JP2009234112A - Heat conductive laminate and its manufacturing method - Google Patents

Heat conductive laminate and its manufacturing method Download PDF

Info

Publication number
JP2009234112A
JP2009234112A JP2008084669A JP2008084669A JP2009234112A JP 2009234112 A JP2009234112 A JP 2009234112A JP 2008084669 A JP2008084669 A JP 2008084669A JP 2008084669 A JP2008084669 A JP 2008084669A JP 2009234112 A JP2009234112 A JP 2009234112A
Authority
JP
Japan
Prior art keywords
group
component
laminate
composition
silicone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008084669A
Other languages
Japanese (ja)
Other versions
JP4572243B2 (en
Inventor
Akihiro Endo
晃洋 遠藤
Masaya Asaine
雅弥 朝稲
Takahiro Maruyama
貴宏 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2008084669A priority Critical patent/JP4572243B2/en
Priority to KR20090025796A priority patent/KR101488029B1/en
Priority to TW098109942A priority patent/TWI474923B/en
Priority to CN 200910130238 priority patent/CN101544089B/en
Publication of JP2009234112A publication Critical patent/JP2009234112A/en
Application granted granted Critical
Publication of JP4572243B2 publication Critical patent/JP4572243B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/72Cured, e.g. vulcanised, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat conductive sheet which can temporarily fix itself to an exothermic electronic component or a heat radiating member because of having a moderate adhesiveness and which is good in reworkability because the adhesive strengths of both surfaces are different. <P>SOLUTION: The heat conductive laminate consists of a first cured product layer formed by curing a silicone composition 1 that contains (a) an organopolysiloxane having an alkenyl group, (b) a heat conductive filler, (c) an organohydrogenpolysiloxane, (d) a catalyst based on a platinum group metal, (e) a reaction controlling agent and (f) a silicone resin and a second cured product layer formed, on top of the first cured product layer, by curing a silicone composition 2 that contains the above (a)-(f) but differs in the composition from the silicone composition 1. The adhesive strengths of both surfaces are different from each other. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、特には発熱性電子部品の冷却のために、発熱性電子部品とヒートシンク又は回路基板などの放熱部材との間の熱境界面に介装し得る熱伝導性積層体及びその製造方法に関する。   The present invention relates to a thermally conductive laminate that can be interposed at a thermal interface between a heat-generating electronic component and a heat-dissipating member such as a heat sink or a circuit board, particularly for cooling the heat-generating electronic component, and a method for manufacturing the same. About.

パーソナルコンピュータ、デジタルビデオディスク、携帯電話等の電子機器に使用されるCPU、ドライバIC、メモリー等の半導体素子、LED等の発光素子などの電子部品は、高性能化・高速化・小型化・高集積化に伴い、それ自身が大量の熱を発生する。その熱によるこれらの発熱性電子部品の温度上昇は発熱性電子部品自身の動作不良、破壊を引き起こす恐れがある。そのため、動作中の発熱性電子部品の温度上昇を抑制するための多くの熱放散方法及びそれに使用する放熱部材が提案されている。   Electronic components such as CPUs, driver ICs, semiconductor elements such as memories, and light emitting elements such as LEDs used in electronic devices such as personal computers, digital video disks, and mobile phones are becoming more sophisticated, faster, smaller, and more expensive. Along with integration, itself generates a large amount of heat. The temperature rise of these exothermic electronic components due to the heat may cause malfunction and destruction of the exothermic electronic components themselves. Therefore, many heat dissipation methods for suppressing the temperature rise of the heat-generating electronic components during operation and heat dissipation members used for the heat dissipation methods have been proposed.

従来、電子機器等においては、動作中の発熱性電子部品の温度上昇を抑えるために、アルミニウム、銅等の熱伝導率の高い金属板を用いたヒートシンク等の放熱部材が使用されている。この放熱部材は、発熱性電子部品が発生する熱を伝導し、熱を外気との温度差によって表面から放出する。   Conventionally, in an electronic device or the like, a heat radiating member such as a heat sink using a metal plate having a high thermal conductivity such as aluminum or copper is used in order to suppress a temperature rise of a heat generating electronic component during operation. The heat radiating member conducts heat generated by the heat-generating electronic component, and releases the heat from the surface due to a temperature difference from the outside air.

発熱性電子部品から発生する熱を放熱部材に効率よく伝導させるためには、発熱性電子部品と放熱部材との間に生じるわずかな間隙を熱伝導性材料で埋めることが効果的である。その熱伝導性材料として、熱伝導性充填材を配合した熱伝導性シートや熱伝導性グリース等が用いられ、これら熱伝導性材料を発熱性電子部品と放熱部材との間に介装し、これら熱伝導性材料を介して発熱性電子部品から放熱部材への熱伝導を実現している。   In order to efficiently conduct heat generated from the heat generating electronic component to the heat radiating member, it is effective to fill a slight gap generated between the heat generating electronic component and the heat radiating member with the heat conductive material. As the heat conductive material, a heat conductive sheet or a heat conductive grease blended with a heat conductive filler is used, and these heat conductive materials are interposed between a heat-generating electronic component and a heat dissipation member, Heat conduction from the heat-generating electronic component to the heat radiating member is realized through these heat conductive materials.

シートはグリースに比べ取り扱い性に優れており、熱伝導性シリコーンゴム等で形成された熱伝導性シートは様々な分野に用いられている。   Sheets are easier to handle than grease, and heat conductive sheets formed of heat conductive silicone rubber or the like are used in various fields.

熱伝導性シートは、取り扱い性を重視した一般品と、密着性を重視した低硬度品とに大別することができる。   Thermally conductive sheets can be broadly classified into general products that emphasize handling and low hardness products that emphasize adhesion.

このうち一般品は、殆どの場合、JIS K6253に規定のタイプAデュロメーターで測定した硬度が60以上の硬いゴムをシート状にしたものであり、0.1mm程度の薄薄膜状態であっても単品での取り扱いが可能である。しかし、この一般品は表面に粘着感がないため、発熱性電子部品及び放熱部材への固定が困難である。これを解決するため、薄膜状の熱伝導性シートの片面乃至両面に粘着剤を塗布し、容易に固定ができるようにした粘着性付与タイプが提案されている。しかしながら、塗布した粘着剤は熱伝導性が十分なものではないため、粘着剤塗布品の熱抵抗は塗布しないものに比べ大きく増加してしまうという問題があった。また、粘着剤の塗布は、シートの厚さそのものを増加させる点においても熱抵抗には不利に働く。   Of these, general products are most often made of hard rubber with a hardness of 60 or more as measured by a type A durometer as defined in JIS K6253 in a sheet form. Can be handled. However, since this general product does not have a sticky feeling on the surface, it is difficult to fix the heat-generating electronic component and the heat dissipation member. In order to solve this, a tackiness imparting type has been proposed in which a pressure-sensitive adhesive is applied to one or both sides of a thin-film heat conductive sheet so that it can be easily fixed. However, since the applied adhesive does not have sufficient thermal conductivity, there is a problem that the thermal resistance of the adhesive-applied product is greatly increased compared to that without application. Moreover, the application of the pressure-sensitive adhesive adversely affects the thermal resistance in terms of increasing the thickness of the sheet itself.

一方、低硬度品は、アスカ−C硬度60以下の低硬度熱伝導材料をシート状に成形したものであり、粘着剤などを塗布せずとも、自身を固定できる程度の粘着力を保持している。しかしながら、その低硬度を実現するために、シート中に多量の可塑剤を配合したり、架橋密度を非常に低くしたりしているため、薄膜にした際の強度及び取り扱い性に難点があるので、良好な取り扱い性を得るためにはある一定以上の厚みが必要であった。そのため、低硬度品の熱抵抗を低下させることは困難であった。また、このような低硬度品は、オイルブリードが発生し、近傍の発熱性電子部品を汚染し易いという欠点があった。   On the other hand, a low-hardness product is a sheet of a low-hardness heat conductive material having an Asuka-C hardness of 60 or less, and maintains an adhesive strength that can fix itself without applying an adhesive or the like. Yes. However, in order to realize the low hardness, a large amount of plasticizer is blended in the sheet or the crosslink density is very low, so there are difficulties in strength and handleability when forming a thin film. In order to obtain good handleability, a certain thickness or more is required. Therefore, it has been difficult to reduce the thermal resistance of the low hardness product. Further, such a low hardness product has a drawback that oil bleed is generated and a nearby heat-generating electronic component is easily contaminated.

このような欠点を解決するものとして、単一層からなる薄膜でありながら取り扱い可能で、かつ、自身を発熱性電子部品および放熱部材に容易に固定できる粘着性を持つ熱伝導性粘着テープが開発されている(特許文献1)。しかしながら、これら熱伝導性粘着テープは、自身の粘着力が均一であり、片面強粘着、片面微粘着のようなより細かい特性要求に応えることができなかった。例えば、強度の低い電子素子と、高強度の放熱体を粘着テープにて固定、放熱する場合、一度貼り付けに失敗してしまうと引き剥がし(リワーク)が非常に困難であり、無理に引き剥がそうとすると、電子素子を破壊してしまう。これを解決するために、粘着テープ片面に打粉処理などを行い、粘着力をコントロールする方法があるが、この場合、熱伝導性粘着テープと被接着体との密着が不良となり、熱伝導性が顕著に低下する問題が発生する。   As a solution to these disadvantages, a thermally conductive adhesive tape has been developed that can be handled while being a thin film consisting of a single layer and that can be easily fixed to a heat-generating electronic component and a heat-dissipating member. (Patent Document 1). However, these heat conductive pressure-sensitive adhesive tapes have a uniform adhesive force, and cannot satisfy finer characteristic requirements such as single-sided strong adhesion and single-sided fine adhesion. For example, when a low-strength electronic element and a high-strength heat radiator are fixed with heat-adhesive tape and radiated, once the attachment fails, it is very difficult to peel off (rework), and it will be forcibly removed. Doing so will destroy the electronic device. In order to solve this, there is a method of controlling the adhesive force by performing dusting treatment etc. on one side of the adhesive tape, but in this case, the adhesion between the heat conductive adhesive tape and the adherend becomes poor, and the thermal conductivity is reduced. A problem of significant degradation occurs.

その他、本発明に関連する先行技術を開示するものとして特許文献2〜5が挙げられる。   In addition, Patent Documents 2 to 5 are disclosed as prior art related to the present invention.

特開2002−030212号公報Japanese Patent Laid-Open No. 2002-030212 特開2005−035264号公報JP 2005-035264 A 特開2005−206733号公報JP 2005-206733 A 特開2006−182888号公報JP 2006-182888 A 特開2006−188610号公報JP 2006-188610 A

そこで、本発明の課題は、薄膜で取り扱い性が良く、適度な粘着性を有するため自身で発熱性電子部品又は放熱部材に容易に固定でき、かつ両面の粘着力が異なるため、リワーク性が良好で熱伝導性にも優れる熱伝導性積層体及びその製造方法を提供することにある。   Therefore, the problem of the present invention is that the thin film is easy to handle, has an appropriate adhesiveness, and can be easily fixed to a heat-generating electronic component or a heat radiating member by itself, and the adhesive strength on both sides is different, so the reworkability is good. Another object of the present invention is to provide a thermally conductive laminate having excellent thermal conductivity and a method for producing the same.

本発明者らは、上記課題を達成するため鋭意検討を行った結果、熱伝導性シートを、特定の付加反応硬化型のシリコーン組成物の硬化物からなる層と、別の組成を有する付加反応硬化型のシリコーン組成物の硬化物からなる層との積層体として構成することにより、該課題を解決できることを見出した。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have made a heat conductive sheet, a layer made of a cured product of a specific addition reaction-curable silicone composition, and an addition reaction having a different composition. It has been found that this problem can be solved by constituting a laminate with a layer comprising a cured product of a curable silicone composition.

即ち、本発明は第一に、
(a)ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサン:100容量部、
(b)熱伝導性充填材:50〜1,000容量部、
(c)ケイ素原子に結合した水素原子を1分子中に2個以上有するオルガノハイドロジェンポリシロキサン:本成分のケイ素原子に結合した水素原子/(a)成分中のアルケニル基のモル比が0.5〜5.0となる量、
(d)白金族金属系触媒:有効量、
(e)反応制御剤:有効量、および
(f)シリコーン樹脂:50〜500容量部
を含むシリコーン組成物1を薄膜状に成形し硬化させてなる第一の硬化物層と、前記(a)〜(f)成分を必須成分として含み前記シリコーン組成物1と組成が異なるシリコーン組成物2を前記第一の硬化物層の片面上に薄膜状に成形し硬化させてなる第二の硬化物層とからなり、両面の粘着力が互いに異なる熱伝導性積層体を提供する。
That is, the present invention firstly
(A) Organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in one molecule: 100 parts by volume
(B) Thermally conductive filler: 50 to 1,000 parts by volume,
(C) Organohydrogenpolysiloxane having two or more hydrogen atoms bonded to silicon atoms in one molecule: The molar ratio of hydrogen atoms bonded to silicon atoms in this component / alkenyl groups in component (a) is 0.00. An amount of 5 to 5.0,
(D) platinum group metal catalyst: effective amount,
(E) reaction control agent: effective amount, and (f) silicone resin: a first cured product layer formed by curing the silicone composition 1 containing 50 to 500 parts by volume into a thin film, and the above (a) A second cured product layer obtained by forming a silicone composition 2 containing the component (f) as an essential component and having a composition different from that of the silicone composition 1 into a thin film on one side of the first cured product layer and curing it. And a thermally conductive laminate having different adhesive strengths on both sides.

なお、本発明に用いられる組成物の成分の配合量を「容量部」で示す際の「容量」とは当該成分の質量をその真比重で除して得られた値を意味する。   The “capacity” when the blending amount of the component of the composition used in the present invention is represented by “volume part” means a value obtained by dividing the mass of the component by its true specific gravity.

本発明の熱伝導性積層体の好ましい実施形態のとして次のものを挙げることができる。   The following can be mentioned as preferable embodiment of the heat conductive laminated body of this invention.

