JP2002299534A - Heat radiation material and manufacturing method therefor - Google Patents

Heat radiation material and manufacturing method therefor

Info

Publication number
JP2002299534A
JP2002299534A JP2001103683A JP2001103683A JP2002299534A JP 2002299534 A JP2002299534 A JP 2002299534A JP 2001103683 A JP2001103683 A JP 2001103683A JP 2001103683 A JP2001103683 A JP 2001103683A JP 2002299534 A JP2002299534 A JP 2002299534A
Authority
JP
Japan
Prior art keywords
heat
particles
silver particles
silicone
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001103683A
Other languages
Japanese (ja)
Inventor
Kazutoshi Ito
和敏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001103683A priority Critical patent/JP2002299534A/en
Publication of JP2002299534A publication Critical patent/JP2002299534A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly heat conductive heat radiation material. SOLUTION: For the heat radiation material, silver and the combination of the silver and the heat conductive particles of graphite or the like are mixed in silicon and a heat treatment is executed. For the heat radiation material, the combination of the silver and the graphite is mixed in the silicon (the heat treatment is not required).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放熱材および放熱
材の製造方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat dissipating material and a method for manufacturing the heat dissipating material.

【0002】[0002]

【従来の技術】電気自動車のインバーター用に用いられ
るIGBTパワーモジュールのように発熱性の高い半導
体素子の放熱用途には、半導体素子と冷却又は放熱ブロ
ックの間の熱的接続に放熱材が用いられている。図1に
1例を示す。半導体素子1(より具体的には半導体チッ
プ1aの基板1b)と放熱フィンを有する冷却ブロック
2の間に放熱材3が使用されている。半導体素子基板1
と冷却ブロック2は固体同士であるためこれらを接合す
ると完全な密着が困難でその間に微細な隙間ができてし
まい、それが熱伝導性、即ち、放熱性を低下させる原因
になるが、熱伝導性の高い液状放熱材3を介在させて接
合することにより、放熱特性を改良するものである。な
お、半導体素子基板1と冷却ブロック2の間はネジ4な
どで固定される。
2. Description of the Related Art For heat dissipation of a semiconductor element having a high heat generation, such as an IGBT power module used for an inverter of an electric vehicle, a heat dissipation material is used for a thermal connection between the semiconductor element and a cooling or heat dissipation block. ing. FIG. 1 shows an example. A heat radiating material 3 is used between the semiconductor element 1 (more specifically, the substrate 1b of the semiconductor chip 1a) and the cooling block 2 having heat radiating fins. Semiconductor element substrate 1
Since the cooling block 2 and the cooling block 2 are solids, when they are joined together, it is difficult to achieve perfect adhesion, and a fine gap is formed therebetween. This causes a decrease in heat conductivity, that is, heat dissipation. The heat radiating characteristics are improved by joining with a liquid radiating material 3 having high property. The semiconductor element substrate 1 and the cooling block 2 are fixed with screws 4 or the like.

【0003】従来の液状放熱材は、樹脂中に高熱伝導性
フィラー、例えば、酸化亜鉛、アルミナ、窒化アルミニ
ウムなどを多量に混合することにより、熱伝導性を高め
ている。
[0003] In the conventional liquid heat radiating material, the heat conductivity is increased by mixing a large amount of a high heat conductive filler such as zinc oxide, alumina, aluminum nitride or the like in a resin.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、樹脂中
にフィラーを多量に混合すると粘度が著しく上昇し、取
り扱い作業性が低下する。そのため、樹脂中に混合でき
るフィラーの量には限界があり、せいぜい約60〜80
重量%までであり、熱伝導性も約1〜2W/mKが限度
である。
However, if a large amount of filler is mixed in the resin, the viscosity will be significantly increased, and the workability will be reduced. Therefore, there is a limit to the amount of filler that can be mixed in the resin, and at most about 60 to 80
% By weight, and the thermal conductivity is limited to about 1 to 2 W / mK.

【0005】そこで、例えば、2種の大きさのフィラー
を組み合わせて、フィラーの含有率を高めること(特開
平3−14873号公報)などが提案されている。確か
にこのような方法でいくらかは熱伝導性を高めることが
できるが、それ以上には向上せず、大幅な改善は見込め
ない。本発明は、このような従来技術の現状に鑑みてな
されたもので、放熱材の熱伝導性を向上させることを目
的とするものである。
Therefore, for example, it has been proposed to increase the content of fillers by combining fillers of two sizes (Japanese Patent Laid-Open No. 3-14873). Certainly, some improvement in thermal conductivity can be achieved with such a method, but it does not improve further, and no significant improvement is expected. The present invention has been made in view of such a state of the art, and has as its object to improve the thermal conductivity of a heat radiating material.

【0006】[0006]

【課題を解決するための手段】本発明は、上記のような
目的を達成するために、鋭意検討したところ、全く予想
外にも、シリコーンと特定のフィラーとを組み合わせた
場合に、またさらに熱処理を組み合わせた場合に特異的
に熱伝導性が高くなることを見出し、本発明を完成した
ものである。こうして、下記が提供される。
Means for Solving the Problems The present invention has been intensively studied in order to achieve the above-mentioned object, and it has been unexpectedly found that when silicone is combined with a specific filler, further heat treatment is performed. It has been found out that the heat conductivity is specifically increased when a combination is used, and the present invention has been completed. Thus, the following is provided.

