JP2009094110A - Heat dissipation member, its sheet, and its production method - Google Patents

Heat dissipation member, its sheet, and its production method Download PDF

Info

Publication number
JP2009094110A
JP2009094110A JP2007260406A JP2007260406A JP2009094110A JP 2009094110 A JP2009094110 A JP 2009094110A JP 2007260406 A JP2007260406 A JP 2007260406A JP 2007260406 A JP2007260406 A JP 2007260406A JP 2009094110 A JP2009094110 A JP 2009094110A
Authority
JP
Japan
Prior art keywords
sheet
resin
anisotropy
inorganic powder
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007260406A
Other languages
Japanese (ja)
Inventor
Toshishige Ibayashi
敏成 伊林
Yasuhiko Itabashi
康彦 板橋
Takuya Okada
拓也 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2007260406A priority Critical patent/JP2009094110A/en
Publication of JP2009094110A publication Critical patent/JP2009094110A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat dissipation member exhibiting high thermal conductivity, and to provide its sheet and its production method. <P>SOLUTION: In a heat dissipating sheet member containing resin and inorganic powder exhibiting anisotropy, inorganic particles exhibiting anisotropy are directed in the thickness direction of the sheet, and the peak ratio (<002>/<100>) of the <002> plane to the <100> plane of an X-ray diffraction pattern obtained by radiating X-rays to the thickness direction of the sheet of a heat dissipating sheet member at an angle of 90° for the length direction of the sheet is ≤10. The inorganic powder exhibiting anisotropy is one or more selected from a group consisting of boron, graphite, and metal powder processed into the shape of scale or plate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、放熱部材、及びそのシート、および製造方法に関する。   The present invention relates to a heat dissipation member, a sheet thereof, and a manufacturing method.

電気機器あるいは電子機器のさらなる高性能化に伴い、半導体素子の高密度、高実装化が進んでいる。これに伴い電子部品から発熱する熱をさらに効率よく放熱することが重要となっている。半導体パッケージあるいは半導体からの放熱を効率よく行うため、半導体パッケージおよび配線基板は、熱伝導性シート等の放熱部材を介して放熱フィンや放熱板等のヒートシンクに取り付けられている。熱伝導性シートとしては、シリコーンに無機物のフィラー等の高熱伝導性フィラーを分散含有させたものが広く使用されている。 With the further improvement in performance of electric devices or electronic devices, semiconductor elements are being developed with higher density and higher mounting. Accordingly, it has become important to dissipate heat generated from electronic components more efficiently. In order to efficiently dissipate heat from the semiconductor package or the semiconductor, the semiconductor package and the wiring board are attached to a heat sink such as a heat radiating fin or a heat radiating plate via a heat radiating member such as a heat conductive sheet. As a heat conductive sheet, a sheet in which a high heat conductive filler such as an inorganic filler is dispersed and contained in silicone is widely used.

このような放熱部材においては、更なる熱伝導性の向上が要求されており、一般的には高熱伝導を目的としてマトリックス内に配合されている無機物のフィラーの充填率を高めることによって対応しているが、反面、シートの機械的強度が低下するので、充填率を高める方法には限界がある。 In such a heat radiating member, further improvement in thermal conductivity is required, and in general, by increasing the filling rate of the inorganic filler blended in the matrix for the purpose of high thermal conductivity, However, since the mechanical strength of the sheet decreases, there is a limit to the method for increasing the filling rate.

無機物のフィラーとしてはアルミナ、窒化アルミ、水酸化アルミ等が一般的であるが、さらなる高熱伝導率を目的とするものは窒化ホウ素(BN)、黒鉛といった鱗片状粒子をフィラーとしてマトリックス内に充填させる場合がある。これは鱗片状粒子が特徴とする熱伝導率の異方性によるものである。例えば窒化ホウ素の場合、面方向では約110W/m・K、面方向に対して垂直な方向では約2W/m・K程度であり、面方向の熱伝導性は数十倍大きいことが知られている。従って、鱗片状粒子の面方向を熱の伝達方向であるシートの厚さ方向と同じにする(すなわち、鱗片状粒子をシート厚さ方向に立たせる)ことによって、熱伝導性が飛躍的に向上することが期待される。しかしながら、従来のカレンダーロール法、ドクターブレード法、押出成形等の成形方法では、シート成形時に鱗片状粒子の配向が起こり、図1のように鱗片状粒子の面方向がシート面方向と同一となってしまい、鱗片状粒子の面方向の優れた熱伝導性を活かされないままとなっていた。 As inorganic fillers, alumina, aluminum nitride, aluminum hydroxide, etc. are common, but for the purpose of higher thermal conductivity, flaky particles such as boron nitride (BN) and graphite are filled into the matrix as filler. There is a case. This is due to the thermal conductivity anisotropy characteristic of scaly particles. For example, boron nitride is about 110 W / m · K in the plane direction and about 2 W / m · K in the direction perpendicular to the plane direction, and it is known that the thermal conductivity in the plane direction is several tens of times greater. ing. Therefore, by making the surface direction of the scale-like particles the same as the thickness direction of the sheet, which is the heat transfer direction (that is, making the scale-like particles stand in the sheet thickness direction), the thermal conductivity is dramatically improved. Is expected to do. However, in conventional molding methods such as the calender roll method, doctor blade method, and extrusion molding, the orientation of scaly particles occurs during sheet molding, and the surface direction of the scaly particles is the same as the sheet surface direction as shown in FIG. As a result, the excellent thermal conductivity in the surface direction of the scaly particles has not been utilized.

このような問題を解決するため、特公平6−12643号公報には窒化ホウ素粒子をランダムに配向させることが提案されているが、この場合であってもシート面方向に配向した鱗片状粒子も依然として多く存在しているので、十分であるとはいえないものであった。 In order to solve such problems, Japanese Patent Publication No. 6-12463 proposes to orient boron nitride particles randomly, but even in this case, scaly particles oriented in the sheet surface direction are also included. There were still many, so it was not enough.

そこで、シート厚さ方向に配向している鱗片状粒子の割合を、シート面方向に配向している割合よりも多くさせる方法として、鱗片状粒子の充填されたマトリックスを成型機でまずブロック化し、次いでそれを垂直方向にスライスしてシート化する(特公平6―38460号公報)ものであるので、ブロック寸法が大きくなると成型金型の側面では鱗片状粒子が配向するが、内側では鱗片状粒子がランダムに配向するので、熱伝導性の十分な向上は望めないものであった。 Therefore, as a method of increasing the proportion of scale-like particles oriented in the sheet thickness direction more than the proportion oriented in the sheet surface direction, the matrix filled with the scale-like particles is first blocked with a molding machine, Next, since it is sliced into a sheet in the vertical direction (Japanese Patent Publication No. 6-38460), when the block size is increased, the scaly particles are oriented on the side of the molding die, but on the inside, the scaly particles are oriented. Since the materials are randomly oriented, sufficient improvement in thermal conductivity cannot be expected.

