JP2000108220A - Thermally conductive resin molding, its manufacture and use - Google Patents

Thermally conductive resin molding, its manufacture and use

Info

Publication number
JP2000108220A
JP2000108220A JP10282239A JP28223998A JP2000108220A JP 2000108220 A JP2000108220 A JP 2000108220A JP 10282239 A JP10282239 A JP 10282239A JP 28223998 A JP28223998 A JP 28223998A JP 2000108220 A JP2000108220 A JP 2000108220A
Authority
JP
Japan
Prior art keywords
thermally conductive
heat
sheet
resin molded
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10282239A
Other languages
Japanese (ja)
Other versions
JP3721272B2 (en
Inventor
Kazuyoshi Ikeda
和義 池田
Hiroaki Sawa
博昭 澤
Tetsumi Otsuka
哲美 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP28223998A priority Critical patent/JP3721272B2/en
Publication of JP2000108220A publication Critical patent/JP2000108220A/en
Application granted granted Critical
Publication of JP3721272B2 publication Critical patent/JP3721272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture a highly flexible and highly thermally conductive heat dissipation member with good productivity by forming the member out of a resin molding which contains a thermally conductive filler and is easily deformed by an external force and forming it in a structure having communicating holes. SOLUTION: The thermally conductive resin molding 1 is a molding containing thermally conductive filler 3 in a resin 2 or a resin molding to be easily deformed by an external force and containing communicating holes 4. The filler 3 contains BN particles. The resin 2 is a silicon. A shape of the molding is sheet-like. The holes 4 are formed in a thickness direction of the sheet with a porosity of a range 5 to 50%. Further, a ratio of the particles oriented in the thickness direction of the sheet is increased more than that of the particles oriented in a width direction of the sheet. Such the molding 1 is obtained by molding an uncured bar-like mold by using a resin composition containing the filler 3, providing air gaps to become a plurality of the holes 4, and accumulated. Thereafter, it is cut and cured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱伝導性樹脂成形
体とその製造方法及び用途に関する。詳しくは、電子機
器の放熱を行う際に、発熱電子部品とヒートシンクの間
に介在させて使用される放熱部材として好適な熱伝導性
成形体とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermally conductive resin molded article, its production method and use. More specifically, the present invention relates to a heat conductive molded body suitable as a heat radiating member to be interposed between a heat generating electronic component and a heat sink when radiating heat of an electronic device, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】電子機器において、使用時に発生する熱
をどのように除去するかが重要な課題となっており、従
来よりトランジスタやサイリスタ等の発熱電子部品を、
放熱フインや放熱板等のヒートシンクに、熱伝導性シー
トを介して取り付けることによって行われている。この
熱伝導性シートは、樹脂に熱伝導性フイラーを分散含有
させたものが用いられており、熱伝導性が良好であるこ
とから発熱電子部品の実装に広く賞用されている。ま
た、最近に至り、熱伝導性シートの柔軟性を、例えばア
スカC硬度で50以下までに著しく高めた、高柔軟性放
熱スペーサーも使用されるようになっている。
2. Description of the Related Art In electronic equipment, how to remove heat generated during use has become an important issue. Conventionally, heat-generating electronic components such as transistors and thyristors have been used.
It is performed by attaching to a heat sink such as a heat radiation fin or a heat radiation plate via a heat conductive sheet. The heat conductive sheet is made of a resin in which a heat conductive filler is dispersed and contained, and is widely used for mounting heat-generating electronic components because of its good heat conductivity. Further, recently, a highly flexible heat-radiating spacer in which the flexibility of the heat conductive sheet is significantly increased to, for example, 50 or less in Asuka C hardness has been used.

【0003】熱伝導性シートの熱伝導性を良くするため
には、窒化ホウ素(BN)等の熱伝導性フイラーの充填
率を多くすれば良いが、シートの機械的強度が低下する
ので高充填には限度があった。
In order to improve the thermal conductivity of the thermally conductive sheet, it is sufficient to increase the filling rate of a thermally conductive filler such as boron nitride (BN). However, since the mechanical strength of the sheet is reduced, a high filling rate is required. Had a limit.

【0004】また、BNは鱗片状粒子であり、その粒子
自身の熱伝導性は鱗片状の面方向では約110W/mK
であるのに対し、その面に対して垂直方向では約2W/
mK程度しかなくBN粒子の熱伝導性は面方向が数十倍
優れていることが知られている。すなわち、BN粒子の
熱伝導性に優れる方向である面方向を放熱シートが熱を
伝達するシートの厚さ方向と同じにする(BN粒子をシ
ート厚み方向に立てる)ことによって熱伝導性が飛躍的
に向上することが期待されるが、従来の製造方法(カレ
ンダーロール法、ドクターブレード法、押し出し法)で
は、シート成型時にBN粒子の配向が発生し、図3のよ
うに鱗片状粒子の面方向がシート面方向と同一となって
BN粒子の面方向の優れた熱伝導性が活かされないまま
となっていた。
BN is a scale-like particle, and the thermal conductivity of the particle itself is about 110 W / mK in a scale-like surface direction.
In contrast, about 2 W /
It is known that the thermal conductivity of BN particles is only about mK, and the thermal conductivity of the BN particles is several tens times better in the plane direction. That is, by setting the surface direction, which is the direction in which the thermal conductivity of the BN particles is excellent, to be the same as the thickness direction of the sheet through which the heat dissipation sheet transfers heat (the BN particles are set up in the sheet thickness direction), the thermal conductivity is dramatically increased. However, in the conventional production methods (calender roll method, doctor blade method, extrusion method), the orientation of the BN particles occurs at the time of sheet molding, and as shown in FIG. Was the same as the sheet surface direction, and the excellent thermal conductivity in the surface direction of the BN particles was not utilized.

