JP2017137410A - Heat-dissipating resin composition - Google Patents

Heat-dissipating resin composition Download PDF

Info

Publication number
JP2017137410A
JP2017137410A JP2016019107A JP2016019107A JP2017137410A JP 2017137410 A JP2017137410 A JP 2017137410A JP 2016019107 A JP2016019107 A JP 2016019107A JP 2016019107 A JP2016019107 A JP 2016019107A JP 2017137410 A JP2017137410 A JP 2017137410A
Authority
JP
Japan
Prior art keywords
heat
conductive filler
resin composition
resin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016019107A
Other languages
Japanese (ja)
Inventor
浩二 中西
Koji Nakanishi
浩二 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016019107A priority Critical patent/JP2017137410A/en
Publication of JP2017137410A publication Critical patent/JP2017137410A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat-dissipating resin composition having improved heat dissipation properties and flowability with a smaller content of a heat conductive filler.SOLUTION: A heat-dissipating resin composition contains 30-60 pts.wt. of at least one thermosetting resin (A) selected from an unsaturated polyester resin, an epoxy resin, an urethane resin and a silicone resin, 40-70 pts.wt. of a heat conductive filler (B) containing a secondary aggregate having a particle size of more than 20 μm and single particles having a particle size of 20 μm or less (total amount of component (A) and component (B) is 100 pts.wt.), and 0.05-3.0 pts.wt. of a crosslinking agent (C) capable of reacting the thermosetting resin (A).SELECTED DRAWING: Figure 1

Description

本発明は放熱性樹脂組成物に関する。   The present invention relates to a heat dissipating resin composition.

電子部品では、発熱した部位やその周辺部位を保護するため、放熱性成形体にて封止したり、それらを放熱性成形体と接触させて冷却媒体へ伝熱させている。   In an electronic component, in order to protect the part which generate | occur | produced heat | fever and its peripheral part, it seals with a heat-radiation molded object, or makes them contact with a heat-radiation molded object and is made to heat-transfer to a cooling medium.

放熱性成形体は、放熱性樹脂組成物を成形して得られる。放熱性樹脂組成物としては、マトリックス樹脂に熱伝導性フィラーを配合したものが知られている。   The heat dissipation molded body is obtained by molding a heat dissipation resin composition. As a heat-dissipating resin composition, a composition in which a thermally conductive filler is blended with a matrix resin is known.

マトリックス樹脂に熱伝導性フィラーを配合した放熱性樹脂組成物として、特許文献1には、マトリックス樹脂とフィラーとを含有し、上記フィラーがナノファイバ型窒化アルミニウムを含むことを特徴とする放熱性樹脂組成物が記載されている。   As a heat-dissipating resin composition in which a thermally conductive filler is blended with a matrix resin, Patent Document 1 contains a matrix resin and a filler, and the filler contains nanofiber aluminum nitride. A composition is described.

また、特許文献2には、酸化亜鉛粒子を、Mg、Co、Ca及びNiからなる群より選択される少なくとも一つの金属化合物により表面処理して得られたものであり、メジアン径(D50)が1〜10000μmであることを特徴とする低導電性酸化亜鉛粒子が記載されており、該低導電性酸化亜鉛粒子を含有する放熱性樹脂組成物も記載されている。   Patent Document 2 is obtained by surface-treating zinc oxide particles with at least one metal compound selected from the group consisting of Mg, Co, Ca and Ni, and has a median diameter (D50). The low-conductivity zinc oxide particle characterized by being 1-10000 micrometers is described, and the heat dissipation resin composition containing this low-conductivity zinc oxide particle is also described.

しかし、従来の放熱性樹脂組成物では、得られる放熱性成形体の熱伝導性を高めて、放熱性を向上させるためには、フィラーを多量にマトリックス樹脂に配合することが必要であった。また、配合されるフィラーが球形又はほぼ均一な形状である場合、フィラー同士の接触点を増加させて熱伝達経路を形成するために、フィラーの配合量を増加させなければならない。しかし、フィラーを多量にマトリックス樹脂に配合すると放熱性樹脂組成物の流動性が大きく低下してしまい、このような組成物は、プリプレグなどの流動性を持たない材料には用いることができるが、形状自由度の大きなトランスファー成形や射出成形などの注型用途に用いることは困難であった。   However, in the conventional heat-dissipating resin composition, it is necessary to add a large amount of filler to the matrix resin in order to increase the heat conductivity of the heat-dissipating molded article and improve the heat-dissipating property. In addition, when the filler to be blended has a spherical shape or a substantially uniform shape, the blending amount of the filler must be increased in order to increase the contact point between the fillers to form a heat transfer path. However, if a large amount of filler is added to the matrix resin, the fluidity of the heat-dissipating resin composition is greatly reduced, and such a composition can be used for materials having no fluidity, such as prepregs. It was difficult to use for casting applications such as transfer molding and injection molding with a large degree of freedom of shape.

特開2009−302150号公報JP 2009-302150 A 特開2011−230947号公報JP 2011-230947 A

上記のように、従来のマトリックス樹脂に熱伝導性フィラーを配合した放熱性樹脂組成物では、熱伝導性を高くして放熱性を向上させるためには、組成物中の熱伝導性フィラーの含有量を増加させる必要があるが、これにより、流動性が大きく低下してしまう。それ故、本発明は、放熱性及び流動性の向上した放熱性樹脂組成物を、より少ない熱伝導性フィラー含有量で提供することを目的とする。   As described above, in a heat dissipating resin composition in which a heat conductive filler is blended with a conventional matrix resin, in order to increase heat conductivity and improve heat dissipation, the inclusion of the heat conductive filler in the composition It is necessary to increase the amount, but this greatly reduces the fluidity. Therefore, an object of the present invention is to provide a heat-dissipating resin composition having improved heat dissipation and fluidity with a less heat conductive filler content.

