本体2の他方の面側2bから磁力を印加し、第1の剥離フィルム3から剥離してもよい。第2の剥離フィルム3が貼付されているシート本体2の他方の面2b側から磁力を印加することにより、シート本体2が第2の剥離フィルム4側に引き寄せられる。したがって、熱伝導シート1は、剥離強度が第2の剥離フィルム4以上である第1の剥離フィルム3を剥離する場合にも、第1の剥離フィルム3に付着してシート本体2の全部が第2の剥離フィルム4から剥離することがなく、第2の剥離フィルム4に支持された状態でシート本体2の一方の面2aを露出させることができる。 Here, in the mounting step of the heat conductive sheet 1 to which the present technology is applied, the peel strength (N) of the first release film 3 is the peel strength (N) of the second release film 4 contrary to the example described above. In the above case, the magnetic force may be applied from the other surface side 2b of the sheet body 2 to peel from the first peeling film 3. By applying a magnetic force from the other surface 2b side of the sheet main body 2 to which the second release film 3 is attached, the sheet main body 2 is pulled toward the second release film 4 side. Therefore, the heat conductive sheet 1 adheres to the first release film 3 even when the first release film 3 having a peel strength of the second release film 4 or more is peeled off, and the entire sheet body 2 has the first release film 3. It is possible to expose one surface 2a of the sheet main body 2 in a state of being supported by the second release film 4 without being released from the second release film 4.
 シート本体2の他方の面2b側から磁力を印加する方法としては、例えば図3に示すように第2の剥離フィルム4にマグネット8を密着する方法や、熱伝導シート1を磁界が発生するコイルが内蔵された支持台に第2の剥離フィルム4側を向けて載置する等の方法が挙げられる。 As a method of applying a magnetic force from the other surface 2b side of the sheet body 2, for example, as shown in FIG. 3, a method of closely attaching a magnet 8 to a second release film 4 or a coil in which a magnetic field is generated in the heat conductive sheet 1 is used. There is a method of placing the second release film 4 side on a support table in which is embedded.
 このとき、熱伝導シート1は、シート本体2に磁性粉が含有されていることが好ましい。シート本体2に磁性粉が含有されることにより、シート本体2の他方の面2b側から磁界を印加したときに、より確実にシート本体2が第2の剥離フィルム4側に磁気吸着され、第1の剥離フィルム3のみをシート本体2から剥離することができる。 At this time, it is preferable that the heat conductive sheet 1 has magnetic powder contained in the sheet body 2. By containing the magnetic powder in the sheet body 2, when the magnetic field is applied from the other surface 2b side of the sheet body 2, the sheet body 2 is more surely magnetically attracted to the second release film 4 side, Only the release film 3 of No. 1 can be released from the sheet body 2.
 熱伝導シート1は、樹脂被覆層5が露出したシート本体2の一方の面2aを半導体装置等の電子部品又はヒートシンク等の放熱部材に貼り付け、その後、第2の剥離フィルム4をシート本体2の他方の面2bから剥離する。 In the heat conductive sheet 1, one surface 2a of the sheet body 2 with the resin coating layer 5 exposed is attached to an electronic component such as a semiconductor device or a heat dissipation member such as a heat sink, and then the second release film 4 is attached to the sheet body 2. From the other surface 2b.
 熱伝導シート1は、例えば、図4に示すように、各種電子機器に内蔵される半導体装置50に実装され、熱源と放熱部材との間に挟持される。図4に示す半導体装置50は、電子部品51と、ヒートスプレッダ52と、熱伝導シート1とを少なくとも有し、熱伝導シート1がヒートスプレッダ52と電子部品51との間に挟持される。熱伝導シート1を用いることによって、半導体装置50は、高い放熱性を有し、またシート本体2中の磁性粉の含有量に応じて電磁波抑制効果にも優れる。 The heat conductive sheet 1 is mounted on a semiconductor device 50 incorporated in various electronic devices, for example, as shown in FIG. 4, and is sandwiched between a heat source and a heat radiating member. A semiconductor device 50 shown in FIG. 4 includes at least an electronic component 51, a heat spreader 52, and a heat conductive sheet 1, and the heat conductive sheet 1 is sandwiched between the heat spreader 52 and the electronic component 51. By using the heat conductive sheet 1, the semiconductor device 50 has a high heat dissipation property and also has an excellent electromagnetic wave suppressing effect depending on the content of the magnetic powder in the sheet body 2.