【0005】このような問題点を解決するため、特公平
6−12643号公報には、BN粒子をランダムに配向
させることが提案されているが、横に配向したBN粒子
も依然として多く存在しており、BN粒子の面方向の優
れた熱伝導性が十分に活かされているとは言い難い。
In order to solve such problems, Japanese Patent Publication No. Hei 6-12643 proposes randomly aligning BN particles. However, there are still many laterally oriented BN particles. Therefore, it cannot be said that the excellent thermal conductivity in the plane direction of the BN particles is sufficiently utilized.

【0006】そこで、図2のように、シート厚み方向に
配向しているBN粒子の割合を、シート幅方向に配向し
ている割合よりも多くして熱伝導性を向上させる方法と
しては、特公平6−38460号公報があるが、この方
法では、BN粒子の充填されたシリコーン固化物を成型
機でブロック化し、それを垂直方向にスライスしてシー
ト化するものであるので、ブロック化時の断面積が広す
ぎて内部のBNの配向度合いが不十分であり、これまた
熱伝導性の十分な向上は望めない。
Therefore, as shown in FIG. 2, a method of improving the thermal conductivity by increasing the ratio of the BN particles oriented in the sheet thickness direction to the ratio of the BN particles oriented in the sheet width direction is as follows. Japanese Patent Publication No. Hei 6-38460 discloses that, in this method, a silicone solidified product filled with BN particles is blocked by a molding machine and then sliced in a vertical direction to form a sheet. The cross-sectional area is too wide and the degree of orientation of BN inside is insufficient, and a sufficient improvement in thermal conductivity cannot be expected.

【0007】更には、いずれの方法においても、熱伝導
性を向上させるためにBN粒子を高充填すると、シート
は硬くなり、発熱電子部品が荷重に弱い場合には取り付
け時の締め付け力によって損傷する問題があった。
Further, in any of the methods, when the BN particles are highly filled in order to improve the thermal conductivity, the sheet becomes hard, and when the heat-generating electronic component is weak against the load, the sheet is damaged by the tightening force at the time of mounting. There was a problem.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記に鑑み
てなされたものであり、その目的は、熱伝導性シート等
の放熱部材を、発熱電子部品とヒートシンクとの間に、
締め付け力によって介在させる際、余分な締め付け力を
放熱部材内に形成させた連通孔で吸収させ、もって発熱
電子部品の損傷を和らげることのできる高柔軟性かつ高
熱伝導性の放熱部材を提供することである。また、本発
明の他の目的は、図2に示すように、直立に近い状態で
配向させた熱伝導性フイラー粒子を、放熱部材の幅方向
よりも厚み方向に多く存在させることによって、更なる
高熱伝導性を付与した放熱部材を提供することである。
本発明の別の目的は、上記高柔軟性かつ高熱伝導性の放
熱部材を生産性良く製造することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and has as its object to dispose a heat radiating member such as a heat conductive sheet between a heat generating electronic component and a heat sink.
To provide a heat-radiating member having high flexibility and high thermal conductivity capable of absorbing excess tightening force by a communication hole formed in a heat-dissipating member when interposed by a tightening force, thereby reducing damage to a heat-generating electronic component. It is. Further, another object of the present invention is to further provide, as shown in FIG. 2, that more thermally conductive filler particles oriented in a nearly upright state are present in the thickness direction than in the width direction of the heat dissipation member. An object of the present invention is to provide a heat dissipating member having high thermal conductivity.
Another object of the present invention is to manufacture the above-mentioned heat-radiating member having high flexibility and high thermal conductivity with high productivity.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は、以
下を要旨とするものである。 (請求項1)熱伝導性フイラーを含有した、外力によっ
て容易に変形する樹脂成形体からなり、連通孔を有して
なるものであることを特徴とする熱伝導性樹脂成形体。 (請求項2)熱伝導性フイラーがBN粒子を含み、樹脂
がシリコーンであることを特徴とする請求項1記載の熱
伝導性樹脂成形体。 (請求項3)成形体形状がシート状で、連通孔がシート
の厚み方向に形成されてなり、気孔率が5〜50%であ
ることを特徴とする請求項1又は2記載の熱伝導性樹脂
成形体。 (請求項4)シート厚み方向に配向しているBN粒子の
割合が、シート幅方向に配向している割合よりも多いこ
とを特徴とする請求項3記載の熱伝導性樹脂成形体。 (請求項5)請求項3又は4記載の熱伝導性樹脂成形体
からなることを特徴とする電子機器の放熱部材。 (請求項6)請求項5記載の放熱部材を、その連通孔が
押しつぶされた状態で、電子機器の発熱電子部品とヒー
トシンクの間に介在させてなることを特徴とする電子機
器。 (請求項7)熱伝導性フイラー含有の樹脂組成物を用い
て未硬化の棒状成型物を成形し、それらの複数本を連通
孔となる空隙を設けて集結させ、その集結物を所望長さ
に切断してから硬化させるか、又は硬化させてから切断
することを特徴とする熱伝導性樹脂成形体の製造方法。 (請求項8)熱伝導性フイラー含有樹脂組成物がBN粒
子を20〜70体積%を含むシリコーンであり、棒状成
型物の断面積が0.5〜300mm2 、集結物の気孔率
が5〜50%、切断幅が0.05〜5mmであることを
特徴とする請求項7記載の熱伝導性樹脂成形体の製造方
法。
That is, the present invention provides the following. (Claim 1) A thermally conductive resin molded article comprising a resin molded article containing a thermally conductive filler, which is easily deformed by an external force, and having a communication hole. (2) The thermally conductive resin molded article according to (1), wherein the thermally conductive filler contains BN particles and the resin is silicone. (3) The thermal conductivity according to (1) or (2), wherein the shape of the molded body is a sheet, the communication holes are formed in the thickness direction of the sheet, and the porosity is 5 to 50%. Resin molding. (4) The thermally conductive resin molded article according to (3), wherein the proportion of BN particles oriented in the sheet thickness direction is higher than the proportion of BN particles oriented in the sheet width direction. (5) A heat dissipating member for an electronic device, comprising the thermally conductive resin molded product according to (3) or (4). (6) An electronic device, wherein the heat radiating member according to (5) is interposed between a heat-generating electronic component of the electronic device and a heat sink in a state where the communication hole is crushed. (Claim 7) An uncured rod-shaped molded product is formed by using a resin composition containing a thermally conductive filler, and a plurality of these are aggregated by providing a void serving as a communication hole, and the aggregate is formed to a desired length. A method for producing a thermally conductive resin molded article, comprising cutting into pieces and then curing, or cutting after curing. (Claim 8) The resin composition containing a thermally conductive filler is a silicone containing 20 to 70% by volume of BN particles, the cross-sectional area of the rod-shaped molded product is 0.5 to 300 mm 2 , and the porosity of the aggregate is 5 to 5. The method for producing a thermally conductive resin molded article according to claim 7, wherein the cut width is 50% and the cut width is 0.05 to 5 mm.