・室温下、前記積層体の25mm幅のサンプルの片面をアルミニウム板に当て、質量2kgのゴムローラーで圧着して接着後10分間養生し、その後前記積層体のアルミニウム板と接着されていない他方の片面に補強材に接着した後、該積層体の一端を接着した前記補強材とともに把持して引っ張り速度300mm/minにて180°方向に前記アルミニウム板から引き剥がし、引き剥がしに要した力(粘着力)を測定することを該積層体の両面に行ったときに、両面の粘着力がともに0.3N/cm以上であり、かつ、両面の粘着力の差が2N/cm以上であることが好ましい。上記補強材としては、例えばシリコーンテープ、アルミニウム箔等を挙げることができる。   -At room temperature, one side of a 25 mm wide sample of the laminate was applied to an aluminum plate, pressure-bonded with a rubber roller having a mass of 2 kg, and cured for 10 minutes after bonding, and then the other not bonded to the aluminum plate of the laminate After adhering to the reinforcing material on one side, the laminate was gripped with one end of the adhering reinforcing material and peeled off from the aluminum plate in a 180 ° direction at a pulling speed of 300 mm / min. Force) is measured on both sides of the laminate, the adhesive strength on both sides is 0.3 N / cm or more, and the difference in adhesive strength on both sides is 2 N / cm or more. preferable. Examples of the reinforcing material include silicone tape and aluminum foil.

・前記(f)成分のシリコーン樹脂が、R 3SiO1/2単位(R1は脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基を示す)とSiO4/2単位とを含み、R 3SiO1/2単位/SiO4/2単位のモル比が0.5〜1.5であることが好ましい。 The silicone resin as the component (f) is composed of R 1 3 SiO 1/2 units (R 1 represents an unsubstituted or substituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond) and SiO 4/2 units. And the molar ratio of R 1 3 SiO 1/2 units / SiO 4/2 units is preferably 0.5 to 1.5.

・前記のシリコーン組成物1及び/又はシリコーン組成物2は、さらに、(g)成分として、
(g−1)下記一般式(1):
Si(OR)4-a-b (1)
(式中、Rは独立に炭素原子数6〜15のアルキル基であり、Rは独立に非置換または置換の炭素原子数1〜8の1価炭化水素基であり、Rは独立に炭素原子数1〜6のアルキル基であり、aは1〜3の整数、bは0〜2の整数であり、但しa+bは1〜3の整数である。)
で表されるアルコキシシラン化合物、および
(g−2)下記一般式(2):
-The above-mentioned silicone composition 1 and / or silicone composition 2 are further used as component (g):
(G-1) The following general formula (1):
R 2 a R 3 b Si (OR 4 ) 4-ab (1)
Wherein R 2 is independently an alkyl group having 6 to 15 carbon atoms, R 3 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and R 4 is independently And an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a + b is an integer of 1 to 3.)
And (g-2) the following general formula (2):

Figure 2009234112
Figure 2009234112

(式中、Rは独立に炭素原子数1〜6のアルキル基であり、cは5〜100の整数である。)
で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンからなる群から選ばれる少なくとも1種: 0.01〜50容量部
を含有することが好ましい。
(In the formula, R 5 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100.)
It is preferable to contain 0.01-50 volume part of at least 1 sort (s) chosen from the group which consists of dimethylpolysiloxane blocked with the trialkoxysilyl group at the molecular chain fragment end represented by

・前記のシリコーン組成物1及び/又はシリコーン組成物2は、更に、(h)成分として、下記一般式(3):
-(SiR O)SiR -R ・・・(3)
(Rは独立に炭素原子数1〜18の脂肪族不飽和結合を含まない一価炭化水素基、dは5〜2,000の整数である。)
で表される23℃における動粘度が10〜100,000mm2/sのオルガノポリシロキサンを含有することが好ましい。
-Said silicone composition 1 and / or silicone composition 2 are further represented by the following general formula (3) as component (h):
R 6- (SiR 6 2 O) d SiR 6 2 -R 6 (3)
(R 6 is a monovalent hydrocarbon group which does not contain an aliphatic unsaturated bond having 1 to 18 carbon atoms, and d is an integer of 5 to 2,000.)
It is preferable to contain the organopolysiloxane whose kinematic viscosity in 23 degreeC represented by these is 10-100,000 mm < 2 > / s.

・前記熱伝導性積層体は、厚みが20〜1,000μmであることが好ましい。   -It is preferable that the said heat conductive laminated body is 20-1,000 micrometers in thickness.

・前記熱伝導性積層体は、レーザーフラッシュ法で測定した25℃における熱抵抗が10cm2・K/W以下であることが好ましい。 The thermal conductive laminate preferably has a thermal resistance at 25 ° C. measured by a laser flash method of 10 cm 2 · K / W or less.

本発明は、第二に、
(a)ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサン:100容量部、
(b)熱伝導性充填材:50〜1,000容量部、
(c)ケイ素原子に結合した水素原子を1分子中に2個以上有するオルガノハイドロジェンポリシロキサン:本成分のケイ素原子に結合した水素原子/(a)成分中のアルケニル基のモル比が0.5〜5.0となる量、
(d)白金族金属系触媒:有効量、
(e)反応制御剤:有効量、並びに
(f)シリコーン樹脂:50〜500容量部
を含むシリコーン組成物1を、シリコーン粘着剤用の表面離型処理を施した基材の表面に薄膜状に塗布し硬化させて第一の硬化物層を形成し、その後、前記(a)〜(f)成分を含み前記シリコーン組成物1と組成が異なるシリコーン組成物2を前記第一の硬化物層の表面上に薄膜状に塗布し硬化させて第二の硬化物層を形成することを特徴とする、上記のその両面の粘着力が互いに異なる熱伝導性積層体の製造方法を提供する。
The present invention secondly,
(A) Organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in one molecule: 100 parts by volume
(B) Thermally conductive filler: 50 to 1,000 parts by volume,
(C) Organohydrogenpolysiloxane having two or more hydrogen atoms bonded to silicon atoms in one molecule: The molar ratio of hydrogen atoms bonded to silicon atoms in this component / alkenyl groups in component (a) is 0.00. An amount of 5 to 5.0,
(D) platinum group metal catalyst: effective amount,
(E) Reaction control agent: Effective amount, and (f) Silicone resin: Silicone composition 1 containing 50 to 500 parts by volume is formed into a thin film on the surface of a base material subjected to surface release treatment for silicone adhesive. A first cured product layer is formed by applying and curing, and then a silicone composition 2 containing the components (a) to (f) and having a composition different from that of the silicone composition 1 is formed on the first cured product layer. Provided is a method for producing a heat-conductive laminate having different adhesive strengths on both surfaces, which is formed by applying a thin film on the surface and curing to form a second cured product layer.

本発明の上記製造方法の好ましい実施形態の一つとして、前記基材に施しているシリコーン粘着剤用の離型処理が、フッ素置換基を主鎖に含む変性シリコーンによる処理である製造方法が挙げられる。   One preferred embodiment of the production method of the present invention is a production method in which the release treatment for the silicone pressure-sensitive adhesive applied to the substrate is treatment with a modified silicone containing a fluorine substituent in the main chain. It is done.

本発明の熱伝導性積層体は、両面の表面粘着性が異なり、しかも片面毎に異なる所望の粘着力を備えさせることができるのでリワーク性に非常に優れる。該熱伝導性積層体の各面の粘着性は適度であるので発熱性電子部品や放熱部材に粘着して容易に固定でき、しかも必要に応じて被着体から容易に剥離性することができるので取り扱い性が良好である。また、発熱性電子部品と放熱部材との間に介装した際には両者を良好に接触させることができ、極めて良好な熱伝導性を発揮する。さらにオイルのブリードは抑制され問題にならない。したがって、本発明の積層体は熱伝導性シートとして有用である。   The heat conductive laminate of the present invention is very excellent in reworkability because it has different surface adhesiveness on both sides and can have different desired adhesive strength on each side. Since the adhesiveness of each surface of the thermally conductive laminate is moderate, it can be easily fixed by sticking to a heat-generating electronic component or a heat radiating member, and can be easily peeled off from the adherend if necessary. Therefore, the handleability is good. Moreover, when interposed between a heat-generating electronic component and a heat radiating member, both can be satisfactorily brought into contact with each other, and extremely good thermal conductivity is exhibited. Furthermore, oil bleed is suppressed and does not become a problem. Therefore, the laminate of the present invention is useful as a heat conductive sheet.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の熱伝導性積層体は第一の硬化物層と第二の硬化物層とからなるが、これらはいずれも上記(a)〜(f)成分を必須成分として含むがそれぞれ異なる組成を有する組成物から形成される。以下、該組成物について説明する。
〔(a)アルケニル基を有するオルガノポリシロキサン〕
本発明組成物の(a)成分は、ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサンであり、本発明の付加反応硬化型組成物における主剤(ベースポリマー)の一つである。
Although the heat conductive laminated body of this invention consists of a 1st hardened | cured material layer and a 2nd hardened | cured material layer, these contain the said (a)-(f) component as an essential component, but each has a different composition. It is formed from the composition which has. Hereinafter, the composition will be described.
[(A) Organopolysiloxane having an alkenyl group]
Component (a) of the composition of the present invention is an organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in one molecule, and is one of the main agents (base polymers) in the addition reaction curable composition of the present invention. One.

このオルガノポリシロキサンは液状であれば、その分子構造は限定されず、例えば、直鎖状、分岐鎖状、一部分岐を有する直鎖状が挙げられるが、特に好ましくは直鎖状である。   The molecular structure of the organopolysiloxane is not limited as long as it is liquid, and examples thereof include a straight chain, a branched chain, and a partially branched straight chain, and a linear chain is particularly preferable.

ここで、アルケニル基とは直鎖状のアルケニル基だけでなくシクロアルケニル基を包含する。具体的には、前記アルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等の通常、炭素原子数2〜8程度のものが挙げられ、中でもビニル基、アリル基等の炭素原子数2〜3の低級アルケニル基が好ましく、特にはビニル基が好ましい。このアルケニル基は、分子鎖末端のケイ素原子、また分子鎖途中のケイ素原子の何れに結合していてもよいが、得られる硬化物の柔軟性がよいものとするため、分子鎖末端のケイ素原子にのみ結合して存在することが好ましい。   Here, the alkenyl group includes not only a linear alkenyl group but also a cycloalkenyl group. Specifically, examples of the alkenyl group include those having usually about 2 to 8 carbon atoms such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group, and cyclohexenyl group. Of these, a lower alkenyl group having 2 to 3 carbon atoms such as a vinyl group and an allyl group is preferable, and a vinyl group is particularly preferable. This alkenyl group may be bonded to either a silicon atom at the end of the molecular chain or a silicon atom in the middle of the molecular chain, but the silicon atom at the end of the molecular chain is used to make the resulting cured product flexible. It is preferable that it is bonded only to.

(a)成分中のアルケニル基以外のケイ素原子に結合する基は、例えば、非置換または置換の一価炭化水素基であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基などのアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基の炭素原子に結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基などで置換された基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等の炭素原子数が1〜10、特に炭素原子数が1〜6のものが挙げられ、これらの中でも好ましくは、メチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基等の炭素原子数1〜3の非置換又は置換のアルキル基、及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基である。また、アルケニル基以外のケイ素原子に結合する基は全てが同一であっても異なっていてもよい。耐溶剤性などの特殊な特性を要求されない限り、コスト、その入手のし易さ、化学的安定性、環境負荷などの理由により全てメチル基が選ばれることが多い。   The group bonded to the silicon atom other than the alkenyl group in the component (a) is, for example, an unsubstituted or substituted monovalent hydrocarbon group, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, Cycloalkyl groups such as isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, etc., cyclopentyl group, cyclohexyl group, cycloheptyl group , Aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group, biphenylyl group, aralkyl groups such as benzyl group, phenylethyl group, phenylpropyl group, methylbenzyl group, and carbon atoms of these groups Some or all of the hydrogen atoms are halogen atoms such as fluorine, chlorine, bromine, cyano groups, etc. Substituted groups such as chloromethyl, 2-bromoethyl, 3-chloropropyl, 3,3,3-trifluoropropyl, chlorophenyl, fluorophenyl, cyanoethyl, 3,3,4,4 , 5, 5, 6, 6, 6-nonafluorohexyl group and the like having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms. Among these, methyl group, ethyl group are preferable. , A propyl group, a chloromethyl group, a bromoethyl group, a 3,3,3-trifluoropropyl group, an unsubstituted or substituted alkyl group having 1 to 3 carbon atoms such as a cyanoethyl group, and a phenyl group, a chlorophenyl group, a fluorophenyl An unsubstituted or substituted phenyl group such as a group. All the groups bonded to the silicon atom other than the alkenyl group may be the same or different. Unless special properties such as solvent resistance are required, a methyl group is often selected for reasons such as cost, availability, chemical stability, and environmental burden.

また、このオルガノポリシロキサンの25℃における動粘度は、通常、10〜100,000mm2/s、特に好ましくは500〜50,000mm2/sの範囲である。前記粘度が低すぎると、得られる組成物の保存安定性が悪くなり、また、高すぎると得られる組成物の伸展性が悪くなる場合がある。 Moreover, kinematic viscosity at 25 ° C. This organopolysiloxane is usually, 10~100,000mm 2 / s, particularly preferably from 500~50,000mm 2 / s. If the viscosity is too low, the storage stability of the resulting composition will be poor, and if it is too high, the extensibility of the resulting composition may be poor.

このようなオルガノポリシロキサンの好適な具体例としては、分子鎖両末端ジメチルビニルシロキシ基封鎖ポリジメチルシロキサン、分子鎖両末端メチルジビニルシロキシ基封鎖ポリジメチルシロキサン、分子鎖両末端ジメチルビニルシロキシ封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体等が挙げられる。   Preferable specific examples of such organopolysiloxanes include dimethylvinylsiloxy group-capped polydimethylsiloxane having molecular chains at both ends, methyldivinylsiloxy group-capped polydimethylsiloxane having molecular chains at both ends, and dimethylvinylsiloxy-capped dimethylsiloxane having molecular chains at both ends. -A methylphenylsiloxane copolymer etc. are mentioned.

この(a)成分のオルガノポリシロキサンは、1種単独でも、例えば粘度が異なる2種以上を組み合わせても使用することができる。   The organopolysiloxane of component (a) can be used singly or in combination of two or more having different viscosities.

