JP2002164481A - Heat conductive sheet - Google Patents

Heat conductive sheet

Info

Publication number
JP2002164481A
JP2002164481A JP2000345734A JP2000345734A JP2002164481A JP 2002164481 A JP2002164481 A JP 2002164481A JP 2000345734 A JP2000345734 A JP 2000345734A JP 2000345734 A JP2000345734 A JP 2000345734A JP 2002164481 A JP2002164481 A JP 2002164481A
Authority
JP
Japan
Prior art keywords
heat conductive
particles
heat
sheet
conductive sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000345734A
Other languages
Japanese (ja)
Inventor
Yoshinao Yamazaki
好直 山崎
Tomoaki Uchiya
智昭 打矢
Akira Shioda
晃 塩田
Akira Ito
朗 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to JP2000345734A priority Critical patent/JP2002164481A/en
Publication of JP2002164481A publication Critical patent/JP2002164481A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve heat conductivity of a heat conductive sheet by increasing the amount of heat conductive grains without losing flexibility. SOLUTION: In the heat conductive sheet including binder resin and a thermal conductive grains dispersed in the binder resin, tabular grains are used as the heat conductive grains, the grains are oriented standing upright in the thickness direction and furthermore grains which have two or more different sizes are used as the heat conductive grains.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱伝導性シートに
関し、詳細には、トランジスタ等の発熱性電子部品に密
接させてその熱を外部に放出させるために有用な、熱伝
導性に優れた熱伝導性シートに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat conductive sheet, and more particularly, to a heat conductive sheet having excellent heat conductivity which is useful for closely contacting a heat-generating electronic component such as a transistor and releasing its heat to the outside. The present invention relates to a heat conductive sheet.

【0002】[0002]

【従来の技術】近年、発熱体から熱を除去することが、
様々な分野において問題となっている。特に、例えば電
子デバイス、パーソナルコンピュータ等の各種のデバイ
スにおいて、それらに内蔵されている発熱性の電子部品
(例えばICチップ)やその他の部品(以下、総称して
「発熱性部品」とよぶ)から熱を除去することが重要な
問題となっている。なぜならば、各種の発熱性部品にお
いて、部品の温度が上昇するにつれてその部品が誤作動
する確率が指数関数的に高くなる傾向にあるからであ
る。最近では、発熱性部品がますます小型化し、また処
理速度も高速化しているため、放熱特性についての要求
も一段と高くなってきている。
2. Description of the Related Art In recent years, heat has been removed from a heating element.
It has been a problem in various fields. In particular, in various devices such as electronic devices and personal computers, for example, heat-generating electronic components (eg, IC chips) and other components (hereinafter, collectively referred to as “heat-generating components”) contained therein. Removing heat is an important issue. This is because, in various heat-generating components, the probability that the component malfunctions tends to increase exponentially as the temperature of the component increases. In recent years, since heat-generating components have become smaller and smaller, and the processing speed has been increased, requirements for heat radiation characteristics have been further increased.

【0003】現在のところ、発熱性部品から、その部品
で発生し蓄積した熱を放出させるため、例えばヒートシ
ンク、放熱フィン、金属放熱板等の放熱体が発熱性部品
に取り付けられ、また伝熱媒体として作用させるため、
各種の熱伝導性シートが発熱性部品と放熱体の間に、伝
熱スペーサとして用いられている。
At present, a radiator such as a heat sink, a radiating fin, or a metal radiating plate is attached to the heat-generating component to release the heat generated and accumulated in the component from the heat-generating component. To act as
Various heat conductive sheets are used as heat transfer spacers between the heat generating component and the heat radiator.

【0004】この熱伝導性シートは、高い熱伝導性を有
すると共に、様々な形状の発熱性部品の表面に十分に追
従できることが必要である。また、電気絶縁性であるこ
とも、熱伝導性シートには必要である。このような要求
を満たすため、従来の熱伝導性シートは、シリコーンゴ
ムに熱伝導性を高める充填材を配合している。この充填
材としては、アルミナ、シリカ、窒化ホウ素、酸化マグ
ネシウム等の粒子が用いられている。
It is necessary that the heat conductive sheet has high heat conductivity and can sufficiently follow the surface of heat-generating components having various shapes. Also, the electrically conductive sheet needs to be electrically insulating. In order to satisfy such a requirement, the conventional heat conductive sheet contains a silicone rubber and a filler for improving heat conductivity. As the filler, particles such as alumina, silica, boron nitride, and magnesium oxide are used.

【0005】この熱伝導性シートの熱伝導性を高めるた
めには、上記の熱伝導性充填材の充填量を高めることが
考えられる。しかしながら、単に熱伝導性充填材の充填
量を高めるのみでは熱伝導性には限界があり、またあま
りに充填材の量を高くすると、得られるシートの硬度が
高くなりすぎ、柔軟性が低下するために発熱部品への追
従性が低下してしまう。その結果、発熱性部品と熱伝導
シートの間に空隙が生じ、熱抵抗が増加してしまうとい
う問題がある。
In order to increase the thermal conductivity of the heat conductive sheet, it is conceivable to increase the filling amount of the heat conductive filler. However, there is a limit to the thermal conductivity simply by increasing the amount of the thermally conductive filler, and if the amount of the filler is too high, the hardness of the obtained sheet becomes too high, and the flexibility is reduced. In addition, the ability to follow the heat-generating component is reduced. As a result, there is a problem that a gap is generated between the heat generating component and the heat conductive sheet, and the thermal resistance increases.