【0007】(1)シリコーンに少なくとも銀粒子を含
有しかつ加熱処理されて成ることを特徴とする放熱材。 (2)シリコーンに銀粒子と共にグラファイト、窒化ア
ルミニウム、酸化亜鉛、銅、アルミナ、窒化ホウ素、ア
ルミニウムを第2の熱伝導性粒子として含み、銀粒子の
含有体積比は銀粒子と第2の熱伝導性粒子の合計に対し
て0.2〜0.67の範囲内である(1)記載の放熱
材。
(1) A heat dissipating material characterized in that silicone contains at least silver particles and is heat-treated. (2) Silicone contains graphite, aluminum nitride, zinc oxide, copper, alumina, boron nitride, and aluminum as the second heat conductive particles together with the silver particles, and the content volume ratio of the silver particles is the ratio of the silver particles to the second heat conductive particles. (1) The heat dissipating material according to (1), which is in the range of 0.2 to 0.67 with respect to the total of the conductive particles.

【0008】(3)シリコーンに銀粒子とグラファイト
粒子を含み、銀粒子のグラファイト粒子に対する粒径比
は0.12〜0.84の範囲内である(1)(2)に記
載の放熱材。 (4)半導体素子と冷却ブロックの間に用いられる
(1)〜(3)記載の放熱材。
(3) The heat dissipating material according to (1) or (2), wherein the silicone contains silver particles and graphite particles, and a particle size ratio of the silver particles to the graphite particles is in a range of 0.12 to 0.84. (4) The heat dissipating material according to (1) to (3), which is used between the semiconductor element and the cooling block.

【0009】(5)シリコーンに銀粒子とグラファイト
粒子を含み、銀粒子の含有体積比は銀粒子とグラファイ
ト粒子の合計に対して0.12〜0.84の範囲内であ
ることを特徴とする放熱材。 (6)シリコーンに少なくとも銀粒子を含む熱伝導性粒
子を添加し、加熱処理することを特徴とする放熱材の製
造方法。
(5) The silicone contains silver particles and graphite particles, and the content volume ratio of the silver particles is in the range of 0.12 to 0.84 with respect to the total of the silver particles and the graphite particles. Heat dissipation material. (6) A method for producing a heat dissipating material, comprising adding heat conductive particles containing at least silver particles to silicone and subjecting the silicone to heat treatment.

【0010】[0010]

【発明の実施の形態】本発明の放熱材の液状樹脂基材と
しては、シリコーンを用いる。本発明の放熱材では、シ
リコーンに銀その他の特定のフィラーを混合した場合に
特異的に高い熱伝導性が示されることを見出したもので
ある。放熱材の液状樹脂基材として用いられるシリコー
ンはそれ自体は知られているので、その中から適当に選
択使用すればよい。
BEST MODE FOR CARRYING OUT THE INVENTION Silicon is used as a liquid resin substrate of a heat radiation material of the present invention. The heat radiating material of the present invention has been found to show specifically high thermal conductivity when silver and other specific fillers are mixed with silicone. Silicone used as the liquid resin base material of the heat dissipating material is known per se and may be appropriately selected and used therefrom.

【0011】シリコーンとしてはオイル、ゲルまたはゴ
ムなどのいずれでもよい。シリコーンのゲルまたはゴム
はシリコーンを加熱などの処理によりゲル状またはゴム
状になるものをいう。本発明では、特にシリコーンのゲ
ルまたはゴムを用いることが好ましく、付加型シリコー
ンゴムの架橋密度を制御したシリコーンゲルが最も好ま
しい。シリコーンゲルまたはゴムは半導体素子を冷却ブ
ロックの間を接着する作用は高く、しかも耐久性に優れ
ており、また熱硬化のための加熱処理によって銀粒子の
熱処理を兼ねることができる利点もある。
The silicone may be any of oil, gel and rubber. Silicone gel or rubber refers to a gel or rubber obtained by treating silicone with heat or the like. In the present invention, it is particularly preferable to use a silicone gel or rubber, and most preferably a silicone gel in which the crosslinking density of the addition type silicone rubber is controlled. Silicone gel or rubber has a high effect of bonding the semiconductor element between the cooling blocks, is excellent in durability, and has an advantage that heat treatment for heat curing can also serve as heat treatment of silver particles.