〔(b)熱伝導性充填材〕
(b)成分である熱伝導性充填材としては、通常、例えば、金属粉末、金属酸化物粉末、セラミック粉末が用いられ、具体的には、アルミニウム粉末、銅粉末、銀粉末、ニッケル粉末、金粉末、酸化アルミニウム粉末、酸化亜鉛粉末、酸化マグネシウム粉末、酸化鉄粉末、酸化チタン粉末、酸化ジルコニウム粉末、窒化アルミニウム粉末、窒化ホウ素粉末、窒化珪素粉末、ダイヤモンド粉末、カーボン粉末、フラーレン粉末、カーボングラファイト粉末などが挙げられる。しかし、これらに限定されるものではなく、従来熱伝導性充填材として使用される公知の物質であれば如何なる充填材でもよく、これらは1種類単独であるいは2種類以上混ぜ合わせてもよい。
[(B) Thermally conductive filler]
As the thermally conductive filler that is component (b), for example, metal powder, metal oxide powder, and ceramic powder are usually used. Specifically, aluminum powder, copper powder, silver powder, nickel powder, gold powder, and the like are used. Powder, aluminum oxide powder, zinc oxide powder, magnesium oxide powder, iron oxide powder, titanium oxide powder, zirconium oxide powder, aluminum nitride powder, boron nitride powder, silicon nitride powder, diamond powder, carbon powder, fullerene powder, carbon graphite powder Etc. However, the present invention is not limited thereto, and any filler may be used as long as it is a known substance conventionally used as a thermally conductive filler, and these may be used alone or in combination of two or more.

これら熱伝導性充填材は、平均粒径が通常0.1〜100μm、望ましくは0.5〜50μmのものを用いることができる。これら充填材は1種単独で用いてもよいし、複数種を混合して用いてもよい。また、平均粒径の異なる粒子を2種以上用いることも可能である。なお、本発明において、平均粒径は体積平均粒径であり、マイクロトラック粒度分布測定装置MT3300EX(日機装株式会社)による測定値である。   As these heat conductive fillers, those having an average particle diameter of usually 0.1 to 100 μm, preferably 0.5 to 50 μm can be used. These fillers may be used individually by 1 type, and may mix and use multiple types. Two or more kinds of particles having different average particle diameters can be used. In addition, in this invention, an average particle diameter is a volume average particle diameter, and is a measured value by the micro track particle size distribution measuring apparatus MT3300EX (Nikkiso Co., Ltd.).

熱伝導性充填材の配合量は、組成物の流動性、成形性、得られる熱伝導性の観点から、(a)成分100容量部に対して50〜1,000容量部、好ましくは100〜500容量部である。   The blending amount of the heat conductive filler is 50 to 1,000 parts by volume, preferably 100 to 100 parts by volume with respect to 100 parts by volume of the component (a), from the viewpoint of fluidity, moldability, and heat conductivity to be obtained. 500 parts by volume.

〔(c)オルガノハイドロジェンポリシロキサン〕
本発明の組成物の(c)成分は、通常、ケイ素原子に結合した水素原子(即ち、SiH基)を1分子中に2個以上、好ましくは2〜100個有するオルガノハイドロジェンポリシロキサンであり、(a)成分の架橋剤として作用する成分である。即ち、(c)成分中のケイ素原子に結合した水素原子が、後述の(d)成分の白金族金属系触媒の作用により、(a)成分中のアルケニル基とヒドロシリル化反応により付加して、架橋結合を有する3次元網状構造を有する架橋硬化物を与える。
[(C) Organohydrogenpolysiloxane]
The component (c) of the composition of the present invention is usually an organohydrogenpolysiloxane having 2 or more, preferably 2 to 100, hydrogen atoms (that is, SiH groups) bonded to silicon atoms in one molecule. (A) It is a component which acts as a crosslinking agent for the component. That is, the hydrogen atom bonded to the silicon atom in the component (c) is added by the hydrosilylation reaction with the alkenyl group in the component (a) by the action of the platinum group metal catalyst of the component (d) described later, A crosslinked cured product having a three-dimensional network structure having crosslinked bonds is obtained.

(c)成分中のケイ素原子に結合した有機基としては、例えば、脂肪族不飽和結合を有しない非置換または置換の一価炭化水素基等が挙げられ、具体的には、(a)成分の項で説明したアルケニル基以外のケイ素原子に結合する基として例示したものと同種の非置換または置換の炭化水素基が挙げられる。その中でも、合成面および経済性の点から、メチル基であることが好ましい。   Examples of the organic group bonded to the silicon atom in the component (c) include an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond. Specifically, the component (a) Examples thereof include unsubstituted or substituted hydrocarbon groups of the same type as those exemplified as the group bonded to the silicon atom other than the alkenyl group described in the section. Among them, a methyl group is preferable from the viewpoint of synthesis and economy.

(c)成分のオルガノハイドロジェンポリシロキサンの構造は、特に限定されず、直鎖状、分岐状および環状のいずれであってもよいが、好ましくは直鎖状である。このような直鎖状のオルガノハイドロジェンポリシロキサンは、例えば、下記一般式(4):   The structure of the organohydrogenpolysiloxane of component (c) is not particularly limited, and may be any of linear, branched and cyclic, but is preferably linear. Such a linear organohydrogenpolysiloxane includes, for example, the following general formula (4):

Figure 2009234112
Figure 2009234112

(式中、Rは独立にアルケニル基以外の非置換または置換の1価炭化水素基あるいは水素原子であり、但し、少なくとも2個は水素原子であり、nは1以上の整数である。)
で表される。
(Wherein R 7 is independently an unsubstituted or substituted monovalent hydrocarbon group other than an alkenyl group or a hydrogen atom, provided that at least two are hydrogen atoms and n is an integer of 1 or more.)
It is represented by

上記一般式(4)において、Rで表されるアルケニル基以外の非置換または置換の1価炭化水素基は、(a)成分の項で前述したアルケニル基以外のケイ素原子に結合した基の中の1価炭化水素基と同種のものである。 In the general formula (4), the unsubstituted or substituted monovalent hydrocarbon group other than the alkenyl group represented by R 7 is a group bonded to a silicon atom other than the alkenyl group described above in the section of the component (a). It is the same kind as the monovalent hydrocarbon group therein.

また、nは好ましくは2〜100、より好ましくは5〜50の整数である。   N is preferably an integer of 2 to 100, more preferably 5 to 50.

(c)成分のオルガノハイドロジェンポリシロキサンの好適な具体例としては、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルフェニルポリシロキサン等が挙げられる。なお、(c)成分のオルガノハイドロジェンポリシロキサンは、1種単独でも2種以上を組み合わせても使用することができる。   Preferable specific examples of the organohydrogenpolysiloxane of component (c) include molecular chain both ends trimethylsiloxy group-capped methylhydrogen polysiloxane, molecular chain both ends trimethylsiloxy group-capped dimethylsiloxane / methylhydrogensiloxane copolymer , Dimethylsiloxane / methylhydrogensiloxane / methylphenylsiloxane copolymer blocked with trimethylsiloxy group blocked at both ends of molecular chain, dimethylpolysiloxane blocked with dimethylhydrogensiloxy group blocked at both ends of molecular chain, dimethylsiloxane with dimethylhydrogensiloxy group blocked at both ends of molecular chain・ Methylhydrogensiloxane copolymer, dimethylhydrogensiloxy group-blocked dimethylsiloxane at both molecular chains ・ Methylphenylsiloxane copolymer, dimethylhigh at both molecular chains Rojenshirokishi groups at methylphenyl polysiloxane and the like. The (c) component organohydrogenpolysiloxane can be used singly or in combination of two or more.

(c)成分の添加量は、(c)成分のSiH基が(a)成分中のアルケニル基1モルに対して0.5〜5.0モルとなる量、望ましくは0.8〜4.0モルとなる量である。(c)成分のSi−H基の量が(a)成分中のアルケニル基1モルに対して0.5モル未満では熱伝導性組成物が硬化しなくなったり、硬化物の強度が不十分で、成形体、積層体として取り扱うことができなくなったりするなどの問題が発生する。5.0モルを超える量では、硬化物に粘着性が不十分となり、自身の粘着で自身を固定することできないという問題が発生する。   Component (c) is added in an amount such that the SiH group of component (c) is 0.5 to 5.0 moles per mole of alkenyl group in component (a), preferably 0.8 to 4. The amount is 0 mol. If the amount of Si-H groups in component (c) is less than 0.5 moles relative to 1 mole of alkenyl groups in component (a), the thermally conductive composition will not cure or the strength of the cured product will be insufficient. The problem that it becomes impossible to handle as a molded body or a laminate occurs. If the amount exceeds 5.0 moles, the cured product will not have sufficient adhesiveness, and the problem that it cannot be fixed with its own adhesive will occur.

〔(d)白金族金属系触媒〕
本発明における(d)成分の白金族金属系触媒は、(a)成分中のアルケニル基と(c)成分中のケイ素原子に結合した水素原子との付加反応を促進し、本発明の組成物から三次元網状構造の架橋硬化物を与えるために配合される成分である。
[(D) Platinum group metal catalyst]
The platinum group metal catalyst of component (d) in the present invention promotes the addition reaction between the alkenyl group in component (a) and the hydrogen atom bonded to the silicon atom in component (c), and the composition of the present invention. To the three-dimensional network structure to give a cross-linked cured product.

(d)成分としては、通常のヒドロシリル化反応に用いられる公知の触媒を全て使用することができる。その具体例としては、例えば、白金(白金黒を含む)、ロジウム、パラジウム等の白金族金属単体、H2PtCl4・nH2O、H2PtCl6・nH2O、NaHPtCl6・nH2O、KHPtCl6・nH2O、Na2PtCl6・nH2O、K2PtCl4・nH2O、PtCl4・nH2O、PtCl2、Na2HPtCl4・nH2O(但し、式中、nは0〜6の整数であり、好ましくは0又は6である。)等の塩化白金、塩化白金酸及び塩化白金酸塩、アルコール変性塩化白金酸、塩化白金酸とオレフィンとのコンプレックス、白金黒、パラジウム等の白金族金属をアルミナ、シリカ、カーボン等の担体に担持させたもの、ロジウム−オレフィンコンプレックス、クロロトリス(トリフェニルフォスフィン)ロジウム(ウィルキンソン触媒)、塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサンとのコンプレックスなどが挙げられる。なお、(d)成分の白金族金属系触媒は、1種単独でも2種以上を組み合わせても使用することができる。 (D) As a component, all the well-known catalysts used for normal hydrosilylation reaction can be used. Specific examples thereof include platinum group metals such as platinum (including platinum black), rhodium and palladium, H 2 PtCl 4 · nH 2 O, H 2 PtCl 6 · nH 2 O, NaHPtCl 6 · nH 2 O. , KHPtCl 6 · nH 2 O, Na 2 PtCl 6 · nH 2 O, K 2 PtCl 4 · nH 2 O, PtCl 4 · nH 2 O, PtCl 2 , Na 2 HPtCl 4 · nH 2 O (where, n is an integer of 0 to 6, preferably 0 or 6.), etc.), such as platinum chloride, chloroplatinic acid and chloroplatinate, alcohol-modified chloroplatinic acid, chloroplatinic acid and olefin complex, platinum black , Platinum group metals such as palladium supported on a carrier such as alumina, silica, carbon, rhodium-olefin complex, chlorotris (triphenylphosphine) rhodium (Wilkinso Catalyst), platinum chloride, chloroplatinic acid or chloroplatinate and a vinyl group-containing siloxane. The platinum group metal catalyst of component (d) can be used singly or in combination of two or more.

(d)成分の配合量は、本発明の組成物を硬化させるために必要な有効量であればよく、特に制限されないが、通常、(a)成分に対する白金族金属元素の質量換算で、0.1〜1,000ppm、望ましくは0.5〜500ppmとするのがよい。   (D) The compounding quantity of a component should just be an effective amount required in order to harden the composition of this invention, Although it does not restrict | limit, Usually, it is 0 in conversion of the mass of the platinum group metal element with respect to (a) component. .1 to 1,000 ppm, preferably 0.5 to 500 ppm.

〔(e)反応制御剤〕
(e)成分の反応制御剤は、(d)成分の存在下で進行する(a)成分と(c)成分の反応速度を調整するためのものである。
[(E) Reaction control agent]
The (e) component reaction control agent is for adjusting the reaction rate of the (a) component and the (c) component that proceed in the presence of the (d) component.

(e)成分としては、通常の付加反応硬化型シリコーン組成物に用いられる公知の付加反応抑制剤を全て使用することができる。その具体例としては、1−エチニル−1−シクロヘキサノール、3−ブチン−1−オール等のアセチレン化合物、窒素化合物、有機りん化合物、硫黄化合物、オキシム化合物、有機クロロ化合物等が挙げられる。なお、(e)成分の付加反応抑制剤は、1種単独でも2種以上を組み合わせても使用することができる。   As the component (e), all known addition reaction inhibitors used in ordinary addition reaction curable silicone compositions can be used. Specific examples thereof include acetylene compounds such as 1-ethynyl-1-cyclohexanol and 3-butyn-1-ol, nitrogen compounds, organic phosphorus compounds, sulfur compounds, oxime compounds, and organic chloro compounds. In addition, the addition reaction inhibitor of (e) component can be used even if single 1 type also combines 2 or more types.

(e)成分の配合量は、(d)成分の使用量によっても異なるので一概には定義できないが、ヒドロシリル化反応の進行を所望の反応速度に調整できる有効量であればよく、通常、(a)成分の質量に対して、10〜50000ppm程度とすることがよい。(e)成分の配合量が少なすぎる場合には十分な可使時間を確保することができないことがあり、また多すぎる場合には組成物の硬化性が低下することがある。   The amount of component (e) varies depending on the amount of component (d) used, and thus cannot be defined unconditionally. However, it may be any effective amount that can adjust the progress of the hydrosilylation reaction to a desired reaction rate. It is good to set it as about 10-50000 ppm with respect to the mass of a) component. If the amount of component (e) is too small, sufficient pot life may not be ensured, and if too large, the curability of the composition may be reduced.

〔(f)シリコーン樹脂〕
本発明に用いられる(f)成分のシリコーン樹脂は、本発明の硬化物に粘着性を付与する作用を有する。
[(F) Silicone resin]
The silicone resin of component (f) used in the present invention has an effect of imparting tackiness to the cured product of the present invention.