【0010】[0010]

【発明の実施の形態】以下、更に詳しく本発明について
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0011】本発明でいう樹脂とは、シリコーンゴム
(付加反応により加硫する液状シリコーンゴム、過酸化
物を加硫に用いる熱加硫型ミラブルタイプのシリコーン
ゴム)、エポキシ樹脂、オレフィン系樹脂等の一般的に
電子材料用途として用いられている樹脂のことである。
The resin in the present invention includes silicone rubber (liquid silicone rubber vulcanized by addition reaction, heat-curable millable silicone rubber using peroxide for vulcanization), epoxy resin, olefin resin and the like. Is a resin generally used for electronic materials.

【0012】電子機器の放熱部材では、発熱電子部品の
発熱面とヒートシンク面との密着性が要求されるため、
柔軟性を有する樹脂や、ゴム弾性を有する樹脂が望まし
い。柔軟性樹脂としては、付加反応型液状シリコーンの
固化物が好適であり、その具体例としては、一分子中に
ビニル基とH−Si基の両方を有する一液性のシリコー
ンや、末端又は側鎖にビニル基を有するオルガノポリシ
ロキサンと末端又は側鎖に2個以上のH−Si基を有す
るオルガノポリシロキサンとの二液性のシリコーンなど
がある。このような付加反応型液状シリコーンの市販品
としては、東レダウコーニング社製、商品名「SE−1
885」等を例示することができる。樹脂の柔軟性は、
シリコーンの架橋密度や熱伝導性フイラーの充填量によ
って調整することができる。
In a heat radiation member of an electronic device, it is required that the heat generating surface of the heat generating electronic component be in close contact with the heat sink surface.
A resin having flexibility or a resin having rubber elasticity is desirable. As the flexible resin, a solidified addition reaction type liquid silicone is preferable. Specific examples thereof include a one-part silicone having both a vinyl group and an H-Si group in one molecule, and a terminal or side silicone. There are two-component silicones of an organopolysiloxane having a vinyl group in the chain and an organopolysiloxane having two or more H-Si groups in a terminal or a side chain. As a commercially available product of such an addition reaction type liquid silicone, "SE-1" manufactured by Toray Dow Corning Co., Ltd.
885 "or the like. The flexibility of the resin
It can be adjusted by the cross-link density of silicone or the filling amount of the heat conductive filler.

【0013】本発明で使用される熱伝導性フイラーとし
ては、絶縁性が必要な場合には、窒化硼素、窒化珪素、
窒化アルミニウム、アルミナ、マグネシア等のセラミッ
クス粉末が用いられ、また絶縁性を問わない場合には、
上記セラミックス粉末の他に、アルミニウム、銅、銀、
金等の金属粉末や、炭化珪素粉末、炭素粉末などが用い
られる。これらの熱伝導性フイラーは、一種又は二種以
上が使用される。熱伝導性フイラーの形状は、破砕不規
則形状、球状、繊維状、針状、鱗片状などの如何なるも
のでもよく、また粒度は、平均粒径1〜100μm程度
のものが使用される。
The heat conductive filler used in the present invention may be boron nitride, silicon nitride,
Ceramic powders such as aluminum nitride, alumina, and magnesia are used.
In addition to the above ceramic powders, aluminum, copper, silver,
Metal powder such as gold, silicon carbide powder, carbon powder and the like are used. One or two or more of these heat conductive fillers are used. The shape of the heat conductive filler may be any shape such as a crushed irregular shape, a spherical shape, a fibrous shape, a needle shape, and a scale shape, and the average particle size is about 1 to 100 μm.

【0014】上記熱伝導性フイラーにあっても、熱伝導
性シートや高柔軟性放熱スペーサー等の電子機器の放熱
部材用途においては、BN粉末を単独又は他の熱伝導性
フイラーと併用することが望ましい。何故ならば、BN
は、上記のように六角環状網目面方向(a軸)と六角環
状網目面に対して垂直方向(c軸)とでは熱伝導性が数
十倍程度異なっており、うまく工夫することによってそ
の面方向の高熱伝導性を利用することができるからであ
る。
[0014] Even in the case of the above-mentioned heat conductive filler, BN powder may be used alone or in combination with other heat conductive fillers in a heat dissipating member of an electronic device such as a heat conductive sheet or a highly flexible heat dissipating spacer. desirable. Because BN
As described above, the heat conductivity in the direction of the hexagonal annular mesh plane (a-axis) differs from that in the direction perpendicular to the hexagonal annular mesh plane (c-axis) by about several tens of times. This is because high thermal conductivity in the direction can be used.

【0015】BN粒子の厚み(c軸方向)は、0.1μ
m以上であることが好ましく、0.1μmを未満では、
樹脂に分散させる際に粒子が破壊される恐れがある。ま
た、BN粒子のアスペクト比(縦/横比)はできるだけ
大きい方が熱伝導性を向上させる点で好ましく、アスペ
クト比としては20以上が好ましい。
The thickness (c-axis direction) of the BN particles is 0.1 μm.
m or more, and less than 0.1 μm,
Particles may be destroyed when dispersed in resin. The aspect ratio (length / width ratio) of the BN particles is preferably as large as possible from the viewpoint of improving thermal conductivity, and the aspect ratio is preferably 20 or more.