【0012】シリコーンオイルの粘度またはシリコーン
ゲルまたはゴムの硬化前(オイル状)の粘度は0.1〜
1.5Pa・sの範囲内が好ましい。本発明は第1の側
面において、放熱材はフィラーとして少なくとも銀粒子
を用い、且つ熱処理を施すことにより、特異的に高い熱
伝導性が得られることを見出した。この効果は熱処理後
のシリコーンがオイルでも硬化したゲルまたはゴムでも
同様に得られる。シリコーンに銀粒子を混合し、熱処理
を施すことにより特異的に高い熱伝導性が得られる理由
は、限定するわけではないが、塗布後に加熱するとフィ
ラーが凝集して達成されるフィラーどうしの接触度合い
が改良されるためと考えられる。フィラーを混合した液
状樹脂を熱処理すると熱伝導性が向上する効果は、例え
ば、従来の代表的なフィラーである窒化アルミニウムで
は観測されず、しかしシリコーン以外の樹脂、銀以外の
粒子でも僅かに観測される場合もあったが、熱伝導性の
改良効果はシリコーンに銀粒子を混合した特定の場合に
特別に高い改良を示した。銀粒子はシリコーンとの相溶
性は良くないので凝集し易いことが効いていると考えら
れる。このようにして、本発明の第1の側面によれば、
特定のフィラー組成と後処理によってフィラーどうしの
接触度合いを改良することにより、フィラー含有率は増
加させることなく、熱伝導率を大幅に向上させることが
可能になる。
The viscosity of the silicone oil or the viscosity of the silicone gel or rubber before curing (in the form of oil) is 0.1 to
It is preferably in the range of 1.5 Pa · s. In the first aspect of the present invention, it has been found that a specific heat conductivity can be obtained by using at least silver particles as a filler and performing a heat treatment. This effect is similarly obtained when the silicone after heat treatment is an oil or a cured gel or rubber. The reason why the specific high thermal conductivity can be obtained by mixing silver particles with silicone and subjecting to heat treatment is not limited, but the degree of contact between the fillers that is achieved by the aggregation of the fillers when heated after application Is considered to be improved. The effect of improving the thermal conductivity when the liquid resin mixed with the filler is heat-treated is not observed in, for example, aluminum nitride which is a conventional typical filler, but is slightly observed in resins other than silicone and particles other than silver. In some cases, however, the effect of improving the thermal conductivity was particularly high in the specific case where silver particles were mixed with silicone. It is considered that the silver particles have poor compatibility with the silicone and thus are liable to aggregate. Thus, according to a first aspect of the present invention,
By improving the degree of contact between the fillers by a specific filler composition and post-treatment, the thermal conductivity can be significantly improved without increasing the filler content.

【0013】銀粒子の形状、寸法は特に限定されない
が、フレーク状粒子で最も高い改良効果が見出された。
粒子の平均粒径は0.5〜7μm、特に2.5〜4μm
の範囲内が好ましい。0.5μm未満ではフィラー充填
率が悪く、熱伝導率が向上せず、7μm超ではフィラー
と樹脂の分離が著しい。シリコーンに銀粒子と任意に第
2の熱伝導性粒子を混合した放熱材を熱処理する温度
は、特に限定されず、用いるシリコーンまたは半導体素
子の耐熱温度以下の適当な温度から選択すればよいが、
一般的に約70〜250℃の範囲内、好ましくは120
〜200℃の範囲内がよい。
[0013] The shape and size of the silver particles are not particularly limited, but the flake-like particles have the highest improvement effect.
The average particle size of the particles is 0.5 to 7 μm, particularly 2.5 to 4 μm
Is preferably within the range. If it is less than 0.5 μm, the filler filling rate is poor and the thermal conductivity does not improve, and if it exceeds 7 μm, the separation of the filler and the resin is remarkable. The temperature at which the heat dissipating material obtained by mixing the silver particles and optionally the second heat conductive particles with the silicone is not particularly limited, and may be selected from an appropriate temperature equal to or lower than the heat resistant temperature of the silicone or the semiconductor element to be used.
Generally in the range of about 70-250 ° C, preferably 120
The temperature is preferably in the range of -200 ° C.

【0014】この熱処理は放熱材を半導体素子および冷
却ブロックの間に塗布してから行うことが最適の熱伝導
性が得られるので望ましく、また熱硬化性シリコーンの
場合にはこの段階で行うほかない。また、フィラーとし
て少なくとも銀粒子を用い且つ熱処理を施す場合、銀粒
子と共に第2の熱伝導性粒子、例えば、グラファイト、
窒化アルミニウム、酸化亜鉛、銅、アルミナ、窒化ホウ
素、アルミニウムなどの1種または2種以上を同時に混
合しても、本発明の銀粒子の効果は失われない。
This heat treatment is desirably performed after the heat dissipating material is applied between the semiconductor element and the cooling block, since optimum thermal conductivity is obtained. In the case of thermosetting silicone, this heat treatment must be performed at this stage. . When at least silver particles are used as the filler and heat treatment is performed, the second heat conductive particles together with the silver particles, for example, graphite,
Even if one or more of aluminum nitride, zinc oxide, copper, alumina, boron nitride, aluminum and the like are simultaneously mixed, the effect of the silver particles of the present invention is not lost.

【0015】それのみならず、銀粒子と特定の第2の熱
伝導性粒子、特にグラファイト粒子、アルミニウムを組
み合わせて混合した場合には、混合自体の相乗効果が奏
されることも見出された。2種類のフィラー混合で熱伝
導率向上の相乗効果(含有率向上)が奏されることは公
知であるが、銀粒子と特定の第2の熱伝導性粒子の組み
合わせでは、放熱材中で特異な充填状態が実現されて、
熱伝導性がさらに特異的に顕著な改良を示すものと考え
られる。
In addition, it has been found that when silver particles and specific second heat conductive particles, particularly graphite particles and aluminum are combined and mixed, a synergistic effect of the mixing itself is exhibited. . It is known that a synergistic effect of improving thermal conductivity (content improvement) is achieved by mixing two types of fillers. However, in the case of a combination of silver particles and a specific second heat conductive particle, a specific heat radiation material is used. The filling state is realized,
It is believed that the thermal conductivity more specifically shows a significant improvement.