 電子部品51としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、CPU、MPU、グラフィック演算素子、イメージセンサ等の各種半導体素子、アンテナ素子、バッテリーなどが挙げられる。ヒートスプレッダ52は、電子部品51の発する熱を放熱する部材であれば、特に制限はなく、目的に応じて適宜選択することができる。熱伝導シート1は、ヒートスプレッダ52と電子部品51との間に挟持される。また熱伝導シート1は、ヒートスプレッダ52とヒートシンク53との間に挟持されることにより、ヒートスプレッダ52とともに、電子部品51の熱を放熱する放熱部材を構成する。 The electronic component 51 is not particularly limited and can be appropriately selected according to the purpose, and examples thereof include various semiconductor elements such as CPU, MPU, graphic operation element, image sensor, antenna element, and battery. The heat spreader 52 is not particularly limited as long as it is a member that radiates the heat generated by the electronic component 51, and can be appropriately selected according to the purpose. The heat conductive sheet 1 is sandwiched between the heat spreader 52 and the electronic component 51. Further, the heat conductive sheet 1 is sandwiched between the heat spreader 52 and the heat sink 53 to form a heat dissipation member that dissipates heat of the electronic component 51 together with the heat spreader 52.
 熱伝導シート1の実装場所は、ヒートスプレッダ52と電子部品51との間や、ヒートスプレッダ52とヒートシンク53との間に限らず、電子機器や半導体装置の構成に応じて、適宜選択できることは勿論である。また、放熱部材としては、ヒートスプレッダ52やヒートシンク53以外にも、熱源から発生する熱を伝導して外部に放散させるものであればよく、例えば、放熱器、冷却器、ダイパッド、プリント基板、冷却ファン、ペルチェ素子、ヒートパイプ、金属カバー、筐体等が挙げられる。 The mounting location of the heat conductive sheet 1 is not limited to the space between the heat spreader 52 and the electronic component 51 or the space between the heat spreader 52 and the heat sink 53, and can be selected appropriately according to the configuration of the electronic device or the semiconductor device. .. In addition to the heat spreader 52 and the heat sink 53, the heat dissipating member may be one that conducts heat generated from a heat source and dissipates it to the outside. For example, a heat radiator, a cooler, a die pad, a printed circuit board, a cooling fan. , A Peltier element, a heat pipe, a metal cover, a case, and the like.