(f)成分の例としては、R 3SiO1/2単位(M単位)と、SiO4/2単位(Q単位)の共重合体であって、M単位とQ単位の比(モル比)がM/Q=0.5〜1.5、好ましくは0.6〜1.4、更に好ましくは0.7〜1.3であるものが挙げられる。M/Q=0.5〜1.5の範囲において所望の粘着力が得られる。 Examples of the component (f) include a copolymer of R 1 3 SiO 1/2 unit (M unit) and SiO 4/2 unit (Q unit), wherein the ratio of M unit to Q unit (molar ratio). ) Is M / Q = 0.5 to 1.5, preferably 0.6 to 1.4, more preferably 0.7 to 1.3. A desired adhesive strength can be obtained in the range of M / Q = 0.5 to 1.5.

は脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基の炭素原子に結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基などで置換された基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等の炭素原子数が1〜10、特に炭素原子数が1〜6のものが挙げられ、これらの中でも好ましくは、メチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基等の炭素原子数1〜3の非置換又は置換のアルキル基及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基である。また、Rは全てが同一であっても異なっていてもよい。Rは、耐溶剤性などの特殊な特性を要求されない限り、コスト、その入手のし易さ、化学的安定性、環境負荷などの理由により全てメチル基が選ばれることが多い。 R 1 is an unsubstituted or substituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl Group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, alkyl group such as dodecyl group, cycloalkyl group such as cyclopentyl group, cyclohexyl group, cycloheptyl group, phenyl group, tolyl group, xylyl group An aryl group such as a naphthyl group and a biphenylyl group, an aralkyl group such as a benzyl group, a phenylethyl group, a phenylpropyl group and a methylbenzyl group, and a part or all of hydrogen atoms bonded to carbon atoms of these groups , Groups substituted by halogen atoms such as fluorine, chlorine, bromine, cyano groups, etc., for example, chloromethyl Group, 2-bromoethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5,6,6, Examples include 6-nonafluorohexyl group having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms, and among these, methyl group, ethyl group, propyl group, chloromethyl group, bromoethyl are preferable. Group, an unsubstituted or substituted alkyl group having 1 to 3 carbon atoms such as 3,3,3-trifluoropropyl group, cyanoethyl group and the like, and an unsubstituted or substituted phenyl group such as phenyl group, chlorophenyl group, fluorophenyl group, etc. It is. R 1 may be all the same or different. As for R 1 , a methyl group is often selected for reasons such as cost, availability, chemical stability, and environmental burden unless special characteristics such as solvent resistance are required.

(f)成分の添加量は、(a)成分100容量部に対して、50〜500容量部、好ましくは60〜350容量部、更に好ましくは70〜200容量部である。(f)成分の添加量が、50容量部未満及び500容量部を超える場合は、所望の粘着性が得られなくなる。   The amount of component (f) added is 50 to 500 parts by volume, preferably 60 to 350 parts by volume, and more preferably 70 to 200 parts by volume with respect to 100 parts by volume of component (a). If the amount of component (f) added is less than 50 parts by volume or more than 500 parts by volume, the desired tackiness cannot be obtained.

(f)成分そのものは室温で固体又は粘稠な液体であるが、溶剤に溶解した状態で使用することも可能である。その場合、組成物への添加量は、溶剤分を除いた量で決定される。   The component (f) itself is a solid or viscous liquid at room temperature, but can also be used in a state dissolved in a solvent. In that case, the amount added to the composition is determined by the amount excluding the solvent.

〔その他の成分〕
本発明に用いられる組成物(シリコーン組成物1及び/又はシリコーン組成物2)には、必要に応じて、本発明の目的を損なわない範囲で、上記(a)〜(f)成分以外の成分を添加することができる。以下、このような任意的成分について説明する。
[Other ingredients]
In the composition (silicone composition 1 and / or silicone composition 2) used in the present invention, if necessary, components other than the components (a) to (f) as long as the object of the present invention is not impaired. Can be added. Hereinafter, such optional components will be described.

・(g)表面処理剤:
本発明の組成物には、組成物調製時に、(b)熱伝導性充填材を疎水化処理し(a)オルガノポリシロキサンとの濡れ性を向上させ、(b)熱伝導性充填材を(a)成分からなるマトリックス中に均一に分散させることを目的として、表面処理剤(ウェッター)を配合することができる。該(g)成分としては特に下記の(g−1)及び(g−2)が好ましい。
(G) Surface treatment agent:
In the composition of the present invention, at the time of preparing the composition, (b) the thermally conductive filler is hydrophobized to improve the wettability with (a) the organopolysiloxane, and (b) the thermally conductive filler is ( A surface treating agent (wetter) can be blended for the purpose of uniformly dispersing in the matrix comprising the component a). As the component (g), the following (g-1) and (g-2) are particularly preferable.

・・(g−1)アルコキシシラン化合物
下記一般式(1):
Si(OR)4-a-b (1)
(式中、Rは独立に炭素原子数6〜15のアルキル基であり、Rは独立に非置換または置換の炭素原子数1〜8の1価炭化水素基であり、Rは独立に炭素原子数1〜6のアルキル基であり、aは1〜3の整数、bは0〜2の整数であり、但しa+bは1〜3の整数である。)
で表されるアルコキシシラン化合物である。
(G-1) Alkoxysilane compound The following general formula (1):
R 2 a R 3 b Si (OR 4 ) 4-ab (1)
Wherein R 2 is independently an alkyl group having 6 to 15 carbon atoms, R 3 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and R 4 is independently And an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a + b is an integer of 1 to 3.)
It is the alkoxysilane compound represented by these.

上記一般式(1)において、Rで表されるアルキル基としては、例えば、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。このRで表されるアルキル基の炭素原子数が6〜15の範囲を満たすと、(b)成分の濡れ性が十分に向上し、取り扱い作業性がよく、組成物の低温特性が良好なものとなる。 In the general formula (1), examples of the alkyl group represented by R 2 include a hexyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, and a tetradecyl group. When the number of carbon atoms of the alkyl group represented by R 2 satisfies the range of 6 to 15, the wettability of the component (b) is sufficiently improved, the handling workability is good, and the low temperature characteristics of the composition are good. It will be a thing.

で表される非置換または置換の1価炭化水素基しては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;2−フェニルエチル基、2−メチル−2−フェニルエチル基等のアラルキル基;3,3,3-トリフロロプロピル基、2−(ノナフルオロブチル)エチル基、2−(へプタデカフルオロオクチル)エチル基、p−クロロフェニル基等のハロゲン化炭化水素基等が挙げられる。これらの中では、特に、メチル基、エチル基が好ましい。 Examples of the unsubstituted or substituted monovalent hydrocarbon group represented by R 3 include alkyl groups such as a methyl group, an ethyl group, a propyl group, a hexyl group, and an octyl group; and a cycloalkyl such as a cyclopentyl group and a cyclohexyl group. Groups: alkenyl groups such as vinyl and allyl groups; aryl groups such as phenyl and tolyl groups; aralkyl groups such as 2-phenylethyl and 2-methyl-2-phenylethyl groups; 3,3,3-trifluoro Examples thereof include halogenated hydrocarbon groups such as propyl group, 2- (nonafluorobutyl) ethyl group, 2- (heptadecafluorooctyl) ethyl group, and p-chlorophenyl group. Among these, a methyl group and an ethyl group are particularly preferable.

で表されるアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基が挙げられる。これらの中では、特に、メチル基、エチル基が好ましい。 Examples of the alkyl group represented by R 4 include alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. Among these, a methyl group and an ethyl group are particularly preferable.

この(g−1)成分の好適な具体例としては、下記のものを挙げることができる。   Preferable specific examples of the component (g-1) include the following.

13Si(OCH)
1021Si(OCH)
1225Si(OCH)
1225Si(OC)
1021Si(CH)(OCH)
1021Si(C)(OCH)
1021Si(CH)(OC)
1021Si(CH=CH)(OCH)
1021Si(CHCHCF)(OCH)
C 6 H 13 Si (OCH 3 ) 3
C 10 H 21 Si (OCH 3 ) 3
C 12 H 25 Si (OCH 3 ) 3
C 12 H 25 Si (OC 2 H 5 ) 3
C 10 H 21 Si (CH 3 ) (OCH 3 ) 2
C 10 H 21 Si (C 6 H 5) (OCH 3) 2
C 10 H 21 Si (CH 3 ) (OC 2 H 5) 2
C 10 H 21 Si (CH═CH 2 ) (OCH 3 ) 2
C 10 H 21 Si (CH 2 CH 2 CF 3) (OCH 3) 2

なお、(g−1)成分は1種単独でも2種以上を組み合わせても使用することができる。(g−1)成分の配合量は一定量を超えてもそれ以上ウェッター効果が増大することがないので不経済である。また該成分は揮発性があるので開放系で放置すると組成物および硬化後の硬化物が徐々に硬くなってしまうことがある。   In addition, (g-1) component can be used even if single 1 type also combines 2 or more types. Even if the blending amount of the component (g-1) exceeds a certain amount, the wetter effect does not increase any more, which is uneconomical. In addition, since the component is volatile, the composition and the cured product after curing may gradually become hard if left in an open system.

・・(g−2)ジメチルポリシロキサン
下記一般式(2):
(G-2) Dimethylpolysiloxane The following general formula (2):

Figure 2009234112
Figure 2009234112

(式中、Rは独立に炭素原子数1〜6のアルキル基であり、cは5〜100の整数である。)
で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンである。
(In the formula, R 5 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100.)
Is a dimethylpolysiloxane in which one end of a molecular chain represented by is blocked with a trialkoxysilyl group.

上記一般式(2)において、Rで表されるアルキル基は、上記一般式(1)中のRで表されるアルキル基と同種のものである。 In the general formula (2), the alkyl group represented by R 5 is the same type as the alkyl group represented by R 4 in the general formula (1).

この(g−2)成分の好適な具体例としては、下記のものを挙げることができる。   Preferable specific examples of the component (g-2) include the following.

Figure 2009234112
Figure 2009234112

なお、(g−2)成分は1種単独でも2種以上を組み合わせても使用することができる。この(g−2)成分の配合量が多すぎると、得られる硬化物の耐熱性や耐湿性が低下する傾向がある。   In addition, (g-2) component can be used even if single 1 type also combines 2 or more types. When there are too many compounding quantities of this (g-2) component, there exists a tendency for the heat resistance and moisture resistance of the hardened | cured material obtained to fall.

(g)成分の表面処理剤として、これら(g−1)成分と(g−2)成分のいずれか一方でも両者を組み合わせて使用しても差し支えない。この場合、(g)成分の配合量は、(a)成分100容量部に対して0.01〜50容量部、特に0.1〜30容量部であることが好ましい。   As the surface treatment agent for the component (g), either one of the components (g-1) and (g-2) may be used in combination. In this case, the blending amount of the component (g) is preferably 0.01 to 50 parts by volume, particularly 0.1 to 30 parts by volume with respect to 100 parts by volume of the component (a).

・(h)オルガノポリシロキサン:
本発明の組成物には、更に(h)成分として、下記一般式(3):
-(SiR O)SiR -R ・・・(3)
(Rは独立に炭素原子数1〜18の脂肪族不飽和結合を含まない一価炭化水素基、dは5〜2,000の整数である。)
で表される23℃における動粘度が10〜100,000mm2/sのオルガノポリシロキサンを添加することができる。熱伝導性組成物の粘度調整剤等の特性付与を目的として適宜用いられるが、これに限定されるものではない。一種単独で使用しても、二種以上を併用してもよい。
(H) Organopolysiloxane:
In the composition of the present invention, the following general formula (3):
R 6- (SiR 6 2 O) d SiR 6 2 -R 6 (3)
(R 6 is a monovalent hydrocarbon group which does not contain an aliphatic unsaturated bond having 1 to 18 carbon atoms, and d is an integer of 5 to 2,000.)
It is possible to add an organopolysiloxane having a kinematic viscosity at 23 ° C. of 10 to 100,000 mm 2 / s. Although it is suitably used for the purpose of imparting properties such as a viscosity modifier of the thermally conductive composition, it is not limited thereto. One kind may be used alone, or two or more kinds may be used in combination.

上記R6は独立に非置換または置換の炭素原子数1〜18の一価炭化水素基である。R6としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロヘキシル基;フェニル基、トリル基等のアリール基;2−フェニルエチル基、2−メチル−2−フェニルエチル基等のアラルキル基;3,3,3−トリフロロプロピル基、2−(パーフロロブチル)エチル基、2−(パーフロロオクチル)エチル基、p−クロロフェニル基等のハロゲン化炭化水素基などが挙げられるが、特にメチル基、フェニル基、炭素原子数6〜18のアルキル基が好ましい。 R 6 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms. Examples of R 6 include alkyl groups such as methyl, ethyl, propyl, hexyl, octyl, decyl, dodecyl, tetradecyl, hexadecyl, and octadecyl; cyclohexyl groups such as cyclopentyl and cyclohexyl. Aryl groups such as phenyl group and tolyl group; aralkyl groups such as 2-phenylethyl group and 2-methyl-2-phenylethyl group; 3,3,3-trifluoropropyl group, 2- (perfluorobutyl) ethyl Group, 2- (perfluorooctyl) ethyl group, halogenated hydrocarbon group such as p-chlorophenyl group, and the like are mentioned, and methyl group, phenyl group and alkyl group having 6 to 18 carbon atoms are particularly preferable.

上記dは、要求される粘度の観点から、好ましくは5〜2,000の整数であり、特に好ましくは10〜1,000の整数である。   From the viewpoint of the required viscosity, d is preferably an integer of 5 to 2,000, and particularly preferably an integer of 10 to 1,000.

また、25℃における動粘度は、好ましくは、10〜100,000mm/sであり、特に100〜10,000mm/sであることが好ましい。該動粘度が10mm/sより低いと、得られる組成物の硬化物がオイルブリードを発生しやすくなる。該動粘度が100,000mm/sより大きいと、得られる熱伝導性組成物の流動性が乏しくなりやすい。 Further, the kinematic viscosity at 25 ° C., preferably a 10~100,000mm 2 / s, it is preferable in particular 100~10,000mm 2 / s. When the kinematic viscosity is lower than 10 mm 2 / s, the cured product of the resulting composition tends to generate oil bleeding. If the kinematic viscosity is greater than 100,000 mm 2 / s, the fluidity of the resulting heat conductive composition tends to be poor.