【0006】ところで、この熱伝導性シートは、その厚
み方向の放熱性が高いことが望ましい。ところが、この
熱伝導性シートは通常、シリコーンゴムと熱伝導性粒子
を混合し、通常のゴム材料の製造と同様にしてロール、
カレンダー、押出機等によりシート状に成形することに
よって製造されており、このような方法によって製造し
た熱伝導性シートでは、厚み方向にプレスされているた
め、熱伝導性粒子がシリコーンゴム内でこの厚み方向に
対して垂直方向、すなわち長手方向に配向されることに
なる。配合される熱伝導性粒子は、粒子状、板状、針状
等の様々な形状のものが用いられているが、板状の粒子
を用いた場合にはこの現象が特に顕著になる。そして、
この長手方向に配向した粒子は相互に接触して、シート
の長手方向に連続したかのような状態となり、その結
果、シートの長手方向には熱が伝達されやすくなるが、
シートの厚み方向には熱が伝達しにくくなる。
By the way, it is desirable that the heat conductive sheet has high heat radiation in the thickness direction. However, this heat conductive sheet is usually a mixture of silicone rubber and heat conductive particles, and rolls,
It is manufactured by molding into a sheet with a calender, an extruder, etc., and the heat conductive sheet manufactured by such a method is pressed in the thickness direction. It is oriented in a direction perpendicular to the thickness direction, that is, in the longitudinal direction. Various shapes such as particles, plates, and needles are used as the thermally conductive particles to be blended. This phenomenon is particularly remarkable when plate-like particles are used. And
The particles oriented in the longitudinal direction are in contact with each other and become in a state as if they were continuous in the longitudinal direction of the sheet.As a result, heat is easily transmitted in the longitudinal direction of the sheet,
Heat is less likely to be transmitted in the thickness direction of the sheet.

【0007】このような問題を解決するため、特公平6
−38460号公報では、上記のようにして長手方向に
熱伝導性粒子を配向させたシートを製造し、このシート
を厚み方向にスライスすることにより、このスライス面
に向かって、すなわち厚み方向に直立状態で熱伝導性粒
子が配向したシートを得ている。また、特開2000−
154265号公報では、長手方向に熱伝導性粒子を配
向させたシートを巻き取った積層物を垂直に切断して、
熱伝導性粒子が厚み方向に直立状態に配向したシートを
得ている。これらのようなシートでは、従来のシートよ
りも低い熱伝導性粒子の充填量においても、特にシート
の厚み方向に比較的高い熱伝導性を有するが、さらに熱
伝導性粒子の充填量を高めることは、上記のようなシー
トの柔軟性が低下する問題のため困難であり、熱伝導性
を高めることには限界があった。
In order to solve such a problem, Japanese Patent Publication No.
In JP-A-38460, a sheet in which the thermally conductive particles are oriented in the longitudinal direction is manufactured as described above, and the sheet is sliced in the thickness direction, so that the sheet is erected toward the slice plane, that is, in the thickness direction. In this state, a sheet in which the thermally conductive particles are oriented is obtained. In addition, JP-A-2000-
In 154265, a laminate obtained by winding a sheet having thermally conductive particles oriented in the longitudinal direction is cut vertically,
A sheet in which the thermally conductive particles are oriented upright in the thickness direction is obtained. Sheets such as these have relatively high thermal conductivity, especially in the thickness direction of the sheet, even at a lower loading of thermally conductive particles than conventional sheets, but further increase the loading of thermal conductive particles. Is difficult due to the above-described problem of the sheet flexibility decreasing, and there is a limit in increasing the thermal conductivity.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、上記
のような問題点を解決して、柔軟性を損なうことなく熱
伝導性粒子の充填量を高めることのできる、高い熱伝導
性を示す熱伝導性シートを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a high thermal conductivity capable of increasing the filling amount of the thermally conductive particles without impairing flexibility. The purpose of the present invention is to provide a heat conductive sheet as shown in FIG.

【0009】[0009]

【課題を解決するための手段】上記の目的は、本発明に
よれば、バインダ樹脂と、このバインダ樹脂中に分散さ
れた熱伝導性粒子とを含む熱伝導性シートにおいて、前
記熱伝導性粒子として板状粒子を用い、この粒子を厚み
方向に直立状態で配向させ、さらに前記熱伝導性粒子と
して2種以上の粒径の異なる粒子を用いることにより達
成することができる。
According to the present invention, there is provided a heat conductive sheet comprising a binder resin and heat conductive particles dispersed in the binder resin. Can be achieved by using plate-like particles as the material, orienting the particles in an upright state in the thickness direction, and using two or more kinds of particles having different particle diameters as the heat conductive particles.

【0010】このように、熱伝導性シートに混入させる
熱伝導性粒子として、2種以上の粒径の異なる粒子の組
み合わせを用いることにより、粒径の小さな粒子は粒径
の大きな粒子の間の小さな間隙にも配置することがで
き、熱伝導性シートの柔軟性を損なうことなくより多く
の熱伝導性粒子を混入させることができ、結果として熱
伝導性シートの熱伝導率を高めることができる。
As described above, by using a combination of two or more kinds of particles having different particle diameters as the heat conductive particles to be mixed into the heat conductive sheet, the particles having a small particle diameter are interposed between the particles having a large particle diameter. It can be arranged even in small gaps, and it is possible to mix more heat conductive particles without impairing the flexibility of the heat conductive sheet, and as a result, it is possible to increase the heat conductivity of the heat conductive sheet .