[第1の実施例] [First Embodiment]
 次いで、本技術の第1の実施例について説明する。第1の実施例では、2液性の付加反応型液状シリコーンに、磁性粉47vol%、繊維状フィラーとして平均繊維長200μmのピッチ系炭素繊維18.5vol%を混合し、シリコーン組成物を調製した。2液性の付加反応型液状シリコーン樹脂は、オルガノポリシロキサンを主成分とするものを使用し、主剤となるシリコーンA剤と硬化剤が含まれるB剤との配合比が、18.7vol%:15.3vol%となるように配合する。得られたシリコーン組成物を、中空四角柱状の金型(50mm×50mm)の内壁に沿うように剥離処理されたフィルムを貼った中に押出成形し、50mm□のシリコーン成型体を成型した後にオーブンにて100℃で6時間加熱してシリコーン硬化物とした。中空四角柱状の金型からシリコーン硬化物(熱伝導性成形体)を取り出した後に剥離処理されたフィルムを剥がして厚みが0.5mmとなるようにスライサーでシート状に切断した。スライスして得られた成形体シートを15枚並べて厚さ50μmの第1、第2の剥離フィルムに挟んで圧力0.5MPa、温度87℃、時間3分の条件でプレスし、樹脂被覆層が形成された熱伝導シートを得た。得られた熱伝導シートは、シート本体のショア硬度(shoreOO)が45であった。シート本体の両面の剥離フィルムを剥離したところ、オイルブリードによるタックを有することを確認した。 Next, a first embodiment of the present technology will be described. In the first example, 47 vol% of magnetic powder and 18.5 vol% of pitch-based carbon fiber having an average fiber length of 200 μm as a fibrous filler were mixed with two-component addition reaction type liquid silicone to prepare a silicone composition. .. As the two-component addition reaction type liquid silicone resin, one containing organopolysiloxane as a main component is used, and the compounding ratio of the silicone agent A as a main agent and the agent B containing a curing agent is 18.7 vol%: It is mixed so as to be 15.3% by volume. The obtained silicone composition was extruded into a hollow quadrangular metal mold (50 mm×50 mm) on which a film that had been peeled off was adhered, and then extrusion-molded to form a 50 mm□ silicone molded body and then oven-molded. It was heated at 100° C. for 6 hours to obtain a silicone cured product. The silicone cured product (heat conductive molded product) was taken out from the hollow square pillar-shaped mold, the peeled film was peeled off, and the film was cut into a sheet with a slicer to a thickness of 0.5 mm. Fifteen sheets of the molded body obtained by slicing are lined up and sandwiched between the first and second release films having a thickness of 50 μm and pressed under the conditions of a pressure of 0.5 MPa, a temperature of 87° C., and a time of 3 minutes to form a resin coating layer. The formed heat conductive sheet was obtained. The obtained heat conductive sheet had a Shore hardness (shore hardness) of 45 in the sheet body. When the release films on both sides of the sheet body were peeled off, it was confirmed that there was tack due to oil bleed.
 第1の実施例では、得られた熱伝導シートのシート本体から第1の剥離フィルムを剥離し、作業性を確認、評価した。なお、その後、アルミ板にシート本体を密着させたのち、第2の剥離フィルムを剥がした際の作業性も確認した。評価は、シート本体から剥離フィルムのみが剥がれた場合を良好(〇)、剥離した剥離フィルムにシート本体の一部が付着した場合を普通(△)、剥離した剥離フィルムにシート本体の全部が付着した場合を不良(×)とした。 In the first example, the first release film was peeled from the sheet body of the obtained heat conductive sheet, and the workability was confirmed and evaluated. After that, the workability was also confirmed when the second release film was peeled off after the sheet body was brought into close contact with the aluminum plate. The evaluation is good when only the release film is peeled from the sheet body (○), normal when a part of the sheet body is attached to the peeled release film (△), and the entire sheet body is attached to the peeled release film When it did, it was regarded as defective (x).
 表1に示す剥離フィルムを貼付した熱伝導シートに対して、引張・圧縮試験機((株)島津製作所製精密万能試験機AGS-50NX)において、ロードセル:50(N)、速度:300mm/minの条件で剥離フィルムの180度剥離試験を行い、剥離強度(N)及び屈曲半径(R)を測定した。 With respect to the heat conductive sheet with the release film attached as shown in Table 1, load cell: 50 (N), speed: 300 mm/min in a tensile/compression tester (Precision universal tester AGS-50NX manufactured by Shimadzu Corporation) The peeling film was subjected to a 180-degree peeling test under the above conditions, and the peeling strength (N) and the bending radius (R) were measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例1]
 実施例1では、第1の剥離フィルムとしてワックスで剥離処理された厚さ25μmのPETフィルム(剥離強度:0.03N)を使用し、第2の剥離フィルムとしてエンボス処理された厚さ80μmポリエチレンフィルム(剥離強度:0.05N)を使用した。
[Example 1]
In Example 1, a 25 μm-thick PET film (peeling strength: 0.03 N) peeled with wax was used as the first peeling film, and an embossed polyethylene film having a thickness of 80 μm was used as the second peeling film. (Peeling strength: 0.05 N) was used.