(h)成分の具体例としては、例えば、   Specific examples of the component (h) include, for example,

Figure 2009234112
Figure 2009234112

Figure 2009234112
Figure 2009234112

Figure 2009234112
Figure 2009234112

などが挙げられる。 Etc.

(h)成分を本発明の組成物に添加する場合、その添加量は限定されず、所望の効果が得られる量であればよいが、(a)成分100容量部に対して、好ましくは0.1〜100容量部、より好ましくは1〜50容量部である。該添加量がこの範囲内にあると、硬化前の熱伝導性組成物に良好な流動性、作業性を維持しやすく、また、(b)成分の熱伝導性充填材を該組成物に充填するのが容易である。   When the component (h) is added to the composition of the present invention, the amount added is not limited and may be any amount that provides the desired effect, but is preferably 0 with respect to 100 parts by volume of the component (a). .1 to 100 parts by volume, more preferably 1 to 50 parts by volume. When the added amount is within this range, it is easy to maintain good fluidity and workability in the thermally conductive composition before curing, and the composition is filled with the thermally conductive filler of component (b). Easy to do.

・その他の任意成分:
その他の任意成分として、例えば、フッ素変性シリコーン界面活性剤;着色剤としてカーボンブラック、二酸化チタン、ベンガラなど;難燃性付与剤として白金化合物、酸化鉄、酸化チタン、酸化セリウムなどの金属酸化物、または金属水酸化物などを添加してもよい。更に、熱伝導性充填材の沈降防止剤として、沈降性シリカまたは焼成シリカなどの微粉末シリカ、チクソ性向上剤等を添加することも任意である。
・ Other optional ingredients:
Other optional components include, for example, fluorine-modified silicone surfactants; carbon black, titanium dioxide, bengara, etc. as colorants; metal oxides such as platinum compounds, iron oxides, titanium oxides, cerium oxides as flame retardants, Alternatively, a metal hydroxide or the like may be added. Furthermore, it is optional to add fine powder silica such as precipitated silica or calcined silica, thixotropic improver, etc. as an anti-settling agent for the heat conductive filler.

〔積層体の形成〕
所要の成分を均一に混合した、それぞれ組成の異なる2種以上の本発明の組成物(組成物1及び組成物2)を調製する。まず、一方の組成物1を基材上に塗布成形し、加熱硬化させて第一層を形成する。次に、もう1種の組成物(組成物2)を第一層の片面上に塗布成形し、加熱硬化させる。こうして、本発明の熱伝導性積層体を得ることができる。組成物を基材または第一層上に塗布、成形する際には、組成物の粘度調整のためにトルエン等の溶剤を添加することも可能である。
(Formation of laminate)
Two or more kinds of the compositions of the present invention (composition 1 and composition 2), each having a different composition and mixed uniformly with the required components, are prepared. First, one composition 1 is applied and molded on a base material and cured by heating to form a first layer. Next, another type of composition (Composition 2) is applied and formed on one side of the first layer, and is cured by heating. Thus, the heat conductive laminate of the present invention can be obtained. When applying and molding the composition on the substrate or the first layer, it is possible to add a solvent such as toluene to adjust the viscosity of the composition.

第一および第二の硬化層の厚さは、それぞれ好ましくは10〜500μmであり、更に好ましくは20〜250μmである。積層体全体としての厚さは、好ましくは20〜1,000μmであり、更に好ましくは50〜500μmである。厚さが薄すぎると、積層体の取り扱いが悪く、かつ粘着感が低下してしまう。一方、厚さが厚すぎると所望の熱伝導性が得られなくなる。   The thicknesses of the first and second hardened layers are each preferably 10 to 500 μm, and more preferably 20 to 250 μm. The thickness of the entire laminate is preferably 20 to 1,000 μm, and more preferably 50 to 500 μm. If the thickness is too thin, the laminate is poorly handled and the tackiness is lowered. On the other hand, if the thickness is too thick, desired thermal conductivity cannot be obtained.

〔特性〕
・熱抵抗:
本発明の熱伝導性積層体は、レーザーフラッシュ法で測定した25℃における熱抵抗が、10cm2・K/W以下であることが好ましく、特に5cm2・K/W以下であることが好ましい。該熱抵抗がこの範囲内にあると、本発明組成物は、発熱量の大きい発熱体に適用した場合でも、該発熱体から発生する熱を効率よく放熱部品へ放散させることができる。なお、レーザーフラッシュ法による熱抵抗の測定は、ASTM E 1461に準拠して行うことができる。
〔Characteristic〕
·Thermal resistance:
The heat conductive laminate of the present invention preferably has a thermal resistance at 25 ° C. measured by a laser flash method of 10 cm 2 · K / W or less, particularly preferably 5 cm 2 · K / W or less. When the thermal resistance is within this range, the composition of the present invention can efficiently dissipate heat generated from the heating element to the heat radiating component even when applied to a heating element having a large calorific value. In addition, the measurement of the thermal resistance by the laser flash method can be performed in accordance with ASTM E 1461.

・粘着性:
本発明の熱伝導性積層体は、両面に異なる粘着力を有することを特徴とする。25mm幅の積層体のサンプルを準備し、室温下で、その片面を室温下アルミニウム板に当て、該積層体を質量2kgのゴムローラーで圧して接着後、10分間養生し、その後該積層体のアルミニウム板と接着されていない他方の片面に25mm幅のシリコーンテープ(ニッパ(株)製、No.99)からなるテープ状補強材を接着した後、該積層体の一端を接着した前記補強材とともに前記アルミニウム板から剥がしてつかみ、引っ張り速度300mm/minにて180°方向に前記アルミニウム板から引き剥がしたとき、引き剥がしに要する力(「粘着力」という)を測定した。両面(強粘着側面と弱粘着側面)の粘着力の差が、2N/cm以上あることが好ましく、3/cm以上あることが特に好ましい。積層体両面の粘着力の差が3N/cm未満の場合、両面の粘着性における有意差が発現しにくく、リワークや接着剥離の際に、被着体を破損する恐れがある。
・ Adhesiveness:
The heat conductive laminate of the present invention is characterized by having different adhesive forces on both sides. A sample of a 25 mm wide laminate was prepared, and at room temperature, one side of the laminate was applied to an aluminum plate at room temperature, and the laminate was pressed by a rubber roller having a mass of 2 kg and then cured for 10 minutes. Along with the above-mentioned reinforcing material to which one end of the laminated body is bonded after bonding a tape-shaped reinforcing material made of a 25 mm width silicone tape (Nippa Co., Ltd., No. 99) to the other surface not bonded to the aluminum plate When peeled from the aluminum plate and grasped and peeled off from the aluminum plate in a 180 ° direction at a pulling speed of 300 mm / min, the force required for peeling (referred to as “adhesive strength”) was measured. The difference in adhesive force between both surfaces (strongly adhesive side and weakly adhesive side) is preferably 2 N / cm or more, and particularly preferably 3 / cm or more. When the difference in the adhesive strength between the two surfaces of the laminate is less than 3 N / cm, a significant difference in the adhesive properties between the two surfaces is difficult to develop, and the adherend may be damaged during rework or adhesive peeling.

また、上記のようにして測定した粘着力は両面とも、0.3N/cm以上、特に0.5〜20N/cmであることが望ましい。何れか一方の粘着力が0.3N/cm未満の場合、自らの粘着力で発熱性電子部品や放熱部材を固定することが困難となる。また、粘着力が大きすぎると容易に剥離しないためリワーク性が劣る。   The adhesive strength measured as described above is desirably 0.3 N / cm or more, particularly 0.5 to 20 N / cm, on both sides. When either one of the adhesive strengths is less than 0.3 N / cm, it becomes difficult to fix the heat-generating electronic component or the heat radiating member with its own adhesive strength. Moreover, since it will not peel easily when adhesive force is too large, rework property is inferior.

本発明の積層体の両面の粘着力がこのような値となるようにシリコーン組成物1とシリコーン組成物2とを選択する。この選択は、本発明のシリコーン組成物を組成を変えて複数種調製し、基材に塗布し硬化させて硬化層を形成し、上記と同様に粘着力を試験することで各組成物毎の粘着力を求めることができる。次に、二種のシリコーン組成物を粘着力が上記条件を満たすように選択して組み合せることにより本発明の積層体を容易に製造することができる。   The silicone composition 1 and the silicone composition 2 are selected so that the adhesive strength on both surfaces of the laminate of the present invention has such a value. This selection is made by changing the composition of the silicone composition of the present invention, applying it to a substrate and curing it to form a cured layer, and testing the adhesive strength in the same manner as above for each composition. The adhesive strength can be determined. Next, the laminate of the present invention can be easily produced by selecting and combining the two silicone compositions so that the adhesive strength satisfies the above conditions.

〔熱伝導性積層体の製造方法〕
本発明の熱伝導性積層体は、例えば、前述した方法、即ち、(a)〜(f)の成分をそれぞれ所定量含むシリコーン組成物1を、シリコーン粘着剤用の表面離型処理を施した基材の表面に薄膜状に塗布し硬化させて第一の硬化物層を形成し、その後、前記(a)〜(f)成分を含み前記シリコーン組成物1と組成が異なるシリコーン組成物2を前記第一の硬化物層の表面上に薄膜状に塗布し硬化させて第二の硬化物層を形成することにより製造することができる。
[Method for producing thermally conductive laminate]
The thermally conductive laminate of the present invention was subjected to, for example, the above-described method, that is, the silicone composition 1 containing a predetermined amount of each of the components (a) to (f) was subjected to a surface release treatment for a silicone adhesive. A thin film is applied to the surface of the substrate and cured to form a first cured product layer, and then a silicone composition 2 containing the components (a) to (f) and having a composition different from that of the silicone composition 1 is prepared. It can manufacture by apply | coating to a thin film form on the surface of said 1st hardened | cured material layer, making it harden | cure, and forming a 2nd hardened | cured material layer.

上記の方法において、組成物1または組成物2を調製する際の各成分の配合順序は特に限定されないが、好ましい方法としては、
(1)(a)成分、(b)成分、および(d)成分を所要量混練してベース組成物を調製する、
(2)別途、(c)、および(e)成分を混合してなる硬化剤を調製する、
(3)次に、上記のベース組成物と、硬化剤と、(f)成分のシリコーン樹脂とを均一に混合した組成物を調製することが挙げられる。
In the above method, the blending order of each component when preparing the composition 1 or the composition 2 is not particularly limited, but as a preferred method,
(1) A base composition is prepared by kneading a required amount of the components (a), (b), and (d).
(2) Separately, preparing a curing agent obtained by mixing the components (c) and (e).
(3) Next, preparing the composition which mixed said base composition, hardening | curing agent, and the silicone resin of (f) component uniformly is mentioned.

本発明の方法に使用する基材、即ち、シリコーン組成物1を塗布する基材としては、紙、PETフィルム等にシリコーン粘着剤用の表面離型処理を施したものが適している。シリコーン粘着剤用の表面離型剤としては、パーフロロアルキル基、パーフロロポリエーテル基等のフッ素置換基を主鎖にもつ変性シリコーンを挙げることができる。   As the base material used in the method of the present invention, that is, the base material to which the silicone composition 1 is applied, a paper, a PET film or the like subjected to a surface release treatment for a silicone adhesive is suitable. Examples of the surface release agent for silicone pressure-sensitive adhesives include modified silicones having a fluorine substituent such as a perfluoroalkyl group and a perfluoropolyether group in the main chain.

上記パーフロロポリエーテル基は、下記式(5)〜(7)で表すことができる。   The perfluoropolyether group can be represented by the following formulas (5) to (7).

Figure 2009234112
Figure 2009234112

また、かかるフッ素置換基をもつ変性シリコーンとして具体的には、信越化学工業(株)製の商品名:X−70−201、X−70−258などの製品が挙げられる。   Specific examples of the modified silicone having a fluorine substituent include products such as trade names: X-70-201 and X-70-258 manufactured by Shin-Etsu Chemical Co., Ltd.

基材上へ組成物の塗布、成形の方法は、バーコーター、ナイフコーター、コンマコーター、スピンコーターなどを用いて基材上に液状の材料を薄膜状に塗布することが挙げられるが、上記記載方法に限定されるものではない。   Examples of the method for applying and molding the composition on the substrate include applying a liquid material in a thin film on the substrate using a bar coater, knife coater, comma coater, spin coater, etc. The method is not limited.

また、成形後に加熱させるための加熱温度条件は、溶剤を添加した場合は用いた溶剤が揮発し、(a)成分と(c)成分が反応し得る程度の温度であればよい。生産性、基材フィルムへの影響を考慮して、50〜150℃が望ましく、60〜150℃が更に望ましい。硬化時間は、通常0.5〜30分でよく、好ましくは1〜20分である。同一温度の加熱であっても、ステップアップやランプアップで温度を変化させる加熱方法を採用しても良い。   Moreover, the heating temperature conditions for heating after shaping | molding should just be the temperature which the solvent used when the solvent was added volatilizes and (a) component and (c) component can react. In view of productivity and influence on the substrate film, 50 to 150 ° C. is desirable, and 60 to 150 ° C. is more desirable. The curing time may usually be 0.5 to 30 minutes, preferably 1 to 20 minutes. Even when heating is performed at the same temperature, a heating method in which the temperature is changed by step-up or ramp-up may be employed.

硬化後の熱伝導性積層体は、基材フィルムと同様の離型処理フィルムを保護用のセパレーターフィルムとして、積層体の基材側とは反対側の表面に貼り合わせることで、輸送、定尺カット等の取り扱いを容易にすることができる。この際、基材フィルムとは離型剤の処理量や種類を変えたり、基材の材質を変えて、基材フィルムとセパレーターフィルムの積層体からの粘着力に軽重をつけることも可能である。   The thermally conductive laminate after curing can be transported and scaled by laminating the same release treatment film as the substrate film on the surface opposite to the substrate side of the laminate as a protective separator film. Handling such as cutting can be facilitated. At this time, it is possible to change the processing amount and type of the release agent with the base film, or change the material of the base material to give light weight to the adhesive force from the laminate of the base film and the separator film. .