【0011】[0011]

【発明の実施の形態】図1に、本発明の熱伝導性シート
の断面図を示す。この図1に示すように、本発明の熱伝
導性シート1は、バインダ樹脂2中に粒径の大きな板状
粒子3と粒径の小さな板状粒子4が、このシートの厚み
方向に直立状態で配向している。
FIG. 1 is a sectional view of a heat conductive sheet according to the present invention. As shown in FIG. 1, the thermally conductive sheet 1 of the present invention has a plate-like particle 3 having a large particle size and a plate-like particle 4 having a small particle size in a binder resin 2 in an upright state in the thickness direction of the sheet. Orientation.

【0012】バインダ樹脂としては、熱伝導性シートに
おいてバインダ樹脂として従来より用いられていた各種
の樹脂を用いることができる。好ましいバインダ樹脂
は、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂、フ
ェノール樹脂等の二液硬化型の樹脂、合成ゴム系の樹
脂、アクリル樹脂、オレフィン系樹脂等の熱可塑性樹脂
である。本発明においては、二液硬化型の樹脂として
は、揮発分を含まず、二液混合後のポットライフが製造
に支障をきたさない程度に十分長く、硬化時間が実用的
な範囲内、具体的には数分間〜数時間の範囲であり、し
かも硬化後の樹脂が十分な柔らかさを示すことができる
という要件が満たされる限り、いずれの二液硬化型の樹
脂も用いることができる。とりわけ、広い温度範囲で柔
らかく、耐熱性にも優れている点から、シリコーン樹
脂、とりわけシリコーンゲルを用いることが最も好まし
い。
As the binder resin, various resins conventionally used as the binder resin in the heat conductive sheet can be used. Preferred binder resins are two-pack curable resins such as silicone resins, epoxy resins, urethane resins, and phenolic resins, and thermoplastic resins such as synthetic rubber-based resins, acrylic resins, and olefin-based resins. In the present invention, the two-part curable resin does not contain volatile components, and the pot life after the two-part mixing is sufficiently long so as not to hinder production, and the curing time is within a practical range. Any of two-part curable resins can be used as long as the resin has a range of several minutes to several hours and the requirement that the cured resin can exhibit sufficient softness is satisfied. In particular, it is most preferable to use a silicone resin, especially a silicone gel, because it is soft over a wide temperature range and excellent in heat resistance.

【0013】このシリコーンゲルは一般的に、アルケニ
ル基を有するオルガノポリシロキサン及び珪素結合水素
原子を有するオルガノポリシロキサンを主成分として構
成されるものであり、付加反応型シリコーン組成物とし
て市販入手可能である。また、このようなシリコーン組
成物には一液硬化型と二液硬化型の2つのタイプが用意
されており、一液硬化型のシリコーン組成物は加熱する
ことにより、また二液硬化型のシリコーン組成物は二液
混合後に加熱することにより、柔軟なゲルを提供するこ
とができる。本発明では、二液硬化型のシリコーン組成
物を特に有利に使用することができる。
This silicone gel is generally composed mainly of an organopolysiloxane having an alkenyl group and an organopolysiloxane having a silicon-bonded hydrogen atom, and is commercially available as an addition reaction type silicone composition. is there. There are two types of such silicone compositions, one-part curing type and two-part curing type. The one-part curing type silicone composition is heated, and the two-part curing type silicone composition is heated. By heating the composition after mixing the two components, a soft gel can be provided. In the present invention, a two-part curable silicone composition can be used particularly advantageously.

【0014】バインダ樹脂と組み合わせて熱伝導性シー
トの形成に用いられる熱伝導性粒子は、バインダ樹脂中
に均一に分散させて所望のレベルの熱伝導性を備えた熱
伝導性シートを提供することができる限り、特に限定さ
れるものではなく、熱伝導性シートの製造において充填
材として従来より用いられている各種の材料を用いるこ
とができる。適当な熱伝導性粒子としては、例えば、酸
化アルミニウム、二酸化珪素、二酸化チタン、マイカ、
チタン酸カリウム、酸化鉄、タルク等の酸化物粒子、窒
化ホウ素、窒化珪素、窒化アルミニウム等の窒化物粒
子、炭化珪素等の炭化物粒子、銅、アルミニウム等の金
属粒子を挙げることができる。これらの熱伝導性粒子は
単独で用いてもよく、2種以上を混合して用いてもよ
い。本発明においては、この熱伝導性粒子は板状粒子で
あり、そのアスペクト比は5以上であることが好まし
い。ここで板状粒子とは、粒子がやや丸みをおびている
形状でもよく、あるいは針状結晶のように一方向に伸長
している形状でもよい。
The thermally conductive particles used in forming the thermally conductive sheet in combination with the binder resin are uniformly dispersed in the binder resin to provide a thermally conductive sheet having a desired level of thermal conductivity. The material is not particularly limited as long as it can be used, and various materials conventionally used as a filler in the production of the heat conductive sheet can be used. Suitable thermally conductive particles include, for example, aluminum oxide, silicon dioxide, titanium dioxide, mica,
Oxide particles such as potassium titanate, iron oxide and talc; nitride particles such as boron nitride, silicon nitride and aluminum nitride; carbide particles such as silicon carbide; and metal particles such as copper and aluminum. These heat conductive particles may be used alone or in combination of two or more. In the present invention, the thermally conductive particles are plate-like particles, and preferably have an aspect ratio of 5 or more. Here, the plate-like particles may have a shape in which the particles are slightly rounded, or may have a shape extending in one direction such as a needle-like crystal.

【0015】本発明の熱伝導性シートでは、図1に示す
ように、この板状の熱伝導性粒子は、シートの厚み方
向、すなわち発熱部品から放熱体への方向に直立状態
で、すなわち板状粒子の長辺をシートの厚み方向に向け
て配向している。板状粒子ではその長辺方向に熱が伝導
しやすいため、このように配向させることによりシート
の長手方向に比して厚み方向に対する熱伝導性が高くな
り、等量の熱伝導性粒子を配向させないで混入させたシ
ートと比較して、熱伝導性シートとしての効率が高くな
る。
In the heat conductive sheet of the present invention, as shown in FIG. 1, the plate-shaped heat conductive particles are in an upright state in the thickness direction of the sheet, that is, in the direction from the heat-generating component to the radiator, The long sides of the particles are oriented in the thickness direction of the sheet. Since heat is easily conducted in the long-side direction of the plate-like particles, such orientation makes the thermal conductivity in the thickness direction higher than that in the longitudinal direction of the sheet, so that an equal amount of the thermally conductive particles is oriented. The efficiency as a heat conductive sheet is higher than a sheet mixed without being mixed.

【0016】また、本発明の熱伝導性シートでは、この
熱伝導性粒子は、互いに粒径の異なる2種以上の粒子を
組み合わせて用いる。このうち、粒径の大きな粒子の粒
径は30〜100μmであることが好ましく、一方、粒径の小
さな粒子の粒径は0.5〜20μmであることが好ましい。ま
た、粒径の大きな粒子と粒径の小さな粒子の比率は、特
に限定するものではないが、体積比で9:1〜1:9で
あることが好ましく、8:2〜6:4であることが特に
好ましい。また、この粒径の異なる粒子の組み合わせは
2種類であることが好ましいが、3種類以上であっても
よい。尚、ここでいう「粒径」とは、平均粒径を意味す
る。
In the heat conductive sheet of the present invention, the heat conductive particles are used by combining two or more kinds of particles having different particle diameters. Among them, the particle size of the large particle is preferably 30 to 100 μm, while the particle size of the small particle is preferably 0.5 to 20 μm. Further, the ratio of the particles having a large particle diameter to the particles having a small particle diameter is not particularly limited, but is preferably 9: 1 to 1: 9 by volume ratio, and is 8: 2 to 6: 4. Is particularly preferred. Further, it is preferable that the combination of particles having different particle diameters is two types, but three or more types may be used. Here, the “particle size” means an average particle size.

【0017】バインダ樹脂に対する熱伝導性粒子の配合
量は、使用するバインダ樹脂及び熱伝導性粒子の種類、
あるいはこの粒子の粒径等によって広く変更することが
できるが、通常は、100体積部のバインダ樹脂に対して
熱伝導性粒子を20〜250体積部の量で配合すること
が好ましい。熱伝導性粒子の配合量が20体積部より少
ないと、熱伝導性が十分でなく、逆に250体積部を超
えると、バインダ樹脂と熱伝導性粒子の混合及びこの粒
子の均一な分散が困難になり、さらに未硬化のバインダ
樹脂と熱伝導性粒子の混合物の流動性が低下し、シート
化が困難になるからである。
The amount of the thermally conductive particles relative to the binder resin depends on the type of the binder resin and the thermally conductive particles used,
Alternatively, it can be widely changed depending on the particle size of the particles, but it is usually preferable to mix the heat conductive particles in an amount of 20 to 250 parts by volume with respect to 100 parts by volume of the binder resin. If the amount of the thermally conductive particles is less than 20 parts by volume, the thermal conductivity is not sufficient, and if it exceeds 250 parts by volume, it is difficult to mix the binder resin and the thermally conductive particles and to uniformly disperse the particles. Further, the fluidity of the mixture of the uncured binder resin and the thermally conductive particles is reduced, and it becomes difficult to form a sheet.

【0018】本発明の熱伝導性シートには、シートにお
ける板状粒子の配向を妨げない限り、ポリマー化学にお
いて常用の各種添加剤を添加することができる。例え
ば、シートの粘着性を調節するために、粘着付与剤、可
塑剤等を添加してもよく、また耐熱性を高めるために、
難燃剤、老化防止剤等を添加してもよい。その他の添加
剤としては、改質剤、熱安定剤、着色剤等が挙げられ
る。また、熱伝導性粒子を表面処理剤で処理しておいて
もよい。
Various additives commonly used in polymer chemistry can be added to the heat conductive sheet of the present invention as long as the orientation of the plate-like particles in the sheet is not hindered. For example, in order to adjust the adhesiveness of the sheet, a tackifier, a plasticizer and the like may be added, and in order to increase the heat resistance,
You may add a flame retardant, an antioxidant, etc. Other additives include a modifier, a heat stabilizer, a colorant, and the like. Further, the heat conductive particles may be treated with a surface treating agent.

【0019】本発明の熱伝導性シートの厚さは、その使
用目的や適用部位に応じてさまざまな厚さを有すること
ができるが、できるだけ薄いことが好ましく、通常は
0.1〜5.0mmであることが好ましく、0.1〜2.
0mmであることがより好ましい。この厚さが0.1mm未
満であると、十分な接着強度を得ることが困難になり、
結果として十分な放熱性を得ることができない。一方、
5.0mmより厚いと、シートの熱抵抗が大きくなり、放
熱性が損なわれる結果となる。
The thickness of the heat conductive sheet of the present invention can be various depending on the purpose of use and the application site, but is preferably as thin as possible, usually 0.1 to 5.0 mm. And preferably 0.1 to 2.
More preferably, it is 0 mm. If the thickness is less than 0.1 mm, it is difficult to obtain sufficient adhesive strength,
As a result, sufficient heat dissipation cannot be obtained. on the other hand,
If the thickness is more than 5.0 mm, the thermal resistance of the sheet increases, resulting in impaired heat radiation.

【0020】本発明の熱伝導性シートは、例えば、以下
のようにして製造することができる。すなわち、熱伝導
性粒子とバインダ樹脂をプラネタリーミキサーで混練
し、この混練液を2枚のライナーにはさみ、これをカレ
ンダリングによりシート化し、加熱硬化させる。こうし
て作製したシートでは、熱伝導性粒子は、その長辺をシ
ートの長手方向に向けて配向されている。そこで、この
シートを複数枚積層させて積層体を作製する。この際、
積層間強度をさらに強くするために、積層後に再度加熱
硬化させてもよいし、あるいはシートの間をプライマー
処理してから積層し、再度加熱硬化させてもよい。次い
でこの積層体を積層面に対して垂直方向にスライスす
る。この結果、熱伝導性粒子はシートの厚み方向に直立
状態で配向することになる。
The heat conductive sheet of the present invention can be manufactured, for example, as follows. That is, the heat conductive particles and the binder resin are kneaded with a planetary mixer, the kneaded liquid is sandwiched between two liners, the sheet is formed into a sheet by calendering, and heated and cured. In the sheet thus produced, the thermally conductive particles are oriented with their long sides directed in the longitudinal direction of the sheet. Therefore, a laminate is prepared by laminating a plurality of the sheets. On this occasion,
In order to further increase the interlaminar strength, the laminate may be heat-cured again after lamination, or the sheets may be primer-treated and then laminated and then heat-cured again. Next, this laminate is sliced in a direction perpendicular to the lamination plane. As a result, the thermally conductive particles are oriented upright in the thickness direction of the sheet.

【0021】本発明の熱伝導性シートは自立性シートで
あり、従ってそのままで伝熱手段として使用することが
できる。しかし、所望により、このシートを適当な基材
と組み合わせて使用することもできる。適当な基材とし
ては、例えば、プラスチックフィルム、織布、不織布、
金属箔等を挙げることができる。
The heat conductive sheet of the present invention is a self-supporting sheet and can be used as it is as a heat transfer means. However, if desired, the sheet can be used in combination with a suitable substrate. Suitable substrates include, for example, plastic films, woven fabrics, nonwoven fabrics,
Metal foil and the like can be mentioned.

【0022】[0022]

【実施例】実施例1〜4及び比較例1〜2 平均粒径47μmの窒化ホウ素(アドバンスドセラミクス
製PT-110、アスペクト比20〜30)、平均粒径10μmの窒
化ホウ素(水島合金鉄製HP-1、アスペクト比18〜20)及
びシリコーンゲル(東レダウコーニング製CY52-276)を
表1の配合の通り混練した。この混練物の両側を剥離紙
ではさみ、カレンダー成形を行い、120℃で30分間硬化
させ、厚さ1.0mmのシートを得た。このシートを20枚積
層し、積層面に対して垂直方向にスライスし、厚さ0.5m
mの熱伝導性シートを得た。
EXAMPLES Examples 1-4 and Comparative Examples 1-2 Boron nitride having an average particle size of 47 μm (PT-110 manufactured by Advanced Ceramics, aspect ratio 20-30) and boron nitride having an average particle size of 10 μm (HP-M made of Mizushima Alloy Iron) 1, aspect ratio 18-20) and silicone gel (CY52-276, manufactured by Dow Corning Toray) were kneaded as shown in Table 1. Both sides of the kneaded material were sandwiched between release papers, calendered, and cured at 120 ° C. for 30 minutes to obtain a sheet having a thickness of 1.0 mm. Twenty sheets of this sheet are stacked, sliced in the direction perpendicular to the stacking surface, 0.5 m thick
m of a thermally conductive sheet was obtained.

【0023】[0023]

【表1】 [Table 1]

【0024】比較例3 平均粒径47μmの窒化ホウ素(アドバンスドセラミクス
製PT-110)35.25体積部及び平均粒径10μmの窒化ホウ素
(水島合金鉄製HP-1)11.75体積部をシリコーンゲル
(東レダウコーニング製CY52-276)53体積部と混練し
た。この混練物の両側を剥離紙ではさみ、カレンダー成
形を行い、120℃で30分間硬化させ、厚さ0.5mmのシート
を得た。
Comparative Example 3 35.25 parts by volume of boron nitride having an average particle size of 47 μm (PT-110 manufactured by Advanced Ceramics) and 11.75 parts by volume of boron nitride having an average particle size of 10 μm (HP-1 manufactured by Mizushima Alloy Iron) were treated with silicone gel (Toray Dow Corning) CY52-276) 53 parts by volume. Both sides of the kneaded material were sandwiched between release papers, calendered, and cured at 120 ° C. for 30 minutes to obtain a sheet having a thickness of 0.5 mm.

【0025】熱伝導性シートの特性評価 上記のようにして作製した熱伝導性シートを、10mm×11
mmの大きさにカットし、TO−3型トランジスタと冷却
アルミニウム板の間にはさみ、0.4mmになるまで圧縮
し、TO−3型トランジスタに4.76Wの電力を印加し
た。5分経過後、TO−3型トランジスタの温度(T1)
及びアルミニウム板の温度(T2)を測定し、下記式より
熱抵抗値を算出した。 熱抵抗(℃cm2/W)=(T1−T2)(℃)× 試料面積
(cm2)/電力(W)
Evaluation of Characteristics of Thermal Conductive Sheet The thermal conductive sheet prepared as described above was
It was cut into a size of mm, sandwiched between a TO-3 type transistor and a cooling aluminum plate, compressed to 0.4 mm, and a power of 4.76 W was applied to the TO-3 type transistor. After 5 minutes, the temperature of the TO-3 type transistor (T1)
And the temperature (T2) of the aluminum plate was measured, and the thermal resistance was calculated from the following equation. Thermal resistance (° C. cm 2 / W) = (T 1 −T 2) (° C.) × sample area (cm 2 ) / power (W)

【0026】この結果を以下の表2に示す。The results are shown in Table 2 below.

【表2】 [Table 2]

【0027】上記の結果より明らかなように、本発明の
熱伝導性シートでは、従来の熱伝導性シートよりも熱抵
抗値を向上させ、従って熱伝導性を向上させることがで
きる。比較例1では、窒化ホウ素粒子を40体積部を超え
て加えると、得られる混練物は著しく粘度が上昇し、流
動性が低下したためにシートを成形することが非常に困
難であり、仮にシートを成形できたとしても、非常に高
硬度のシートしか得られなかった。比較例2では、窒化
ホウ素粒子を44体積部を超えて加えると、得られる混練
物は著しく凝集性が失われ、仮にシートを成形できたと
しても、非常に低強度のシートしか得られなかった。こ
れに対して、実施例1〜4では、窒化ホウ素粒子を47体
積部まで加えても容易にシートを成形することができ、
低粘度で十分な強度を有するシートを得ることができ、
かつより多くの粒子を添加しているため熱伝導性を向上
させることができるのである。
As is clear from the above results, the heat conductive sheet of the present invention can have a higher thermal resistance value than the conventional heat conductive sheet, and thus can have higher heat conductivity. In Comparative Example 1, when the boron nitride particles were added in an amount exceeding 40 parts by volume, the resulting kneaded material was significantly increased in viscosity and decreased in fluidity, so that it was very difficult to form a sheet. Even if it could be molded, only a sheet of very high hardness could be obtained. In Comparative Example 2, when the boron nitride particles were added in excess of 44 parts by volume, the resulting kneaded material remarkably lost cohesion, and even if a sheet could be formed, only a very low-strength sheet was obtained. . On the other hand, in Examples 1 to 4, a sheet can be easily formed even when boron nitride particles are added up to 47 parts by volume,
A sheet having a low viscosity and sufficient strength can be obtained,
In addition, since more particles are added, the thermal conductivity can be improved.

【0028】[0028]

【発明の効果】以上説明したように、本発明によれば、
平均粒径の異なる2種類以上の板状の熱伝導性粒子を組
み合わせて用いることにより、より多くの粒子を混入さ
せることができ、結果として柔軟性を損なうことなく、
熱伝導性シートの熱伝導率を高くすることができる。
As described above, according to the present invention,
By using two or more kinds of plate-shaped heat conductive particles having different average particle diameters in combination, more particles can be mixed, and as a result, flexibility is not impaired.
The heat conductivity of the heat conductive sheet can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱伝導性シートの部分断面図である。FIG. 1 is a partial cross-sectional view of a heat conductive sheet of the present invention.

【符号の説明】[Explanation of symbols]

1…熱伝導性シート 2…バインダ樹脂 3…粒径の大きな熱伝導性粒子 4…粒径の小さな熱伝導性粒子 DESCRIPTION OF SYMBOLS 1 ... Thermal conductive sheet 2 ... Binder resin 3 ... Large particle size thermal conductive particle 4 ... Small particle diameter thermal conductive particle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塩田 晃 神奈川県相模原市南橋本3−8−8番地 住友スリーエム株式会社内 (72)発明者 伊藤 朗 神奈川県相模原市南橋本3−8−8番地 住友スリーエム株式会社内 Fターム(参考) 4F071 AA67 AB27 AD02 AF44 BA01 BB04 BC01 4J002 AC021 BB001 BG001 CC031 CD001 CK021 CP031 DA076 DA077 DA096 DA097 DE116 DE117 DE136 DE137 DE146 DE147 DE186 DE187 DF016 DF017 DJ006 DJ007 DJ016 DJ017 DJ046 DJ047 DJ056 DJ057 DK006 DK007 FA086 FA087 FA116 FA117 FD016 FD017 FD206 FD207 5F036 AA01 BB21 BD21  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akira Shiota 3-8-8 Minamihashimoto, Sagamihara City, Kanagawa Prefecture Within Sumitomo 3M Limited (72) Inventor Akira Ito 3-8-8 Minamihashimoto, Sagamihara City, Kanagawa Prefecture Sumitomo 3M In-house F-term (reference) 4F071 AA67 AB27 AD02 AF44 BA01 BB04 BC01 4J002 AC021 BB001 BG001 CC031 CD001 CK021 CP031 DA076 DA077 DA096 DA097 DE116 DE117 DE136 DE137 DE146 DE147 DE186 DE187 DF016 DF017 DJ006 DJ007 DJ016 DJ077 FA116 FA117 FD016 FD017 FD206 FD207 5F036 AA01 BB21 BD21