[実施例2]
 実施例2では、第1の剥離フィルムとしてエンボス処理された厚さ300μmポリエチレンフィルム(剥離強度:0.015N)を使用し、第2の剥離フィルムとしてワックスで剥離処理された厚さ25μmのPETフィルム(剥離強度:0.03N)を使用した。
[Example 2]
In Example 2, a 300 μm-thick polyethylene film (peeling strength: 0.015 N) that was embossed was used as the first release film, and a 25 μm-thick PET film that was release-treated with wax was used as the second release film. (Peeling strength: 0.03N) was used.
[実施例3]
 実施例3では、第1の剥離フィルムとしてワックスで剥離処理された厚さ25μmのPETフィルム(剥離強度:0.03N)を使用し、第2の剥離フィルムとしてワックスで剥離処理された厚さ50μmのPETフィルム(剥離強度:0.06N)を使用した。
[Example 3]
In Example 3, a 25 μm-thick PET film (peeling strength: 0.03 N) peeled with wax was used as the first peeling film, and a 50 μm-thick wax-peeled film was used as the second peeling film. PET film (peeling strength: 0.06N) was used.
[実施例4]
 実施例4では、第1の剥離フィルムとしてエンボス処理された厚さ300μmのポリエチレンフィルム(剥離強度:0.015N)を使用し、第2の剥離フィルムとしてワックスで剥離処理された厚さ50μmのPETフィルム(剥離強度:0.06N)を使用した。
[Example 4]
In Example 4, a 300 μm-thick polyethylene film (peeling strength: 0.015 N) that had been embossed was used as the first release film, and a 50 μm-thick PET that was release-treated with wax was used as the second release film. A film (peeling strength: 0.06N) was used.
[比較例1]
 比較例1では、第1の剥離フィルムとしてワックスで剥離処理された厚さ50μmのPETフィルム(剥離強度:0.06N)を使用し、第2の剥離フィルムとしてワックスで剥離処理された厚さ50μmのPETフィルム(剥離強度:0.06N)を使用した。
[Comparative Example 1]
In Comparative Example 1, a 50 μm-thick PET film (peeling strength: 0.06 N) peeled with wax was used as the first peeling film, and a thickness of 50 μm peeled with wax was used as the second peeling film. PET film (peeling strength: 0.06N) was used.
[比較例2]
 比較例2では、第1の剥離フィルムとしてワックスで剥離処理された厚さ50μmのPETフィルム(剥離強度:0.06N)を使用し、第2の剥離フィルムとしてワックスで剥離処理された厚さ25μmのPETフィルム(剥離強度:0.03N)を使用した。
[Comparative example 2]
In Comparative Example 2, a 50 μm-thick PET film (peeling strength: 0.06 N) peeled with wax was used as the first peeling film, and a thickness of 25 μm peeled with wax was used as the second peeling film. PET film (peeling strength: 0.03N) was used.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1~実施例4では、第1の剥離フィルムのシート本体からの剥離強度が、第2の剥離フィルムのシート本体からの剥離強度よりも小さいため、第1の剥離フィルムにシート本体が付着してシート本体が第2の剥離フィルムから剥離することがなかった。すなわち、第1の剥離フィルムのみを剥離することができ、良好な作業性を実現できた。 As shown in Table 2, in Examples 1 to 4, the peel strength of the first release film from the sheet body was smaller than the peel strength of the second release film from the sheet body. The sheet body did not adhere to the release film and the sheet body did not separate from the second release film. That is, only the first release film could be released, and good workability could be realized.