このようにして得られた熱伝導性積層体は、セパレーターフィルム又は基材フィルムを剥離した後、発熱性電子部品又は放熱部材に貼り付け、その後、残りのフィルムを剥離することにより、薄膜であっても容易に配置することができ、かつ優れた熱伝導特性を示す。また、両面で粘着性が異なるため、リワークもしくは接着剥離時に、強粘着側における接着を維持しつつ、所望の面(弱粘着側)での剥離を行うことができる。これにより、弱粘着側においては、被着体に加わるストレスが低減され、破損を防ぐことが可能となる。   The heat conductive laminate thus obtained is a thin film by peeling off the separator film or substrate film, and then sticking it to the heat-generating electronic component or heat dissipation member, and then peeling off the remaining film. However, it can be easily arranged and exhibits excellent heat conduction characteristics. Moreover, since adhesiveness differs in both surfaces, at the time of a rework or adhesive peeling, peeling on a desired surface (weak adhesion side) can be performed, maintaining the adhesion on the strong adhesion side. Thereby, in the weak adhesion side, the stress added to a to-be-adhered body is reduced, and it becomes possible to prevent a failure | damage.

以下、本発明の実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although the Example and comparative example of this invention are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

まず、下記実施例および比較例において用いた(a)〜(f)成分を下記に示す。
<(a)成分>
・(A−1)25℃における動粘度が600mm/sであり、分子鎖両末端がジメチルビニルシロキシ基で封鎖されたジメチルポリシロキサン
・(A−2)25℃における動粘度が30,000mm/sであり、分子鎖両末端がジメチルビニルシロキシ基で封鎖されたジメチルポリシロキサン
First, the components (a) to (f) used in the following examples and comparative examples are shown below.
<(A) component>
(A-1) Dimethylpolysiloxane having a kinematic viscosity at 25 ° C. of 600 mm 2 / s and having both molecular chain ends blocked with dimethylvinylsiloxy groups. (A-2) Kinematic viscosity at 25 ° C. of 30,000 mm 2 / s, dimethylpolysiloxane with both molecular chain ends blocked with dimethylvinylsiloxy groups

<(b)成分>
・(B−1)平均粒径10.7μmのアルミナ粉末(真比重3.98)
・(B−2)平均粒径1.1μmのアルミナ粉末(真比重3.98)
・(B−3)平均粒径0.6μmの酸化亜鉛粉末(真比重5.67)
<(B) component>
(B-1) Alumina powder having an average particle diameter of 10.7 μm (true specific gravity 3.98)
(B-2) Alumina powder having an average particle size of 1.1 μm (true specific gravity: 3.98)
(B-3) Zinc oxide powder having an average particle size of 0.6 μm (true specific gravity 5.67)

<(c)成分>
・(C−1)下記構造式:
<(C) component>
(C-1) The following structural formula:

Figure 2009234112
Figure 2009234112

で表されるオルガノハイドロジェンポリシロキサン Organohydrogenpolysiloxane represented by

<(D)成分>
(D−1)白金−ジビニルテトラメチルジシロキサン錯体のジメチルポリシロキサン(分子鎖両末端がジメチルビニルシリル基で封鎖されたもの、25℃における動粘度が600mm/sである溶液〔白金原子含有量:1質量%〕
<(D) component>
(D-1) dimethylpolysiloxane of platinum-divinyltetramethyldisiloxane complex (both ends of molecular chain blocked with dimethylvinylsilyl group, solution having a kinematic viscosity at 25 ° C. of 600 mm 2 / s [containing platinum atom (Amount: 1% by mass)

<(E)成分>
・(e−1)1−エチニル−1−シクロヘキサノールの50質量%トルエン溶液
<(E) component>
(E-1) 50% by mass toluene solution of 1-ethynyl-1-cyclohexanol

<(f)成分>
・(F−1)実質的にMeSiO0.5単位(M単位)とSiO単位(Q単位)のみからなるシリコーン樹脂(M/Qモル比1.15)のトルエン溶液(不揮発分60%;粘度30mm2/s)。
・(F−2)実質的にMeSiO0.5単位(M単位)とSiO単位(Q単位)のみからなるシリコーン樹脂(M/Qモル比0.85)のトルエン溶液(不揮発分70%;粘度30mm2/s)。
<Component (f)>
(F-1) Toluene solution (non-volatile content 60) of silicone resin (M / Q molar ratio 1.15) consisting essentially of Me 3 SiO 0.5 units (M units) and SiO 2 units (Q units) %; Viscosity 30 mm 2 / s).
(F-2) A toluene solution (nonvolatile content 70) of a silicone resin (M / Q molar ratio 0.85) substantially composed of only Me 3 SiO 0.5 units (M units) and SiO 2 units (Q units). %; Viscosity 30 mm 2 / s).

<(g)成分>
・(G−1)構造式:C1225Si(OC)で表されるオルガノシラン
・(G−2)下記構造式:
<(G) component>
(G-1) Structural formula: Organosilane represented by C 12 H 25 Si (OC 2 H 5 ) 3 (G-2) Structural formula:

Figure 2009234112
Figure 2009234112

で表される分子鎖片末端トリメトキシシリル基封鎖ジメチルポリシロキサン A dimethylpolysiloxane blocked with a trimethoxysilyl group blocked by a molecular chain represented by

<(h)成分>
・(H-1)下記構造式:
<(H) component>
(H-1) Structural formula:

Figure 2009234112
Figure 2009234112

で表される、25℃における動粘度が600mm/sであるジメチルポリシロキサン。 Dimethylpolysiloxane having a kinematic viscosity at 25 ° C. of 600 mm 2 / s represented by

<基材>
(K−1)信越化学工業(株)製のX−70−201を1.0g/m塗布した厚さ100μmのPETフィルム
(K−2)厚さ100μmの未処理PETフィルム
<Base material>
(K-1) 100 μm thick PET film coated with 1.0 g / m 2 of X-70-201 manufactured by Shin-Etsu Chemical Co., Ltd. (K-2) Untreated PET film with a thickness of 100 μm

[調製例1〜4、比較調製例1〜4]
<熱伝導性組成物の調製>
表1に記載の成分を同表に記載の配合量(質量部)で、次のとおりにして配合し組成物S1〜S7を調製した。なお、組成物S5、S6およびS7は本発明の条件を満たさない組成物である。
[Preparation Examples 1-4, Comparative Preparation Examples 1-4]
<Preparation of thermal conductive composition>
Components S1 to S7 were prepared by blending the components described in Table 1 in the following amounts (parts by mass) in the same table as follows. Compositions S5, S6 and S7 are compositions that do not satisfy the conditions of the present invention.

内容積700ミリリットルのプラネタリーミキサー(特殊機化工業(株)製、商品名:T.K.ハイビスミックス)に、(a)成分、(b)成分、場合によって(g)成分と(h)成分を仕込み、60分間混合せしめた。次いで(d)成分と(e)成分を加え、均一に混合せしめ、最後に(c)成分と(f)成分を添加し、均一に混合して組成物を調製した。   To a planetary mixer (trade name: TK Hibismix manufactured by Tokushu Kika Kogyo Co., Ltd.) with an internal volume of 700 ml, (a) component, (b) component, and optionally (g) component and (h) The ingredients were charged and mixed for 60 minutes. Next, the components (d) and (e) were added and mixed uniformly. Finally, the components (c) and (f) were added and mixed uniformly to prepare a composition.

Figure 2009234112
Figure 2009234112

≪注1≫:表中の括弧内の数値は、(a)成分の100容量部に対する(f)成分中の樹脂分の容量部である。 << Note 1 >>: The numerical value in parentheses in the table is the volume part of resin in the component (f) with respect to 100 volume parts of the component (a).

≪注2≫:表中の(d)成分および(e)成分の濃度は、(a)成分の質量に対する(D-1)成分および(E-1)成分の濃度である。括弧内の数値は、(a)成分の質量に対する(D-1)成分の白金原子としての濃度および(a)成分の質量に対する(E-1)成分に含まれる1−エチニル−1−シクロヘキサノールの濃度である。 << Note 2 >>: The concentrations of the component (d) and the component (e) in the table are the concentrations of the component (D-1) and the component (E-1) with respect to the mass of the component (a). The numerical value in parentheses is the concentration of (D-1) component as platinum atom relative to the mass of component (a) and 1-ethynyl-1-cyclohexanol contained in component (E-1) relative to the mass of component (a) Concentration.

≪注3≫:「SiH/Vi」とは、(A)成分中のビニル基1個に対する(B)成分中のSiH基(ケイ素原子に結合した水素原子)の個数を意味する。 << Note 3 >>: “SiH / Vi” means the number of SiH groups (hydrogen atoms bonded to silicon atoms) in the component (B) with respect to one vinyl group in the component (A).

[実施例1〜4、比較例1〜5]
<積層体の製造>
表2、表3に記載の積層体を、同表に記載の条件を用いて、次のとおりにして得た。まず表1で得られた組成物のうち、1種(X1)を選択して基材に塗布し、硬化せしめ、熱伝導性硬化物の単層体(Y1)を得た。続いて表1で得られた組成物のうち、さらに1種(X2)を選択して、先に得た熱伝導性硬化物の単層体上に塗布した後、硬化せしめ、積層体(Y2)を得た。
[Examples 1 to 4, Comparative Examples 1 to 5]
<Manufacture of laminates>
The laminates described in Tables 2 and 3 were obtained as follows using the conditions described in the same table. First, among the compositions obtained in Table 1, one type (X1) was selected, applied to a substrate, and cured to obtain a single layer (Y1) of a thermally conductive cured product. Subsequently, one type (X2) of the compositions obtained in Table 1 was further selected and applied on the single layer body of the thermally conductive cured material obtained earlier, and then cured, and the laminate (Y2 )

得られた積層体について、粘着性、リワーク性・選択剥離性、ブリード性、基材からの剥離性、剥離後の取り扱い性、熱抵抗について、下記の方法で評価した。結果を表2および表3に示す。   About the obtained laminated body, the following method evaluated adhesiveness, rework property, selective peelability, bleeding property, peelability from a base material, the handleability after peeling, and thermal resistance. The results are shown in Table 2 and Table 3.

・剥離性:
硬化後の熱伝導性積層体を基材フィルムから手によって剥がす際の重さにより評価した(感触による評価)。剥離の感触が軽く、積層体に全く変形が起らない場合に「良好」と評価し、剥離の感触が重く、または積層体に変形が起こった場合に「不良」と評価した。
・ Peelability:
It evaluated by the weight at the time of peeling the heat conductive laminated body after hardening from a base film by hand (evaluation by a touch). When the feel of peeling was light and the laminate did not deform at all, it was evaluated as “good”, and when the feel of peeling was heavy or when the laminate was deformed, it was evaluated as “bad”.

・剥離後の取り扱い性:
剥がした後の熱伝導性硬化物の手による取り扱い性を本体形状に着目して評価した。基材フィルムより剥がした熱伝導性硬化物を、アルミ板に接着する際、困難無く接着が可能な場合、「良好」と評価した。熱伝導性硬化物が割れたり、手に強固に張り付き変形し、元の形状を取り戻すことができなかったりした場合、「不良」と判断した。
・ Handability after peeling:
The handleability of the thermally conductive cured product after peeling was evaluated by paying attention to the shape of the main body. When the thermally conductive cured product peeled off from the base film was adhered to an aluminum plate, it was evaluated as “good” when it could be adhered without difficulty. When the thermally conductive cured product was cracked or firmly adhered to the hand and deformed, and the original shape could not be recovered, it was judged as “bad”.

・リワーク性・選択剥離性:
剥がした後の熱伝導性硬化物の両面を、同一のアルミ板で挟み込み、リワーク性(引き剥がしの際に、接着体にダメージを与えないか)および選択剥離性(常に弱粘着サイドから剥がれるか)を評価した。
・ Rework and selective peelability:
The both sides of the heat-conductive cured product after peeling are sandwiched between the same aluminum plates, reworkability (does not damage the adhesive when peeling), and selective peelability (whether it is always peeled from the weak adhesive side) ) Was evaluated.

熱伝導性硬化物を介在して接着される2枚のアルミ板を引き剥がす試験を5回繰り返した(熱伝導性硬化物とアルミ板は試験毎に交換した)。5回とも両面に接着されるアルミ板の変形や破壊なく、粘着力の弱い面に接着されるアルミ板より熱伝導性硬化物が剥がれた場合、「良好」と評価し、一度でも粘着力の強い面に接着されるアルミ板より熱伝導性硬化物が剥がれた場合、アルミ板もしくは熱伝導性硬化物が変形、破壊された場合は「不良」と評価した。   The test of peeling off the two aluminum plates bonded via the thermally conductive cured product was repeated 5 times (the thermally conductive cured product and the aluminum plate were exchanged for each test). When the thermally conductive cured product is peeled off from the aluminum plate that is bonded to the weakly adhesive surface without deformation or destruction of the aluminum plate that is bonded to both sides, it is evaluated as “good”. When the thermally conductive cured product was peeled off from the aluminum plate bonded to the strong surface, the aluminum plate or the thermally conductive cured product was evaluated as “bad” when deformed or destroyed.

・粘着性:
前述した要領で、該熱伝導性積層体を、片面毎にアルミニウム板に2kgゴムローラーで接着後、10分間養生し、積層体の変形を防ぐためにアルミ板と接着していないもう一方の片面を強度の強いシリコーン粘着テープ(ニッパ株式会社製)と接着させた後、一端を引き剥がして手でつかみ、常温で引っ張り速度300mm/minにて180°方向に引き剥がして粘着力を測定した。測定結果を表2および表3に示す。
・ Adhesiveness:
In the manner described above, the thermally conductive laminate is bonded to an aluminum plate on each side with a 2 kg rubber roller and then cured for 10 minutes, and the other side not bonded to the aluminum plate is attached to prevent the laminate from being deformed. After bonding with a strong silicone adhesive tape (manufactured by Nipper Co., Ltd.), one end was peeled off and grasped by hand, and then peeled off at 180 ° at a pulling speed of 300 mm / min at room temperature to measure the adhesive force. The measurement results are shown in Table 2 and Table 3.

・ブリード性:
0.1mm厚のサンプルを基材ごと20mm角にカットし、上質紙の上に樹脂層を向けて載せ、その上に100gの分銅を載せて密着させ、1日後の上質紙へのオイル移行具合を目視で確認して評価した。
・ Bleedability:
Cut a 0.1mm thick sample into a 20mm square together with the base material, place the resin layer on the fine paper and place it on top with a 100g weight, and let it adhere to the fine paper one day later. Was visually confirmed and evaluated.