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 バインダ樹脂と、このバインダ樹脂中に
分散された熱伝導性粒子とを含む熱伝導性シートであっ
て、前記熱伝導性粒子が板状粒子でありかつ厚み方向に
直立状態で配向しており、さらに前記熱伝導性粒子が2
種以上の粒径の異なる粒子を含むことを特徴とする熱伝
導性シート。
1. A heat conductive sheet comprising a binder resin and heat conductive particles dispersed in the binder resin, wherein the heat conductive particles are plate-like particles and are in an upright state in a thickness direction. Oriented and the thermally conductive particles are 2
A heat conductive sheet comprising particles having different particle sizes.
【請求項2】 前記熱伝導性粒子が、粒径が30〜100μm
である粒径の大きな粒子と粒径が0.5〜20μmである粒径
の小さな粒子を含むことを特徴とする、請求項1記載の
熱伝導性シート。
2. The heat conductive particles have a particle size of 30 to 100 μm.
2. The heat conductive sheet according to claim 1, wherein the heat conductive sheet comprises particles having a large particle size and particles having a small particle size of 0.5 to 20 [mu] m.
【請求項3】 前記粒径の大きな粒子と粒径の小さな粒
子の配合割合が、体積比で9:1〜1:9であることを
特徴とする、請求項2記載の熱伝導性シート。
3. The heat conductive sheet according to claim 2, wherein the compounding ratio of the large particle and the small particle is 9: 1 to 1: 9 in volume ratio.
JP2000345734A 2000-11-13 2000-11-13 Heat conductive sheet Pending JP2002164481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000345734A JP2002164481A (en) 2000-11-13 2000-11-13 Heat conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000345734A JP2002164481A (en) 2000-11-13 2000-11-13 Heat conductive sheet

Publications (1)

Publication Number Publication Date
JP2002164481A true JP2002164481A (en) 2002-06-07

Family

ID=18819711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000345734A Pending JP2002164481A (en) 2000-11-13 2000-11-13 Heat conductive sheet

Country Status (1)

Country Link
JP (1) JP2002164481A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189818A (en) * 2007-02-05 2008-08-21 Nitto Denko Corp Heat-conductive resin composition, heat-conductive sheet and method for producing the same
JP2009010296A (en) * 2007-06-29 2009-01-15 Nitto Denko Corp Heat-conductive adhesive film and method for producing the same
US7625638B2 (en) 2002-07-08 2009-12-01 Dynic Corporation Hygroscopic molding
WO2010047278A1 (en) * 2008-10-21 2010-04-29 日立化成工業株式会社 Heat conducting sheet, manufacturing method thereof, and heat radiator that utilizes same
JP2010260225A (en) * 2009-05-01 2010-11-18 Denki Kagaku Kogyo Kk Thermoconductive molding and use thereof
CN102190862A (en) * 2010-01-29 2011-09-21 日东电工株式会社 Thermal conductivity sheet, light emitting diode installing substrate and thermal conductivity adhesive sheet
JP2014067924A (en) * 2012-09-26 2014-04-17 Sumitomo Bakelite Co Ltd Method for manufacturing thermal conductive sheet
JP2014067926A (en) * 2012-09-26 2014-04-17 Sumitomo Bakelite Co Ltd Method for manufacturing thermal conductive sheet
JP2015118327A (en) * 2013-12-19 2015-06-25 富士ゼロックス株式会社 Resin base material, endless belt, fixing device, and image forming apparatus
WO2016088742A1 (en) * 2014-12-02 2016-06-09 北川工業株式会社 Thermally conductive sheet
WO2016190189A1 (en) * 2015-05-22 2016-12-01 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Thermally conductive composition
JP2017137410A (en) * 2016-02-03 2017-08-10 トヨタ自動車株式会社 Heat-dissipating resin composition
KR20180123452A (en) * 2018-10-01 2018-11-16 전자부품연구원 Bonding material and manufacturing method thereof
CN110546758A (en) * 2017-06-23 2019-12-06 积水化学工业株式会社 heat sink, method for manufacturing heat sink, and laminate
JP2020045456A (en) * 2018-09-20 2020-03-26 株式会社豊田中央研究所 Heat-conductive composite material, heat-conductive composite material film, and method for producing them
JP2020055893A (en) * 2018-09-28 2020-04-09 日本ゼオン株式会社 Heat conductive sheet and method for producing the same