本発明者らは、上記課題を解決するための手段を種々検討した結果、二次凝集体及び単一粒子の形態の熱伝導性フィラーを放熱性樹脂組成物に用いることにより、より少ないフィラー含有量で組成物の放熱性及び流動性を向上させることができることを見出し、本発明を完成した。   As a result of various investigations of means for solving the above problems, the present inventors have used a thermally conductive filler in the form of secondary aggregates and single particles in the heat-dissipating resin composition, thereby containing less filler. It discovered that the heat dissipation of a composition and fluidity | liquidity could be improved by the quantity, and completed this invention.

すなわち、本発明の要旨は以下の通りである。
(1)不飽和ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂及びシリコーン樹脂から選ばれる少なくとも1種である熱硬化性樹脂(A)30〜60重量部と、粒径が20μm超である二次凝集体及び粒径が20μm以下である単一粒子を含む熱伝導性フィラー(B)40〜70重量部(成分(A)及び(B)の合計量は100重量部である)と、上記熱硬化性樹脂(A)と反応し得る架橋剤(C)0.05〜3.0重量部とを含む放熱性樹脂組成物。
That is, the gist of the present invention is as follows.
(1) 30-60 parts by weight of a thermosetting resin (A) that is at least one selected from unsaturated polyester resins, epoxy resins, urethane resins, and silicone resins, secondary aggregates having a particle size of more than 20 μm, and 40 to 70 parts by weight of thermally conductive filler (B) containing single particles having a particle size of 20 μm or less (the total amount of components (A) and (B) is 100 parts by weight), and the thermosetting resin A heat-dissipating resin composition comprising 0.05 to 3.0 parts by weight of a crosslinking agent (C) capable of reacting with (A).

本発明により、放熱性及び流動性の向上した放熱性樹脂組成物をより少ない熱伝導性フィラー含有量で提供することが可能となる。   According to the present invention, it is possible to provide a heat-dissipating resin composition with improved heat dissipation and fluidity with less heat conductive filler content.

図1は本発明の放熱性成形体の厚さ方向の断面のイメージ図である。FIG. 1 is an image view of a cross section in the thickness direction of the heat-radiating molded article of the present invention. 図2は回転処理前後の窒化ホウ素の状態をSEMにより観察した図である。図2Aは回転処理前の窒化ホウ素凝集粒子のSEM観察図であり、図2Bは回転処理後の窒化ホウ素のSEM観察図である。FIG. 2 is an SEM observation of the state of boron nitride before and after the rotation treatment. FIG. 2A is an SEM observation view of the boron nitride aggregated particles before the rotation treatment, and FIG. 2B is an SEM observation view of boron nitride after the rotation treatment. 図3は実施例2の放熱性成形体の断面のSEM観察図である。3 is a SEM observation of a cross section of the heat-dissipating molded article of Example 2. FIG. 図4は実施例1、2及び比較例1−5の放熱性樹脂組成物の熱伝導率を示す図である。FIG. 4 is a diagram showing the thermal conductivity of the heat dissipating resin compositions of Examples 1 and 2 and Comparative Example 1-5. 図5は実施例1、2及び比較例1−5の放熱性樹脂組成物の流動性を示す図である。FIG. 5 is a diagram showing the fluidity of the heat-dissipating resin compositions of Examples 1 and 2 and Comparative Example 1-5.

以下、本発明の好ましい実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本発明の放熱性樹脂組成物は、熱硬化性樹脂(A)と、熱伝導性フィラー(B)と、上記熱硬化性樹脂(A)と反応し得る架橋剤(C)とを含む。   The heat-radiating resin composition of the present invention includes a thermosetting resin (A), a heat conductive filler (B), and a crosslinking agent (C) that can react with the thermosetting resin (A).

熱硬化性樹脂(A)は、熱伝導性フィラー(B)を分散させるために用いる。本発明で用いられる熱硬化性樹脂は、不飽和ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂及びシリコーン樹脂から選ばれる少なくとも1種であり、不飽和ポリエステル樹脂が好ましい。   The thermosetting resin (A) is used for dispersing the heat conductive filler (B). The thermosetting resin used in the present invention is at least one selected from unsaturated polyester resins, epoxy resins, urethane resins, and silicone resins, and unsaturated polyester resins are preferred.

本発明の放熱性樹脂組成物において、熱硬化性樹脂の含有量は、30〜60重量部であり、好ましくは35〜60重量部である。熱硬化性樹脂の含有量が30重量部以上であると組成物が十分な流動性を有し、熱硬化性樹脂の含有量が60重量部以下であると、良好な熱伝導性を有する。   In the heat radiating resin composition of the present invention, the content of the thermosetting resin is 30 to 60 parts by weight, preferably 35 to 60 parts by weight. When the content of the thermosetting resin is 30 parts by weight or more, the composition has sufficient fluidity, and when the content of the thermosetting resin is 60 parts by weight or less, the composition has good thermal conductivity.

熱伝導性フィラー(B)は、粒径が20μm超である二次凝集体(B−1)及び粒径が20μm以下である単一粒子(B−2)を含む。本発明において、熱伝導性フィラーの二次凝集体及び単一粒子は、同一の熱伝導性フィラーであって、その形態が異なるものである。熱伝導性フィラーの二次凝集体及び単一粒子を組み合わせて放熱性樹脂組成物に用いることで、二次凝集体の周囲により粒径が小さい単一粒子が分散し、熱伝達経路が形成されやすくなるため、単一の形態の熱伝導性フィラーを用いた場合と比べて、より少ないフィラー含有量で熱伝導性を高くすることができ、放熱性が向上する。さらに、本発明の放熱性樹脂組成物では、熱伝導性フィラーの含有量を減らすことができるので、組成物の流動性が高くなり、成形性が向上する。   The thermally conductive filler (B) includes a secondary aggregate (B-1) having a particle size of more than 20 μm and a single particle (B-2) having a particle size of 20 μm or less. In the present invention, the secondary aggregates and single particles of the heat conductive filler are the same heat conductive filler and have different forms. By combining the secondary aggregates and single particles of the thermally conductive filler in the heat-dissipating resin composition, single particles having a smaller particle size are dispersed around the secondary aggregates, and a heat transfer path is formed. Since it becomes easy, compared with the case where the heat conductive filler of a single form is used, heat conductivity can be made high with less filler content, and heat dissipation improves. Furthermore, in the heat dissipating resin composition of the present invention, since the content of the heat conductive filler can be reduced, the fluidity of the composition is increased and the moldability is improved.

図1に本発明の放熱性樹脂組成物を成形して得られる放熱性成形体の厚さ方向の断面のイメージ図を示す。図1より、本発明の放熱性成形体において、架橋剤により硬化した熱硬化性樹脂であるマトリックス樹脂3中に、熱伝導性フィラーの二次凝集体1及び単一粒子2が分散している。図示していないが、二次凝集体1は、2つ以上の単一粒子が密着した状態の凝集粒子である。二次凝集体1の周囲により粒径の小さい単一粒子2が分散することで熱伝達経路(図1中、矢印で示す)が形成されやすくなるので、熱伝導性が高くなり、放熱性が向上する。   The image figure of the cross section of the thickness direction of the heat dissipation molded object obtained by shape | molding the heat dissipation resin composition of this invention in FIG. 1 is shown. As shown in FIG. 1, in the heat-radiating molded article of the present invention, the secondary aggregates 1 and single particles 2 of the thermally conductive filler are dispersed in the matrix resin 3 which is a thermosetting resin cured by a crosslinking agent. . Although not shown, the secondary aggregate 1 is an aggregated particle in a state where two or more single particles are in close contact. Since a single particle 2 having a small particle size is dispersed around the secondary aggregate 1, a heat transfer path (indicated by an arrow in FIG. 1) is easily formed, so that thermal conductivity is increased and heat dissipation is improved. improves.

熱伝導性フィラーとしては、特に限定されずに、例えば窒化ホウ素、アルミナ、シリカ、水酸化アルミニウム、酸化マグネシウム、炭酸カルシウム、タルク及びマイカを用いることができ、熱伝導性の観点から、窒化ホウ素、アルミナ及び酸化マグネシウムが好ましく、窒化ホウ素がより好ましい。熱伝導性フィラーは、2種以上を組み合わせて用いてもよいが、単独で用いることが好ましい。2種以上の熱伝導性フィラーを用いる場合、熱伝導性フィラーの90重量%以上が同一の成分であることが好ましい。熱伝導性フィラーとしては、好ましくは絶縁性を有するものを選択する。熱伝導性フィラーの熱伝導率は、例えば1〜200W/m・Kである。   The heat conductive filler is not particularly limited, and for example, boron nitride, alumina, silica, aluminum hydroxide, magnesium oxide, calcium carbonate, talc and mica can be used. From the viewpoint of thermal conductivity, boron nitride, Alumina and magnesium oxide are preferred, and boron nitride is more preferred. Thermally conductive fillers may be used in combination of two or more, but are preferably used alone. When using 2 or more types of heat conductive fillers, it is preferable that 90 weight% or more of a heat conductive filler is the same component. As the thermally conductive filler, an insulating material is preferably selected. The thermal conductivity of the thermally conductive filler is, for example, 1 to 200 W / m · K.

本発明の放熱性樹脂組成物において、熱伝導性フィラーの含有量は、40〜70重量部であり、好ましくは40〜65重量部である。本発明において、熱伝導性フィラーの含有量とは、二次凝集体及び単一粒子の合計含有量をいう。熱伝導性フィラーの含有量がこの範囲であると、放熱性樹脂組成物の熱伝導性が高くなり、放電性が向上し、同時に組成物の流動性も確保できる。   In the heat dissipating resin composition of the present invention, the content of the heat conductive filler is 40 to 70 parts by weight, preferably 40 to 65 parts by weight. In the present invention, the content of the thermally conductive filler refers to the total content of secondary aggregates and single particles. When the content of the heat conductive filler is within this range, the heat conductivity of the heat dissipating resin composition is increased, the discharge performance is improved, and at the same time, the fluidity of the composition can be secured.

熱伝導性フィラーは、良好な熱伝導性の観点から、二次凝集体を単一粒子の重量以上の量で用いることが好ましく、二次凝集体及び単一粒子の重量比率は、例えば50:50〜80:20であり、好ましくは50:50〜70:30である。   From the viewpoint of good thermal conductivity, the thermally conductive filler preferably uses secondary aggregates in an amount equal to or more than the weight of single particles, and the weight ratio of secondary aggregates to single particles is, for example, 50: It is 50-80: 20, Preferably it is 50: 50-70: 30.

熱伝導性フィラーの二次凝集体(二次凝集粒子ともいう)(B−1)は、粒径が20μm超であり、好ましくは25μm超である。二次凝集体の粒径はレーザ回折/散乱式の粒度計などによって測定することができる。本発明において、二次凝集体の粒径とは、二次凝集体が球形でない場合は当該凝集体の最大粒径を意味するものとする。本発明において、二次凝集体とは、2つ以上の単一粒子が密着した状態にあり、容易に単一粒子に分散することができない状態の凝集粒子をいう。二次凝集体は、走査型電子顕微鏡(SEM)等の電子顕微鏡により観察して判断することができる。二次凝集体を構成する単一粒子の形状は、例えば平板状、針状、球状、繊維状又は鱗片状であり、鱗片状が好ましい。   The secondary aggregate (also referred to as secondary aggregated particles) (B-1) of the thermally conductive filler has a particle size of more than 20 μm, preferably more than 25 μm. The particle size of the secondary aggregate can be measured by a laser diffraction / scattering particle size meter. In the present invention, the particle size of the secondary aggregate means the maximum particle size of the aggregate when the secondary aggregate is not spherical. In the present invention, the secondary aggregate refers to aggregated particles in a state where two or more single particles are in close contact and cannot be easily dispersed into single particles. The secondary aggregate can be judged by observing with an electron microscope such as a scanning electron microscope (SEM). The shape of the single particle constituting the secondary aggregate is, for example, a flat plate shape, a needle shape, a spherical shape, a fiber shape, or a scale shape, and a scale shape is preferable.

熱伝導性フィラーの単一粒子(B−2)は、粒径が20μm以下であり、好ましくは15μm以下である。単一粒子の粒径はレーザ回折/散乱式の粒度計などによって測定することができる。本発明において、単一粒子の粒径とは、単一粒子が球形でない場合は当該粒子の最大粒径を意味するものとする。本発明において、熱伝導性フィラーの単一粒子の形状は、例えば平板状、針状、球状、繊維状又は鱗片状であり、鱗片状が好ましい。   The single particle (B-2) of the thermally conductive filler has a particle size of 20 μm or less, preferably 15 μm or less. The particle size of a single particle can be measured by a laser diffraction / scattering particle size meter. In the present invention, the particle size of a single particle means the maximum particle size of the particle when the single particle is not spherical. In the present invention, the shape of the single particle of the thermally conductive filler is, for example, a flat plate shape, a needle shape, a spherical shape, a fiber shape, or a scale shape, and a scale shape is preferable.

熱伝導性フィラーの二次凝集体及び単一粒子は、例えば熱伝導性フィラーの凝集体を回転処理することによって得られる。回転処理前の熱伝導性フィラーの凝集体は、通常粒径が200μm程度までであり、単一粒子がゆるく凝集している。熱伝導性フィラーの凝集体を回転処理すると、凝集体は高速で衝突し、粒子が再凝集した二次凝集体と、凝集体が壊砕した単一粒子とが生じる。二次凝集体は、回転処理前の凝集体と比べて粒子が強固に凝集しており、回転処理前の凝集体よりも小さい粒径を有する。本発明の放熱性樹脂組成物において、熱伝導性フィラーの凝集体を回転処理を行わずにそのまま用いるよりも、凝集体を回転処理して二次凝集体及び単一粒子の形態として用いた方が、熱伝達経路が形成されやすくなるので、組成物の熱伝導性が高くなり、放熱性が向上し、同時に組成物の流動性も確保できる。   The secondary aggregate and single particles of the thermally conductive filler can be obtained, for example, by rotating the aggregate of the thermally conductive filler. The aggregate of the thermally conductive filler before the rotation treatment usually has a particle size of up to about 200 μm, and single particles are loosely aggregated. When the heat-conductive filler aggregates are rotationally processed, the aggregates collide at high speed to generate secondary aggregates in which the particles are re-aggregated and single particles in which the aggregates are crushed. In the secondary aggregate, the particles are aggregated more strongly than the aggregate before the rotation treatment, and the particle size is smaller than that of the aggregate before the rotation treatment. In the heat-dissipating resin composition of the present invention, the aggregate of the heat conductive filler is used as a form of secondary aggregate and single particle by rotating the aggregate rather than using the aggregate without rotating. However, since the heat transfer path is easily formed, the thermal conductivity of the composition is increased, the heat dissipation is improved, and the fluidity of the composition can be secured at the same time.

熱伝導性フィラーの凝集体の回転処理は、例えば、連続又は回分式混合機、気流型混合機及び回転攪拌型混合機を用いて行うことができ、特に回転攪拌型混合機を用いることが好ましい。本発明において、回転処理は、通常10〜10000rpm、好ましくは1000〜9000rpm、より好ましくは2000〜8000rpm、特に好ましくは4000〜6000rpmで行う。この範囲の回転数で回転混合することにより、二次凝集体及び単一粒子をバランスよく得ることができる。回転処理時間は、回転数に応じて適宜選択され、例えば10秒〜900秒、好ましくは30秒〜300秒行う。回転処理は、通常0〜85℃、好ましくは室温(約25℃)で行う。二次凝集体及び単一粒子は、回転処理後、乾式分級によって選別してそれぞれ用いるが、選別せずに用いることもできる。   The rotation treatment of the aggregate of the heat conductive filler can be performed using, for example, a continuous or batch mixer, an airflow mixer, and a rotary stirring mixer, and it is particularly preferable to use a rotary stirring mixer. . In the present invention, the rotation treatment is usually performed at 10 to 10,000 rpm, preferably 1000 to 9000 rpm, more preferably 2000 to 8000 rpm, and particularly preferably 4000 to 6000 rpm. By rotating and mixing at a rotation speed in this range, secondary aggregates and single particles can be obtained in a balanced manner. The rotation processing time is appropriately selected according to the number of rotations, and is, for example, 10 seconds to 900 seconds, preferably 30 seconds to 300 seconds. The rotation treatment is usually performed at 0 to 85 ° C, preferably at room temperature (about 25 ° C). Secondary aggregates and single particles are used after being classified by dry classification after the rotation treatment, but can also be used without sorting.

架橋剤(C)は、熱硬化性樹脂(A)を架橋して硬化するために用いる。架橋剤は、用いる熱硬化性樹脂と反応し、熱硬化性樹脂を硬化できるものであれば特に限定されずに用いることができる。   The cross-linking agent (C) is used for cross-linking and curing the thermosetting resin (A). The crosslinking agent can be used without any particular limitation as long as it can react with the thermosetting resin to be used and can cure the thermosetting resin.

本発明の放熱性樹脂組成物において、架橋剤の含有量は、熱硬化性樹脂(A)及び熱伝導性フィラー(B)の合計量100重量部に対して、0.05〜3.0重量部であり、好ましくは0.1〜1.0重量部である。架橋剤の含有量が上記の範囲であると、熱硬化性樹脂を十分に硬化することができる。   In the heat-dissipating resin composition of the present invention, the content of the crosslinking agent is 0.05 to 3.0 weight with respect to 100 parts by weight of the total amount of the thermosetting resin (A) and the heat conductive filler (B). Part, preferably 0.1 to 1.0 part by weight. When the content of the crosslinking agent is in the above range, the thermosetting resin can be sufficiently cured.

本発明の放熱性樹脂組成物には、必要に応じて、上記の熱硬化性樹脂(A)、熱伝導性フィラー(B)及び架橋剤(C)以外に、例えば酸化防止剤、紫外線吸収剤、難燃剤、架橋助剤、着色剤、滑剤、接着性付与剤、離型剤、帯電防止剤、シランカップリング剤、カーボンなどのその他の添加剤を、本発明の効果を損なわない範囲で配合することができる。   In addition to the thermosetting resin (A), the heat conductive filler (B), and the cross-linking agent (C), the heat radiating resin composition of the present invention includes, for example, an antioxidant and an ultraviolet absorber as necessary. Other additives such as flame retardants, crosslinking aids, colorants, lubricants, adhesion-imparting agents, mold release agents, antistatic agents, silane coupling agents, carbon, etc. are included within the range that does not impair the effects of the present invention. can do.

上記その他の添加剤の合計配合量は、熱硬化性樹脂(A)及び熱伝導性フィラー(B)の合計量100重量部に対して、通常10重量部以下、好ましくは5重量部以下、より好ましくは1重量部以下である。   The total amount of the other additives is usually 10 parts by weight or less, preferably 5 parts by weight or less, with respect to 100 parts by weight of the total amount of the thermosetting resin (A) and the heat conductive filler (B). The amount is preferably 1 part by weight or less.

本発明の放熱性樹脂組成物は、例えば上記成分(A)〜(C)を混合して得ることができる。   The heat-dissipating resin composition of the present invention can be obtained, for example, by mixing the components (A) to (C).

上記成分(A)〜(C)の混合方法としては、溶融混練、溶媒キャストブレンド、ラテックスブレンド又はポリマーコンプレックスなどの物理的ブレンドを用いることができるが、特に溶融混練法が好ましい。混合する装置としては、タンブラー、ヘンシェルミキサー、ロータリーミキサー、スパーミキサー、リボンタンブラー又はVブレンダーなどを用いることができる。   As a method for mixing the above components (A) to (C), physical blending such as melt kneading, solvent cast blending, latex blending or polymer complex can be used, but melt kneading method is particularly preferable. As an apparatus for mixing, a tumbler, a Henschel mixer, a rotary mixer, a spar mixer, a ribbon tumbler, a V blender, or the like can be used.

本発明は、上記の放熱性樹脂組成物を成形して得られる放熱性成形体も含む。本発明の放熱性成形体は、上記の放熱性樹脂組成物を射出成形、押出成形、射出圧縮成形などの公知の成形方法により成形して製造することができる。放熱性樹脂組成物の成形には、単軸又は多軸押出機を用いるのが一般的であるが、上記押出機以外にバンバリーミキサー、ローラー、コ・ニーダー、プラストミル又はプラベンダーブラウトグラフなどを用いることもできる。これらを回分的又は連続的に運転する。   The present invention also includes a heat dissipating molded article obtained by molding the heat dissipating resin composition. The heat-radiating molded article of the present invention can be produced by molding the above heat-dissipating resin composition by a known molding method such as injection molding, extrusion molding or injection compression molding. In general, a single-screw or multi-screw extruder is used for molding the heat-dissipating resin composition. In addition to the above-described extruder, a Banbury mixer, a roller, a co-kneader, a plast mill, or a Prabender brow graph is used. You can also. These are operated batchwise or continuously.

以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to these examples.

[熱伝導性フィラーの二次凝集体及び単一粒子の調製]
熱伝導性フィラーとして窒化ホウ素を用いた。所定量の窒化ホウ素凝集粒子(水島合金鉄(株)製:HP−40MF100(粒径:45μm、比重:1.9))を計量し、小袋を用いて事前混合した。事前混合した窒化ホウ素凝集粒子を、奈良機械製作所製のハイブリダイゼーションシステムNHS−1型へ投入し(200g/バッチ)、回転数4800rpmで1分間高速回転処理した。その後、回転数を上げ、回転処理した窒化ホウ素を装置から排出した。回転処理後の窒化ホウ素は、窒化ホウ素の鱗片状の単一粒子が強固に凝集した二次凝集体及び窒化ホウ素の鱗片状の単一粒子を含んでいた。図2に回転処理前後の窒化ホウ素の状態をSEMによって観察した結果を示す。図2Aは回転処理前の窒化ホウ素凝集粒子(粒径:45μm)を示し、図2Bは回転処理後の窒化ホウ素を示す。図2A及び図2Bより、窒化ホウ素凝集粒子を所定の条件で回転処理すると、窒化ホウ素凝集粒子が回転槽内において高速で衝突し、粒子が再凝集した二次凝集体と、凝集体が壊砕して形成された鱗片状の単一粒子が生じた。回転処理後の二次凝集体は、回転処理前の窒化ホウ素凝集粒子よりも強固に凝集していた。得られた窒化ホウ素の二次凝集体及び単一粒子を乾式分級によって選別した。選別した窒化ホウ素の二次凝集体(B−1)は、2つ以上の鱗片状の単一粒子が密着した状態の凝集粒子であり、二次凝集体の粒径は20μm超40μm以下程度であった。選別した窒化ホウ素の単一粒子(B−2)は、粒径が15μm以下であった。
[Preparation of secondary aggregate and single particles of thermally conductive filler]
Boron nitride was used as the thermally conductive filler. A predetermined amount of boron nitride aggregated particles (manufactured by Mizushima Alloy Iron Co., Ltd .: HP-40MF100 (particle size: 45 μm, specific gravity: 1.9)) were weighed and premixed using a sachet. The premixed boron nitride agglomerated particles were put into a hybridization system NHS-1 manufactured by Nara Machinery Co., Ltd. (200 g / batch), and subjected to high-speed rotation treatment at a rotation speed of 4800 rpm for 1 minute. Thereafter, the rotation speed was increased, and the boron nitride subjected to the rotation treatment was discharged from the apparatus. The boron nitride after the rotation treatment contained secondary aggregates in which the boron nitride scaly single particles were strongly aggregated and boron nitride scaly single particles. FIG. 2 shows the result of observing the state of boron nitride before and after the rotation treatment by SEM. FIG. 2A shows boron nitride aggregated particles (particle size: 45 μm) before the rotation treatment, and FIG. 2B shows boron nitride after the rotation treatment. From FIG. 2A and FIG. 2B, when the boron nitride aggregated particles are rotated under predetermined conditions, the boron nitride aggregated particles collide with each other at high speed in the rotating tank, and the aggregates are crushed. A scaly single particle formed as a result. The secondary aggregate after the rotation treatment was aggregated more firmly than the boron nitride aggregated particles before the rotation treatment. The obtained secondary aggregates and single particles of boron nitride were selected by dry classification. The selected secondary aggregate of boron nitride (B-1) is an aggregated particle in which two or more scaly single particles are in close contact with each other, and the secondary aggregate has a particle size of more than 20 μm and not more than 40 μm. there were. The selected boron nitride single particles (B-2) had a particle size of 15 μm or less.

[放熱性樹脂組成物の調製]
(実施例1)
上記の通りに調製した窒化ホウ素の二次凝集体(B−1)30重量部と、窒化ホウ素の単一粒子(B−2)15.5重量部と、熱硬化性樹脂(A)としての不飽和ポリエステル樹脂(日立化成工業(株)製:WP2008(比重1.14))54.5重量部と、架橋剤(日立化成工業(株)製:樹脂硬化剤:CT−50)0.8重量部とを溶融混練して放熱性樹脂組成物を調製した。
[Preparation of heat-dissipating resin composition]
Example 1
30 parts by weight of a secondary aggregate of boron nitride (B-1) prepared as described above, 15.5 parts by weight of single particles of boron nitride (B-2), and thermosetting resin (A) 54.5 parts by weight of unsaturated polyester resin (manufactured by Hitachi Chemical Co., Ltd .: WP2008 (specific gravity 1.14)) and 0.8 cross-linking agent (manufactured by Hitachi Chemical Co., Ltd .: resin curing agent: CT-50) 0.8 The heat-dissipating resin composition was prepared by melt-kneading the parts by weight.

(実施例2)
実施例1の各成分の量を表1に記載される通りに変更した以外は実施例1と同様にして、実施例2の放熱性樹脂組成物を調製した。
(Example 2)
A heat-dissipating resin composition of Example 2 was prepared in the same manner as in Example 1 except that the amount of each component of Example 1 was changed as described in Table 1.

実施例2の放熱性組成物を実施例1と同様に溶融混練した後、150℃にて1時間焼成を行った。さらにSEM観察を行うため、実施例2の硬化物を樹脂包埋した後、鏡面研磨にて断面加工を施し、測定試料とした。試料にはSEM観察に必要な導電性を持たすため、コーティングを施した。得られた放熱性成形体の断面をSEMで観察して、架橋剤により硬化した熱硬化性樹脂中の窒化ホウ素の二次凝集体及び単一粒子の分散状態について調べた。SEM観察は、電界放出型走査電子顕微鏡を用い、二次電子像を撮影した。実施例2の放熱性成形体の断面のSEM観察図を図3に示す。図3より、窒化ホウ素の二次凝集体(図3中、一部の二次凝集体を点線で囲んで示した)の周囲に細かい単一粒子が分散し、熱伝導パスを形成しやすくなっている。   The heat-radiating composition of Example 2 was melt-kneaded in the same manner as in Example 1, and then fired at 150 ° C. for 1 hour. Further, in order to perform SEM observation, the cured product of Example 2 was embedded in a resin, and then subjected to cross-sectional processing by mirror polishing to obtain a measurement sample. The sample was coated in order to have conductivity necessary for SEM observation. The cross section of the obtained heat-radiation molded object was observed with SEM, and the secondary aggregate of boron nitride in the thermosetting resin cured by the crosslinking agent and the dispersion state of single particles were examined. In SEM observation, a field emission scanning electron microscope was used to take a secondary electron image. The SEM observation figure of the cross section of the heat dissipation molded object of Example 2 is shown in FIG. From FIG. 3, fine single particles are dispersed around the secondary aggregate of boron nitride (a part of the secondary aggregate is shown by being surrounded by a dotted line in FIG. 3), and it becomes easy to form a heat conduction path. ing.

(比較例1)
実施例1の各成分の量を表1に記載される通りに変更した以外は実施例1と同様にして、比較例1の放熱性樹脂組成物を調製した。
(Comparative Example 1)
A heat-dissipating resin composition of Comparative Example 1 was prepared in the same manner as in Example 1 except that the amount of each component of Example 1 was changed as described in Table 1.

(比較例2)
上記の通りに調製した窒化ホウ素の二次凝集体(B−1)35重量部と、熱硬化性樹脂(A)としての不飽和ポリエステル樹脂(日立化成工業(株)製:WP2008(比重1.14))65重量部と、架橋剤(C)(日立化成工業(株)製:樹脂硬化剤:CT−50)1.1重量部とを溶融混練して放熱性樹脂組成物を調製した。
(Comparative Example 2)
35 parts by weight of the secondary aggregate (B-1) of boron nitride prepared as described above and an unsaturated polyester resin (manufactured by Hitachi Chemical Co., Ltd .: WP2008 (specific gravity 1. 14)) 65 parts by weight and 1.1 parts by weight of a crosslinking agent (C) (manufactured by Hitachi Chemical Co., Ltd .: resin curing agent: CT-50) were melt-kneaded to prepare a heat-dissipating resin composition.

(比較例3及び4)
比較例2の各成分の量を表1に記載される通りに変更した以外は比較例2と同様にして、比較例3及び4の放熱性樹脂組成物を調製した。
(Comparative Examples 3 and 4)
The heat-radiating resin compositions of Comparative Examples 3 and 4 were prepared in the same manner as Comparative Example 2 except that the amount of each component of Comparative Example 2 was changed as described in Table 1.

(比較例5)
熱伝導性フィラー(D)としてアルミナ(昭和電工(株)製:アルミナA−12)を用いた。アルミナ80重量部と、熱硬化性樹脂(A)としての不飽和ポリエステル樹脂(日立化成工業(株)製:WP2008(比重1.14))20重量部と、架橋剤(C)(日立化成工業(株)製:樹脂硬化剤:CT−50)0.3重量部とを溶融混練して放熱性樹脂組成物を調製した。
(Comparative Example 5)
Alumina (Showa Denko KK: Alumina A-12) was used as the thermally conductive filler (D). 80 parts by weight of alumina, 20 parts by weight of an unsaturated polyester resin (manufactured by Hitachi Chemical Co., Ltd .: WP2008 (specific gravity 1.14)) as a thermosetting resin (A), and a crosslinking agent (C) (Hitachi Chemical Industry) Co., Ltd .: Resin curing agent: CT-50) 0.3 parts by weight was melt-kneaded to prepare a heat-dissipating resin composition.

実施例1、2及び比較例1−5の放熱性樹脂組成物について、熱伝導率及び放熱性樹脂組成物の流動性(比較例1の放熱性樹脂組成物の流動性を100とした)を測定した。   About the heat dissipation resin composition of Examples 1, 2 and Comparative Example 1-5, the thermal conductivity and the fluidity of the heat dissipation resin composition (the fluidity of the heat dissipation resin composition of Comparative Example 1 was set to 100). It was measured.

放熱性樹脂組成物の流動性は以下のように測定した:
直径1mmのキャピラリを有する高化式フローテスターを用い、所定の温度にて流下粘度を測定、比較することで流動性の指標とした。粘度的に厳しければ(高粘度で流下が困難)、トランスファー成形機を用いてスパイラルフロー長を比較することで流動性の指標とした。
The fluidity of the heat dissipating resin composition was measured as follows:
Using a Koka flow tester having a capillary with a diameter of 1 mm, the flowing-down viscosity was measured and compared at a predetermined temperature to obtain an index of fluidity. If the viscosity was severe (high viscosity and difficult to flow down), a spiral flow length was compared using a transfer molding machine to obtain an index of fluidity.

実施例1、2及び比較例1−5の放熱性樹脂組成物の熱伝導率及び流動性を表1に示し、また、熱伝導率を図4に示し、流動性を図5に示す。   The thermal conductivity and fluidity of the heat-dissipating resin compositions of Examples 1 and 2 and Comparative Example 1-5 are shown in Table 1, the thermal conductivity is shown in FIG. 4, and the fluidity is shown in FIG.

Figure 2017137410
Figure 2017137410

表1、図4及び図5より、実施例1と比較例3を比較すると、熱伝導性フィラーの二次凝集体及び単一粒子の両方を含む実施例1の放熱性樹脂組成物は、比較例3と同程度のフィラーを含有するにもかかわらず、比較例3の組成物に対して、流動性を維持したまま熱伝導率が高くなった。また、実施例2と比較例4を比較すると、熱伝導性フィラーの二次凝集体及び単一粒子の両方を含む実施例2の放熱性樹脂組成物は、比較例4と同程度のフィラーを含有するにもかかわらず、比較例4の組成物に対して、熱伝導率及び流動性がいずれも向上した。これより、放熱性樹脂組成物に熱伝導性フィラーの二次凝集体及び単一粒子を用いることにより、熱伝達経路が形成されやすくなるため、熱伝導性が高くなり、放熱性が向上し、同時に流動性も確保されることが示された。また、比較例1では、熱伝導性フィラーの二次凝集体及び単一粒子の両方を含んでいるにもかかわらず、熱伝導性フィラーの含有量が同程度の比較例2と同等の熱伝導率であった。これより、実施例1及び2のように、熱伝導性フィラーの二次凝集体及び単一粒子の合計含有量を特定の範囲にすることによって、熱伝導性が高くなり、放熱性が向上し、同時に流動性も確保されることが示された。   From Table 1, FIG. 4 and FIG. 5, when Example 1 and Comparative Example 3 are compared, the heat-dissipating resin composition of Example 1 containing both secondary aggregates and single particles of the thermally conductive filler is compared. Despite containing the same amount of filler as in Example 3, the thermal conductivity of the composition of Comparative Example 3 was increased while maintaining fluidity. Moreover, when Example 2 and Comparative Example 4 are compared, the heat-dissipating resin composition of Example 2 containing both the secondary aggregates and single particles of the thermally conductive filler has a filler comparable to that of Comparative Example 4. Despite being contained, both the thermal conductivity and fluidity were improved with respect to the composition of Comparative Example 4. From this, by using secondary aggregates and single particles of heat conductive filler in the heat radiating resin composition, it becomes easier to form a heat transfer path, the heat conductivity is increased, and the heat dissipation is improved, At the same time, it was shown that fluidity was secured. Moreover, in Comparative Example 1, although it contains both secondary aggregates and single particles of the thermally conductive filler, the thermal conductivity equivalent to that of Comparative Example 2 having the same content of the thermally conductive filler. It was rate. From this, like Example 1 and 2, by making the total content of the secondary aggregate and single particle of a heat conductive filler into a specific range, heat conductivity becomes high and heat dissipation improves. At the same time, it was shown that fluidity was secured.

1 二次凝集体
2 単一粒子
3 マトリックス樹脂
1 Secondary aggregate 2 Single particle 3 Matrix resin

Claims (1)

不飽和ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂及びシリコーン樹脂から選ばれる少なくとも1種である熱硬化性樹脂(A)30〜60重量部と、
粒径が20μm超である二次凝集体及び粒径が20μm以下である単一粒子を含む熱伝導性フィラー(B)40〜70重量部(成分(A)及び(B)の合計量は100重量部である)と、
上記熱硬化性樹脂(A)と反応し得る架橋剤(C)0.05〜3.0重量部と
を含む放熱性樹脂組成物。
30-60 parts by weight of thermosetting resin (A) that is at least one selected from unsaturated polyester resin, epoxy resin, urethane resin and silicone resin;
40 to 70 parts by weight of heat conductive filler (B) including secondary aggregates having a particle size of more than 20 μm and single particles having a particle size of 20 μm or less (the total amount of components (A) and (B) is 100 Parts by weight)
A heat dissipating resin composition comprising 0.05 to 3.0 parts by weight of a crosslinking agent (C) capable of reacting with the thermosetting resin (A).
JP2016019107A 2016-02-03 2016-02-03 Heat-dissipating resin composition Pending JP2017137410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016019107A JP2017137410A (en) 2016-02-03 2016-02-03 Heat-dissipating resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016019107A JP2017137410A (en) 2016-02-03 2016-02-03 Heat-dissipating resin composition

Publications (1)

Publication Number Publication Date
JP2017137410A true JP2017137410A (en) 2017-08-10

Family

ID=59565489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016019107A Pending JP2017137410A (en) 2016-02-03 2016-02-03 Heat-dissipating resin composition

Country Status (1)

Country Link
JP (1) JP2017137410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110216597A (en) * 2019-05-28 2019-09-10 南京航空航天大学 A kind of the resin finish block and preparation method of Compostie abrasive particles structure

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202277A (en) * 1991-09-11 1993-08-10 Mitsubishi Electric Corp Highly thermally conductive and lowly shrinking, wet-type unsaturated polyester resin composition, and circuit breaker made therefrom
JP2002164481A (en) * 2000-11-13 2002-06-07 Three M Innovative Properties Co Heat conductive sheet
JP2004359526A (en) * 2003-06-06 2004-12-24 Japan Fine Ceramics Center Electroconductive ceramic composite material and its producing method
JP2005232595A (en) * 2004-01-21 2005-09-02 Jfe Steel Kk Iron based powdery mixture for high strength sintered component
JP2006001028A (en) * 2004-06-15 2006-01-05 Oji Paper Co Ltd Inkjet recording body
JP2011208007A (en) * 2010-03-30 2011-10-20 Denki Kagaku Kogyo Kk Resin composite composition and application thereof
WO2013100172A1 (en) * 2011-12-27 2013-07-04 パナソニック株式会社 Thermoconductive resin composition
JP2014152299A (en) * 2013-02-13 2014-08-25 Mitsubishi Electric Corp Thermosetting resin composition, conductive resin sheet, method for producing the same, and power module comprising the same
JP2015146387A (en) * 2014-02-03 2015-08-13 住友ベークライト株式会社 Heat conductive sheet and semiconductor device
JP2015195287A (en) * 2014-03-31 2015-11-05 三菱化学株式会社 Heat dissipation sheet, coating liquid for heat dissipation sheet, and power device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202277A (en) * 1991-09-11 1993-08-10 Mitsubishi Electric Corp Highly thermally conductive and lowly shrinking, wet-type unsaturated polyester resin composition, and circuit breaker made therefrom
JP2002164481A (en) * 2000-11-13 2002-06-07 Three M Innovative Properties Co Heat conductive sheet
JP2004359526A (en) * 2003-06-06 2004-12-24 Japan Fine Ceramics Center Electroconductive ceramic composite material and its producing method
JP2005232595A (en) * 2004-01-21 2005-09-02 Jfe Steel Kk Iron based powdery mixture for high strength sintered component
JP2006001028A (en) * 2004-06-15 2006-01-05 Oji Paper Co Ltd Inkjet recording body
JP2011208007A (en) * 2010-03-30 2011-10-20 Denki Kagaku Kogyo Kk Resin composite composition and application thereof
WO2013100172A1 (en) * 2011-12-27 2013-07-04 パナソニック株式会社 Thermoconductive resin composition
JP2014152299A (en) * 2013-02-13 2014-08-25 Mitsubishi Electric Corp Thermosetting resin composition, conductive resin sheet, method for producing the same, and power module comprising the same
JP2015146387A (en) * 2014-02-03 2015-08-13 住友ベークライト株式会社 Heat conductive sheet and semiconductor device
JP2015195287A (en) * 2014-03-31 2015-11-05 三菱化学株式会社 Heat dissipation sheet, coating liquid for heat dissipation sheet, and power device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110216597A (en) * 2019-05-28 2019-09-10 南京航空航天大学 A kind of the resin finish block and preparation method of Compostie abrasive particles structure

Similar Documents

Publication Publication Date Title
US10964620B2 (en) Thermally conductive sheet
JP6092806B2 (en) Zinc oxide powder, heat dissipating filler, resin composition, heat dissipating grease and heat dissipating coating composition
JP5089908B2 (en) High thermal conductive resin compound / high thermal conductive resin molding / mixing particles for heat radiating sheet, high thermal conductive resin compound / high thermal conductive resin molding / heat radiating sheet, and manufacturing method thereof
JP5814688B2 (en) Thermally conductive resin composition and heat dissipation material containing the same
JP2010505729A (en) Mixed boron nitride composition and method for producing the same
JP5183639B2 (en) Alumina fiber assembly, production method and use thereof
JP6826544B2 (en) Thermally conductive filler composition, its use and manufacturing method
JP6527904B2 (en) Resin composition, article produced therefrom, and method of producing the same
JP7325670B2 (en) Spherical alumina particle mixture, method for producing same, and resin composite composition and resin composite containing said spherical alumina particle mixture
JP2010001402A (en) High thermal conductivity resin molded article
JP7220150B2 (en) Low dielectric constant thermal conductive heat dissipation material
JP6164130B2 (en) Manufacturing method of heat conduction material
Permal et al. Enhanced thermal and mechanical properties of epoxy composites filled with hybrid filler system of aluminium nitride and boron nitride
JP6786047B2 (en) Method of manufacturing heat conductive sheet
WO2020138335A1 (en) Inorganic powder for heat-dissipating resin composition, heat-dissipating resin composition using same, and methods for producing same
JP2013194223A (en) Heat conductive material
JP2012122057A (en) Inorganic organic composite composition
JP2015059130A (en) Epoxy resin composition, use thereof and filler for epoxy resin composition
JP2017137410A (en) Heat-dissipating resin composition
JP2021109825A (en) Heat-conductive filler and heat-conductive composition containing the same
JP2012162650A (en) Thermoconductive resin composition, and semiconductor package
JP2016169281A (en) Composite filler and resin composition containing the same
JP7390548B2 (en) Thermal conductive silicone compositions and thermally conductive silicone materials
TW202344581A (en) Heat dissipation sheet manufacturing method and heat dissipation sheet
JP2024021860A (en) Almina powder, resin composition, and method of manufacturing almina powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190115