・熱抵抗:
上記で得られた熱伝導性積層体を、標準アルミニウムからなる円板状プレート(純度:99.9%、直径:約12.7mm、厚み:約1.0mm)の全面に設置し、その上に他の標準アルミニウムプレートを重ね、得られる構造体をクリップで挟むことにより約175.5kPa(1.80kgf/cm2)の圧力をかけて3層構造体を得た。
·Thermal resistance:
The thermally conductive laminate obtained above was placed on the entire surface of a disk-shaped plate (purity: 99.9%, diameter: about 12.7 mm, thickness: about 1.0 mm) made of standard aluminum, A three-layer structure was obtained by applying a pressure of about 175.5 kPa (1.80 kgf / cm 2 ) by placing another standard aluminum plate on top of each other and sandwiching the resulting structure with clips.

得られた試験片の厚さを測定し、標準アルミニウムのプレートの既知の厚さを差し引くことによって、熱伝導性積層体の厚さを算出した。なお、試験片の厚さの測定には、マイクロメーター(株式会社ミツトヨ製、型式:M820−25VA)を用いた。得られた結果を表2および表3に示す。上記試験片を用いて、熱伝導性積層体の熱抵抗(cm2・K/W)を熱抵抗測定器(ネッチ社製、キセノンフラッシュアナライザー;LFA447 NanoFlash)により測定した。得られた熱抵抗を表2および表3に示す。 The thickness of the test specimen obtained was measured and the thickness of the thermally conductive laminate was calculated by subtracting the known thickness of the standard aluminum plate. A micrometer (manufactured by Mitutoyo Corporation, model: M820-25VA) was used to measure the thickness of the test piece. The obtained results are shown in Tables 2 and 3. Using the test piece, the thermal resistance (cm 2 · K / W) of the thermally conductive laminate was measured with a thermal resistance measuring instrument (manufactured by Netch, Xenon Flash Analyzer; LFA447 NanoFlash). The obtained thermal resistance is shown in Table 2 and Table 3.

・発熱・放熱装置への適用:
図1は発熱・放熱装置の構造を示す概略的断面図である。図1に即して説明する。上記実施例1〜3で得られた熱伝導性積層体1を2cm×2cmの擬似CPU2の表面上に設置した。擬似CPU2はプリント配線基板3の上に装着されている。積層体1に放熱部材4を重ね、クランプ5で放熱部材4とプリント配線基板3とをクランプ留めすることにより圧接した。こうして、熱伝導性積層体1を介して擬似CPU2と放熱部材4が接合されている発熱・放熱装置6を得た。
・ Application to heat generation and heat dissipation devices:
FIG. 1 is a schematic cross-sectional view showing the structure of a heat generation / heat dissipation device. This will be described with reference to FIG. The heat conductive laminated body 1 obtained in the above Examples 1 to 3 was placed on the surface of the 2 cm × 2 cm pseudo CPU 2. The pseudo CPU 2 is mounted on the printed wiring board 3. The heat dissipating member 4 was stacked on the laminate 1 and the heat dissipating member 4 and the printed wiring board 3 were clamped by the clamp 5 to be in pressure contact. In this way, the heat generating / heat radiating device 6 in which the pseudo CPU 2 and the heat radiating member 4 were joined via the heat conductive laminate 1 was obtained.

擬似CPU2に電力を供給したところ、擬似CPU2は発熱し温度が上昇したが約100℃で安定した。1000時間という長時間にわたって安定した熱伝導および放熱が可能であり、過熱蓄積による擬似CPUの故障は発生しなかった。また、放熱部材4を取り外す際に擬似CPU2およびプリント配線基板の損傷も防止できた。よって、本発明の熱伝導性積層体の採用により、半導体装置などの発熱・放熱装置の信頼性が向上することが確認できた。   When power was supplied to the pseudo CPU 2, the pseudo CPU 2 generated heat and the temperature rose, but stabilized at about 100 ° C. Stable heat conduction and heat dissipation were possible for a long time of 1000 hours, and no failure of the pseudo CPU due to overheat accumulation occurred. Moreover, when removing the heat radiating member 4, damage to the pseudo CPU 2 and the printed wiring board could be prevented. Therefore, it has been confirmed that the reliability of the heat generating / dissipating device such as a semiconductor device is improved by adopting the heat conductive laminate of the present invention.

Figure 2009234112
Figure 2009234112

Figure 2009234112
Figure 2009234112

実施例において本発明の熱伝導性積層体を適用した発熱・放熱装置の縦断面を示す概念図である。It is a conceptual diagram which shows the longitudinal cross-section of the heat_generation | fever and the heat radiating device to which the heat conductive laminated body of this invention is applied in an Example.

符号の説明Explanation of symbols

1.熱伝導性積層体
2.擬似CPU
3.プリント配線基板
4.放熱部材
5.クランプ
1. 1. Thermally conductive laminate Pseudo CPU
3. 3. Printed wiring board 4. Heat dissipation member Clamp

Claims (9)

(a)ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサン:100容量部、
(b)熱伝導性充填材:50〜1,000容量部、
(c)ケイ素原子に結合した水素原子を1分子中に2個以上有するオルガノハイドロジェンポリシロキサン:本成分のケイ素原子に結合した水素原子/(a)成分中のアルケニル基のモル比が0.5〜5.0となる量、
(d)白金族金属系触媒:有効量、
(e)反応制御剤:有効量、および
(f)シリコーン樹脂:50〜500容量部
を含むシリコーン組成物1を薄膜状に成形し硬化させてなる第一の硬化物層と、前記(a)〜(f)成分を必須成分として含み前記シリコーン組成物1と組成が異なるシリコーン組成物2を前記第一の硬化物層の片面上に薄膜状に成形し硬化させてなる第二の硬化物層とからなり、両面の粘着力が互いに異なる熱伝導性積層体。
(A) Organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in one molecule: 100 parts by volume
(B) Thermally conductive filler: 50 to 1,000 parts by volume,
(C) Organohydrogenpolysiloxane having two or more hydrogen atoms bonded to silicon atoms in one molecule: The molar ratio of hydrogen atoms bonded to silicon atoms in this component / alkenyl groups in component (a) is 0.00. An amount of 5 to 5.0,
(D) platinum group metal catalyst: effective amount,
(E) reaction control agent: effective amount, and (f) silicone resin: a first cured product layer formed by curing the silicone composition 1 containing 50 to 500 parts by volume into a thin film, and the above (a) A second cured product layer obtained by forming a silicone composition 2 containing the component (f) as an essential component and having a composition different from that of the silicone composition 1 into a thin film on one side of the first cured product layer and curing it. Thermally conductive laminate with different adhesive strengths on both sides.
室温下、前記積層体の25mm幅のサンプルの片面を室温下アルミニウム板に当て該積層体を質量2kgのゴムローラーで圧着して接着後10分間養生し、その後該積層体のアルミニウム板と接着されていない他方の片面を補強材に接着した後、該積層体の一端を接着した前記補強材とともに把持して引っ張り速度300mm/minにて180°方向に前記アルミニウム板から引き剥がし、引き剥がしに要した力(粘着力)を測定することを該積層体の両面に行ったときに、両面の粘着力がともに0.3N/cm以上であり、かつ、両面の粘着力の差が2N/cm以上である請求項1に係る熱伝導性積層体。   At room temperature, one side of a 25 mm wide sample of the laminate was applied to an aluminum plate at room temperature, and the laminate was pressed with a rubber roller having a mass of 2 kg and bonded for 10 minutes. After that, the laminate was bonded to the aluminum plate of the laminate. After bonding the other side of the laminate to the reinforcing material, one end of the laminate is gripped with the bonded reinforcing material and peeled off from the aluminum plate in a 180 ° direction at a pulling speed of 300 mm / min. When the measured force (adhesive strength) is measured on both sides of the laminate, the adhesive strength on both sides is 0.3 N / cm or more, and the difference in adhesive strength on both sides is 2 N / cm or more. The thermally conductive laminate according to claim 1. (f)成分のシリコーン樹脂が、R 3SiO1/2単位(R1は脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基を示す)とSiO4/2単位とを含み、R 3SiO1/2単位/SiO4/2単位のモル比が0.5〜1.5である請求項1乃至2のいずれか1項に係る熱伝導性積層体。 The silicone resin as component (f) contains R 1 3 SiO 1/2 units (R 1 represents an unsubstituted or substituted monovalent hydrocarbon group containing no aliphatic unsaturated bond) and SiO 4/2 units. The thermal conductive laminate according to claim 1, wherein the molar ratio of R 1 3 SiO 1/2 unit / SiO 4/2 unit is 0.5 to 1.5. さらに、(g)成分として、
(g−1)下記一般式(1):
Si(OR)4-a-b (1)
(式中、Rは独立に炭素原子数6〜15のアルキル基であり、Rは独立に非置換または置換の炭素原子数1〜8の1価炭化水素基であり、Rは独立に炭素原子数1〜6のアルキル基であり、aは1〜3の整数、bは0〜2の整数であり、但しa+bは1〜3の整数である。)
で表されるアルコキシシラン化合物、および
(g−2)下記一般式(2):
Figure 2009234112
(式中、Rは独立に炭素原子数1〜6のアルキル基であり、cは5〜100の整数である。)
で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンからなる群から選ばれる少なくとも1種: 0.01〜50容量部
を含有する請求項1乃至3のいずれか1項に係る熱伝導性積層体。
Furthermore, as component (g),
(G-1) The following general formula (1):
R 2 a R 3 b Si (OR 4 ) 4-ab (1)
Wherein R 2 is independently an alkyl group having 6 to 15 carbon atoms, R 3 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and R 4 is independently And an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a + b is an integer of 1 to 3.)
And (g-2) the following general formula (2):
Figure 2009234112
(In the formula, R 5 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100.)
The at least 1 sort (s) chosen from the group which consists of dimethylpolysiloxane by which the molecular chain piece terminal represented by this was blocked with the trialkoxy silyl group: 0.01-50 volume parts is contained in any one of Claims 1 thru | or 3 The heat conductive laminated body which concerns on.
更に(h)成分として、下記一般式(3):
-(SiR O)SiR -R ・・・(3)
(Rは独立に炭素原子数1〜18の脂肪族不飽和結合を含まない一価炭化水素基、dは5〜2,000の整数である。)
で表される23℃における動粘度が10〜100,000mm2/sのオルガノポリシロキサンを含有することを特徴とする請求項1乃至4のいずれか1項記載の熱伝導性積層体。
Further, as the component (h), the following general formula (3):
R 6- (SiR 6 2 O) d SiR 6 2 -R 6 (3)
(R 6 is a monovalent hydrocarbon group which does not contain an aliphatic unsaturated bond having 1 to 18 carbon atoms, and d is an integer of 5 to 2,000.)
The heat conductive laminate according to any one of claims 1 to 4, comprising an organopolysiloxane having a kinematic viscosity at 23 ° C represented by 10 to 100,000 mm 2 / s.
厚みが20〜1,000μmである請求項1乃至5のいずれか1項に係る熱伝導性積層体。   The heat conductive laminate according to any one of claims 1 to 5, having a thickness of 20 to 1,000 µm. レーザーフラッシュ法で測定した25℃における熱抵抗が10cm2・K/W以下である請求項1乃至6のいずれか1項に係る熱伝導性積層体。 The heat conductive laminate according to any one of claims 1 to 6, wherein a thermal resistance at 25 ° C measured by a laser flash method is 10 cm 2 · K / W or less. (a)ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサン:100容量部、
(b)熱伝導性充填材:50〜1,000容量部、
(c)ケイ素原子に結合した水素原子を1分子中に2個以上有するオルガノハイドロジェンポリシロキサン:本成分のケイ素原子に結合した水素原子/(a)成分中のアルケニル基のモル比が0.5〜5.0となる量、
(d)白金族金属系触媒:有効量、
(e)反応制御剤:有効量、並びに
(f)シリコーン樹脂:50〜500容量部
を含むシリコーン組成物1を、シリコーン粘着剤用の表面離型処理を施した基材の表面に薄膜状に塗布し硬化させて第一の硬化物層を形成し、その後、前記(a)〜(f)成分を含み前記シリコーン組成物1と組成が異なるシリコーン組成物2を前記第一の硬化物層の表面上に薄膜状に塗布し硬化させて第二の硬化物層を形成することを特徴とするその両面の粘着力が互いに異なる熱伝導性積層体の製造方法。
(A) Organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in one molecule: 100 parts by volume
(B) Thermally conductive filler: 50 to 1,000 parts by volume,
(C) Organohydrogenpolysiloxane having two or more hydrogen atoms bonded to silicon atoms in one molecule: The molar ratio of hydrogen atoms bonded to silicon atoms in this component / alkenyl groups in component (a) is 0.00. An amount of 5 to 5.0,
(D) platinum group metal catalyst: effective amount,
(E) Reaction control agent: Effective amount, and (f) Silicone resin: Silicone composition 1 containing 50 to 500 parts by volume is formed into a thin film on the surface of a base material subjected to surface release treatment for silicone adhesive. A first cured product layer is formed by applying and curing, and then a silicone composition 2 containing the components (a) to (f) and having a composition different from that of the silicone composition 1 is formed on the first cured product layer. A method for producing a thermally conductive laminate having different adhesive strengths on both surfaces, wherein the second cured product layer is formed by applying a thin film on the surface and curing.
基材に施しているシリコーン粘着剤用の離型処理が、フッ素置換基を主鎖に含む変性シリコーンによる処理である請求項8に係る製造方法。   The production method according to claim 8, wherein the release treatment for the silicone pressure-sensitive adhesive applied to the substrate is a treatment with a modified silicone containing a fluorine substituent in the main chain.
JP2008084669A 2008-03-27 2008-03-27 Thermally conductive laminate and method for producing the same Expired - Fee Related JP4572243B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008084669A JP4572243B2 (en) 2008-03-27 2008-03-27 Thermally conductive laminate and method for producing the same
KR20090025796A KR101488029B1 (en) 2008-03-27 2009-03-26 Thermal conductive laminate and method for preparing the same
TW098109942A TWI474923B (en) 2008-03-27 2009-03-26 Thermal conductive laminate and method of manufacturing the same
CN 200910130238 CN101544089B (en) 2008-03-27 2009-03-26 Heat-conductive laminated material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008084669A JP4572243B2 (en) 2008-03-27 2008-03-27 Thermally conductive laminate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009234112A true JP2009234112A (en) 2009-10-15
JP4572243B2 JP4572243B2 (en) 2010-11-04