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7625638B2 (en) 2002-07-08 2009-12-01 Dynic Corporation Hygroscopic molding
JP2008189818A (en) * 2007-02-05 2008-08-21 Nitto Denko Corp Heat-conductive resin composition, heat-conductive sheet and method for producing the same
JP2009010296A (en) * 2007-06-29 2009-01-15 Nitto Denko Corp Heat-conductive adhesive film and method for producing the same
CN102197069A (en) * 2008-10-21 2011-09-21 日立化成工业株式会社 Heat conducting sheet, manufacturing method thereof, and heat radiator that utilizes same
US20110192588A1 (en) * 2008-10-21 2011-08-11 Hitachi Chemical Company, Ltd. Heat conducting sheet, manufacturing method thereof, and heat radiator that utilizes the same
TWI500752B (en) * 2008-10-21 2015-09-21 Hitachi Chemical Co Ltd A heat-conductive sheet, a method of manufacturing the same, and a heat-dissipating device using the same
WO2010047278A1 (en) * 2008-10-21 2010-04-29 日立化成工業株式会社 Heat conducting sheet, manufacturing method thereof, and heat radiator that utilizes same
EP2343332A4 (en) * 2008-10-21 2017-03-01 Hitachi Chemical Company, Ltd. Heat conducting sheet, manufacturing method thereof, and heat radiator that utilizes same
JP2016222925A (en) * 2008-10-21 2016-12-28 日立化成株式会社 Thermally conductive sheet, method for manufacturing the same and heat dissipating device using the same
CN104086929A (en) * 2008-10-21 2014-10-08 日立化成工业株式会社 Heat conducting sheet, manufacturing method thereof, and heat radiator that utilizes the same
JP2014239227A (en) * 2008-10-21 2014-12-18 日立化成株式会社 Heat-conducting sheet, method for manufacturing the same, and heat-dissipation device arranged by use thereof
JP5882581B2 (en) * 2008-10-21 2016-03-09 日立化成株式会社 Thermally conductive sheet, method for producing the same, and heat dissipation device
JP2010260225A (en) * 2009-05-01 2010-11-18 Denki Kagaku Kogyo Kk Thermoconductive molding and use thereof
CN102190862A (en) * 2010-01-29 2011-09-21 日东电工株式会社 Thermal conductivity sheet, light emitting diode installing substrate and thermal conductivity adhesive sheet
JP2014067926A (en) * 2012-09-26 2014-04-17 Sumitomo Bakelite Co Ltd Method for manufacturing thermal conductive sheet
JP2014067924A (en) * 2012-09-26 2014-04-17 Sumitomo Bakelite Co Ltd Method for manufacturing thermal conductive sheet
JP2015118327A (en) * 2013-12-19 2015-06-25 富士ゼロックス株式会社 Resin base material, endless belt, fixing device, and image forming apparatus
WO2016088742A1 (en) * 2014-12-02 2016-06-09 北川工業株式会社 Thermally conductive sheet
WO2016190189A1 (en) * 2015-05-22 2016-12-01 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Thermally conductive composition
JPWO2016190189A1 (en) * 2015-05-22 2017-06-15 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Thermally conductive composition
JP2017137410A (en) * 2016-02-03 2017-08-10 トヨタ自動車株式会社 Heat-dissipating resin composition
CN110546758A (en) * 2017-06-23 2019-12-06 积水化学工业株式会社 heat sink, method for manufacturing heat sink, and laminate
CN110546758B (en) * 2017-06-23 2023-09-19 积水化学工业株式会社 Heat sink, method for manufacturing heat sink, and laminate
JP2020045456A (en) * 2018-09-20 2020-03-26 株式会社豊田中央研究所 Heat-conductive composite material, heat-conductive composite material film, and method for producing them
JP7402410B2 (en) 2018-09-20 2023-12-21 株式会社豊田中央研究所 Thermally conductive composite material, thermally conductive composite film and method for producing the same
JP2020055893A (en) * 2018-09-28 2020-04-09 日本ゼオン株式会社 Heat conductive sheet and method for producing the same
JP7234560B2 (en) 2018-09-28 2023-03-08 日本ゼオン株式会社 Heat-conducting sheet and manufacturing method thereof
KR20180123452A (en) * 2018-10-01 2018-11-16 전자부품연구원 Bonding material and manufacturing method thereof
KR102091938B1 (en) * 2018-10-01 2020-03-20 전자부품연구원 Bonding material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5882581B2 (en) Thermally conductive sheet, method for producing the same, and heat dissipation device
JP5407120B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISSIPATION DEVICE USING THE SAME
WO2015002084A1 (en) Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
JP2002164481A (en) Heat conductive sheet
WO2015002085A1 (en) Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
JP5405890B2 (en) Thermally conductive moldings and their applications
CN1697870A (en) Dry thermal interface material
WO2020153346A1 (en) Method for producing thermally conductive sheet
JP2009024126A (en) Polymer composition, thermally-conductive sheet, highly thermally-conductive adhesive sheet with metal foil, highly thermally-conductive adhesive sheet with metal plate, metal-based circuit board and power module
JP2013254880A (en) Heat-conductive insulator sheet, metal based board and circuit board, and manufacturing method thereof
JP2014040533A (en) Thermosetting resin composition; method for manufacturing a heat-conductive resin sheet; and heat-conductive resin sheet; and semiconductor device for power applications
JP2011178894A (en) Thermosetting resin composition, thermally conductive sheet, and power module
JP5516034B2 (en) Highly insulating heat conductive sheet and heat dissipation device using the same
JP2008120065A (en) Heat radiating film
JP5454300B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING SAME
JP2017059704A (en) Thermally conducting composition, thermally conducting sheet, manufacturing method of thermally conducting sheet, and member
WO2014069353A1 (en) Semiconductor device
TW202100716A (en) Thermally conductive resin sheet, layered thermal radiation sheet, heat-dissipating circuit base board, and power semiconductor device
JP3531785B2 (en) Manufacturing method of heat dissipating member for electronic parts
JP2002299534A (en) Heat radiation material and manufacturing method therefor
KR101920706B1 (en) Electrically insulated and heat radiated non-substrate tape and manufacturing method thereof
JP3739335B2 (en) Heat dissipation member and power module
JP7358459B2 (en) Thermal conductive sheet and its manufacturing method
JP2000185328A (en) Heat conductive silicone moldings and manufacture thereof and use applications
JP3464752B2 (en) Molded polymer material and its use