 なお、アルミ板に貼付したシート本体から第2の剥離フィルムを剥離する際にシート本体がアルミ板から剥離した実施例もあったが、これらも第1の剥離フィルムの剥離性に問題は無く、また、第2の剥離フィルムの剥離性はアルミ板に対するシート本体のタックと第2の剥離フィルムの剥離強度との関係によるものであり、熱伝導シートのアルミ板への貼付作業における作業性は良好であった。 Although there was an example in which the sheet body was peeled from the aluminum plate when the second release film was peeled from the sheet body attached to the aluminum plate, there was no problem in the peelability of the first release film, too. Also, the peelability of the second release film is due to the relationship between the tack of the sheet body with respect to the aluminum plate and the peel strength of the second release film, and the workability in the work of attaching the heat conductive sheet to the aluminum plate is good. Met.
 一方、比較例1は、シート本体からの剥離強度が第1の剥離フィルムと第2の剥離フィルムとで同じであるため、剥離した第1の剥離フィルムにシート本体の一部が付着した。また、比較例2は、第1の剥離フィルムのシート本体からの剥離強度が、第2の剥離フィルムのシート本体からの剥離強度よりも大きいため、剥離した第1の剥離フィルムにシート本体の全部が付着した。 On the other hand, in Comparative Example 1, the peel strength from the sheet body was the same between the first release film and the second release film, so part of the sheet body adhered to the peeled first release film. Further, in Comparative Example 2, the peel strength of the first release film from the sheet body is greater than the peel strength of the second release film from the sheet body. Adhered.
 [第2の実施例]
 次いで、本技術の第2の実施例について説明する。第2の実施例では、第1の実施例で用いた熱伝導シートにおいて、第2の剥離フィルムにマグネットを密着させることによりシート本体の他方の面側から磁力を印加しながら第1の剥離フィルムを剥離し、作業性を確認、評価した。なお、露出されたシート本体の一方の面をアルミ板に密着させたのち、第2の剥離フィルムを剥がした際の作業性も確認した。評価は、シート本体から剥離フィルムのみが剥がれた場合を良好(〇)、剥離した剥離フィルムにシート本体の一部が付着した場合を普通(△)、剥離した剥離フィルムにシート本体の全部が付着した場合を不良(×)とした。
[Second Embodiment]
Next, a second embodiment of the present technology will be described. In the second embodiment, in the heat conductive sheet used in the first embodiment, the first release film is applied while applying a magnetic force from the other surface side of the sheet body by bringing a magnet into close contact with the second release film. Was peeled off and the workability was confirmed and evaluated. The workability was also confirmed when the second release film was peeled off after the exposed one surface of the sheet body was brought into close contact with the aluminum plate. The evaluation is good when only the release film is peeled from the sheet body (○), normal when a part of the sheet body is attached to the peeled release film (△), and the entire sheet body is attached to the peeled release film When it did, it was regarded as defective (x).
[実施例5]
 実施例5では、第1の剥離フィルムとしてワックスで剥離処理された厚さ50μmのPETフィルム(剥離強度:0.06N)を使用し、第2の剥離フィルムとしてエンボス処理された厚さ300μmポリエチレンフィルム(剥離強度:0.015N)を使用した。
[Example 5]
In Example 5, a 50 μm-thick PET film (peeling strength: 0.06 N) peeled with wax was used as the first peeling film, and an embossed 300 μm-thick polyethylene film was used as the second peeling film. (Peeling strength: 0.015N) was used.
[比較例3]
 比較例3では、第1の剥離フィルムとしてワックスで剥離処理された厚さ50μmのPETフィルム(剥離強度:0.06N)を使用し、第2の剥離フィルムとしてエンボス処理された厚さ300μmポリエチレンフィルム(剥離強度:0.015N)を使用した。
[Comparative Example 3]
In Comparative Example 3, a PET film having a thickness of 50 μm (peeling strength: 0.06 N) peeled with wax was used as the first peeling film, and an embossed 300 μm thick polyethylene film was used as the second peeling film. (Peeling strength: 0.015N) was used.