また、特開2000−108220号公報には鱗片状粒子を内側まで十分に配向させる目的で、鱗片状粒子を含有するマトリックス組成物を小さな断面積で棒状に押し出し、成形された棒状体を複数本集結させ、再度成形、硬化させた後スライスしシート化させる事で高熱伝導シートを得る方法もとられてきた。しかしながら、この方法では2回に分けて成型を行わなければならず生産効率を上げることは困難とされてきた。 Japanese Patent Laid-Open No. 2000-108220 discloses a method of extruding a matrix composition containing scale-like particles into a rod shape with a small cross-sectional area for the purpose of sufficiently orienting the scale-like particles to the inside, and a plurality of shaped rod-like bodies. A method of obtaining a highly heat-conductive sheet by concentrating, re-molding, curing, slicing and sheeting has been used. However, in this method, it is difficult to increase the production efficiency because the molding must be performed in two steps.

特開2000―154265号公報に於いても、配向したシートを次工程にて積層する必要があり生産効率を上げることは困難であった。
特公平6−12643号公報 特公平6―38460号公報 特開2000−108220号公報 特開2000―154265号公報
In Japanese Patent Application Laid-Open No. 2000-154265, it is necessary to laminate oriented sheets in the next step, and it is difficult to increase production efficiency.
Japanese Examined Patent Publication No. 6-12463 Japanese Patent Publication No. 6-38460 JP 2000-108220 A JP 2000-154265 A

本発明の目的は、熱伝導性の高い放熱部材、及びそのシートを提供することであり、また、熱伝導性の高い放熱部材、及びそのシートの製造方法を提供することである。   An object of the present invention is to provide a heat radiating member having high thermal conductivity and a sheet thereof, and to provide a heat radiating member having high heat conductivity and a method for producing the sheet.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)樹脂と異方性を有する無機粉末を含有してなるシート状の放熱部材において、異方性を有する無機粒子をシート厚さ方向に配向させ、X線をシート状の放熱部材のシートの厚さ方向に、シートの長さ方向に対して90°の角度で照射して得られたX線回折図の<100>面に対する<002>面のピーク比(<002>/<100>)が10以下であることを特徴とする放熱部材。
(2)異方性を有する無機粉末が窒化ホウ素、黒鉛、および鱗片状又は板状に加工した金属粉末からなる群より選ばれた1種又は2種以上である前記(1)に記載の放熱部材。
(3)樹脂が80〜30体積%、異方性を有する無機粉末が20〜70体積%である前記(1)又は前記(2)に記載の放熱部材。
(4)樹脂がシリコーン樹脂、又はアクリル樹脂である前記(1)乃至前記(3)のいずれか一項に記載の放熱部材。
(5)放熱部材がシートである前記(1)乃至前記(4)のいずれか一項に記載の放熱部材。
(6)樹脂と異方性を有する無機粉末を含有してなる樹脂組成物をシートに成形する方法において、樹脂と異方性を有する無機粉末を含有してなる樹脂組成物を成形ダイス内に設けられた配向部と圧縮部を通過させるシートの製造方法。
(7)配向部の形状がスリット、円形、多角形、及びピン型からなる群より選ばれた1種以上である前記(6)に記載のシートの製造方法。
(8)異方性を有する無機粉末が窒化ホウ素、黒鉛、および鱗片状又は板状に加工した金属粉末からなる群より選ばれた1種又は2種以上である前記(6)又は前記(7)に記載のシートの製造方法。
(9)樹脂が80〜30体積%、異方性を有する無機粉末が20〜70体積%である前記(6)乃至前記(8)のいずれか一項に記載のシートの製造方法。
(10)樹脂がシリコーン樹脂、又はアクリル樹脂である前記(6)乃至前記(9)のいずれか一項に記載のシートの製造方法。
(11)X線をシート状の樹脂組成物のシートの厚さ方向に、シートの長さ方向に対して90°の角度で照射して得られたX線回折の<100>面に対する<002>面のピーク比(<002>/<100>)を10以下とする前記(6)乃至前記(10)のいずれか一項に記載のシートの製造方法。
The present invention employs the following means in order to solve the above problems.
(1) In a sheet-shaped heat radiation member containing an inorganic powder having resin and anisotropy, the anisotropic inorganic particles are oriented in the sheet thickness direction, and the X-rays are sheet of the sheet-shaped heat radiation member. The peak ratio of the <002> plane to the <100> plane (<002> / <100> of the X-ray diffraction diagram obtained by irradiation at an angle of 90 ° with respect to the sheet length direction. ) Is 10 or less.
(2) The heat dissipation according to (1), wherein the inorganic powder having anisotropy is one or more selected from the group consisting of boron nitride, graphite, and metal powder processed into a scale shape or a plate shape. Element.
(3) The heat radiating member according to (1) or (2), wherein the resin is 80 to 30% by volume and the anisotropic inorganic powder is 20 to 70% by volume.
(4) The heat radiation member according to any one of (1) to (3), wherein the resin is a silicone resin or an acrylic resin.
(5) The heat dissipation member according to any one of (1) to (4), wherein the heat dissipation member is a sheet.
(6) In a method of molding a resin composition containing a resin and an inorganic powder having anisotropy into a sheet, the resin composition containing the resin and the inorganic powder having anisotropy is placed in a molding die. The manufacturing method of the sheet | seat which passes the provided orientation part and compression part.
(7) The method for producing a sheet according to (6), wherein the orientation portion has at least one selected from the group consisting of a slit, a circle, a polygon, and a pin shape.
(8) The above (6) or (7), wherein the inorganic powder having anisotropy is one or more selected from the group consisting of boron nitride, graphite, and metal powder processed into a scale shape or a plate shape. ) Manufacturing method of sheet.
(9) The method for producing a sheet according to any one of (6) to (8), wherein the resin is 80 to 30% by volume and the anisotropic inorganic powder is 20 to 70% by volume.
(10) The method for producing a sheet according to any one of (6) to (9), wherein the resin is a silicone resin or an acrylic resin.
(11) <002 with respect to the <100> plane of X-ray diffraction obtained by irradiating X-rays in the sheet thickness direction of the sheet-shaped resin composition at an angle of 90 ° with respect to the sheet length direction > The sheet manufacturing method according to any one of (6) to (10), wherein a peak ratio (<002> / <100>) of the surface is 10 or less.

本発明の放熱部材、及びそのシートは熱伝導性が高く、放熱部材として優れている。   The heat dissipating member and sheet thereof of the present invention have high thermal conductivity and are excellent as heat dissipating members.