【0016】このようなBN粉末は、例えば粗製BN粉
末をアルカリ金属又はアルカリ土類金属のほう酸塩の存
在下、窒素雰囲気中、2000℃×3〜7時間加熱処理
し、結晶を発達させたBNを粉砕後、必要に応じて硝酸
等の強酸によって精製することによって製造することが
できる。
Such BN powder is obtained, for example, by subjecting a crude BN powder to heat treatment at 2000 ° C. for 3 to 7 hours in a nitrogen atmosphere in the presence of an alkali metal or alkaline earth metal borate to develop crystals. After pulverization, and if necessary, purification with a strong acid such as nitric acid.

【0017】本発明の熱伝導性樹脂成形体は、上記樹脂
が上記熱伝導性フイラーを含有してなる成形体であり、
外力によって容易に変形し、しかも連通孔を有してなる
ことが特徴である。熱伝導性フイラーの含有量は、20
〜70体積%特に35〜45体積%であることが好まし
い。20体積%未満では、樹脂成形体に十分な熱伝導性
を付与することができず、また70体積%をこえると、
樹脂成形体の機械的強度が低下し、用途に著しい制約を
受ける。
The thermally conductive resin molded article of the present invention is a molded article in which the resin contains the thermally conductive filler.
It is characterized by being easily deformed by an external force and having a communication hole. The content of the heat conductive filler is 20
It is preferably from 70 to 70% by volume, particularly preferably from 35 to 45% by volume. If the amount is less than 20% by volume, sufficient thermal conductivity cannot be imparted to the resin molded body, and if it exceeds 70% by volume,
The mechanical strength of the resin molded article is reduced, and the application is significantly restricted.

【0018】本発明において、「外力によって容易に変
形する」とは、0.1MPa程度の小さい荷重でも外観
からわかる程度に変形する高柔軟性であることを意味す
る。その程度は、0.1MPaの荷重をかけた時に厚み
が5%以上変形するか、アスカーC硬度が100以下で
あることが好ましい。その調整は、樹脂の硬化程度、熱
伝導性フイラーの充填量、更には後記する連通孔の大き
さとその数などによって行うことができる。
In the present invention, "easy to be deformed by an external force" means that it has high flexibility to be deformed to the extent that it can be seen from the appearance even with a small load of about 0.1 MPa. It is preferable that the degree of deformation is 5% or more when a load of 0.1 MPa is applied, or the Asker C hardness is 100 or less. The adjustment can be performed by the degree of curing of the resin, the filling amount of the heat conductive filler, and the size and number of the communication holes described later.

【0019】また、本発明における「連通孔」とは、図
1に例示するように、樹脂成形体の一方の面から反対面
にわたって貫通した気孔を意味する。連通孔の大きさと
しては、気孔断面積の平均が0.1〜10mm2 である
ことが好ましく、またその本数は、単数でも複数でもよ
いが、樹脂成形体の気孔率が5〜50%特に10〜30
%となる本数であることが好ましい。
The "communication hole" in the present invention means a pore penetrating from one surface to the opposite surface of the resin molded body as illustrated in FIG. As the size of the communication hole, the average of the pore cross-sectional area is preferably 0.1 to 10 mm 2 , and the number thereof may be one or more, but the porosity of the resin molded product is particularly preferably 5 to 50%. 10-30
%.

【0020】連通孔は、目視又は顕微鏡観察によって確
認することができ、その気孔断面積広さは、顕微鏡写真
の画像処理によって測定することができる。また、樹脂
成形体の気孔率は、樹脂成形体の単位断面積当たりの気
孔断面積の割合を測定することによって求めることがで
きる。
The communicating hole can be confirmed visually or by microscopic observation, and the pore cross-sectional area can be measured by image processing of a micrograph. Further, the porosity of the resin molded body can be determined by measuring the ratio of the pore sectional area per unit sectional area of the resin molded body.

【0021】本発明の熱伝導性樹脂成形体の形状につい
ては全く任意であり、用途に応じて適切な形状が選択さ
れる。シート状ないしは矩形状のものは、熱伝導性シー
トや高柔軟性放熱スペーサーとして使用される。この場
合において、連通孔は樹脂成形体の厚み方向に形成され
ていることが好ましい。更には、図2に示すように、シ
ートの厚み方向に配向しているBN粒子の割合が、シー
トの幅方向に配向している割合よりも多くすることが更
に好ましい。具体的には、シートの厚み方向にX線を照
射して得られたX線回折図において、<100>面(a
軸)に対する<002>面(c軸)のピーク比(<00
2>/<100>)が6以下であることが好ましい。こ
のような状態にしてBN粒子を樹脂に充填する方法につ
いては後記する。
The shape of the thermally conductive resin molded article of the present invention is completely arbitrary, and an appropriate shape is selected according to the application. The sheet or rectangular one is used as a heat conductive sheet or a highly flexible heat radiation spacer. In this case, the communication hole is preferably formed in the thickness direction of the resin molded body. Furthermore, as shown in FIG. 2, it is more preferable that the ratio of the BN particles oriented in the thickness direction of the sheet is higher than the ratio of the BN particles oriented in the width direction of the sheet. Specifically, in the X-ray diffraction diagram obtained by irradiating X-rays in the thickness direction of the sheet, the <100> plane (a
Ratio of the <002> plane (c-axis) to the (002 axis)
2> / <100>) is preferably 6 or less. A method of filling the resin with the BN particles in such a state will be described later.

【0022】本発明の熱伝導性樹脂成形体は、電子機器
の放熱部材として好適であり、連通孔のそれぞれの開気
孔面を発熱電子部品面とヒートシンク面に接触させ、両
者間に介在させて使用されることが好ましい。放熱部材
の介在には、通常、締め付け外力が加わるので、それに
よって連通孔の一部又は全部が押しつぶされた状態とな
っている。
The thermally conductive resin molded article of the present invention is suitable as a heat dissipating member for electronic equipment. The open pore surfaces of the communication holes are brought into contact with the heat-generating electronic component surface and the heat sink surface, and are interposed therebetween. It is preferably used. Normally, a fastening external force is applied to the interposition of the heat radiating member, so that a part or the whole of the communication hole is crushed.