【0016】銀粒子と第2の熱伝導性粒子の組み合わせ
混合の相乗効果は、銀粒子と第2の熱伝導性粒子の混合
比が前者の両者合計に対する体積比で0.2〜0.67
の範囲内、特に0.42のときに好適に達成され、また
粒径の比が前者対後者の比で0.12〜0.84、より
好ましくは0.125〜0.5の範囲内、特に0.17
のときに好適に達成される。このような混合比、粒径比
のときに、フィラーの含有率が向上し、また銀粒子との
混合の効果が表れて、放熱材の熱伝導率が顕著に向上す
る効果が得られるものと考えられる。
The synergistic effect of the combination and mixing of silver particles and second heat conductive particles is that the mixing ratio of silver particles and second heat conductive particles is 0.2 to 0.67 by volume ratio to the total of the former and the latter.
, Particularly when the ratio is 0.42, and the particle size ratio is 0.12 to 0.84, more preferably 0.125 to 0.5 in the former to the latter ratio, Especially 0.17
Is preferably achieved. At such a mixing ratio and particle size ratio, the content of the filler is improved, and the effect of mixing with the silver particles appears, and the effect of significantly improving the thermal conductivity of the heat dissipation material is obtained. Conceivable.

【0017】このように、シリコーンに銀粒子と特定の
第2の熱伝導性粒子、特にグラファイト粒子を組み合わ
せて混合する場合に熱伝導率が特異的に向上する相乗効
果は、熱処理をしない場合にも得られることが確認さ
れ、これは本発明の第2の側面をなすものである。こう
して、本発明の第2の側面によれば、シリコーンに銀粒
子とグラファイト粒子を混合した放熱材が提供される。
この場合の銀粒子とグラファイト粒子の粒子径の比など
は加熱処理をする場合に述べた上記の条件でよい。銀粒
子と第2の熱伝導性粒子の混合比は前者の両者合計に対
する体積比で0.12〜0.84の範囲内、特に0.4
2がよく、また粒径の比が前者対後者の比で好ましくは
0.12〜0.84、より好ましくは0.125〜0.
5の範囲内、特に0.17がよい。
As described above, the synergistic effect in which the thermal conductivity is specifically improved when silver particles and specific second heat conductive particles, particularly graphite particles are combined with silicone, is considered as follows. It is also confirmed that this also provides a second aspect of the present invention. Thus, according to the second aspect of the present invention, there is provided a heat dissipation material in which silver particles and graphite particles are mixed with silicone.
In this case, the ratio between the particle diameters of the silver particles and the graphite particles may be the same as that described above in the case of performing the heat treatment. The mixing ratio of the silver particles and the second thermally conductive particles is in the range of 0.12 to 0.84 in terms of volume ratio with respect to the total of the former, and in particular, 0.4
2, and the particle size ratio is preferably 0.12 to 0.84, more preferably 0.125 to 0.
Within the range of 5, particularly preferably 0.17.

【0018】本発明の第3の側面によれば、上記の放熱
材を特に半導体素子の放熱材用途を意図して、シリコー
ンに少なくとも銀粒子と任意に第2の熱伝導性粒子、特
にグラファイト粒子を混合し、加熱処理する工程を含む
ことを特徴とする放熱材の製造方法が提供される。放熱
材は半導体素子と放熱部材の間のように用途場所に適用
してから熱処理することが好ましい。熱処理の条件など
は上記と同じでよい。
According to a third aspect of the present invention, the heat radiating material described above is particularly intended for heat radiating material use in a semiconductor device, wherein silicone has at least silver particles and optionally second heat conductive particles, especially graphite particles. And a heat treatment process. It is preferable that the heat radiating material is heat-treated after being applied to the place of use, such as between the semiconductor element and the heat radiating member. The conditions for the heat treatment may be the same as described above.

【0019】[0019]

【実施例】(従来例1,2)シリコーンオイル(信越化
学工業KF96-100、粘度100mPs・s、熱伝導率0.16W/mK)
に窒化アルミニウム粒子(球状、平均粒径3μm)をそ
の含有率が組成物全体を基準にした59体積%になるよ
うに添加し、攪拌器で混合して従来例の放熱材を得た。
窒化アルミニウム粒子は添加量をこれ以上増加させると
粘度が上昇するので、含有率59体積%が限界である。
[Examples] (Conventional examples 1 and 2) Silicone oil (Shin-Etsu Chemical KF96-100, viscosity 100 mPs · s, thermal conductivity 0.16 W / mK)
Aluminum nitride particles (spherical, average particle size: 3 μm) were added to the mixture so that the content was 59% by volume based on the whole composition, and mixed with a stirrer to obtain a heat dissipation material of a conventional example.
If the addition amount is further increased, the viscosity of the aluminum nitride particles increases, so the content is limited to 59% by volume.

【0020】放熱材の熱伝導率の測定方法は次のとおり
である。放熱材を2枚の銅板の間に挟み、銅製治具を用
いてネジで固定する。このとき所定の大きさのガラスビ
ーズを銅板の間に入れて放熱材の厚さを調節する。治具
上に接して配置されたヒータから一方の銅版を加熱して
所定の熱量を加え、その時の放熱材を挟んだ銅版の温度
差を測定することで、熱伝導率を算出する。熱伝導率λ
はλ=Qh/AΔT(式中、Qは熱量(W)、hは放熱
材の厚さ(m)、Aは放熱材を挟む銅板の面積
(m2)、ΔTは放熱材を挟む銅板の間の温度差であ
る)から計算される。
The method for measuring the thermal conductivity of the heat dissipating material is as follows. The heat dissipating material is sandwiched between two copper plates and fixed with screws using a copper jig. At this time, glass beads of a predetermined size are inserted between the copper plates to adjust the thickness of the heat dissipating material. The heat conductivity is calculated by heating one copper plate from a heater arranged in contact with the jig, applying a predetermined amount of heat, and measuring the temperature difference of the copper plate sandwiching the heat radiating material at that time. Thermal conductivity λ
Is λ = Qh / AΔT (where Q is the amount of heat (W), h is the thickness of the heat radiating material (m), A is the area of the copper plate sandwiching the heat radiating material (m 2 ), and ΔT is the Is the temperature difference between them).