 また、比較例3では、シート本体の他方の面側から磁力を印加することなく第1の剥離フィルムを剥離した。 Further, in Comparative Example 3, the first release film was peeled off from the other surface side of the sheet body without applying a magnetic force.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例5では、第2の剥離フィルムにマグネットを密着させることによりシート本体の他方の面側から磁力を印加しながら第1の剥離フィルムを剥離したため、剥離強度は第2の剥離フィルムよりも第1の剥離フィルムが大きいにも拘わらず、第1の剥離フィルムのみを剥離することができた。 As shown in Table 3, in Example 5, the first peeling film was peeled off while the magnetic force was applied from the other surface side of the sheet body by bringing the magnet into close contact with the second peeling film. Although the first release film was larger than the second release film, only the first release film could be released.
 一方、比較例3は、シート本体の他方の面側から磁力を印加せずに第1の剥離フィルムを剥離したため、シート本体が第2の剥離フィルムから剥離し第1の剥離フィルムにシート本体の全部が付着した。 On the other hand, in Comparative Example 3, the first release film was peeled off without applying magnetic force from the other surface side of the sheet body, so that the sheet body was peeled from the second release film and All attached.
1 熱伝導シート、2 シート本体、3 第1の剥離フィルム、4 第2の剥離フィルム、5 樹脂被覆層、6 熱伝導性成形体、7 成形体シート、8 マグネット 1 heat conduction sheet, 2 sheet body, 3 first release film, 4 second release film, 5 resin coating layer, 6 heat conductive molded body, 7 molded body sheet, 8 magnet

Claims (12)

  1.  表面にタックを有するシート本体と、
     前記シート本体の一方の面に貼付された第1の剥離フィルム、及び前記シート本体の前記一方の面と反対側の他方の面に貼付された第2の剥離フィルムを有し、
     前記第1の剥離フィルムと前記第2の剥離フィルムは、前記シート本体からの剥離強度が異なることを特徴とする熱伝導シート。
    A seat body having a tack on the surface,
    A first release film attached to one surface of the sheet body, and a second release film attached to the other surface of the sheet body opposite to the one surface,
    The heat conductive sheet, wherein the first release film and the second release film have different peel strengths from the sheet body.
  2.  前記第1の剥離フィルムと前記第2の剥離フィルムの、厚み及び/又は材質が異なることを特徴とする請求項1に記載の熱伝導シート。 The heat conductive sheet according to claim 1, wherein the first release film and the second release film are different in thickness and/or material.
  3.  前記第1の剥離フィルム及び前記第2の剥離フィルムは、剥離処理又はエンボス加工されていることを特徴とする請求項1又は2に記載の熱伝導シート。 The heat conductive sheet according to claim 1 or 2, wherein the first release film and the second release film are subjected to a release treatment or embossing.
  4.  前記シート本体と前記第1、第2の剥離フィルムを180度剥離した時の剥離強度が0.01~0.1N、又は180度剥離した時の屈曲半径(R)が10mm以下であることを特徴とする請求項1又は2に記載の熱伝導シート。 The peel strength when the sheet body and the first and second release films are peeled by 180 degrees is 0.01 to 0.1 N, or the bending radius (R) when peeled by 180 degrees is 10 mm or less. The heat conductive sheet according to claim 1 or 2, which is characterized.
  5.  前記シート本体は、少なくとも高分子マトリックス成分と繊維状の熱伝導性充填剤とを含む熱伝導性樹脂組成物が硬化されてなり、
     前記高分子マトリックス成分がシリコーンゲルであることを特徴とする請求項1又は2に記載の熱伝導シート。
    The sheet body is formed by curing a heat conductive resin composition containing at least a polymer matrix component and a fibrous heat conductive filler,
    The heat conductive sheet according to claim 1 or 2, wherein the polymer matrix component is a silicone gel.
  6.  前記シート本体は、磁性粉を含むことを特徴とする請求項1又は2に記載の熱伝導シート。 The heat conductive sheet according to claim 1 or 2, wherein the sheet body contains magnetic powder.
  7.  前記シート本体は、ショアOO硬度が50以下、かつ厚みが0.5mm以下である請求項1又は2に記載の熱伝導シート。 The heat conductive sheet according to claim 1 or 2, wherein the sheet body has a Shore OO hardness of 50 or less and a thickness of 0.5 mm or less.
  8.  シート本体の一方の面に第1の剥離フィルムが貼付され、前記シート本体の前記一方の面と反対側の他方の面に第2の剥離フィルムが貼付された熱伝導シートを用意する工程と、
     前記シート本体の前記他方の面側から磁力を印加し、前記第1の剥離フィルムを剥離する工程と、
     前記シート本体の前記一方の面を電子部品に貼付する工程と、
     前記第2の剥離フィルムを剥離する工程を有する
    熱伝導シートの実装方法。
    A step of preparing a heat-conducting sheet having a first release film attached to one surface of the sheet body, and a second release film attached to the other surface of the sheet body opposite to the one surface;
    Applying a magnetic force from the other surface side of the sheet body to peel off the first release film;
    Attaching the one surface of the sheet body to an electronic component,
    A method for mounting a heat conductive sheet, comprising a step of peeling the second release film.
  9.  前記第1の剥離フィルムの前記シート本体からの剥離強度が、前記第2の剥離フィルムの前記シート本体からの剥離強度以上である請求項8に記載の熱伝導シートの実装方法。 The method for mounting a heat conductive sheet according to claim 8, wherein the peel strength of the first release film from the sheet body is not less than the peel strength of the second release film from the sheet body.
  10.  前記シート本体と前記第1、第2の剥離フィルムを180度剥離した時の剥離強度が0.01~0.1N、又は剥離時の屈曲半径(R)が10mm以下であることを特徴とする請求項9に記載の熱伝導シートの実装方法。 The peel strength when the sheet body and the first and second release films are peeled by 180 degrees is 0.01 to 0.1 N, or the bending radius (R) at the time of peeling is 10 mm or less. The mounting method of the heat conductive sheet according to claim 9.
  11.  前記シート本体は、磁性粉を含むことを特徴とする請求項8~10に記載の熱伝導シートの実装方法。 The method for mounting a heat conductive sheet according to any one of claims 8 to 10, wherein the sheet body contains magnetic powder.
  12.  熱伝導シートが貼付された電子部品を有する電子機器の製造方法において、
     シート本体の一方の面に第1の剥離フィルムが貼付され、前記シート本体の前記一方の面と反対側の他方の面に第2の剥離フィルムが貼付された熱伝導シートを用意する工程と、
     前記シート本体の前記他方の面から磁力を印加し、前記第1の剥離フィルムを剥離する工程と、
     前記シート本体の前記一方の面を電子部品に貼付する工程と、
     前記第2の剥離フィルムを剥離する工程を有する
    電子機器の製造方法。
    In a method for manufacturing an electronic device having an electronic component to which a heat conductive sheet is attached,
    A step of preparing a heat-conducting sheet having a first release film attached to one surface of the sheet body, and a second release film attached to the other surface of the sheet body opposite to the one surface;
    Applying a magnetic force from the other surface of the sheet body to peel off the first release film;
    Attaching the one surface of the sheet body to an electronic component,
    A method of manufacturing an electronic device, comprising a step of peeling the second release film.
PCT/JP2020/001962 2019-02-09 2020-01-21 Heat-conducting sheet, method for mounting heat-conducting sheet, and method for producing electronic equipment WO2020162164A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019022184A JP7384560B2 (en) 2019-02-09 2019-02-09 Thermal conductive sheets, mounting methods for thermal conductive sheets, manufacturing methods for electronic devices
JP2019-022184 2019-02-09

Publications (1)

Publication Number Publication Date
WO2020162164A1 true WO2020162164A1 (en) 2020-08-13

Family

ID=71947953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001962 WO2020162164A1 (en) 2019-02-09 2020-01-21 Heat-conducting sheet, method for mounting heat-conducting sheet, and method for producing electronic equipment

Country Status (3)

Country Link
JP (1) JP7384560B2 (en)
TW (1) TW202041580A (en)
WO (1) WO2020162164A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7057845B1 (en) * 2021-02-09 2022-04-20 デクセリアルズ株式会社 Supply form of heat conductive sheet and heat conductive sheet body
JP2022124615A (en) * 2021-02-16 2022-08-26 デクセリアルズ株式会社 Heat conductive sheet
JP2022125691A (en) * 2021-02-17 2022-08-29 デクセリアルズ株式会社 Method for manufacturing thermal conductive sheet, thermal conductive sheet package, and method for manufacturing thermal conductive sheet package
WO2022264895A1 (en) * 2021-06-16 2022-12-22 デクセリアルズ株式会社 Thermally-conductive sheet and thermally-conductive sheet production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348554A (en) * 2001-05-24 2002-12-04 Lintec Corp Sheet for fixing work and method for machining work
JP2007254527A (en) * 2006-03-22 2007-10-04 Toray Ind Inc Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same
WO2008053843A1 (en) * 2006-11-01 2008-05-08 Hitachi Chemical Co., Ltd. Heat conducting sheet, process for producing the same, and radiator utilizing the sheet
WO2017065113A1 (en) * 2015-10-13 2017-04-20 リンテック株式会社 Semiconductor device and composite sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6178389B2 (en) 2014-12-25 2017-08-09 デクセリアルズ株式会社 Method for manufacturing thermal conductive sheet, thermal conductive sheet, and semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348554A (en) * 2001-05-24 2002-12-04 Lintec Corp Sheet for fixing work and method for machining work
JP2007254527A (en) * 2006-03-22 2007-10-04 Toray Ind Inc Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same
WO2008053843A1 (en) * 2006-11-01 2008-05-08 Hitachi Chemical Co., Ltd. Heat conducting sheet, process for producing the same, and radiator utilizing the sheet
WO2017065113A1 (en) * 2015-10-13 2017-04-20 リンテック株式会社 Semiconductor device and composite sheet

Also Published As

Publication number Publication date
TW202041580A (en) 2020-11-16
JP2020129628A (en) 2020-08-27
JP7384560B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2020162164A1 (en) Heat-conducting sheet, method for mounting heat-conducting sheet, and method for producing electronic equipment
WO2015002084A1 (en) Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
JP6178389B2 (en) Method for manufacturing thermal conductive sheet, thermal conductive sheet, and semiconductor device
WO2014208408A1 (en) Thermally conductive sheet, method for producing same, and semiconductor device
JP7096723B2 (en) Method for manufacturing a heat conductive sheet
JP6807355B2 (en) Thermal conductive sheet and its manufacturing method, mounting method of thermal conductive sheet
WO2020153346A1 (en) Method for producing thermally conductive sheet
JP6999019B2 (en) Thermally conductive sheet and its manufacturing method, mounting method of thermally conductive sheet
JP6739478B2 (en) Method for manufacturing heat conductive sheet
US20240120254A1 (en) Thermally-conductive sheet and electronic device
WO2016104169A1 (en) Method for producing heat-conductive sheet, heat-conductive sheet, and semiconductor device
JP6862601B1 (en) Thermal conductive sheet and its manufacturing method, mounting method of thermal conductive sheet
WO2022176823A1 (en) Heat conductive sheet
JP2021050350A (en) Thermally conductive sheet, method for producing the same, and method for mounting thermally conductive sheet
WO2020153348A1 (en) Thermally conductive sheet and method for producing thermally conductive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20752437

Country of ref document: EP

Kind code of ref document: A1