【0023】次に、本発明の熱伝導性樹脂成形体の製造
方法について説明する。
Next, a method for producing the thermally conductive resin molded article of the present invention will be described.

【0024】先ず、樹脂と熱伝導性フイラーを混合す
る。両者の割合は、樹脂30〜80体積%、熱伝導性フ
イラー70〜20体積%であることが好ましい。混合
は、ロールミル、ニーダー、バンバリーミキサー等を用
いて行われる。次いで、この混合物を複数穴を有するダ
イスより押し出して未硬化の棒状成型物を成形し、それ
らの複数本を連通孔となる空隙を設けて集結する。一本
の棒状成型物の断面積(ダイスの穴径に相当)は、0.
5〜300mm2 とすることが好ましく、これによっ
て、熱伝導性フイラーがBN粉末である場合、混合物が
ダイスの狭い流路を通過する際にBN粒子を一定方向に
配向させることができ、もって本発明の熱伝導性樹脂成
形体の厚み方向に配向しているBN粒子の割合が、幅方
向に配向している割合よりも容易に多くすることが可能
となる。
First, a resin and a heat conductive filler are mixed. The ratio of both is preferably 30 to 80% by volume of the resin and 70 to 20% by volume of the heat conductive filler. Mixing is performed using a roll mill, a kneader, a Banbury mixer, or the like. Next, the mixture is extruded from a die having a plurality of holes to form an uncured rod-shaped molded product, and a plurality of these are aggregated by providing a void serving as a communication hole. The cross-sectional area (corresponding to the hole diameter of the die) of one rod-shaped molded product is 0.1 mm.
The thickness is preferably 5 to 300 mm 2. When the heat conductive filler is BN powder, the BN particles can be oriented in a certain direction when the mixture passes through a narrow flow path of the die. The ratio of the BN particles oriented in the thickness direction of the thermally conductive resin molded article of the present invention can be easily increased more than the ratio of the BN particles oriented in the width direction.

【0025】次に、未硬化の棒状成型物の複数本を、本
発明の熱伝導性樹脂成形体の連通孔となる空隙を設けて
集結し、所望長さに切断してから硬化させるか、又は硬
化させてから所望長さに切断することによって、本発明
の熱伝導性樹脂成形体を製造することができる。
Next, a plurality of uncured rod-shaped moldings are gathered together by providing voids serving as communication holes of the thermally conductive resin molded article of the present invention, and cut into a desired length and then cured. Alternatively, it is possible to produce the thermally conductive resin molded article of the present invention by cutting it to a desired length after curing.

【0026】未硬化棒状成型物の集結物の外観形状は柱
状体であり、その平面(断面)形状は連通孔を有する矩
形、楕円、円などである。その平面形状の大きさについ
ては、対角線、直径、長径等の最大長さが30cm程度
であることが、切断の容易さや樹脂の硬化の点で好まし
い。
The aggregate shape of the uncured rod-shaped molded product is a columnar body, and its planar (cross-sectional) shape is a rectangle, ellipse, circle, or the like having a communication hole. Regarding the size of the planar shape, it is preferable that the maximum length such as a diagonal line, a diameter, and a major axis is about 30 cm from the viewpoint of easy cutting and curing of the resin.

【0027】未硬化棒状成型物の集結物の硬化は、遠赤
外乾燥炉内を通過させる、熱風乾燥機に入れて加熱する
とによって行われる。なお、棒状成型物の切断幅、すな
わち本発明の熱伝導性樹脂成形体の厚みは、0.05〜
5mm特に0.2〜2mmであることが好ましい。
Curing of the aggregate of the uncured rod-shaped moldings is carried out by passing them through a far-infrared drying oven and heating them in a hot-air dryer. The cutting width of the rod-shaped molded product, that is, the thickness of the thermally conductive resin molded product of the present invention is 0.05 to
It is preferably 5 mm, especially 0.2 to 2 mm.

【0028】[0028]

【実施例】以下、実施例と比較例をあげて更に具体的に
本発明を説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0029】実施例1 ミラブル型シリコーンゴム(東芝シリコーン社製、商品
名「TSE2913U」)に、平均粒子径15μm、平
均粒子厚み1μmのBN粉末(電気化学工業社製、商品
名「デンカボロンナイトライド」)を表1に示す割合で
配合し、ミキサー(神戸製鋼社製「BBミキサー」)で
混合し、更にシリコーンゴム用加硫剤(2、4−ジクロ
ロパーオキサイド)、シリコーンゴム用難燃付与剤(白
金含有イソプロピルアルコール)、フイラー分散剤(日
本ユニカー社製、商品名「A−173」)をそれぞれ少
量添加して熱伝導性コンパウンドを調製した。
Example 1 A BN powder having an average particle diameter of 15 μm and an average particle thickness of 1 μm (trade name “DENCABORON NITRIDE” manufactured by Denki Kagaku Kogyo Co., Ltd.) )) In the proportions shown in Table 1, mixed with a mixer ("BB mixer" manufactured by Kobe Steel), and further vulcanizing agent for silicone rubber (2,4-dichloroperoxide) and flame retardant for silicone rubber. A small amount of an agent (platinum-containing isopropyl alcohol) and a small amount of a filler dispersant (trade name “A-173” manufactured by Nippon Unicar Co., Ltd.) were added to prepare a thermally conductive compound.

【0030】次いで、直径3mmの穴が縦に17列、横
に17列設けられたダイスから、上記コンパウンドを押
し出して未硬化の棒状成型物を成形し、それらの全てを
自重と側面ロールによって集結しながら(集結体の平面
形状は50×50mm程度である)、150℃の遠赤外
乾燥炉を5分間通過させて加硫硬化させた後、幅(厚
み)1mmに切断して、図1に示すような本発明の熱伝
導性樹脂成形体を製造した。
Next, the above compound was extruded from a die having 17 mm rows and 17 mm rows of holes having a diameter of 3 mm to form an uncured rod-shaped product, and all of them were assembled by their own weight and side rolls. While passing through a far-infrared drying oven at 150 ° C. for 5 minutes for vulcanization and curing (the planar shape of the aggregate is about 50 × 50 mm), the assembly was cut to a width (thickness) of 1 mm. The thermally conductive resin molded article of the present invention as shown in the following was produced.