【0021】従来例の放熱材の熱伝導率は1.3W/m
Kであった。また、参考のために、従来例1の放熱材を
銅版間に挟んだ状態で150℃、30分間熱処理してか
ら、同様に熱伝導率を測定したが(従来例2)、熱伝導
率に変化は見られなかった。即ち、従来例では加熱処理
の有無による熱伝導率に変化は見られない。
The thermal conductivity of the conventional heat dissipating material is 1.3 W / m.
It was K. For reference, the thermal conductivity was measured for 30 minutes at 150 ° C. with the heat radiating material of Conventional Example 1 sandwiched between copper plates, and then the thermal conductivity was measured (Conventional Example 2). No change was seen. That is, in the conventional example, there is no change in the thermal conductivity depending on the presence or absence of the heat treatment.

【0022】(比較例1)シリコーンゲル(熱硬化性シ
リコーン、東レダウコーニング製LDT-087、粘度400mPs
・s、熱伝導率W/mK)に銀粒子(フレーク状、平均粒径
2.5μm)を、銀粒子の含有率を41体積%にして混
合して放熱材を作成した。銀粒子の含有率を59体積%
ではなく41体積%にした理由は銀粒子をこれ以上添加
すると粘度が上昇するのでこれが限界である。なお、比
較例1では、シリコーンオイルをシリコーンゲルに変え
たが、基材としてシリコーンオイルとシリコーンゲルを
用いた場合に熱伝導率に差が生じない。
Comparative Example 1 Silicone gel (thermosetting silicone, Toray Dow Corning LDT-087, viscosity 400 mPs)
S, thermal conductivity W / mK) and silver particles (flakes, average particle size 2.5 μm) were mixed at a silver particle content of 41% by volume to prepare a heat dissipation material. 59% by volume of silver particles
However, the reason why the volume is set to 41% by volume is that the addition of silver particles further increases the viscosity, which is the limit. In Comparative Example 1, the silicone oil was changed to silicone gel. However, when silicone oil and silicone gel were used as the base material, there was no difference in thermal conductivity.

【0023】上記の如く熱伝導率を測定したが、熱伝導
率は0.8W/mKであり、従来例1と比べて熱伝導率
の向上は見られなかった。 (比較例2)従来例1の窒化アルミニウム粒子に代えて
グラファイト粒子(不定形、平均粒径15μm)を用
い、グラファイト粒子の含有率を63体積%にし、シリ
コーンオイルの代わりにシリコーンゲルを用いた以外、
従来例1と同様にして放熱材を作成した。
The thermal conductivity was measured as described above. As a result, the thermal conductivity was 0.8 W / mK, and no improvement in the thermal conductivity was observed as compared with Conventional Example 1. (Comparative Example 2) Graphite particles (amorphous, average particle size 15 μm) were used in place of the aluminum nitride particles of Conventional Example 1, the graphite particle content was 63% by volume, and silicone gel was used instead of silicone oil. Other than
A heat dissipating material was prepared in the same manner as in Conventional Example 1.

【0024】上記の如く熱伝導率を測定したが、熱伝導
率は1.2W/mKであり、従来例1と比べて熱伝導率
の向上は見られなかった。次いでこの放熱材を基材上に
塗布し、150℃で30分間熱処理を施してから、上記
の如く熱伝導率を測定したが、熱伝導率は1.2W/m
Kのままであり、熱処理を施しても熱伝導率に変化は見
られなかった。
When the thermal conductivity was measured as described above, the thermal conductivity was 1.2 W / mK, and no improvement in the thermal conductivity was observed as compared with the conventional example 1. Next, the heat dissipating material was applied on a substrate and heat-treated at 150 ° C. for 30 minutes, and then the thermal conductivity was measured as described above. The thermal conductivity was 1.2 W / m.
K, and no change was observed in the thermal conductivity even after the heat treatment.

【0025】(実施例1)比較例1の放熱材と同様に銀
粒子含有放熱材を作成し、これを基材上に塗布後に15
0℃、30分間の熱処理を施した。なお、実施例1〜7
では放熱材の耐久性を考慮してシルコーンゲルを用いた
が、上記の如く基材としてシリコーンオイルとシルコー
ンゲルは加熱しなければ熱先導率に差はないし、加熱し
た場合も従来例1,2に見られると同様に本来放熱性に
差はないものである。実施例のゲル化で放熱性に差が生
じているのは、銀粒子を含むシルコーンを加熱処理した
ことによる効果であり、シリコーンオイルとシルコーン
ゲルの相違ではない。
Example 1 A heat radiating material containing silver particles was prepared in the same manner as the heat radiating material of Comparative Example 1.
Heat treatment was performed at 0 ° C. for 30 minutes. Examples 1 to 7
In this example, the silicon cone gel was used in consideration of the durability of the heat dissipating material. However, as described above, the silicone oil and the silica cone gel did not have a difference in thermal conductivity unless they were heated. In the same way, there is essentially no difference in heat dissipation. The difference in heat dissipation due to gelation in the example is due to the effect of heat treatment of the sircone containing silver particles, and is not the difference between silicone oil and sircone gel.

【0026】上記の如く熱伝導率を測定したところ、熱
伝導率は1.4W/mKであり、熱処理をしていない比
較例1の0.8W/mKと比べて熱伝導率が顕著に向上
しており、しかも従来例1と比べても熱伝導率が向上し
ている。一方、従来例2の参考加熱例および比較例2と
比較すると、銀粒子を混合した場合には熱処理により特
異的に熱伝導率が向上していることが理解される。
When the thermal conductivity was measured as described above, the thermal conductivity was 1.4 W / mK, which was remarkably improved as compared with 0.8 W / mK of Comparative Example 1 which was not heat-treated. In addition, the thermal conductivity is improved as compared with Conventional Example 1. On the other hand, when compared with the reference heating example of the conventional example 2 and the comparative example 2, it is understood that when the silver particles are mixed, the heat conductivity is specifically improved by the heat treatment.

【0027】(実施例2)シルコーンゲルに銀粒子(フ
レーク状、平均粒径2.5μm)およびグラファイト粒
子(不定形、平均粒径15μm)の両方を混合した。銀
粒子の量はグラファイト粒子との合計量を基準に42%
体積%であり、フィラーは全体として57体積%の含有
率になるように添加した。なお、放熱材中における銀粒
子だけの添加量は57×0.42=23.9体積%、グ
ラファイト粒子だけの添加量は57×0.58=33.
1体積%である。
Example 2 Both silver particles (flakes, average particle size of 2.5 μm) and graphite particles (amorphous, average particle size of 15 μm) were mixed with a sill cone gel. The amount of silver particles is 42% based on the total amount of graphite particles
%, And the filler was added so as to have a total content of 57% by volume. The addition amount of only silver particles in the heat radiating material was 57 × 0.42 = 23.9% by volume, and the addition amount of only graphite particles was 57 × 0.58 = 33.
1% by volume.

【0028】この放熱材について熱処理を施すことな
く、上記の如く熱伝導率を測定したところ、熱伝導率は
2.3W/mKであり、銀粒子だけを添加した比較例1
(0.8W/mK)と比べて熱伝導率が顕著に向上して
おり、しかも従来例(1.3W/mK)と比べても熱伝
導率が顕著に向上している。 (実施例3)実施例2の放熱材について150℃、30
分間の熱処理をしてから、上記の如く熱伝導率を測定し
たところ、熱伝導率は5.3W/mKであり、熱処理を
していない実施例2(2.3W/mK)と比べて熱伝導
率が顕著に向上しており、従来例(1.3W/mK)と
比べるとその熱伝導率の向上は極めて顕著、飛躍的であ
る。
The heat conductivity of this heat-dissipating material was measured without heat treatment as described above. The heat conductivity was 2.3 W / mK, and Comparative Example 1 containing only silver particles was added.
(0.8 W / mK), the thermal conductivity is remarkably improved, and the thermal conductivity is also remarkably improved compared to the conventional example (1.3 W / mK). (Embodiment 3) The heat dissipating material of Embodiment 2 is set at 150 ° C. and 30 ° C.
After the heat treatment for 5 minutes, the thermal conductivity was measured as described above. As a result, the thermal conductivity was 5.3 W / mK, which was higher than that of Example 2 (2.3 W / mK) which was not heat-treated. The conductivity is remarkably improved, and the improvement of the thermal conductivity is extremely remarkable and dramatic as compared with the conventional example (1.3 W / mK).

【0029】(実施例4〜11)実施例3と同様である
が、銀粒子およびグラファイト粒子の混合割合および全
体の添加量を表に示すように変えて、放熱材に熱処理を
施した。また、銀粒子として球状粒子を用いたもの、ま
た銀粒子とアルミニウム粒子を組み合わせた場合につい
て、表に示した混合割合および全体の添加量を用いて、
放熱材に熱処理を施しまた施さずに実施した。
(Examples 4 to 11) The heat radiation material was heat-treated in the same manner as in Example 3 except that the mixing ratio of silver particles and graphite particles and the total amount of addition were changed as shown in the table. In addition, for those using spherical particles as silver particles, and for the case of combining silver particles and aluminum particles, using the mixing ratio and the total addition amount shown in the table,
The heat treatment was performed with or without heat treatment.

【0030】なお、実施例10,11では同じゲル化用
シリコーン組成物(加熱すると硬化してゲルになるシリ
コーン組成物、表では単にシリコーンゲルと表記してい
る)を用い、加熱処理なしの実施例10と加熱処理あり
の実施例11を比較したが、実施例10では加熱処理し
ていないのでシリコーンはオイル状である。これらの放
熱材について上記の如く熱伝導率を測定した結果を表に
示す。本発明の効果が明らかである。
In Examples 10 and 11, the same silicone composition for gelation (a silicone composition which cures to a gel when heated, which is simply referred to as a silicone gel in the table) was used, and no heat treatment was performed. Example 10 was compared with Example 11 with heat treatment. However, in Example 10, the silicone was oily because no heat treatment was performed. The results of measuring the thermal conductivity of these heat dissipating materials as described above are shown in the table. The effect of the present invention is clear.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】本発明によれば、シリコーンに、銀、さ
らには銀とグラファイトその他の熱伝導性粒子の組み合
わせを混合しかつ熱処理を施すことにより、従来と比べ
て顕著に高い熱伝導性の放熱材が提供される。また、シ
リコーンに銀とグラファイトの組み合わせを混合する場
合には、熱処理を施さなくても、従来と比べて顕著に高
い熱伝導性の放熱材が提供される。
According to the present invention, the silicone is mixed with silver, or a combination of silver and graphite or other thermally conductive particles, and subjected to a heat treatment, whereby a significantly higher thermal conductivity than the conventional one is obtained. A heat sink is provided. In addition, when a combination of silver and graphite is mixed with silicone, a heat dissipating material having a significantly higher thermal conductivity than before can be provided without heat treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】IGBTパワーモジュール製品の構造例を示
す。
FIG. 1 shows an example of the structure of an IGBT power module product.

【符号の説明】[Explanation of symbols]

1…半導体素子(1b 基板) 2…冷却ブロック 3…放熱材 4…ネジ DESCRIPTION OF SYMBOLS 1 ... Semiconductor element (1b board) 2 ... Cooling block 3 ... Heat dissipation material 4 ... Screw

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J002 CP031 DA027 DA076 DA077 DA097 DE107 DE147 DF017 DK007 FD206 FD207 5F036 AA01 BA23 BB21 BD01 BD11 BD14 BD21  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4J002 CP031 DA027 DA076 DA077 DA097 DE107 DE147 DF017 DK007 FD206 FD207 5F036 AA01 BA23 BB21 BD01 BD11 BD14 BD21

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 シリコーンに少なくとも銀粒子を含有し
かつ加熱処理されて成ることを特徴とする放熱材。
1. A heat dissipating material characterized in that silicone contains at least silver particles and is heat-treated.
【請求項2】 シリコーンに銀粒子と共にグラファイ
ト、窒化アルミニウム、酸化亜鉛、銅、アルミナ、窒化
ホウ素、アルミニウムの少なくとも1種を第2の熱伝導
性粒子として含み、銀粒子の含有体積比は銀粒子と第2
の熱伝導性粒子の合計に対して0.2〜0.67の範囲
内である請求項1記載の放熱材。
2. The silicone contains silver particles together with at least one of graphite, aluminum nitride, zinc oxide, copper, alumina, boron nitride, and aluminum as the second heat conductive particles, and the content ratio of silver particles is silver particles. And the second
The heat dissipating material according to claim 1, wherein the total amount of the heat conductive particles is in the range of 0.2 to 0.67.
【請求項3】 シリコーンに銀粒子とグラファイト粒子
を含み、銀粒子のグラファイト粒子に対する粒径比は
0.12〜0.84の範囲内である請求項1または2に
記載の放熱材。
3. The heat dissipating material according to claim 1, wherein the silicone contains silver particles and graphite particles, and a particle size ratio of the silver particles to the graphite particles is in a range of 0.12 to 0.84.
【請求項4】 前記放熱材は半導体素子と冷却ブロック
の間に用いられる請求項1〜3のいずれか1項に記載の
放熱材。
4. The heat dissipating material according to claim 1, wherein the heat dissipating material is used between the semiconductor element and the cooling block.
【請求項5】 シリコーンに銀粒子とグラファイト粒子
を含み、銀粒子の含有体積比は銀粒子とグラファイト粒
子の合計に対して0.12〜0.84の範囲内であるこ
とを特徴とする放熱材。
5. The heat radiation characterized in that the silicone contains silver particles and graphite particles, and the content ratio of silver particles is in the range of 0.12 to 0.84 with respect to the total of silver particles and graphite particles. Wood.
【請求項6】 シリコーンに少なくとも銀粒子を含む熱
伝導性粒子を添加し、加熱処理することを特徴とする放
熱材の製造方法。
6. A method for producing a heat dissipating material, comprising adding heat conductive particles containing at least silver particles to silicone and subjecting the silicone to heat treatment.
JP2001103683A 2001-04-02 2001-04-02 Heat radiation material and manufacturing method therefor Pending JP2002299534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001103683A JP2002299534A (en) 2001-04-02 2001-04-02 Heat radiation material and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001103683A JP2002299534A (en) 2001-04-02 2001-04-02 Heat radiation material and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2002299534A true JP2002299534A (en) 2002-10-11

Family

ID=18956702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001103683A Pending JP2002299534A (en) 2001-04-02 2001-04-02 Heat radiation material and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2002299534A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100677818B1 (en) * 2001-11-21 2007-02-05 신에쓰 가가꾸 고교 가부시끼가이샤 Heat-Release Structure
US7252795B2 (en) 2003-08-26 2007-08-07 Matsushita Electric Industrial Co., Ltd. High thermal conductivite element, method for manufacturing same, and heat radiating system
JP2007214224A (en) * 2006-02-08 2007-08-23 Shin Etsu Chem Co Ltd Electronic device with excellent heat dissipation and method of manufacturing same
US7610678B2 (en) 2004-08-19 2009-11-03 Fujitsu Limited Heat transfer sheet, heat transfer structural body and manufacturing method of the heat transfer structural body
JP2010174139A (en) * 2009-01-29 2010-08-12 Fuji Polymer Industries Co Ltd Thermoconductive resin composition
KR100980503B1 (en) 2009-02-10 2010-09-07 삼성전기주식회사 LED Package and LED Package Array Having the Same
CN106441959A (en) * 2016-03-09 2017-02-22 上海道之科技有限公司 IGBT module heat radiation performance assessment method
WO2017159252A1 (en) * 2016-03-18 2017-09-21 信越化学工業株式会社 Thermally conductive silicone composition and semiconductor device
WO2019059212A1 (en) * 2017-09-22 2019-03-28 住友化学株式会社 Composition, membrane, and method for producing membrane
JP2020193250A (en) * 2019-05-27 2020-12-03 信越化学工業株式会社 Thermally conductive silicone composition, semiconductor device, and method of manufacturing the same
TWI834860B (en) 2019-05-27 2024-03-11 日商信越化學工業股份有限公司 Thermal conductive silicon oxide composition, semiconductor device and manufacturing method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100677818B1 (en) * 2001-11-21 2007-02-05 신에쓰 가가꾸 고교 가부시끼가이샤 Heat-Release Structure
US7252795B2 (en) 2003-08-26 2007-08-07 Matsushita Electric Industrial Co., Ltd. High thermal conductivite element, method for manufacturing same, and heat radiating system
US7402340B2 (en) 2003-08-26 2008-07-22 Matsushita Electric Industrial Co., Ltd. High thermal conductive element, method for manufacturing same, and heat radiating system
US7610678B2 (en) 2004-08-19 2009-11-03 Fujitsu Limited Heat transfer sheet, heat transfer structural body and manufacturing method of the heat transfer structural body
JP2007214224A (en) * 2006-02-08 2007-08-23 Shin Etsu Chem Co Ltd Electronic device with excellent heat dissipation and method of manufacturing same
JP2010174139A (en) * 2009-01-29 2010-08-12 Fuji Polymer Industries Co Ltd Thermoconductive resin composition
KR100980503B1 (en) 2009-02-10 2010-09-07 삼성전기주식회사 LED Package and LED Package Array Having the Same
CN106441959A (en) * 2016-03-09 2017-02-22 上海道之科技有限公司 IGBT module heat radiation performance assessment method
WO2017159252A1 (en) * 2016-03-18 2017-09-21 信越化学工業株式会社 Thermally conductive silicone composition and semiconductor device
JPWO2017159252A1 (en) * 2016-03-18 2018-09-20 信越化学工業株式会社 Thermally conductive silicone composition and semiconductor device
WO2019059212A1 (en) * 2017-09-22 2019-03-28 住友化学株式会社 Composition, membrane, and method for producing membrane
US11958783B2 (en) 2017-09-22 2024-04-16 Sumitomo Chemical Company, Limited Composition, film, and method for producing film
JP2020193250A (en) * 2019-05-27 2020-12-03 信越化学工業株式会社 Thermally conductive silicone composition, semiconductor device, and method of manufacturing the same
WO2020241054A1 (en) * 2019-05-27 2020-12-03 信越化学工業株式会社 Thermally-conductive silicone composition, semiconductor device, and production method therefor
JP7076400B2 (en) 2019-05-27 2022-05-27 信越化学工業株式会社 Thermally conductive silicone composition, semiconductor device and its manufacturing method
EP3979314A4 (en) * 2019-05-27 2023-08-09 Shin-Etsu Chemical Co., Ltd. Thermally-conductive silicone composition, semiconductor device, and production method therefor
TWI834860B (en) 2019-05-27 2024-03-11 日商信越化學工業股份有限公司 Thermal conductive silicon oxide composition, semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
TWI244880B (en) Phase change thermal interface materials including polyester resin
KR101696485B1 (en) Thermal interface materials
WO2014199650A1 (en) Thermosetting resin composition, method for producing thermally conductive sheet, and power module
JPH11209618A (en) Heat-conductive silicone rubber composition
JP3182257B2 (en) Heat dissipation sheet
TW200911924A (en) Thermally conductive compound and process for producing the same
JP2002003831A (en) Member for heat radiation
JPH1126661A (en) Radiation spacer
JP2002299534A (en) Heat radiation material and manufacturing method therefor
JP2014152299A (en) Thermosetting resin composition, conductive resin sheet, method for producing the same, and power module comprising the same
JP2002164481A (en) Heat conductive sheet
JP3568401B2 (en) High thermal conductive sheet
JP3178805B2 (en) Heat radiation spacer
JP4514344B2 (en) Thermally conductive resin molding and its use
JP2000355654A (en) Heat-conductive silicone molding and its use
JPH11307697A (en) Thermally conductive composite sheet
JP3067337B2 (en) Manufacturing method of anisotropic heat conductive sheet
JPH1119948A (en) Manufacture of radiation member for electronic part
JP2000185328A (en) Heat conductive silicone moldings and manufacture thereof and use applications
JPH09199880A (en) Heat dissipating sheet
JPH11145351A (en) Heat dissipating spacer
JP3354087B2 (en) Method of manufacturing heat-radiating spacer having high flexibility and high thermal conductivity
JP2003309235A (en) Heat radiating member and power module
JP3183502B2 (en) Heat radiation spacer
JP3989349B2 (en) Electronic component sealing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091117