本発明は、異方性を有する熱伝導性の無機粉末を含有してなる樹脂組成物を、複数の構造からなるダイスに通過させて、配向成形を行うものである。樹脂組成物はダイス内に設けられた複数のスリットまたは円、または多角形形状を持つ流路を通過することで樹脂組成物内に配合された異方性を有する無機粒子をシートの厚さ方向に配向させ、引き続き、構成されたダイス内に設けた圧縮エリアを通過することで異方性を有する無機粒子の配向状態を乱すことなく成形させた後、金型出口よりブロック体として押し出される。成形体は樹脂に適した方法で硬化させた後、シートの幅方向で切断するものであり、この方法は、特に電子機器の放熱部材の製造に好適なものである。 In the present invention, orientation molding is performed by passing a resin composition containing a thermally conductive inorganic powder having anisotropy through a die having a plurality of structures. The resin composition passes through a plurality of slits or circles provided in the die, or a flow path having a polygonal shape, and the inorganic particles having anisotropy blended in the resin composition are in the thickness direction of the sheet. Then, after passing through a compression area provided in the configured die, the inorganic particles having anisotropy are molded without disturbing the orientation state, and then extruded from the die outlet as a block body. The molded body is cured by a method suitable for the resin and then cut in the width direction of the sheet. This method is particularly suitable for manufacturing a heat radiating member of an electronic device.

本発明で使用される異方性を有する無機粉末とは、鱗片状(魚のうろこの形をした小片)、板状(円板状、六角板状等)、円柱状、角柱状、楕円状等の無機粉末であり、異方性を有するものである。異方性を有する無機粉末としては、窒化ホウ素(BN)粉末、黒鉛、および鱗片状又は板状に加工された金属粉末、例えば銅、アルミ、鉄、銀、亜鉛等から選ばれる1種又は2種以上である。その中でも特に、鱗片状又は板状(円板状、六角板状等)の異方性を有する無機粉末を好適に用いることができる。
異方性を有する無機粉末に他の熱伝導性フィラーと混合させることもできる。異方性を有する無機粉末は、無機粒子の面方向(a軸)と垂直方向(c軸)とで熱伝導性が数倍〜数十倍異なる場合があるが、本発明によってその面方向の高熱伝導性を都合よく利用することができる。異方性を有する無機粉末の粒度は、レーザー回折式粒度分布測定装置SALD−200で測定したメジアン径(直径)が、1〜100μmものが好ましい。
The inorganic powder having anisotropy used in the present invention is in the form of scales (small pieces in the shape of fish scales), plates (disks, hexagons, etc.), columns, prisms, ellipses, etc. Inorganic powder having anisotropy. As the inorganic powder having anisotropy, boron nitride (BN) powder, graphite, and metal powder processed into a scale shape or a plate shape, for example, one or two selected from copper, aluminum, iron, silver, zinc and the like More than a seed. Among these, inorganic powder having scale-like or plate-like (disk-like, hexagonal plate-like) anisotropy can be preferably used.
An inorganic powder having anisotropy can be mixed with other thermally conductive fillers. The inorganic powder having anisotropy may differ in thermal conductivity by several times to several tens of times in the surface direction (a axis) and the vertical direction (c axis) of the inorganic particles. High thermal conductivity can be conveniently used. The inorganic powder having anisotropy preferably has a median diameter (diameter) of 1 to 100 μm as measured by a laser diffraction particle size distribution analyzer SALD-200.

本発明で使用される樹脂には、シリコーン樹脂、又はアクリル樹脂等がある。成形加工性、耐候性、耐熱性からシリコーン樹脂が好ましい。樹脂と異方性を有する無機粉末の配合割合は、樹脂が80〜30体積%、異方性を有する無機粉末が20〜70体積%であることが好ましく、樹脂が60〜40体積%、異方性を有する無機粉末が40〜60体積%であることが特に好ましい。異方性を有する無機粉末が20体積%未満では樹脂成形体に十分な熱伝導性を付与することができず、また70体積%をこえると、樹脂成形体の機械的強度が低下し、用途に著しい制約を受ける。また、樹脂と異方性を有する無機粉末の他に、樹脂の硬化剤、樹脂の硬化促進剤、難燃剤等の成分を配合することもできる。 Examples of the resin used in the present invention include a silicone resin and an acrylic resin. A silicone resin is preferable from the viewpoint of molding processability, weather resistance, and heat resistance. The blending ratio of the resin and the inorganic powder having anisotropy is preferably 80 to 30% by volume of the resin, 20 to 70% by volume of the inorganic powder having anisotropy, and 60 to 40% by volume of the resin. It is particularly preferable that the inorganic powder having anisotropy is 40 to 60% by volume. If the inorganic powder having anisotropy is less than 20% by volume, sufficient heat conductivity cannot be imparted to the resin molded body, and if it exceeds 70% by volume, the mechanical strength of the resin molded body decreases, Are subject to significant restrictions. In addition to the inorganic powder having anisotropy with the resin, components such as a resin curing agent, a resin curing accelerator, and a flame retardant can also be blended.

シリコーン樹脂としては、付加反応型液状シリコーンゴム、過酸化物を加硫に用いる熱加硫型ミラブルタイプのシリコーンゴム等をあげるがことができる。電子機器の放熱部材では、発熱電子部品の発熱面とヒートシンク面との密着性が要求されるため、付加反応型液状シリコーンゴムが望ましい。その具体例としては、一分子中にビニル基とH−Si基の両方を有する一液性のシリコーンや、末端又は側鎖にビニル基を有するオルガノポリシロキサンと末端又は側鎖に2個以上のH−Si基を有するオルガノポリシロキサンとの二液性のシリコーンなどがあり、市販品としては、東レダウコーニング社製、商品名「SE−1885」等がある。シリコーン硬化物の柔軟性は、シリコーンの架橋密度や熱伝導性フィラーの充填量などによって調整することができる。 Examples of the silicone resin include addition reaction type liquid silicone rubber, heat vulcanization type millable type silicone rubber using peroxide for vulcanization, and the like. In the heat radiating member of an electronic device, since the adhesion between the heat generating surface of the heat generating electronic component and the heat sink surface is required, an addition reaction type liquid silicone rubber is desirable. Specific examples thereof include one-part silicone having both vinyl group and H-Si group in one molecule, organopolysiloxane having vinyl group at the terminal or side chain, and two or more terminals or side chain. There are two-part silicones with organopolysiloxanes having H-Si groups, and commercially available products include “SE-1885” manufactured by Toray Dow Corning. The flexibility of the silicone cured product can be adjusted by the crosslinking density of the silicone, the filling amount of the heat conductive filler, and the like.