【0031】実施例2 樹脂としてA液(ビニル基を有するオルガノポリシロキ
サン)とB液(H−Si基を有するオルガノポリシロキ
サン)の二液性の付加反応型液状シリコーン(東レダウ
コーニング社製、商品名「SE−1885」)をA液対
B液の混合比を表1に示す配合(体積%)で混合してコ
ンパウンドを調製したこと以外は実施例1と同様にして
熱伝導性樹脂成形体を製造した。
Example 2 A two-component addition reaction type liquid silicone (manufactured by Dow Corning Toray Co., Ltd.) comprising a liquid A (organopolysiloxane having a vinyl group) and a liquid B (organopolysiloxane having an H-Si group) as resins. Thermal conductive resin molding was carried out in the same manner as in Example 1 except that a compound was prepared by mixing the liquid A to the liquid B with the mixing ratio (volume%) shown in Table 1 with the trade name “SE-1885”). Body manufactured.

【0032】実施例3 遠赤外乾燥機を通さなかったこと以外は実施例2と同様
にして熱伝導性樹脂成形体を製造した。
Example 3 A thermally conductive resin molded article was produced in the same manner as in Example 2 except that the composition was not passed through a far-infrared dryer.

【0033】比較例1〜2 押し出し口が平面形状であるダイスを用いたこと以外
は、実施例1又は実施例2と同様にして樹脂成形体を製
造した。
Comparative Examples 1 and 2 A resin molded body was produced in the same manner as in Example 1 or Example 2, except that a die having a flat extrusion port was used.

【0034】比較例3 実施例1で調製された熱伝導性コンパウンドを、圧力5
0kg/cm2 、温度150℃、30分間の加圧プレス
を行って樹脂成形体を製造した。
Comparative Example 3 The thermally conductive compound prepared in Example 1 was subjected to a pressure of 5
Pressing was performed at 0 kg / cm 2 at a temperature of 150 ° C. for 30 minutes to produce a resin molded body.

【0035】上記で得られた樹脂成形体について、以下
に従う熱伝導率、「外力によって容易に変形する」指標
としての硬度、連通孔の有無、及び気孔率を測定した。
それらの結果を表1に示す。
The resin molded body obtained above was measured for thermal conductivity, hardness as an index for “easy deformation by external force”, presence / absence of communication holes, and porosity as described below.
Table 1 shows the results.

【0036】(1)熱伝導率 樹脂成形体を25×25mmに切断し、これに15×1
5mmの銅製ヒーターケースと銅板との間にはさみ、締
付けトルク5kgf−cmにてセットした後、銅製ヒー
ターケースに電力15Wをかけて4分間保持し、銅製ヒ
ーターケースと銅板との温度差を測定し、熱抵抗(℃/
W)=温度差(℃)/電力(W)、にて熱抵抗を算出し
た。次いで、銅製ヒーターケースと銅板の伝熱面積を
2.25cm2 を用い次式により、熱伝導率を算出し
た。
(1) Thermal Conductivity The resin molded body was cut into 25 × 25 mm, and cut into 15 × 1
After sandwiching between a 5 mm copper heater case and a copper plate and setting with a tightening torque of 5 kgf-cm, 15 W of power is applied to the copper heater case and held for 4 minutes, and the temperature difference between the copper heater case and the copper plate is measured. , Thermal resistance (℃ /
W) = temperature difference (° C.) / Power (W), and the thermal resistance was calculated. Next, using a copper heater case and a copper plate with a heat transfer area of 2.25 cm 2 , the thermal conductivity was calculated by the following equation.

【0037】熱伝導率(W/mK)={電力(W)×シ
ート厚(mm)}/{伝熱面積(m 2)×温度差
(℃)}
Thermal conductivity (W / mK) = {power (W) ××
Heat thickness (mm)} / {heat transfer area (m Two) X temperature difference
(℃)}

【0038】(2)「外力によって容易に変形する」指
標としての硬度硬度 樹脂成形体を数枚重ね厚みを10mmとし、アスカーC
硬度計にて硬度を測定した。
(2) Hardness as an index of “Easily deformed by external force” Hardness A number of resin moldings are stacked and the thickness is 10 mm.
The hardness was measured with a hardness meter.

【0039】(3)連通孔の有無 目視と顕微鏡写真によって行った。(3) Presence or absence of communication hole The observation was performed visually and by a micrograph.

【0040】(4)気孔率 樹脂成形体の単位断面積当たりの気孔断面積の割合を測
定した。
(4) Porosity The ratio of the pore area per unit sectional area of the resin molded article was measured.

【0041】[0041]

【表1】 [Table 1]

【0042】表1より、実施例の熱伝導性樹脂成形体
は、比較例の樹脂成形体に比べて、熱伝導性が大幅に向
上し、しかも高柔軟性であることがわかる。
From Table 1, it can be seen that the thermally conductive resin molded product of the example has significantly improved thermal conductivity and high flexibility compared to the resin molded product of the comparative example.

【0043】次に、実施例で製造された本発明の熱伝導
性樹脂成形体を、ボールグッリドアレイ式のSRAMと
ヒートシンクの間にわずかの荷重をかけて介在させたと
ころ良く密着し、作動時の温度上昇の少ない高信頼性の
電子機器を作製することができた。
Next, the thermally conductive resin molded article of the present invention manufactured in the example was interposed by applying a slight load between the ball-grid array type SRAM and the heat sink, and was brought into close contact. A highly reliable electronic device with a small temperature rise at the time was manufactured.

【0044】[0044]

【発明の効果】本発明によれば、高柔軟性かつ高熱伝導
性の樹脂成形体が提供される。本発明の熱伝導性樹脂成
形体は、熱伝導性シート、柔軟性放熱スペーサー等の電
子機器の放熱部材として好適なものである。また、本発
明の熱伝導性樹脂成形体の製造方法によれば、高柔軟性
かつ高熱伝導性の樹脂成形体を生産性良く製造すること
ができる。
According to the present invention, a resin molded body having high flexibility and high thermal conductivity is provided. The heat conductive resin molded article of the present invention is suitable as a heat radiating member for electronic devices such as a heat conductive sheet and a flexible heat radiating spacer. Further, according to the method for producing a thermally conductive resin molded article of the present invention, a highly flexible and highly thermally conductive resin molded article can be produced with high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱伝導性樹脂成形体の斜視図FIG. 1 is a perspective view of a thermally conductive resin molded article of the present invention.

【図2】図1のA−A断面図FIG. 2 is a sectional view taken along line AA of FIG. 1;

【図3】従来の熱伝導性シートの厚み方向における断面
FIG. 3 is a cross-sectional view of a conventional heat conductive sheet in a thickness direction.

【符号の説明】[Explanation of symbols]

1 熱伝導性樹脂成形体 2 樹脂 3 熱伝導性フイラー 4 連通孔 DESCRIPTION OF SYMBOLS 1 Thermal conductive resin molded object 2 Resin 3 Thermal conductive filler 4 Communication hole

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 7/20 H01L 23/36 M Fターム(参考) 4F213 AA33 AA45 AB05 AB10 AD04 AE03 AE10 AH33 WA06 WA15 WA43 WA53 WA83 WA87 WB01 5E322 AA11 AB04 AB11 FA05 5F036 AA01 BB21 BD14 BD21 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05K 7/20 H01L 23/36 MF Term (Reference) 4F213 AA33 AA45 AB05 AB10 AD04 AE03 AE10 AH33 WA06 WA15 WA43 WA53 WA83 WA87 WB01 5E322 AA11 AB04 AB11 FA05 5F036 AA01 BB21 BD14 BD21

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 熱伝導性フイラーを含有した、外力によ
って容易に変形する樹脂成形体からなり、連通孔を有し
てなるものであることを特徴とする熱伝導性樹脂成形
体。
1. A thermally conductive resin molded product comprising a thermally conductive filler-containing resin molded product which is easily deformed by an external force and having communication holes.
【請求項2】 熱伝導性フイラーがBN粒子を含み、樹
脂がシリコーンであることを特徴とする請求項1記載の
熱伝導性樹脂成形体。
2. The thermally conductive resin molded product according to claim 1, wherein the thermally conductive filler contains BN particles, and the resin is silicone.
【請求項3】 成形体形状がシート状で、連通孔がシー
トの厚み方向に形成されてなり、気孔率が5〜50%で
あることを特徴とする請求項1又は2記載の熱伝導性樹
脂成形体。
3. The thermal conductivity according to claim 1, wherein the shape of the molded body is a sheet, the communicating holes are formed in the thickness direction of the sheet, and the porosity is 5 to 50%. Resin molding.
【請求項4】 シート厚み方向に配向しているBN粒子
の割合が、シート幅方向に配向している割合よりも多い
ことを特徴とする請求項3記載の熱伝導性樹脂成形体。
4. The thermally conductive resin molded article according to claim 3, wherein the proportion of the BN particles oriented in the sheet thickness direction is higher than the proportion of the BN particles oriented in the sheet width direction.
【請求項5】 請求項3又は4記載の熱伝導性樹脂成形
体からなることを特徴とする電子機器の放熱部材。
5. A heat-dissipating member for an electronic device, comprising the heat-conductive resin molded product according to claim 3.
【請求項6】 請求項5記載の放熱部材を、その連通孔
が押しつぶされた状態で、電子機器の発熱電子部品とヒ
ートシンクの間に介在させてなることを特徴とする電子
機器。
6. An electronic device, wherein the heat radiating member according to claim 5 is interposed between a heat-generating electronic component of the electronic device and a heat sink in a state where the communication hole is crushed.
【請求項7】 熱伝導性フイラー含有の樹脂組成物を用
いて未硬化の棒状成型物を成形し、それらの複数本を連
通孔となる空隙を設けて集結させ、その集結物を所望長
さに切断してから硬化させるか、又は硬化させてから切
断することを特徴とする熱伝導性樹脂成形体の製造方
法。
7. An uncured rod-shaped molded product is formed by using a resin composition containing a thermally conductive filler, and a plurality of these are aggregated by providing a void serving as a communication hole, and the aggregated material is formed into a desired length. A method for producing a thermally conductive resin molded article, comprising cutting into pieces and then curing, or cutting after curing.
【請求項8】 熱伝導性フイラー含有樹脂組成物がBN
粒子を20〜70体積%を含むシリコーンであり、棒状
成型物の断面積が0.5〜300mm2 、集結物の気孔
率が5〜50%、切断幅が0.05〜5mmであること
を特徴とする請求項7記載の熱伝導性樹脂成形体の製造
方法。
8. The resin composition containing a thermally conductive filler, wherein the resin composition comprises BN.
It is a silicone containing 20 to 70% by volume of particles, the cross-sectional area of the rod-shaped molded product is 0.5 to 300 mm 2 , the porosity of the aggregate is 5 to 50%, and the cutting width is 0.05 to 5 mm. The method for producing a thermally conductive resin molded article according to claim 7, characterized in that:
JP28223998A 1998-10-05 1998-10-05 Method for producing thermally conductive resin molding Expired - Fee Related JP3721272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28223998A JP3721272B2 (en) 1998-10-05 1998-10-05 Method for producing thermally conductive resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28223998A JP3721272B2 (en) 1998-10-05 1998-10-05 Method for producing thermally conductive resin molding

Publications (2)

Publication Number Publication Date
JP2000108220A true JP2000108220A (en) 2000-04-18
JP3721272B2 JP3721272B2 (en) 2005-11-30

Family

ID=17649877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28223998A Expired - Fee Related JP3721272B2 (en) 1998-10-05 1998-10-05 Method for producing thermally conductive resin molding

Country Status (1)

Country Link
JP (1) JP3721272B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000343577A (en) * 1999-06-02 2000-12-12 Denki Kagaku Kogyo Kk Manufacture of heat conductive silicone molding
JP2002111210A (en) * 2000-09-28 2002-04-12 Kyocera Corp Wiring board and its manufacturing method
US6831031B2 (en) 2001-08-17 2004-12-14 Polymatech Co., Ltd. Thermally conductive sheet
JP2009094110A (en) * 2007-10-03 2009-04-30 Denki Kagaku Kogyo Kk Heat dissipation member, its sheet, and its production method
JP2011012193A (en) * 2009-07-03 2011-01-20 Denki Kagaku Kogyo Kk Resin composition and use thereof
CN102349151A (en) * 2009-05-05 2012-02-08 派克汉尼芬公司 Thermally conductive foam product
US8921458B2 (en) 2010-08-26 2014-12-30 Denki Kagaku Kogyo Kabushiki Kaisha Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
JP2015092534A (en) * 2013-09-30 2015-05-14 積水化学工業株式会社 Silicone heat conduction sheet
WO2018190233A1 (en) * 2017-04-12 2018-10-18 デンカ株式会社 Heat-conductive sheet and method for manufacturing same
JP2020198333A (en) * 2019-05-31 2020-12-10 アイシン精機株式会社 Heat conductive sheet and method for producing heat conductive sheet

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000343577A (en) * 1999-06-02 2000-12-12 Denki Kagaku Kogyo Kk Manufacture of heat conductive silicone molding
JP2002111210A (en) * 2000-09-28 2002-04-12 Kyocera Corp Wiring board and its manufacturing method
US6831031B2 (en) 2001-08-17 2004-12-14 Polymatech Co., Ltd. Thermally conductive sheet
JP2009094110A (en) * 2007-10-03 2009-04-30 Denki Kagaku Kogyo Kk Heat dissipation member, its sheet, and its production method
EP2427906B1 (en) * 2009-05-05 2019-04-17 Parker-Hannifin Corporation Thermally conductive foam product
CN102349151A (en) * 2009-05-05 2012-02-08 派克汉尼芬公司 Thermally conductive foam product
JP2012526397A (en) * 2009-05-05 2012-10-25 パーカー.ハニフィン.コーポレイション Thermally conductive foam product
JP2011012193A (en) * 2009-07-03 2011-01-20 Denki Kagaku Kogyo Kk Resin composition and use thereof
US8921458B2 (en) 2010-08-26 2014-12-30 Denki Kagaku Kogyo Kabushiki Kaisha Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
JP2015092534A (en) * 2013-09-30 2015-05-14 積水化学工業株式会社 Silicone heat conduction sheet
WO2018190233A1 (en) * 2017-04-12 2018-10-18 デンカ株式会社 Heat-conductive sheet and method for manufacturing same
CN110383963A (en) * 2017-04-12 2019-10-25 电化株式会社 Heat conductive sheet and its manufacturing method
JPWO2018190233A1 (en) * 2017-04-12 2020-02-20 デンカ株式会社 Thermal conductive sheet and method for producing the same
CN110383963B (en) * 2017-04-12 2021-09-28 电化株式会社 Thermal conductive sheet
TWI760475B (en) * 2017-04-12 2022-04-11 日商電化股份有限公司 Thermally conductive sheet and method for producing the same
JP7352467B2 (en) 2017-04-12 2023-09-28 デンカ株式会社 Thermal conductive sheet and its manufacturing method
JP2020198333A (en) * 2019-05-31 2020-12-10 アイシン精機株式会社 Heat conductive sheet and method for producing heat conductive sheet
JP7279522B2 (en) 2019-05-31 2023-05-23 株式会社アイシン Thermally conductive sheet and method for manufacturing thermally conductive sheet

Also Published As

Publication number Publication date
JP3721272B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
US9966324B2 (en) Thermally conductive sheet, method for producing same, and semiconductor device
US6831031B2 (en) Thermally conductive sheet
JPH1126661A (en) Radiation spacer
JP3568401B2 (en) High thermal conductive sheet
JP2000108220A (en) Thermally conductive resin molding, its manufacture and use
CN113348549A (en) Thermally conductive sheet, method for manufacturing same, and method for mounting thermally conductive sheet
JP4446514B2 (en) Thermally conductive silicone molded body heat dissipation member
JP3585385B2 (en) Method for producing thermally conductive silicone molded article
JP3531785B2 (en) Manufacturing method of heat dissipating member for electronic parts
JP4514344B2 (en) Thermally conductive resin molding and its use
JP2000345040A (en) Manufacture of heat-conductive silicone molding
WO2022044724A1 (en) Thermally conductive sheet and method for manufacturing thermally conductive sheet
JP3558548B2 (en) Resin molding, method of manufacturing the same, and heat radiating member for electronic component using the same
JP3189590B2 (en) Heat dissipation sheet and its manufacturing method
JP3464752B2 (en) Molded polymer material and its use
CN117624899A (en) Thermally conductive sheet and method for producing thermally conductive sheet
JP2000344919A (en) Production of thermo-conductive silicone molding product
JP3606767B2 (en) High thermal conductive silicone molding and its use
JP4137288B2 (en) Method for producing thermally conductive silicone molding
JP6987941B1 (en) Method for manufacturing a heat conductive sheet and a heat conductive sheet
JP6999003B1 (en) Method for manufacturing a heat conductive sheet and a heat conductive sheet
WO2022085284A1 (en) Thermally conductive sheet and method for manufacturing thermally conductive sheet
WO2022176823A1 (en) Heat conductive sheet
WO2022181171A1 (en) Heat-conductive sheet and heat-conductive sheet production method
WO2022172795A1 (en) Thermal conductive sheet supply mode, and thermal conductive sheet body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees