JPH03151658A - Cooling sheet - Google Patents

Cooling sheet

Info

Publication number
JPH03151658A
JPH03151658A JP29083789A JP29083789A JPH03151658A JP H03151658 A JPH03151658 A JP H03151658A JP 29083789 A JP29083789 A JP 29083789A JP 29083789 A JP29083789 A JP 29083789A JP H03151658 A JPH03151658 A JP H03151658A
Authority
JP
Japan
Prior art keywords
sheet
heat
conductive filler
heat dissipation
thermally conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29083789A
Other languages
Japanese (ja)
Other versions
JPH0638460B2 (en
Inventor
Kiyoaki Kamiya
神谷 清秋
Noboru Saito
昇 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP1290837A priority Critical patent/JPH0638460B2/en
Publication of JPH03151658A publication Critical patent/JPH03151658A/en
Publication of JPH0638460B2 publication Critical patent/JPH0638460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain a cooling sheet with improved heat conductivity by orientating a heat-conductive filler into a matrix resin in the direction of thickness in upright state. CONSTITUTION:A heat-conductive filler 3 is orientated within a matrix resin 2 in the direction of thickness in upright state. A silicon rubber, a polyolefin elastomer, etc., can be used as a matrix resin 2 and a boron nitride, a nitriding aluminum, alumina, etc., can be used as a heat-conductive filler 3, thus enabling heat conduction to be propagated in the direction of thickness of the sheet 1 effectively, emitted heat to be radiated when this cooling sheet 1 is used for electronic/electronic parts for improved parts life.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、トランジスター、コンデンサー等の電子・
電気部品に用いられる放熱シートに関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is applicable to electronic devices such as transistors and capacitors.
This invention relates to heat dissipation sheets used for electrical parts.

〔従来の技術〕[Conventional technology]

従来から、使用時にトランジスター、コンデンサー等の
電子・電気部品から生じる熱が原因で、上記電子・電気
部品の寿命が短くなることから、この対策として熱伝導
性および密着性に優れた放熱シートを上記電子・電気部
品に接着し、さらに上記放熱シートの他面に放熱フィン
を取り付け、放熱シートを介して熱を放熱フィンへ伝え
放熱するという方法が採用されている。上記放熱シート
は、通常、シリコーンゴムと、熱伝導性フィラーとを用
いてシート状に形成することにより得られる。上記熱伝
導性フィラーとしては、窒化ボロン等の粒子状、板状、
針状等の形状を有するものが用いられる。そして、上記
放熱シートは、通常、上記原料を用いて例えば下記の3
通りの方法により作製される。第1の方法は、シリコー
ンゴムと熱伝導性フィラーの窒化ボロンとを配合、混合
して通常のゴム材料と同様にロール、カレンダー。
Traditionally, heat generated from electronic and electrical components such as transistors and capacitors during use has shortened the lifespan of these electronic and electrical components. A method has been adopted in which the heat dissipation sheet is adhered to electronic/electrical components, and a heat dissipation fin is attached to the other surface of the heat dissipation sheet, and heat is transferred to the heat dissipation fin through the heat dissipation sheet to radiate the heat. The above-mentioned heat dissipation sheet is usually obtained by forming a sheet using silicone rubber and a thermally conductive filler. The above-mentioned thermally conductive filler may be in the form of particles such as boron nitride, plate-like,
Those having a needle-like shape or the like are used. The above-mentioned heat dissipation sheet is usually made using the above-mentioned raw materials, for example, the following three materials.
It is made by the following method. The first method is to blend and mix silicone rubber and thermally conductive filler boron nitride, and then roll and calender the mixture in the same way as ordinary rubber materials.

押出機等によりシート状に成形しプレスして加硫すると
いう方法である。第2の方法は、上記原料を混合し溶剤
に希釈した後、ドクターブレード法に従ってシート状に
形成し乾燥してプレスして加硫するという方法である。
This method involves forming the material into a sheet using an extruder or the like, pressing it, and vulcanizing it. The second method is to mix the above raw materials, dilute them in a solvent, form them into a sheet according to the doctor blade method, dry them, press them and vulcanize them.

第3の方法は、上記シリコーンゴム100重量部(以下
「部」と略す)に対して熱伝導性フィラーが200部以
上配合されているという熱伝導性フィラー高充填配合物
を用いる製法であって、上記原料をニーグー等の密閉式
混練機に掛は混合して粉末状ゴム材料に形成し、これを
所定のシート成形用金型に一定量充填しプレスして加硫
するという方法である。
The third method is a manufacturing method using a highly-filled mixture of thermally conductive fillers, in which 200 parts or more of thermally conductive fillers are blended with 100 parts by weight (hereinafter referred to as "parts") of the silicone rubber. In this method, the above raw materials are mixed in an internal kneading machine such as a Ni-Goo to form a powdered rubber material, and a certain amount of this is filled into a predetermined sheet molding die, pressed, and vulcanized.

〔発明が解決しようとす・る課題〕[Problem that the invention attempts to solve]

しかしながら、上記各製法により作製された放熱シート
は厚み方向の放熱性があまり良くない。
However, the heat dissipation sheets produced by each of the above manufacturing methods do not have very good heat dissipation properties in the thickness direction.

本発明者らは、その原因について研究を重ねた結果、つ
ぎのような結論を見出した。すなわち、上記放熱シート
では、いずれも、配合原料の熱伝導性フィラーが、第7
図に示すように、得られる放熱シー)1aの長手方向に
それ自体の長袖を合わせた状態で配向している。そして
、このように熱伝導性フィラー3aが配向すると、熱伝
導性フィラー3aが相互に接触して、いわば放熱シート
1aの長手方向に連続したかのような状態となり、放熱
シー)1aの長手方向に熱が伝達されやすく、逆に厚み
方向(矢印F方向)には熱が伝達し難くなる。その結果
1.上記放熱シー)1aを電子・電気部品に接着して用
いても、発生した熱が放熱シートlaを介して放熱フィ
ンまで効果的に伝達されず電子・電気部品の短命化が促
進されるようになる。
As a result of repeated research into the cause, the present inventors found the following conclusion. That is, in all of the above heat dissipation sheets, the thermally conductive filler of the blended raw materials is the seventh
As shown in the figure, the obtained heat dissipation sheet 1a is oriented in the longitudinal direction with its own long sleeve. When the thermally conductive fillers 3a are oriented in this way, the thermally conductive fillers 3a come into contact with each other and become in a state as if they were continuous in the longitudinal direction of the heat dissipation sheet 1a, so that the heat dissipation sheet 1a Heat is easily transferred in the thickness direction (direction of arrow F), and conversely, heat is difficult to be transferred in the thickness direction (direction of arrow F). The result 1. Even if the above heat dissipation sheet 1a is used by adhering it to electronic/electrical components, the generated heat will not be effectively transferred to the heat dissipation fins via the heat dissipation sheet la, which will promote the shortening of the lifespan of the electronic/electrical components. Become.

この発明は、このような事情に鑑みなされたもので、熱
伝導性に優れた放熱シートの提供をその目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a heat dissipation sheet with excellent thermal conductivity.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、この発明の放熱シートは、
マトリックス樹脂中に熱伝導性フィラーが分布している
放熱シートであって、上記熱伝導性フィラーが厚み方向
に直立状態で配向しているという構成をとる。
In order to achieve the above object, the heat dissipation sheet of this invention
This is a heat dissipation sheet in which a thermally conductive filler is distributed in a matrix resin, and the thermally conductive filler is oriented in an upright state in the thickness direction.

〔作用〕[Effect]

すなわち、この発明の放熱シートは、マトリックス樹脂
中に分布された熱伝導性フィラーが、シートの厚み方向
に直立状態で配向しているため、熱伝導がシートの厚み
方向に効果的に伝導される。したがって、この発明の放
熱シートを電子・電気部品に用いると発生する熱が放出
され、上記部品の長寿命化が図られる。
That is, in the heat dissipation sheet of the present invention, the thermally conductive filler distributed in the matrix resin is oriented in an upright manner in the thickness direction of the sheet, so that heat is effectively conducted in the thickness direction of the sheet. . Therefore, when the heat dissipation sheet of the present invention is used for electronic/electrical parts, the generated heat is released, and the life of the said parts can be extended.

つぎに、この発明の詳細な説明する。Next, this invention will be explained in detail.

この発明の放熱シートは、マトリックス樹脂と、熱伝導
性フィラーとを用いてシート状に成形することにより得
られる。
The heat dissipation sheet of the present invention is obtained by molding a matrix resin and a thermally conductive filler into a sheet shape.

上記マトリックス樹脂としては、シリコーンゴム、ポリ
オレフィン系エラストマー等があげられる。
Examples of the matrix resin include silicone rubber and polyolefin elastomer.

上記熱伝導性フィラーとしては、窒化ボロン。The thermally conductive filler mentioned above is boron nitride.

窒化アルミニウム、アルミナ等があげられ、なかでも、
第6図に示すような、結晶形状が六方晶形の上記窒化ボ
ロン12を用いるのが好ましい。上記窒化ボロン12と
しては、その厚みbと長袖長さaの比がa / b =
 20〜100のものを用いるのが好適である。そして
、上記のような結晶形状を有する窒、化ボロン12では
、熱は長軸a方向に伝達されやすい。
Aluminum nitride, alumina, etc. are mentioned, among which,
It is preferable to use the boron nitride 12 having a hexagonal crystal shape as shown in FIG. As for the boron nitride 12, the ratio of its thickness b to long sleeve length a is a/b=
It is suitable to use 20 to 100. In the boron nitride 12 having the above-mentioned crystal shape, heat is easily transmitted in the direction of the long axis a.

上記マトリックス樹脂と熱伝導性フィラーの配合割合は
、通常、マトリックス樹脂100部に対して熱伝導性フ
ィラーを100〜500部の割合範囲に設定するのが好
適である。
The mixing ratio of the matrix resin and the thermally conductive filler is usually preferably set in a range of 100 to 500 parts of the thermally conductive filler to 100 parts of the matrix resin.

また、この発明の放熱シートの成形材料には、上記マト
リックス樹脂および熱伝導性フィラー以外に、必要に応
じて硬化剤、加工助剤等その他の添加剤を適宜配合する
ことができる。
Further, in addition to the matrix resin and the thermally conductive filler, other additives such as a curing agent and a processing aid may be appropriately blended into the molding material of the heat dissipating sheet of the present invention, as required.

この発明の放熱シートは、例えば下記の2つの方法によ
り製造することができる。第1の方法は、まず、上記各
成分原料を配合し混練して混練物を作製し、この混線物
を押出機に投入し、第2図に示すように、矢印B方向に
押出する。そして、押し出されたシート成形用弾性体1
1を所定厚みdの一点鎖線Xに沿ってスライスし、この
スライスされたシート成形用金型体11を厚みd方向に
プレスして加硫する方法である。
The heat dissipation sheet of the present invention can be manufactured, for example, by the following two methods. In the first method, first, the above-mentioned raw materials are mixed and kneaded to prepare a kneaded material, and this mixed material is put into an extruder and extruded in the direction of arrow B as shown in FIG. Then, the extruded sheet-forming elastic body 1
1 is sliced along the dashed line X with a predetermined thickness d, and the sliced sheet mold body 11 is pressed in the direction of the thickness d and vulcanized.

第2の方法は、上記各成分原料の配合割合においてマト
リックス樹脂100部に対して熱伝導性フィラーが20
0部以上配合されているという熱伝導性フィラー高充填
配合物を用いる場合の製造方法である。すなわち、上記
各成分原料を配合してニーグー等の混練機に掛けて混練
することにより熱伝導性フィラー外周にマトリックス樹
脂がコーティングされた状態の粉末ゴム状成形材料を作
製する。つぎに、第3図に示すような、所定厚みもの予
備金型4,5に上記粉末ゴム状成形材料7を投入(斜線
部分)し、常温下で圧縮用型6で矢印C方向に圧縮する
ことによりシート状に予備成形する。上記圧縮により熱
伝導性フィラーがシート厚みt方向に配向される。そし
て、予備成形されたシートを上記予備金型4,5から取
り出し、第4図に示すような加硫用金型8.9に載置し
て圧縮用型10により矢印り方向に予備成形シート11
をプレス、加硫することにより製造することができる。
In the second method, 20 parts of the thermally conductive filler is added to 100 parts of the matrix resin in the blending ratio of the above-mentioned raw materials.
This is a manufacturing method when using a highly-filled blend of thermally conductive filler, in which 0 parts or more of the heat conductive filler is blended. That is, the above-mentioned raw materials for each component are blended and kneaded using a kneader such as a Ni-Goo to prepare a powdered rubber-like molding material in which the outer periphery of the thermally conductive filler is coated with a matrix resin. Next, the powdered rubber-like molding material 7 is put into preliminary molds 4 and 5 of a predetermined thickness as shown in FIG. By this, it is preformed into a sheet shape. The compression causes the thermally conductive filler to be oriented in the direction of the sheet thickness t. Then, the preformed sheet is taken out from the preliminary molds 4 and 5, placed on a vulcanization mold 8.9 as shown in FIG. 11
It can be manufactured by pressing and vulcanizing.

このようにして得られる放熱シート1は、第1図に示す
ように、マトリックス樹脂2中に配合された熱伝導性フ
ィラー3がシートの厚み方向に直立状態で配向されてい
るため、矢印A方向の熱伝導性に優れている。
As shown in FIG. 1, the heat dissipating sheet 1 obtained in this manner has the thermally conductive filler 3 blended in the matrix resin 2 oriented in an upright state in the thickness direction of the sheet, so that has excellent thermal conductivity.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の放熱シートは、熱伝導性フィ
ラーがシートの厚み方向に直立状態で配向されているた
め、シートの厚み方向の熱伝導性に優れている。したが
って、この発明の放熱シートの片面を電子・電気部品に
接着して用いると、上記電子・電気部品から発生した熱
がこの放熱シートを通過し、他面に設けられた放熱フィ
ンから効果的に放出される。このため、このような電子
・電気部品を用いた製品の長寿命化が実現される。
As described above, the heat dissipation sheet of the present invention has excellent thermal conductivity in the thickness direction of the sheet because the thermally conductive filler is oriented in an upright state in the thickness direction of the sheet. Therefore, when one side of the heat dissipation sheet of the present invention is used by adhering it to an electronic or electrical component, the heat generated from the electronic or electrical component passes through this heat dissipation sheet and is effectively emitted from the heat dissipation fin provided on the other surface. released. Therefore, the lifespan of products using such electronic/electrical components can be extended.

つぎに、実施例について比較例と併せて説明する。Next, examples will be described together with comparative examples.

〔実施例1〕 シリコーンゴム100部と窒化ボロン150部および硬
化剤1部を配合し混練してシート成形材料を作製した。
[Example 1] 100 parts of silicone rubber, 150 parts of boron nitride, and 1 part of a hardening agent were mixed and kneaded to prepare a sheet molding material.

そして、第5図に示すように、上記シート成形材料を押
出機に投入し矢印E方向に押し出すことにより縦断面長
方形のシート成形用弾性体13を得た。つぎに、押し出
されたシート成形用弾性体13を一点鎖線Yに沿って厚
みe 0゜5mmにスライスした。この厚みe O,5
nunのスライスされた弾性体を厚みe方向に圧力15
0 kg/cdt(ゲージ圧)でプレスして加硫(条件
:170°C×15分)することにより目的とする放熱
シートを得た。
Then, as shown in FIG. 5, the sheet-molding material was put into an extruder and extruded in the direction of arrow E to obtain an elastic body 13 for sheet-molding having a rectangular longitudinal section. Next, the extruded sheet-forming elastic body 13 was sliced along the dashed line Y to a thickness e of 0.5 mm. This thickness e O, 5
Apply pressure 15 to the sliced elastic body of nun in the thickness e direction.
The desired heat dissipation sheet was obtained by pressing and vulcanizing at 0 kg/cdt (gauge pressure) (conditions: 170°C x 15 minutes).

〔実施例2〕 シリコーンゴム100部と窒化ボロン300部を配合し
ニーダ−で混練して窒化ボロン外表面にゴム成分がコー
ティングされた状態の粉末状ゴムを作製した。つぎに、
第3図に示すような、厚みt 0.5 mmの予備金型
4.5に上記粉末状ゴム成分7を投入し、常温下、圧縮
型6で矢印C方向に予備圧縮することにより予備成形し
た。そして、予備成形されたシートを上記予備金型4.
5から取り出し、第4図に示すような加硫用金型8,9
に載置して矢印り方向に圧力150kg/CTM(ゲー
ジ圧)でプレスし加硫(条件:170°C×15分)す
ることにより目的とする放熱シートを得た。
[Example 2] 100 parts of silicone rubber and 300 parts of boron nitride were mixed and kneaded in a kneader to produce a powdered rubber in which the outer surface of boron nitride was coated with a rubber component. next,
The powdered rubber component 7 is put into a preliminary mold 4.5 having a thickness of t 0.5 mm as shown in FIG. did. Then, the preformed sheet is placed in the preliminary mold 4.
Vulcanization molds 8 and 9 as shown in FIG.
The target heat dissipating sheet was obtained by pressing in the direction of the arrow at a pressure of 150 kg/CTM (gauge pressure) and vulcanizing (conditions: 170°C x 15 minutes).

〔比較例1〕 実施例1と同様にして縦断面長方形のシート成形用弾性
体13を得た。つぎに、押し出されたシート成形用弾性
体13を、第5図に示すように、押し出し方向に平行(
実施例1のスライス方向に対して垂直)に二点鎖線Zに
沿って厚みf O,5mmにスライスした。この厚みf
o、5mmのスライスされた弾性体を厚みf方向に圧力
150 kg/c+fl (ゲージ圧)でプレスして加
硫(条件:170°c×15分)することにより放熱シ
ートを得た。このようにして得られた放熱シートは、第
7図に示すように、熱伝導性フィラーが長手方向に沿っ
て配向されたものであった。
[Comparative Example 1] In the same manner as in Example 1, an elastic body 13 for sheet molding having a rectangular longitudinal section was obtained. Next, as shown in FIG. 5, the extruded sheet-forming elastic body 13 is
The sample was sliced to a thickness of 5 mm (perpendicular to the slicing direction in Example 1) along the two-dot chain line Z. This thickness f
A heat dissipation sheet was obtained by pressing and vulcanizing (conditions: 170°C x 15 minutes) a sliced elastic body of 5 mm in thickness f direction at a pressure of 150 kg/c+fl (gauge pressure). The thus obtained heat dissipation sheet had a thermally conductive filler oriented along the longitudinal direction, as shown in FIG.

〔比較例2〕 シリコーンゴム100部と、窒化ホウ素150部を用い
て配合、混合し、これを溶剤(飢−ヘキサン)にて22
5重量%に希釈した後、ドクターブレード法によりシー
ト状に形成乾燥して加硫することにより放熱シートを得
た。
[Comparative Example 2] 100 parts of silicone rubber and 150 parts of boron nitride were blended and mixed, and this was mixed with a solvent (starved hexane) for 22 hours.
After diluting to 5% by weight, the mixture was formed into a sheet by a doctor blade method, dried and vulcanized to obtain a heat dissipation sheet.

以上のようにして得られた実施例品および比較例品のそ
れぞれの厚み方向の熱伝導率および熱抵抗を測定し熱伝
導性を評価した。その結果を下記の表に示した。
The thermal conductivity and thermal resistance in the thickness direction of each of the example products and comparative example products obtained as described above were measured to evaluate the thermal conductivity. The results are shown in the table below.

(余  白  ) 0 熱伝導性フィラー(Left white) 0 thermally conductive filler

Claims (2)

【特許請求の範囲】[Claims] (1)マトリックス樹脂中に熱伝導性フィラーが分布し
ている放熱シートであつて、上記熱伝導性フィラーが厚
み方向に直立状態で配向していることを特徴とする放熱
シート。
(1) A heat dissipation sheet in which a thermally conductive filler is distributed in a matrix resin, the heat dissipating sheet being characterized in that the thermally conductive filler is oriented in an upright manner in the thickness direction.
(2)熱伝導性フィラーが窒化ボロンである請求項(1
)記載の放熱シート。
(2) Claim (1) wherein the thermally conductive filler is boron nitride
) The heat dissipation sheet described.
JP1290837A 1989-11-08 1989-11-08 Heat dissipation sheet Expired - Lifetime JPH0638460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1290837A JPH0638460B2 (en) 1989-11-08 1989-11-08 Heat dissipation sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1290837A JPH0638460B2 (en) 1989-11-08 1989-11-08 Heat dissipation sheet

Publications (2)

Publication Number Publication Date
JPH03151658A true JPH03151658A (en) 1991-06-27
JPH0638460B2 JPH0638460B2 (en) 1994-05-18

Family

ID=17761131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1290837A Expired - Lifetime JPH0638460B2 (en) 1989-11-08 1989-11-08 Heat dissipation sheet

Country Status (1)

Country Link
JP (1) JPH0638460B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140538A (en) * 1992-10-28 1994-05-20 Nec Corp Quad-flat-package type ic
WO1995002313A1 (en) 1993-07-06 1995-01-19 Kabushiki Kaisha Toshiba Heat dissipating sheet
JPH0883990A (en) * 1994-09-09 1996-03-26 Shinano Polymer Kk Thermal conduction element and heat-dissipating structure using it
JPH1126661A (en) * 1997-07-01 1999-01-29 Denki Kagaku Kogyo Kk Radiation spacer
JP2000294698A (en) * 1999-04-02 2000-10-20 Denki Kagaku Kogyo Kk Heat conductive spacer
JP2000344919A (en) * 1999-06-02 2000-12-12 Denki Kagaku Kogyo Kk Production of thermo-conductive silicone molding product
JP2000355654A (en) * 1999-06-15 2000-12-26 Denki Kagaku Kogyo Kk Heat-conductive silicone molding and its use
EP1109218A2 (en) * 1999-12-17 2001-06-20 Polymatech Co., Ltd. Heat conducting mold and manufacturing method thereof
US6649012B2 (en) * 1999-12-17 2003-11-18 Polymatech Co., Ltd. Adhesion method and electronic component
EP1184899A3 (en) * 2000-08-31 2004-04-07 Polymatech Co., Ltd. Heat conductive adhesive film and manufacturing method thereof and electronic component
US6831031B2 (en) 2001-08-17 2004-12-14 Polymatech Co., Ltd. Thermally conductive sheet
US7018701B2 (en) * 2002-06-06 2006-03-28 Fuji Polymer Industries Co., Ltd. Thermally conductive sheet and method for manufacturing the same
WO2008085999A1 (en) * 2007-01-10 2008-07-17 Momentive Performance Materials Inc. Thermal interface materials and methods for making thereof
JP2015122499A (en) * 2013-12-23 2015-07-02 華為技術有限公司Huawei Technologies Co.,Ltd. Oriented flexible heat-conducting material, forming process and application thereof
WO2017065113A1 (en) * 2015-10-13 2017-04-20 リンテック株式会社 Semiconductor device and composite sheet

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332305A (en) * 2005-05-26 2006-12-07 Matsushita Electric Ind Co Ltd Method of manufacturing thermal conductive sheet
JP5184543B2 (en) 2007-09-26 2013-04-17 三菱電機株式会社 Thermally conductive sheet and power module
JP2012040811A (en) * 2010-08-20 2012-03-01 Techno Polymer Co Ltd Orientation direction control method of anisotropic filler, molding, and its manufacturing method
US11742258B2 (en) 2020-05-15 2023-08-29 Dexerials Corporation Thermally conductive sheet and method for manufacturing thermally conductive sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742921A (en) * 1980-08-27 1982-03-10 Teijin Ltd Spinning method of polyester fiber
JPS62154410A (en) * 1985-12-25 1987-07-09 信越化学工業株式会社 Heat conductive insulating sheet
JPS62240538A (en) * 1986-04-11 1987-10-21 株式会社 ユニツクス Heat-dissipating and endothermic material and manufacture thereof
JPH0572755A (en) * 1991-09-12 1993-03-26 Fuji Photo Film Co Ltd Electrophotographic sensitive body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742921A (en) * 1980-08-27 1982-03-10 Teijin Ltd Spinning method of polyester fiber
JPS62154410A (en) * 1985-12-25 1987-07-09 信越化学工業株式会社 Heat conductive insulating sheet
JPS62240538A (en) * 1986-04-11 1987-10-21 株式会社 ユニツクス Heat-dissipating and endothermic material and manufacture thereof
JPH0572755A (en) * 1991-09-12 1993-03-26 Fuji Photo Film Co Ltd Electrophotographic sensitive body

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140538A (en) * 1992-10-28 1994-05-20 Nec Corp Quad-flat-package type ic
WO1995002313A1 (en) 1993-07-06 1995-01-19 Kabushiki Kaisha Toshiba Heat dissipating sheet
US5660917A (en) * 1993-07-06 1997-08-26 Kabushiki Kaisha Toshiba Thermal conductivity sheet
JPH0883990A (en) * 1994-09-09 1996-03-26 Shinano Polymer Kk Thermal conduction element and heat-dissipating structure using it
JPH1126661A (en) * 1997-07-01 1999-01-29 Denki Kagaku Kogyo Kk Radiation spacer
JP2000294698A (en) * 1999-04-02 2000-10-20 Denki Kagaku Kogyo Kk Heat conductive spacer
JP2000344919A (en) * 1999-06-02 2000-12-12 Denki Kagaku Kogyo Kk Production of thermo-conductive silicone molding product
JP4545247B2 (en) * 1999-06-02 2010-09-15 電気化学工業株式会社 Method for producing thermally conductive silicone molded body
JP2000355654A (en) * 1999-06-15 2000-12-26 Denki Kagaku Kogyo Kk Heat-conductive silicone molding and its use
EP1109218A3 (en) * 1999-12-17 2003-04-02 Polymatech Co., Ltd. Heat conducting mold and manufacturing method thereof
JP2001172398A (en) * 1999-12-17 2001-06-26 Polymatech Co Ltd Thermal conduction molded product and its production method
US6649012B2 (en) * 1999-12-17 2003-11-18 Polymatech Co., Ltd. Adhesion method and electronic component
EP1109218A2 (en) * 1999-12-17 2001-06-20 Polymatech Co., Ltd. Heat conducting mold and manufacturing method thereof
EP1184899A3 (en) * 2000-08-31 2004-04-07 Polymatech Co., Ltd. Heat conductive adhesive film and manufacturing method thereof and electronic component
US6831031B2 (en) 2001-08-17 2004-12-14 Polymatech Co., Ltd. Thermally conductive sheet
US7018701B2 (en) * 2002-06-06 2006-03-28 Fuji Polymer Industries Co., Ltd. Thermally conductive sheet and method for manufacturing the same
JP2010515807A (en) * 2007-01-10 2010-05-13 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド Thermal interface material and manufacturing method thereof
WO2008085999A1 (en) * 2007-01-10 2008-07-17 Momentive Performance Materials Inc. Thermal interface materials and methods for making thereof
JP2015122499A (en) * 2013-12-23 2015-07-02 華為技術有限公司Huawei Technologies Co.,Ltd. Oriented flexible heat-conducting material, forming process and application thereof
WO2017065113A1 (en) * 2015-10-13 2017-04-20 リンテック株式会社 Semiconductor device and composite sheet
JP2017076656A (en) * 2015-10-13 2017-04-20 リンテック株式会社 Semiconductor device and composite sheet
CN108235784A (en) * 2015-10-13 2018-06-29 琳得科株式会社 Semiconductor device and composite sheet
CN108235784B (en) * 2015-10-13 2021-05-25 琳得科株式会社 Semiconductor device and composite sheet

Also Published As

Publication number Publication date
JPH0638460B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
JPH03151658A (en) Cooling sheet
US7094822B2 (en) Thermally conductive elastomeric pad
US6831031B2 (en) Thermally conductive sheet
KR101682328B1 (en) Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
US5194480A (en) Thermally conductive elastomer
KR102075893B1 (en) Thermally conductive sheet, manufacturing method of thermally conductive sheet, heat dissipation member and semiconductor device
CN105324844B (en) Manufacture method, thermally conductive sheet and the thermal component of thermally conductive sheet
JP7096723B2 (en) Method for manufacturing a heat conductive sheet
JPH0570317B2 (en)
JPH11302545A (en) Silicone rubber composite
JP6739478B2 (en) Method for manufacturing heat conductive sheet
JP6807355B2 (en) Thermal conductive sheet and its manufacturing method, mounting method of thermal conductive sheet
JP6999019B2 (en) Thermally conductive sheet and its manufacturing method, mounting method of thermally conductive sheet
US6756005B2 (en) Method for making a thermally conductive article having an integrated surface and articles produced therefrom
US6037397A (en) Rubber molded product
EP1160862B1 (en) Thermal conductive material and method for producing the same
JP2003130990A (en) Radiation shield material and its production method
JP3189590B2 (en) Heat dissipation sheet and its manufacturing method
JP2000108220A (en) Thermally conductive resin molding, its manufacture and use
JP4545246B2 (en) Method for producing thermally conductive silicone molded body
JPH1119948A (en) Manufacture of radiation member for electronic part
JP2000185328A (en) Heat conductive silicone moldings and manufacture thereof and use applications
JP3464752B2 (en) Molded polymer material and its use
JP2004363272A (en) Heat-dissipating member
JP4313920B2 (en) High thermal conductivity spacer