アクリル樹脂としては、市販のアクリル酸エステル系重合体やメタクリル酸エステル重合体、また一部エチレンなどとの共重合体を用いることができる。また必要に応じてそれらを組み合わせて使用することも可能である。アクリル酸エステル系重合体としてはAR31、AR53L(日本ゼオン社製)等、メタクリル酸エステル重合体としてはスミペックス(住友化学社製)など、またエチレンとの共重合体としてはデンカERゴム(電気化学工業社製)等が挙げられる。 As the acrylic resin, a commercially available acrylic ester polymer, methacrylic ester polymer, or a copolymer with a part of ethylene can be used. Moreover, it is also possible to use them in combination as required. AR31, AR53L (manufactured by Nippon Zeon Co., Ltd.) as acrylic ester polymers, Sumipex (manufactured by Sumitomo Chemical Co., Ltd.) as methacrylic ester polymers, Denka ER rubber (electrochemical) as a copolymer with ethylene Manufactured by Kogyo Co., Ltd.).

樹脂と異方性を有する無機粉末の調合は、ロールミル、ニーダー、バンバリーミキサー等を用いて行うことができる。また、樹脂組成物の硬化は、遠赤外炉、熱風炉等を用いて行われる。 The inorganic powder having anisotropy with the resin can be prepared using a roll mill, a kneader, a Banbury mixer or the like. Moreover, hardening of a resin composition is performed using a far-infrared furnace, a hot air furnace, etc.

樹脂と異方性を有する無機粉末を含有してなるシートの製造方法は、樹脂と異方性を有する無機粉末を混合した樹脂組成物をポンプ、押出機等を用いて、ダイス内に導入させる。ダイスには配向を目的とした複数のスリットが設けられている。その断面形状をあげれば、三角形、四角形、六角形、台形等の多角形、円形、楕円形およびピン型などであり、目的によっては異なる形状を組み合わせることもある。本発明によれば、特に複雑な形状が精度良く成形することができる。またこの部品は目的とする配向状態になるよう通過長も調整できる構造が望ましく、その長さは2mm〜50mmが望ましい。 The manufacturing method of the sheet | seat containing the inorganic powder which has resin and anisotropy introduces the resin composition which mixed resin and the inorganic powder which has anisotropy into a die | dye using a pump, an extruder, etc. . The die is provided with a plurality of slits for the purpose of orientation. Examples of the cross-sectional shape include triangles, quadrilaterals, hexagons, trapezoids, and other polygons, circles, ellipses, and pin shapes. Depending on the purpose, different shapes may be combined. According to the present invention, particularly complicated shapes can be formed with high accuracy. Further, it is desirable that this part has a structure in which the passage length can be adjusted so as to be in an intended orientation state, and the length is desirably 2 mm to 50 mm.

ダイスの配向部を通過させた後、連続して設けられた圧縮部により上記配向スリットの断面積の総和に対し95〜20%に圧縮させることで、異方性を有する無機粒子の配向状態を維持したままブロック状に成形させダイス出口より押出成形体を得ることができる。
本発明においては、配向性の優れた成形体を得るために、樹脂組成物に配向部を通過させた後、圧縮部を通過させることが必要である。配向部と圧縮部の一方を通過させただけでは、配向性の優れた成形体を得ることができない。
After passing through the orientation part of the die, it is compressed to 95 to 20% with respect to the sum of the cross-sectional areas of the orientation slits by the continuously provided compression part, so that the orientation state of the inorganic particles having anisotropy is changed. While being maintained, it can be formed into a block shape, and an extruded product can be obtained from the die outlet.
In the present invention, in order to obtain a molded article having excellent orientation, it is necessary to pass the compressed portion after passing the oriented portion through the resin composition. A molded article having excellent orientation cannot be obtained only by passing one of the oriented part and the compressed part.

成形体は用いた樹脂に応じて適切な硬化反応により完成された成型物を得ることが出来る。加熱により架橋反応する樹脂を用いた場合はダイス先端を延長しヒーター加熱を行い成形と連続して硬化させることも出来る。 According to the resin used, the molded body can obtain a molded product completed by an appropriate curing reaction. When a resin that undergoes a crosslinking reaction by heating is used, the die tip can be extended and heated with a heater to be cured continuously with molding.

硬化反応が完了した成型物を、シートに対し異方性を有する鱗片状粒子が厚さ方向に対し縦に配向するよう薄く切断することで放熱部材に適したシート状物を得ることが出来る。この場合0.1mm〜3mmの厚さが好ましい。 A sheet-like material suitable for a heat radiating member can be obtained by cutting the molded product that has completed the curing reaction into thin pieces so that scaly particles having anisotropy with respect to the sheet are oriented vertically in the thickness direction. In this case, a thickness of 0.1 mm to 3 mm is preferable.

図2には、本発明によって製造された放熱部材の成形体の一例の斜視図を示した。1は異方性を有する無機粉末、2は樹脂と異方性を有する無機粉末の成形体である。 In FIG. 2, the perspective view of an example of the molded object of the heat radiating member manufactured by this invention was shown. Reference numeral 1 is an inorganic powder having anisotropy, and 2 is a molded body of an inorganic powder having anisotropy with a resin.

本発明で製造される放熱部材の成形体の形状について制約はなく、用途に応じて適切な形状が選択される。シート状ないしは矩形状のものは、熱伝導性シートや高柔軟性放熱スペーサー等の電子機器の放熱部材として使用される。 There is no restriction | limiting about the shape of the molded object of the heat radiating member manufactured by this invention, A suitable shape is selected according to a use. The sheet or rectangular shape is used as a heat radiating member of an electronic device such as a heat conductive sheet or a highly flexible heat radiating spacer.

本発明で製造される放熱部材の成形体の熱抵抗は0.5℃/W・mm以下であることが好ましい。また、樹脂と異方性を有する無機粉末の樹脂組成物中に窒化ホウ素粉末を含む成形体では、厚さ方向にX線を照射して得られたX線回折において、〈100〉面(a軸)に対する〈002〉面(c軸)のピーク比(〈002〉/〈100〉)が6以下であることが好ましい。 It is preferable that the heat resistance of the molded body of the heat radiating member manufactured in the present invention is 0.5 ° C./W·mm or less. Moreover, in the molded object which contains boron nitride powder in the resin composition of the inorganic powder which has resin and anisotropy, in the X-ray diffraction obtained by irradiating X-rays to the thickness direction, <100> plane (a The peak ratio (<002> / <100>) of the <002> plane (c-axis) to (axis) is preferably 6 or less.

シリコーン組成物の調合は、ロールミル、ニーダー、バンバリーミキサー等を用いて行うことができる。また、その硬化は、遠赤外炉、熱風炉等を用いて行われる。 The silicone composition can be prepared using a roll mill, a kneader, a Banbury mixer, or the like. Further, the curing is performed using a far infrared furnace, a hot air furnace or the like.

以下、実施例と比較例をあげて更に具体的に本発明を説明する。
(実施例1)
A液(ビニル基を有するオルガノポリシロキサン)対B液(H−Si基を有するオルガノポリシロキサン)の混合比を表1に示す割合とした二液性の付加反応型液状シリコーン樹脂(東レダウコーニング社製、商品名「SE−1885」)に、平均粒子径15μm(レーザー回折式粒度分布測定装置SALD−200で測定したメジアン径)の窒化ホウ素粉末(市販品)を表1に示す割合で配合し、ミキサーで混合した。
押出機を使用しシリコーン樹脂組成物を押し出した。押出機先端に取り付けられたダイスには、厚さ方向に0.5mmで幅20mmに開けられたスリットが18条切られており、その後スリットの開口断面積総和に対し85%の断面積開口を持つ圧縮部が、上記スリット部に続き一体化して取り付けられた構造とした。
押出機の条件としては、シリンダー温度、ダイス温度を25℃に設定し、吐出量7L/hour、押出圧力78kgf/cmとした。この場合押出圧力は50kgf/cm以上が望ましい。
ダイスから押し出されたブロック体を扱いやすい長さに切断した後、乾燥機にて110℃で6時間加熱し、シリコーンの加硫を行うことで成型物として完成させた後、幅0.5mmに切断して、図3に示されるシート状成形体を製造した。
(実施例2)
窒化ホウ素粉末の代わりに鱗片状黒鉛粉(市販品)を使用し、実施例1と同配合で、実施例1と同様の方法でシート状成形体を製造した。
(実施例3)
ダイスに取り付けられた配向スリット部を厚さ方向に1mmで幅20mmに開けられた部品に交換し、実施例2と同じ組成にてシリコーン樹脂組成物を押出成形し、同様に加硫させた後、幅0.5mmに切断したシート状成形体を作成した。
(実施例4)
実施例2の配合から鱗片状黒鉛粉の体積%を40体積%とし、その他は実施例1と同様の方法でシート状成形体を製造した。
(実施例5)
実施例2の配合から鱗片状黒鉛粉の体積%を60体積%とし、その他は実施例1と同様の方法でシート状成形体を製造した。
(実施例6)
実施例2の配合から鱗片状黒鉛粉を45体積%、窒化ホウ素粉末5%としその他は実施例1と同様の方法でシート状成形体を製造した。上記で得られた成形体について、厚さ方向の熱伝導率を測定した。これらの結果を表1に示す
使用材料を下記に示す。
(1)シリコーン樹脂:東レダウコーニング社製、商品名「SE−1885」
(2)窒化ホウ素粉末:電気化学工業社製、商品名「デンカボロンナイトライドSPG」、
平均粒径15μm
(3)鱗片状黒鉛粉 :中越黒鉛工業所社製、商品名「天然黒鉛BF-20A」、平均粒径20μm
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
Example 1
Two-component addition-reaction type liquid silicone resin (Toray Dow Corning) with a mixing ratio of Liquid A (organopolysiloxane having vinyl group) to Liquid B (organopolysiloxane having H-Si group) shown in Table 1. (Commercial name “SE-1885”) and boron nitride powder (commercially available) having an average particle diameter of 15 μm (median diameter measured with a laser diffraction particle size distribution analyzer SALD-200) in a proportion shown in Table 1. And mixed with a mixer.
The silicone resin composition was extruded using an extruder. The die attached to the tip of the extruder has 18 slits that are 0.5 mm thick and 20 mm wide in the thickness direction, and then has a 85% cross-sectional area opening relative to the total opening cross-sectional area of the slit. The compression part which it has was set as the structure attached integrally after the said slit part.
As conditions for the extruder, the cylinder temperature and the die temperature were set to 25 ° C., the discharge amount was 7 L / hour, and the extrusion pressure was 78 kgf / cm 2 . In this case, the extrusion pressure is desirably 50 kgf / cm 2 or more.
After the block body extruded from the die is cut to a length that is easy to handle, it is heated at 110 ° C. for 6 hours in a dryer and vulcanized with silicone to complete the molded product, and then to a width of 0.5 mm. The sheet-shaped molded body shown in FIG. 3 was produced by cutting.
(Example 2)
A scaly graphite powder (commercially available product) was used in place of the boron nitride powder, and a sheet-like molded body was produced in the same manner as in Example 1 with the same composition.
(Example 3)
After replacing the orientation slit part attached to the die with a part opened in a thickness direction of 1 mm and a width of 20 mm, and extruding a silicone resin composition with the same composition as in Example 2 and vulcanizing in the same manner A sheet-like molded body cut to a width of 0.5 mm was prepared.
Example 4
A sheet-like molded body was produced in the same manner as in Example 1 except that the volume percentage of the scaly graphite powder was 40% by volume from the formulation of Example 2.
(Example 5)
A sheet-like molded body was produced in the same manner as in Example 1 except that the volume percentage of the scaly graphite powder was 60% by volume from the formulation of Example 2.
(Example 6)
A sheet-like molded body was produced in the same manner as in Example 1 except that the scaly graphite powder was 45% by volume and the boron nitride powder was 5% from the formulation of Example 2. About the molded object obtained above, the heat conductivity of the thickness direction was measured. These results are shown in Table 1. The materials used are shown below.
(1) Silicone resin: Toray Dow Corning, trade name “SE-1885”
(2) Boron nitride powder: manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “DENCABORON NITRIDE SPG”
Average particle size 15μm
(3) Scale-like graphite powder: manufactured by Chuetsu Graphite Industries Co., Ltd., trade name “Natural Graphite BF-20A”, average particle size 20 μm

(比較例1)
ダイスに取り付けられた配向スリット部を厚さ方向に2mmで幅20mmに開けられた部品に交換し、実施例2と同じ組成にてシリコーン樹脂組成物を押出成形し、同様に加硫させた後、幅0.5mmに切断したシート状成形体を作成した。
(比較例2)
ダイスに取り付けられた配向スリット部を取り外し、実施例2と同じ組成にてシリコーン樹脂組成物を押出成形し、同様に加硫させた後、幅0.5mmに切断したシート状成形体を作成した。上記で得られた成形体について、厚さ方向の熱伝導率を測定した。これらの結果を表1に示す。
(Comparative Example 1)
After replacing the orientation slit part attached to the die with a part opened in a thickness direction of 2 mm and a width of 20 mm, and extruding a silicone resin composition with the same composition as in Example 2 and vulcanizing in the same manner A sheet-like molded body cut to a width of 0.5 mm was prepared.
(Comparative Example 2)
The orientation slit part attached to the die was removed, the silicone resin composition was extruded with the same composition as in Example 2, and vulcanized in the same manner, and then a sheet-like molded body cut to a width of 0.5 mm was prepared. . About the molded object obtained above, the heat conductivity of the thickness direction was measured. These results are shown in Table 1.

成形体をASTM D 5470に準じて熱抵抗を測定し、サンプル測定厚みと測定面積を測定し熱伝導率を算出した。 The molded body was measured for thermal resistance according to ASTM D 5470, the sample measurement thickness and measurement area were measured, and the thermal conductivity was calculated.

X線回折装置にはマックスサイエンス社MXP18を使用し、<100>面に対する<002>面のピーク比は解析ソフト、マックサイエンス社製XPRESSを用い以下の手法にて算出した。
X線はシート状成形体のシートの厚さ方向に、シートの長さ方向に対して90°の角度で照射した。
試料板に測定試料を成形し2θ=53°〜39°の範囲で測定した。次に得られたX線チャートより、(1)2θ=41°付近((100)面)、(2)2θ=44°付近((101)面)、(3)2θ=50°付近((102)面)のピーク面積を求め、以下の式よりGIを求めた。
GI=(面積(1)+面積(2))/面積(3)
更に上記と同じ要領で2θ=30°〜25°の範囲で測定し、(a)2θ=27〜28°付近((002)面)、(b)2θ=41°付近((100)面)のピーク高さを求め、以下の式よりピーク強度比を求めた。
ピーク強度比=ピーク高さ(a)/(ピーク高さ(b)
なお、X線回折装置の測定条件を下記に示す。
(X線回折装置の測定条件)
Cu回転体陰極、印可電圧/電流;50V / 100A、測定範囲;5°≦2θ≦90°、
サンプル間隔:0.02°、スキャン速度;1°/分、スリット構成:DS,SS=0.5,
RS=0.1
試料はアルミ板に貼り測定試料とした。
As the X-ray diffractometer, MXP18 manufactured by Max Science was used, and the peak ratio of the <002> plane to the <100> plane was calculated by the following method using analysis software, XPRES manufactured by Mac Science.
X-rays were irradiated in the sheet thickness direction of the sheet-shaped molded body at an angle of 90 ° with respect to the sheet length direction.
A measurement sample was molded on a sample plate and measured in the range of 2θ = 53 ° to 39 °. Next, from the obtained X-ray chart, (1) 2θ = 41 ° vicinity ((100) plane), (2) 2θ = 44 ° vicinity ((101) plane), (3) 2θ = 50 ° vicinity (( 102) surface) and the GI was calculated from the following equation.
GI = (area (1) + area (2)) / area (3)
Further, in the same manner as described above, measurement is performed in the range of 2θ = 30 ° to 25 °, (a) around 2θ = 27 to 28 ° ((002) plane), (b) around 2θ = 41 ° ((100) plane). The peak height ratio was obtained, and the peak intensity ratio was obtained from the following formula.
Peak intensity ratio = peak height (a) / (peak height (b)
The measurement conditions of the X-ray diffractometer are shown below.
(Measurement conditions of X-ray diffractometer)
Cu rotor cathode, applied voltage / current; 50V / 100A, measurement range; 5 ° ≦ 2θ ≦ 90 °,
Sample interval: 0.02 °, scan speed: 1 ° / min, slit configuration: DS, SS = 0.5,
RS = 0.1
The sample was attached to an aluminum plate and used as a measurement sample.

表1より、本発明の実施例によって製造された成形体は、比較例に比べて、熱伝導性が大幅に向上していることがわかる。 From Table 1, it can be seen that the thermal conductivity of the molded body produced by the example of the present invention is greatly improved as compared with the comparative example.

図1は配向部スリット形状の一例を示す(有色部が配合物流路)FIG. 1 shows an example of the orientation part slit shape (the colored part is a compound flow path). 図2は配向圧縮成型一体型ダイを示すFIG. 2 shows an orientation compression molding integrated die 図3は製品断面を示すFigure 3 shows the product cross section

符号の説明Explanation of symbols

(図1)
1.スリット(配合物流路)
2.金型
(Figure 1)
1. Slit (compound flow path)
2. Mold

(図2)
1.集合部
2.配向部
3.圧縮部
4.製品ブロック
5.製品
6.異方性を有する無機粒子
7.バインダー
(Figure 2)
1. Aggregation unit 2. 2. Orientation part 3. Compression unit Product block 5. Product 6. 6. Inorganic particles having anisotropy binder

(図3)
1.シート状製品
2.異方性を有する無機粒子

(Figure 3)
1. Sheet-like product Inorganic particles with anisotropy

Claims (11)

樹脂と異方性を有する無機粉末を含有してなるシート状の放熱部材において、異方性を有する無機粒子をシート厚さ方向に配向させ、X線をシート状の放熱部材のシートの厚さ方向に、シートの長さ方向に対して90°の角度で照射して得られたX線回折図の<100>面に対する<002>面のピーク比(<002>/<100>)が10以下であることを特徴とする放熱部材。 In a sheet-like heat dissipation member comprising a resin and an inorganic powder having anisotropy, the anisotropic inorganic particles are oriented in the sheet thickness direction, and the X-ray is the thickness of the sheet-like heat dissipation member. The peak ratio (<002> / <100>) of the <002> plane to the <100> plane of the X-ray diffraction diagram obtained by irradiating at an angle of 90 ° with respect to the sheet length direction is 10 The heat radiating member characterized by the following. 異方性を有する無機粉末が窒化ホウ素、黒鉛、および鱗片状又は板状に加工した金属粉末からなる群より選ばれた1種又は2種以上である請求項1に記載の放熱部材。 The heat radiating member according to claim 1, wherein the inorganic powder having anisotropy is one or more selected from the group consisting of boron nitride, graphite, and metal powder processed into a scale shape or a plate shape. 樹脂が80〜30体積%、異方性を有する無機粉末が20〜70体積%である請求項1又は請求項2に記載の放熱部材。 The heat radiating member according to claim 1 or 2, wherein the resin is 80 to 30% by volume and the inorganic powder having anisotropy is 20 to 70% by volume. 樹脂がシリコーン樹脂、又はアクリル樹脂である請求項1乃至請求項3のいずれか一項に記載の放熱部材。 The heat radiating member according to any one of claims 1 to 3, wherein the resin is a silicone resin or an acrylic resin. 放熱部材がシートである請求項1乃至請求項4のいずれか一項に記載の放熱部材。 The heat dissipation member according to any one of claims 1 to 4, wherein the heat dissipation member is a sheet. 樹脂と異方性を有する無機粉末を含有してなる樹脂組成物をシートに成形する方法において、樹脂と異方性を有する無機粉末を含有してなる樹脂組成物を成形ダイス内に設けられた配向部と圧縮部を通過させるシートの製造方法。 In a method for molding a resin composition containing a resin and an inorganic powder having anisotropy into a sheet, the resin composition containing the resin and the inorganic powder having anisotropy is provided in a molding die. The manufacturing method of the sheet | seat which passes an orientation part and a compression part. 配向部の形状がスリット、円形、多角形、及びピン型からなる群より選ばれた1種以上である請求項6に記載のシートの製造方法。 The sheet manufacturing method according to claim 6, wherein the shape of the orientation part is at least one selected from the group consisting of a slit, a circle, a polygon, and a pin shape. 異方性を有する無機粉末が窒化ホウ素、黒鉛、および鱗片状又は板状に加工した金属粉末からなる群より選ばれた1種又は2種以上である請求項6又は請求項7に記載のシートの製造方法。 The sheet according to claim 6 or 7, wherein the inorganic powder having anisotropy is one or more selected from the group consisting of boron nitride, graphite, and metal powder processed into a scale shape or a plate shape. Manufacturing method. 樹脂が80〜30体積%、異方性を有する無機粉末が20〜70体積%である請求項6乃至請求項8のいずれか一項に記載のシートの製造方法。 The method for producing a sheet according to any one of claims 6 to 8, wherein the resin is 80 to 30% by volume and the inorganic powder having anisotropy is 20 to 70% by volume. 樹脂がシリコーン樹脂、又はアクリル樹脂である請求項6乃至請求項9のいずれか一項に記載のシートの製造方法。 The method for producing a sheet according to any one of claims 6 to 9, wherein the resin is a silicone resin or an acrylic resin. X線をシート状の樹脂組成物のシートの厚さ方向に、シートの長さ方向に対して90°の角度で照射して得られたX線回折の<100>面に対する<002>面のピーク比(<002>/<100>)を10以下とする請求項6乃至請求項10のいずれか一項に記載のシートの製造方法。
The <002> plane relative to the <100> plane of X-ray diffraction obtained by irradiating X-rays in the sheet thickness direction of the sheet-shaped resin composition at an angle of 90 ° with respect to the sheet length direction The sheet manufacturing method according to any one of claims 6 to 10, wherein a peak ratio (<002> / <100>) is 10 or less.
JP2007260406A 2007-10-03 2007-10-03 Heat dissipation member, its sheet, and its production method Pending JP2009094110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007260406A JP2009094110A (en) 2007-10-03 2007-10-03 Heat dissipation member, its sheet, and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007260406A JP2009094110A (en) 2007-10-03 2007-10-03 Heat dissipation member, its sheet, and its production method

Publications (1)

Publication Number Publication Date
JP2009094110A true JP2009094110A (en) 2009-04-30

Family

ID=40665850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007260406A Pending JP2009094110A (en) 2007-10-03 2007-10-03 Heat dissipation member, its sheet, and its production method

Country Status (1)

Country Link
JP (1) JP2009094110A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048885A1 (en) 2009-10-22 2011-04-28 電気化学工業株式会社 Insulating sheet, circuit board, and process for production of insulating sheet
WO2012026012A1 (en) 2010-08-26 2012-03-01 電気化学工業株式会社 Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
JP2012253167A (en) * 2011-06-02 2012-12-20 Denki Kagaku Kogyo Kk Thermally conductive insulation sheet, metal base substrate and circuit board
JP2013070015A (en) * 2011-09-07 2013-04-18 Panasonic Corp Heat conducting sheet and manufacturing method thereof
JP2015216387A (en) * 2010-06-17 2015-12-03 デクセリアルズ株式会社 Thermally conductive sheet and method of producing the same
KR20170050218A (en) * 2015-10-30 2017-05-11 주식회사 하이원화이어 Composition used in coating for dissipating heat, coating including the same and manufacturing method of the same
KR20180048612A (en) 2015-08-26 2018-05-10 덴카 주식회사 Thermoconductive resin composition
JP2020045456A (en) * 2018-09-20 2020-03-26 株式会社豊田中央研究所 Heat-conductive composite material, heat-conductive composite material film, and method for producing them
JP2020055895A (en) * 2018-09-28 2020-04-09 日本ゼオン株式会社 Heat-conductive sheet
WO2020100482A1 (en) * 2018-11-16 2020-05-22 富士高分子工業株式会社 Heat-conductive sheet and method for manufacturing same
JP2020534189A (en) * 2017-09-22 2020-11-26 エルジー・ケム・リミテッド Composite material
WO2021085383A1 (en) * 2019-11-01 2021-05-06 積水ポリマテック株式会社 Thermally conductive sheet and production method for same
CN112771711A (en) * 2018-09-26 2021-05-07 第一工业制药株式会社 Battery cover sheet and battery pack
JP6989675B1 (en) * 2020-10-21 2022-01-05 デクセリアルズ株式会社 Method for manufacturing a heat conductive sheet and a heat conductive sheet
JP2022510527A (en) * 2019-11-18 2022-01-27 スージョウ カンロニクス エレクトロニック テクノロジー カンパニー リミテッド Equipment for manufacturing heat conductive sheets with graphene fiber orientation arrangement
CN114539775A (en) * 2020-10-14 2022-05-27 矢崎总业株式会社 Heat conductive sheet, electronic apparatus, on-vehicle apparatus, and method for manufacturing heat conductive sheet
EP3885135A4 (en) * 2018-11-20 2022-10-19 Sekisui Polymatech Co., Ltd. Thermal conductive sheet and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000108220A (en) * 1998-10-05 2000-04-18 Denki Kagaku Kogyo Kk Thermally conductive resin molding, its manufacture and use
JP2000154265A (en) * 1998-11-18 2000-06-06 Denki Kagaku Kogyo Kk Highly thermally conductive sheet
JP2003026827A (en) * 2001-07-13 2003-01-29 Jsr Corp Heat-conductive sheet, method for producing heat- conductive sheet and heat-radiating structure using the same
JP2007077299A (en) * 2005-09-15 2007-03-29 Showa Denko Kk Thermoconductive resin composition, its structure and its use
JP2007106902A (en) * 2005-10-14 2007-04-26 Showa Denko Kk Heat-conductive resin composition, structure thereof and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000108220A (en) * 1998-10-05 2000-04-18 Denki Kagaku Kogyo Kk Thermally conductive resin molding, its manufacture and use
JP2000154265A (en) * 1998-11-18 2000-06-06 Denki Kagaku Kogyo Kk Highly thermally conductive sheet
JP2003026827A (en) * 2001-07-13 2003-01-29 Jsr Corp Heat-conductive sheet, method for producing heat- conductive sheet and heat-radiating structure using the same
JP2007077299A (en) * 2005-09-15 2007-03-29 Showa Denko Kk Thermoconductive resin composition, its structure and its use
JP2007106902A (en) * 2005-10-14 2007-04-26 Showa Denko Kk Heat-conductive resin composition, structure thereof and use thereof

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9497857B2 (en) 2009-10-22 2016-11-15 Denka Company Limited Insulating sheet, circuit board, and process for production of insulating sheet
WO2011048885A1 (en) 2009-10-22 2011-04-28 電気化学工業株式会社 Insulating sheet, circuit board, and process for production of insulating sheet
JP2015216387A (en) * 2010-06-17 2015-12-03 デクセリアルズ株式会社 Thermally conductive sheet and method of producing the same
WO2012026012A1 (en) 2010-08-26 2012-03-01 電気化学工業株式会社 Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
US8921458B2 (en) 2010-08-26 2014-12-30 Denki Kagaku Kogyo Kabushiki Kaisha Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
JP2012253167A (en) * 2011-06-02 2012-12-20 Denki Kagaku Kogyo Kk Thermally conductive insulation sheet, metal base substrate and circuit board
JP2013070015A (en) * 2011-09-07 2013-04-18 Panasonic Corp Heat conducting sheet and manufacturing method thereof
KR20180048612A (en) 2015-08-26 2018-05-10 덴카 주식회사 Thermoconductive resin composition
KR20170050218A (en) * 2015-10-30 2017-05-11 주식회사 하이원화이어 Composition used in coating for dissipating heat, coating including the same and manufacturing method of the same
KR102039085B1 (en) 2015-10-30 2019-10-31 주식회사 하이원화이어 Composition used in coating for dissipating heat, coating including the same and manufacturing method of the same
US11603481B2 (en) 2017-09-22 2023-03-14 Lg Chem, Ltd. Composite material
JP2020534189A (en) * 2017-09-22 2020-11-26 エルジー・ケム・リミテッド Composite material
JP7086442B2 (en) 2017-09-22 2022-06-20 エルジー・ケム・リミテッド Composite material
JP2020045456A (en) * 2018-09-20 2020-03-26 株式会社豊田中央研究所 Heat-conductive composite material, heat-conductive composite material film, and method for producing them
JP7402410B2 (en) 2018-09-20 2023-12-21 株式会社豊田中央研究所 Thermally conductive composite material, thermally conductive composite film and method for producing the same
CN112771711A (en) * 2018-09-26 2021-05-07 第一工业制药株式会社 Battery cover sheet and battery pack
EP3859813A4 (en) * 2018-09-26 2022-06-15 DKS Co. Ltd. Battery coating sheet and battery pack
JP2020055895A (en) * 2018-09-28 2020-04-09 日本ゼオン株式会社 Heat-conductive sheet
JP7163700B2 (en) 2018-09-28 2022-11-01 日本ゼオン株式会社 thermal conductive sheet
WO2020100482A1 (en) * 2018-11-16 2020-05-22 富士高分子工業株式会社 Heat-conductive sheet and method for manufacturing same
JPWO2020100482A1 (en) * 2018-11-16 2021-02-15 富士高分子工業株式会社 Thermal conductivity sheet and its manufacturing method
EP3885135A4 (en) * 2018-11-20 2022-10-19 Sekisui Polymatech Co., Ltd. Thermal conductive sheet and method for manufacturing same
JP6892725B1 (en) * 2019-11-01 2021-06-23 積水ポリマテック株式会社 Thermally conductive sheet and its manufacturing method
CN114555714B (en) * 2019-11-01 2023-05-09 积水保力马科技株式会社 Heat conductive sheet and method for manufacturing the same
WO2021085383A1 (en) * 2019-11-01 2021-05-06 積水ポリマテック株式会社 Thermally conductive sheet and production method for same
US11618247B2 (en) 2019-11-01 2023-04-04 Sekisui Polymatech Co., Ltd. Thermally conductive sheet and production method for same
CN114555714A (en) * 2019-11-01 2022-05-27 积水保力马科技株式会社 Heat conducting sheet and method for producing same
JP7057842B2 (en) 2019-11-18 2022-04-20 スージョウ カンロニクス エレクトロニック テクノロジー カンパニー リミテッド Equipment for manufacturing heat conductive sheets with graphene fiber orientation arrangement
JP2022510527A (en) * 2019-11-18 2022-01-27 スージョウ カンロニクス エレクトロニック テクノロジー カンパニー リミテッド Equipment for manufacturing heat conductive sheets with graphene fiber orientation arrangement
CN114539775A (en) * 2020-10-14 2022-05-27 矢崎总业株式会社 Heat conductive sheet, electronic apparatus, on-vehicle apparatus, and method for manufacturing heat conductive sheet
JP2022067780A (en) * 2020-10-21 2022-05-09 デクセリアルズ株式会社 Heat conductive sheet and manufacturing method thereof
WO2022085284A1 (en) * 2020-10-21 2022-04-28 デクセリアルズ株式会社 Thermally conductive sheet and method for manufacturing thermally conductive sheet
JP6989675B1 (en) * 2020-10-21 2022-01-05 デクセリアルズ株式会社 Method for manufacturing a heat conductive sheet and a heat conductive sheet

Similar Documents

Publication Publication Date Title
JP2009094110A (en) Heat dissipation member, its sheet, and its production method
US9966324B2 (en) Thermally conductive sheet, method for producing same, and semiconductor device
KR101715988B1 (en) Thermally conductive sheet and process for producing same
KR101550083B1 (en) Heat radiation sheet and heat radiation device
JP5541400B2 (en) Manufacturing method of heat conductive sheet
JP6746540B2 (en) Heat conduction sheet
JP2012023335A (en) Thermally conductive sheet and method of producing the same
JP2008280496A (en) Heat-conductive sheet, method for producing the same, and heat radiator using the same
JP5405890B2 (en) Thermally conductive moldings and their applications
WO2018101445A1 (en) Thermally conductive sheet
JP6981001B2 (en) Heat-dissipating device using heat-conducting sheet and heat-conducting sheet
TWI714804B (en) Thermally conductive sheet and semiconductor device
JP7220150B2 (en) Low dielectric constant thermal conductive heat dissipation material
JP2020013872A (en) Manufacturing method of heat conductive sheet
JP3568401B2 (en) High thermal conductive sheet
JP3721272B2 (en) Method for producing thermally conductive resin molding
JP2000355654A (en) Heat-conductive silicone molding and its use
JP3698451B2 (en) Sheet manufacturing method
JP2000185328A (en) Heat conductive silicone moldings and manufacture thereof and use applications
US20240120254A1 (en) Thermally-conductive sheet and electronic device
JP6978639B1 (en) Thermally conductive resin sheet
JP2000345040A (en) Manufacture of heat-conductive silicone molding
JP2000344919A (en) Production of thermo-conductive silicone molding product
JP2020196892A (en) Thermoconductive sheet
JP4137288B2 (en) Method for producing thermally conductive silicone molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Effective date: 20120611

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20130312

Free format text: JAPANESE INTERMEDIATE CODE: A02