Family

ID=41191584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008084669A Expired - Fee Related JP4572243B2 (en) 2008-03-27 2008-03-27 Thermally conductive laminate and method for producing the same

Country Status (4)

Country Link
JP (1) JP4572243B2 (en)
KR (1) KR101488029B1 (en)
CN (1) CN101544089B (en)
TW (1) TWI474923B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043205A1 (en) 2009-10-08 2011-04-14 日本電気株式会社 Mobile terminal device, power supply system, and power supply method and power supply program for mobile terminal device
JP2011138857A (en) * 2009-12-28 2011-07-14 Shin-Etsu Chemical Co Ltd Method of manufacturing electronic device with excellent heat dissipation and rework properties, and electronic device
CN102533152A (en) * 2012-01-18 2012-07-04 苏州领胜电子科技有限公司 Heat-conducting siliconfilm and manufacturing method thereof
CN102555331A (en) * 2012-01-18 2012-07-11 苏州领胜电子科技有限公司 Thermal-conductive silicon sheet and manufacturing method thereof
JP2013524493A (en) * 2010-03-31 2013-06-17 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Method for manufacturing a wafer with chips on two sides
JP2013225540A (en) * 2012-04-19 2013-10-31 Kaneka Corp Conjugate including heat conductive resin
JP2014003141A (en) * 2012-06-18 2014-01-09 Shin Etsu Chem Co Ltd Thermally conductive sheet, and electronic apparatus
CN103522687A (en) * 2013-10-14 2014-01-22 烟台德邦科技有限公司 Composite type heat-dissipation pad used through vertical face fitting and preparation method of pad
CN103522685A (en) * 2013-10-10 2014-01-22 烟台德邦科技有限公司 Composite type heat radiation silica gel pad and preparation method thereof
WO2015012181A1 (en) * 2013-07-22 2015-01-29 ローム株式会社 Power module and manufacturing method thereof
JP2016204600A (en) * 2015-04-28 2016-12-08 信越化学工業株式会社 Thermal conductive cured article, adhesive tape and adhesive sheet having the cured article
US10000680B2 (en) 2011-01-26 2018-06-19 Dow Silicones Corporation High temperature stable thermally conductive materials
CN111690333A (en) * 2020-06-11 2020-09-22 东莞市兆科电子材料科技有限公司 Heat-conducting gasket and preparation method and application thereof
JPWO2019142688A1 (en) * 2018-01-17 2021-01-07 信越化学工業株式会社 Thermally conductive thin film cured product and its manufacturing method, and thermally conductive member
CN112236482A (en) * 2018-06-08 2021-01-15 信越化学工业株式会社 Heat-conductive silicone composition and method for producing same
WO2022138627A1 (en) * 2020-12-21 2022-06-30 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Water-resistant adhesive polyorganosiloxane composition
JP2023508750A (en) * 2020-03-05 2023-03-03 ダウ グローバル テクノロジーズ エルエルシー Shear-thinning thermally conductive silicone composition

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102757736A (en) * 2011-04-29 2012-10-31 苏州沛德导热材料有限公司 Graphite heat conducting adhesive tape and production process thereof
JP5783128B2 (en) 2012-04-24 2015-09-24 信越化学工業株式会社 Heat curing type heat conductive silicone grease composition
CA2896300C (en) 2013-01-22 2020-10-27 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone composition, heat conductive layer, and semiconductor device
JP6136952B2 (en) * 2013-02-28 2017-05-31 信越化学工業株式会社 Thermally conductive composite silicone rubber sheet
JP5898139B2 (en) 2013-05-24 2016-04-06 信越化学工業株式会社 Thermally conductive silicone composition
JP5766335B2 (en) * 2013-07-01 2015-08-19 デクセリアルズ株式会社 Method for manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
JP5947267B2 (en) 2013-09-20 2016-07-06 信越化学工業株式会社 Silicone composition and method for producing thermally conductive silicone composition
US20150092352A1 (en) * 2013-09-29 2015-04-02 International Business Machines Corporation Thermal Interface Solution With Reduced Adhesion Force
JP6149831B2 (en) 2014-09-04 2017-06-21 信越化学工業株式会社 Silicone composition
KR102285332B1 (en) 2014-11-11 2021-08-04 삼성전자주식회사 Semiconductor package and semiconductor device comprising the same
JP6260519B2 (en) 2014-11-25 2018-01-17 信越化学工業株式会社 Method for storing and curing one-component addition-curable silicone composition
JP6519305B2 (en) * 2015-05-11 2019-05-29 富士電機株式会社 Silicone resin composition for sealing material and power semiconductor module using the composition
WO2018079215A1 (en) 2016-10-31 2018-05-03 東レ・ダウコーニング株式会社 One-pack curable type thermally conductive silicone grease composition and electronic/electrical component
KR101864505B1 (en) * 2016-11-21 2018-06-29 주식회사 케이씨씨 Silicone composition having excellent heat-radiating function
JP6977786B2 (en) 2018-01-15 2021-12-08 信越化学工業株式会社 Silicone composition
CN111918929B (en) 2018-03-23 2022-11-29 信越化学工业株式会社 Silicone composition
CN109181315A (en) * 2018-08-12 2019-01-11 深圳莱必德科技股份有限公司 A kind of height glues heat-conducting silica gel sheet and its manufacturing method
KR20210076046A (en) 2018-10-12 2021-06-23 신에쓰 가가꾸 고교 가부시끼가이샤 Addition curable silicone composition and method for preparing same
CN109627473B (en) * 2018-12-14 2020-07-31 东莞市佳迪新材料有限公司 Preparation process of enhanced organic silicon composite sheet with surface tack removal function
CN109608886B (en) * 2018-12-14 2021-02-05 东莞市佳迪新材料有限公司 Enhanced organic silicon composite sheet with surface viscosity removal function
JP6959950B2 (en) 2019-03-04 2021-11-05 信越化学工業株式会社 Non-curable thermally conductive silicone composition
JP7027368B2 (en) 2019-04-01 2022-03-01 信越化学工業株式会社 Thermally conductive silicone composition, its manufacturing method and semiconductor device
CN114423825B (en) 2019-09-27 2023-10-03 信越化学工业株式会社 Thermally conductive silicone composition, method for producing same, and semiconductor device
JP7325324B2 (en) 2019-12-23 2023-08-14 信越化学工業株式会社 Thermally conductive silicone composition
KR20230006643A (en) * 2020-05-06 2023-01-10 다우 실리콘즈 코포레이션 Curable thermally conductive polysiloxane composition with increased thixotropic index
WO2021235259A1 (en) 2020-05-22 2021-11-25 信越化学工業株式会社 Thermally conductive silicone composition, production method for same, and semiconductor device
CN113471647B (en) * 2021-06-22 2022-03-08 厦门翔澧工业设计有限公司 Clutter filtering device, preparation method, use method and equipment thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355654A (en) * 1999-06-15 2000-12-26 Denki Kagaku Kogyo Kk Heat-conductive silicone molding and its use
JP2004090516A (en) * 2002-09-02 2004-03-25 Shin Etsu Chem Co Ltd Thermally conductive composite sheet and manufacturing method therefor
JP2004273669A (en) * 2003-03-07 2004-09-30 Shin Etsu Chem Co Ltd Silicone rubber sheet for thermally compressive bonding
JP2008038137A (en) * 2006-07-12 2008-02-21 Shin Etsu Chem Co Ltd Heat conductive silicone grease composition and cured product thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373078A (en) * 1993-10-29 1994-12-13 Dow Corning Corporation Low viscosity curable organosiloxane compositions
KR101175948B1 (en) * 2004-10-28 2012-08-23 다우 코닝 코포레이션 Conductive curable compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355654A (en) * 1999-06-15 2000-12-26 Denki Kagaku Kogyo Kk Heat-conductive silicone molding and its use
JP2004090516A (en) * 2002-09-02 2004-03-25 Shin Etsu Chem Co Ltd Thermally conductive composite sheet and manufacturing method therefor
JP2004273669A (en) * 2003-03-07 2004-09-30 Shin Etsu Chem Co Ltd Silicone rubber sheet for thermally compressive bonding
JP2008038137A (en) * 2006-07-12 2008-02-21 Shin Etsu Chem Co Ltd Heat conductive silicone grease composition and cured product thereof

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043205A1 (en) 2009-10-08 2011-04-14 日本電気株式会社 Mobile terminal device, power supply system, and power supply method and power supply program for mobile terminal device
JP2011138857A (en) * 2009-12-28 2011-07-14 Shin-Etsu Chemical Co Ltd Method of manufacturing electronic device with excellent heat dissipation and rework properties, and electronic device
JP2013524493A (en) * 2010-03-31 2013-06-17 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Method for manufacturing a wafer with chips on two sides
US10000680B2 (en) 2011-01-26 2018-06-19 Dow Silicones Corporation High temperature stable thermally conductive materials
CN102555331B (en) * 2012-01-18 2014-07-23 苏州领胜电子科技有限公司 Thermal-conductive silicon sheet and manufacturing method thereof
CN102533152A (en) * 2012-01-18 2012-07-04 苏州领胜电子科技有限公司 Heat-conducting siliconfilm and manufacturing method thereof
CN102555331A (en) * 2012-01-18 2012-07-11 苏州领胜电子科技有限公司 Thermal-conductive silicon sheet and manufacturing method thereof
CN102533152B (en) * 2012-01-18 2013-10-23 苏州领胜电子科技有限公司 Heat-conducting siliconfilm and manufacturing method thereof
JP2013225540A (en) * 2012-04-19 2013-10-31 Kaneka Corp Conjugate including heat conductive resin
JP2014003141A (en) * 2012-06-18 2014-01-09 Shin Etsu Chem Co Ltd Thermally conductive sheet, and electronic apparatus
JP2015023212A (en) * 2013-07-22 2015-02-02 ローム株式会社 Power module and method for manufacturing the same
WO2015012181A1 (en) * 2013-07-22 2015-01-29 ローム株式会社 Power module and manufacturing method thereof
US9673128B2 (en) 2013-07-22 2017-06-06 Rohm Co., Ltd Power module and fabrication method for the same
CN103522685A (en) * 2013-10-10 2014-01-22 烟台德邦科技有限公司 Composite type heat radiation silica gel pad and preparation method thereof
CN103522685B (en) * 2013-10-10 2016-03-02 烟台德邦科技有限公司 A kind of composite type heat radiation silica gel pad and preparation method thereof
CN103522687B (en) * 2013-10-14 2016-08-10 烟台德邦科技有限公司 Compound cooling pad that a kind of facade uses and preparation method thereof
CN103522687A (en) * 2013-10-14 2014-01-22 烟台德邦科技有限公司 Composite type heat-dissipation pad used through vertical face fitting and preparation method of pad
JP2016204600A (en) * 2015-04-28 2016-12-08 信越化学工業株式会社 Thermal conductive cured article, adhesive tape and adhesive sheet having the cured article
JPWO2019142688A1 (en) * 2018-01-17 2021-01-07 信越化学工業株式会社 Thermally conductive thin film cured product and its manufacturing method, and thermally conductive member
JP7088215B2 (en) 2018-01-17 2022-06-21 信越化学工業株式会社 Thermally conductive thin-film cured product, its manufacturing method, and thermally conductive member
CN112236482A (en) * 2018-06-08 2021-01-15 信越化学工业株式会社 Heat-conductive silicone composition and method for producing same
CN112236482B (en) * 2018-06-08 2022-12-27 信越化学工业株式会社 Heat-conductive silicone composition and method for producing same
JP2023508750A (en) * 2020-03-05 2023-03-03 ダウ グローバル テクノロジーズ エルエルシー Shear-thinning thermally conductive silicone composition
US11746236B2 (en) 2020-03-05 2023-09-05 Dow Global Technologies Llc Shear thinning thermally conductive silicone compositions
CN111690333A (en) * 2020-06-11 2020-09-22 东莞市兆科电子材料科技有限公司 Heat-conducting gasket and preparation method and application thereof
WO2022138627A1 (en) * 2020-12-21 2022-06-30 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Water-resistant adhesive polyorganosiloxane composition
JPWO2022138627A1 (en) * 2020-12-21 2022-06-30

Also Published As

Publication number Publication date
KR20090103784A (en) 2009-10-01
TWI474923B (en) 2015-03-01
TW201004798A (en) 2010-02-01
CN101544089B (en) 2013-09-18
JP4572243B2 (en) 2010-11-04
CN101544089A (en) 2009-09-30
KR101488029B1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
JP4572243B2 (en) Thermally conductive laminate and method for producing the same
JP5233325B2 (en) Thermally conductive cured product and method for producing the same
JP5574532B2 (en) Thermally conductive silicone rubber composite sheet
JP5283346B2 (en) Thermally conductive cured product and method for producing the same
TWI719108B (en) Curable silicone composition, method for obtaining thermally conductive cured product, and adhesive tape and adhesive film containing the cured product
JP6020187B2 (en) Thermally conductive composite sheet
JP6032359B2 (en) Thermally conductive composite sheet and heat dissipation structure
JP6353811B2 (en) Thermally conductive cured product, adhesive tape and adhesive sheet having the cured product
JP6797075B2 (en) Thermal conductivity silicone rubber composite sheet
JP7050704B2 (en) Thermally conductive silicone rubber sheet with thermally conductive adhesive layer
JP2009235279A (en) Heat-conductive molding and manufacturing method therefor
JP2020002236A (en) Heat-conductive silicone composition, heat-conductive silicone sheet, and method of manufacturing the same
TW202103954A (en) Thermally conductive composite tape
JP4463117B2 (en) Flame-retardant and heat-conductive silicone molded article and method for producing the same
KR20170131231A (en) Thermal-conductive composite sheet
JP5418620B2 (en) Thermal conduction member
JP7270792B2 (en) Thermally conductive silicone rubber sheet with thermally conductive adhesive layer
JPWO2019142688A1 (en) Thermally conductive thin film cured product and its manufacturing method, and thermally conductive member
JP2005035264A (en) Heat conductive silicone shaped body and its manufacturing process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4572243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees