JP2004363272A - Heat-dissipating member - Google Patents

Heat-dissipating member Download PDF

Info

Publication number
JP2004363272A
JP2004363272A JP2003158923A JP2003158923A JP2004363272A JP 2004363272 A JP2004363272 A JP 2004363272A JP 2003158923 A JP2003158923 A JP 2003158923A JP 2003158923 A JP2003158923 A JP 2003158923A JP 2004363272 A JP2004363272 A JP 2004363272A
Authority
JP
Japan
Prior art keywords
heat
conductive filler
thermally conductive
silicone resin
dissipating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003158923A
Other languages
Japanese (ja)
Other versions
JP3838994B2 (en
Inventor
Toshikatsu Mitsunaga
敏勝 光永
Mitsuru Shiiba
満 椎葉
Hiroaki Sawa
博昭 澤
Masato Kawano
正人 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003158923A priority Critical patent/JP3838994B2/en
Publication of JP2004363272A publication Critical patent/JP2004363272A/en
Application granted granted Critical
Publication of JP3838994B2 publication Critical patent/JP3838994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-dissipating member in which a flexibility and restoring properties are further improved while maintaining a high-heat conductivity. <P>SOLUTION: The heat-dissipating member is characterised by being formed by molding and curing the mixture of the ground substance of a silicone-resin cured substance containing heat-conductive fillers and an uncured silicone resin containing the fillers or containing no filler. And also, the heat-dissipating member is characterised by being formed by molding and curing the mixture of the ground substance of the silicone-resin cured substance containing no heat-conductive filler and the uncured silicone resin containing the heat-conductive fillers. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高柔軟性且つ高復元性の放熱部材に関する。詳しくは、コンピューター、ワードプロセッサーなどの情報処理機器におけるIC、LSI、CPU、MPU等の発熱性電子部品から発生した熱を効率よく放出するのに用いられる放熱部材の改良に関する。
【0002】
【従来の技術】
従来、発熱性電子部品から発生した熱の除去は、発熱性電子部品を、放熱部材を介して放熱フィンや金属板に取り付けることによって行われている。放熱部材としては、シリコーンゴムなどの柔軟なマトリックスに熱伝導性フィラーの充填された放熱スペーサーが賞用されている。
【0003】
放熱スペーサーの熱伝導性は、熱伝導性フィラーの充填量に依存しており、それを高めるほど熱伝導性は向上するが、その反面、柔軟性と復元性が低下する。このため、放熱スペーサーを凹凸のある面に押しつけ密着させて装着することが困難となるので、放熱が不十分となる。しかも、復元性が十分でないと、発熱性電子部品と放熱フィンを解体し、その間に挟まれている放熱部材を再使用する場合、それができなくなる。
【0004】
放熱スペーサーの柔軟性と復元性を両立させることは難題であるが、本出願人は長年からその技術開発に携わり多くの特許を取得した(たとえば特許文献1〜3)。今日では、その技術・製品がさまざまな分野で受け入れられているが、依然として、高熱伝導性を維持したまま、更なる柔軟性と復元性の向上要求がある。
【0005】
【特許文献1】
特許第3178805号公報
【特許文献2】
特許第3183502号公報
【特許文献3】
特許第3283454号公報
【0006】
【発明が解決しようとする課題】
本発明の目的は、上記に鑑み、高熱伝導性を維持したまま、更なる高柔軟性且つ高復元性の放熱部材を提供することである。
【0007】
【課題を解決するための手段】
すなわち、本発明は、熱伝導性フィラーを含有するシリコーン樹脂硬化物の粉砕物と、熱伝導性フィラーを含有するか又は含有しない未硬化シリコーン樹脂との混合物を、成形・硬化させてなることを特徴とする放熱部材である。この場合において、粉砕物の熱伝導性フィラーの割合が50体積%以上(100%は含まない)で、未硬化シリコーン樹脂の熱伝導性フィラーの割合が40体積%未満(0%は含まない)であることが好ましい。また、粉砕物の熱伝導性フィラーの割合が50体積%未満(0%は含まない)で、未硬化シリコーン樹脂の熱伝導性フィラーの割合が40体積%以上(100%は含まない)であることが好ましい。更には、JIS K2207による針入度が90(1/10mm)以上、JISK6262による圧縮永久歪みが40%以下、熱伝導率が1W/mK以上であることが好ましい。
【0008】
また、本発明は、熱伝導性フィラーを含有しないシリコーン樹脂硬化物の粉砕物と、熱伝導性フィラーを含有する未硬化シリコーン樹脂との混合物を、成形・硬化させてなることを特徴とする放熱部材である。この場合において、未硬化シリコーン樹脂の熱伝導性フィラーの割合が40体積%以上(100%は含まない)であることが好ましい。また、JIS K2207による針入度が90(1/10mm)以上、JIS K6262による圧縮永久歪みが40%以下、熱伝導率が1W/mK以上であることが好ましい。
【0009】
【発明の実施の形態】
以下、更に詳しく本発明について説明する。
【0010】
本発明の放熱部材のマトリックスを構成するシリコー樹脂の硬化物は、高柔軟性を有するものであり、その具体例は付加反応型シリコーンの硬化物である。この付加反応型シリコーンとしては、一分子中にビニル基とH−Si基の両方を有する一液型のシリコーン、又は末端あるいは側鎖にビニル基を有するオルガノポリシロキサンと末端あるいは側鎖に2個以上のH−Si基を有するオルガノポリシロキサンとの二液性のシリコーンなどが用いられる。これの市販品としては、例えば東レダウコーニングシリコーン社製、商品名「SE1886A/B」、GE東芝シリコーン社製、商品名「XE−14−B8530」などがある。放熱部材の柔軟性は、付加反応によって形成される架橋密度や熱伝導性フィラーの充填量によって制御される。
【0011】
本発明で使用される熱伝導性フィラーを例示すれば、アルミナ、炭化ケイ素、窒化アルミニウム、窒化ホウ素、窒化ケイ素、銀、銅、アルミニウムなどであり、中でもアルミナ、窒化アルミニウム、銀、銅、アルミニウムが特に好ましい。形状は球形に近いものが好ましく、また粒径は100μm以下であることが好ましい。
【0012】
柔軟性と復元性の両方を一段と高度なものとするためには、熱伝導性フィラーの割合の異なる部分を積極的に混在させることが必要となる。すなわち、本発明の放熱部材は、熱伝導性フィラーを含有するシリコーン樹脂硬化物の粉砕物と、熱伝導性フィラーを含有するか又は含有しない未硬化シリコーン樹脂との混合物を、成形・硬化させてなることが必要である。中でも、粉砕物の熱伝導性フィラーの割合が50体積%以上(100%は含まない)、特に60〜80体積%で、未硬化シリコーン樹脂の熱伝導性フィラーの割合が40体積%未満(0%は含まない)、特に15〜35体積%であることが好ましい。粉砕物の熱伝導性フィラーの割合があまりにも多くなると、粉砕物を製造することが困難となり、また未硬化シリコーン樹脂の熱伝導性フィラーの割合があまりにも少ないと、放熱部材の高熱伝導性を確保することが困難となる。
【0013】
上記態様は、粉砕物の熱伝導性フィラーの割合が50体積%以上としたものであるが、これを50体積%未満(0%は含まない)、特に20〜40とし、未硬化シリコーン樹脂の熱伝導性フィラーの割合を40体積%以上(100%は含まない)、特に60〜80体積%とすることもできる。粉砕物の熱伝導性フィラーの割合があまりにも少ないと、放熱部材の高熱伝導性を確保することが困難となり、また未硬化シリコーン樹脂の熱伝導性フィラーの割合があまりにも多くなると、放熱部材の柔軟性、復元性が損なわれてくる。
【0014】
本発明の放熱部材のように、所定量の熱伝導性フィラーを含有するか又は含有しないシリコーン樹脂硬化物の粉砕物の部分と、所定量の熱伝導性フィラーを含むか又は含まないシリコーン樹脂硬化物の部分とを積極的に混在させるには、所定量の熱伝導性フィラーを含有するか又は含有しないシリコーン樹脂硬化物を一旦製造し、その粉砕物を、熱伝導性フィラーを含有するか又は含有しない未硬化のシリコーン樹脂に配合し、硬化させることによって行うことができる。いずれの場合においても、粉砕物の平均粒度は20〜400μmであることが好ましい。これ以外の粒度であっては、単なる均一混合物に近似した放熱性、柔軟性、復元性となり、柔軟性と復元性の両方を一段と高度にした放熱部材を得ることが困難となる。
【0015】
本発明の放熱部材の柔軟性は、JIS K2207で測定された針入度が、90(1/10mm)以上であることが好ましい。針入度が90(1/10mm)未満であると、凹凸部に対する密着性が劣る、発熱性電子部品と放熱フィンとの距離が長くなる、電子部品に強い荷重がかかる、などして電子部品の損傷につながる。また、放熱部材の復元性は、JIS K6262による圧縮永久歪みが40%以下であることが好ましい。圧縮永久歪みが40%よりも大きいと、凹凸部への追従性が劣り、また解体後の放熱部材には使用時の跡が大幅に残るので、再使用が困難となる。更には、熱伝導率が1W/mK以上であることが好ましい。
【0016】
本発明の放熱部材は、上記粉砕物の製造、粉砕物と未硬化シリコーン樹脂との混合、成形の各工程を経て製造される。粉砕物の製造は、未硬化シリコーン樹脂に所定量の熱伝導性フィラーを混合してから硬化させ、それを再混練することによって行われる。再混練の時間・混練力によって粉砕物の粒度を調整することができる。得られた粉砕物は、コンパウンド状である。原料の混合は万能混合機等を用いて行われ、また成形はドクターブレードによるシート化法によることが望ましい。シート化に際しては離型処理の施されたフィルム、例えばシリコーン塗布又はフッ素処理されたポリエチレンテレフタレートフィルムを用いることが好ましい。また、カレンダーロールによる成形でも問題はない。
【0017】
【実施例】
以下、実施例を、比較例をあげて更に具体的に本発明を説明する。
【0018】
実施例1〜7 比較例1〜6
二液性の付加反応型シリコーン(東レダウコーニングシリコーン社製、商品名「SE1885A/B」)のA液、B液を1対1の体積比で混合した混合物と、熱伝導性フィラーとしてアルミナ粉末(電気化学工業社製、商品名「DAW−45」)とを表1に示す割合で混合してスラリーを調製し、室温で真空脱泡した後、120℃、6時間処理して硬化させ、再混練して表1に示されるコンパウンド状の粉砕物を得た。顕微鏡で観察した粉砕物100個の平均粒度は、90μmであった。
【0019】
つぎに、付加型シリコーン(GE東芝シリコーン社製、商品名「XE14−B8530」)のA剤:B剤を1:1体積比で混合した混合物と、上記アルミナ粉末と、上記粉砕物とを、表2、表3に示す割合で混合した後、室温で真空脱泡し、ドクターブレード塗工機でシート化し、120℃、6時間加熱して硬化させて放熱部材(寸法:幅500mm、長さ500mmm、厚み1mm)を製造し、以下に従って、熱伝導率、針入度、圧縮率及び圧縮永久歪を測定した。それらの結果を表2、表3に示す。
【0020】
(1) 熱導率
放熱部材をTO−3型銅製ヒーターケースと銅板との間に挟み、トルクレンチにより締め付けトルク200g−cmを掛けてセットした後、銅製ヒーターケースに電力5Wをかけて4分間保持し、銅製ヒーターケースと銅板の温度差(℃)を測定し、熱抵抗(℃/W)=温度差(℃)/電力(W)、により熱抵抗を算出し、熱伝導率(W/m・K)=厚み(m)/{熱抵抗(K/W)×測定面積(m)}、を算出した。
【0021】
(2)圧縮率
縦10mm、横10mmに切り出した放熱部材に万能試験機で9.8Nの力を加え、レーザー変位計で変形量を測定し、圧縮率(%)=変形量(mm)/元厚み(mm)×100、により算出した。
【0022】
(3)針入度
JIS K2207によって測定した。
【0023】
(4) 圧縮永久歪み
JIS K 6301に準拠して測定した。すなわち、上記実施例・比較例の途中で得られた真空脱泡法スラリーを型枠に鋳込み、120℃、6時間処理して硬化させ、直径29mm、厚み12.7mmの試験片を製造した。これを25%圧縮した後(試験片の厚みが9.52mmになるまで圧縮した後)、150℃の大気中で22時間放置した。その後、室温で圧縮を解除し、木版の上に30分放置してから厚みを測定し、永久圧縮歪(%)=[試験前の厚み(mm)−試験後の厚み(mm)]×100/[試験前の厚み(mm)−圧縮時の厚み]、により算出した。
【0024】
【表1】

Figure 2004363272
【0025】
【表2】
Figure 2004363272
【0026】
【表3】
Figure 2004363272
【0027】
表から、実施例の放熱部材は比較例に比べて、熱伝導率と針入度がいずれも大きく、発熱性電子部品への追従性と密着性に優れたものである。また、圧縮永久歪みも40%以下であり、復元性に優れるため、凹凸部のある面への追従性に優れ、解体後の再使用も容易なものである。
【0028】
【発明の効果】
本発明によれば、高熱伝導性を維持したまま、更なる柔軟性と復元性を向上させた放熱部材が提供される。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a highly flexible and highly resilient heat radiating member. More specifically, the present invention relates to an improvement of a heat radiating member used for efficiently releasing heat generated from a heat-generating electronic component such as an IC, an LSI, a CPU, and an MPU in an information processing device such as a computer and a word processor.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, removal of heat generated from a heat-generating electronic component has been performed by attaching the heat-generating electronic component to a radiation fin or a metal plate via a heat radiation member. As the heat dissipating member, a heat dissipating spacer in which a heat conductive filler is filled in a flexible matrix such as silicone rubber has been awarded.
[0003]
The thermal conductivity of the heat radiating spacer depends on the filling amount of the thermal conductive filler. As the thermal conductivity increases, the thermal conductivity improves, but on the other hand, the flexibility and the resilience decrease. For this reason, it becomes difficult to mount the heat radiation spacer by pressing it against the uneven surface, and the heat radiation becomes insufficient. In addition, if the resilience is not sufficient, when the heat-generating electronic component and the heat radiation fin are disassembled and the heat radiation member sandwiched between them is reused, it becomes impossible to do so.
[0004]
It is difficult to achieve both the flexibility and the resilience of the heat radiation spacer, but the present applicant has been involved in the technical development for many years and has obtained many patents (for example, Patent Documents 1 to 3). Today, the technology and products are accepted in various fields, but there is still a demand for further improvement in flexibility and resilience while maintaining high thermal conductivity.
[0005]
[Patent Document 1]
Japanese Patent No. 3178805 [Patent Document 2]
Japanese Patent No. 3183502 [Patent Document 3]
Japanese Patent No. 3283454 [0006]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a heat radiating member having higher flexibility and higher resilience while maintaining high thermal conductivity.
[0007]
[Means for Solving the Problems]
That is, the present invention provides that a mixture of a crushed product of a cured silicone resin containing a thermally conductive filler and an uncured silicone resin containing or not containing a thermally conductive filler is molded and cured. It is a characteristic heat dissipation member. In this case, the ratio of the thermally conductive filler of the pulverized material is 50% by volume or more (not including 100%), and the ratio of the thermally conductive filler of the uncured silicone resin is less than 40% by volume (excluding 0%). It is preferable that The ratio of the thermally conductive filler in the pulverized material is less than 50% by volume (excluding 0%), and the ratio of the thermally conductive filler in the uncured silicone resin is 40% by volume or more (excluding 100%). Is preferred. Further, it is preferable that the penetration according to JIS K2207 is 90 (1/10 mm) or more, the compression set according to JIS K6262 is 40% or less, and the thermal conductivity is 1 W / mK or more.
[0008]
Further, the present invention is characterized in that a mixture of a pulverized product of a cured silicone resin not containing a thermally conductive filler and an uncured silicone resin containing a thermally conductive filler is molded and cured. It is a member. In this case, the ratio of the thermally conductive filler of the uncured silicone resin is preferably 40% by volume or more (not including 100%). Further, it is preferable that the penetration according to JIS K2207 is 90 (1/10 mm) or more, the compression set according to JIS K6262 is 40% or less, and the thermal conductivity is 1 W / mK or more.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0010]
The cured product of the silicone resin constituting the matrix of the heat radiation member of the present invention has high flexibility, and a specific example thereof is a cured product of an addition-reaction silicone. Examples of the addition reaction type silicone include a one-pack type silicone having both a vinyl group and an H-Si group in one molecule, or an organopolysiloxane having a vinyl group at a terminal or a side chain and two at the terminal or a side chain. A two-part silicone with the above-mentioned organopolysiloxane having an H-Si group is used. Examples of commercially available products include “SE1886A / B” manufactured by Toray Dow Corning Silicone, and “XE-14-B8530” manufactured by GE Toshiba Silicone. The flexibility of the heat dissipating member is controlled by the crosslink density formed by the addition reaction and the filling amount of the thermally conductive filler.
[0011]
Illustrative examples of the thermally conductive filler used in the present invention include alumina, silicon carbide, aluminum nitride, boron nitride, silicon nitride, silver, copper, and aluminum, among which alumina, aluminum nitride, silver, copper, and aluminum are included. Particularly preferred. The shape is preferably close to a sphere, and the particle size is preferably 100 μm or less.
[0012]
In order to further enhance both flexibility and restorability, it is necessary to positively mix portions having different proportions of the thermally conductive filler. That is, the heat radiating member of the present invention is obtained by molding and curing a mixture of a crushed product of a cured silicone resin containing a thermally conductive filler and an uncured silicone resin containing or not containing a thermally conductive filler. It is necessary to become. Among them, the ratio of the thermally conductive filler in the pulverized material is 50% by volume or more (not including 100%), particularly 60 to 80% by volume, and the ratio of the thermally conductive filler of the uncured silicone resin is less than 40% by volume (0%). % Is not included), and particularly preferably 15 to 35% by volume. If the ratio of the thermally conductive filler in the pulverized material is too large, it becomes difficult to manufacture the pulverized material, and if the ratio of the thermally conductive filler in the uncured silicone resin is too small, the high heat conductivity of the heat radiation member is reduced. It becomes difficult to secure.
[0013]
In the above embodiment, the ratio of the thermally conductive filler in the pulverized material is 50% by volume or more. However, the ratio is set to less than 50% by volume (not including 0%), particularly 20 to 40, and The proportion of the thermally conductive filler may be 40% by volume or more (not including 100%), particularly 60 to 80% by volume. If the ratio of the heat conductive filler in the pulverized material is too small, it is difficult to ensure high heat conductivity of the heat radiation member, and if the ratio of the heat conductive filler of the uncured silicone resin is too large, the heat radiation Flexibility and resilience are impaired.
[0014]
As in the heat dissipating member of the present invention, a portion of a pulverized product of a cured silicone resin containing or not containing a predetermined amount of a thermally conductive filler, and a silicone resin cured containing or not containing a predetermined amount of a thermally conductive filler In order to positively mix the product part, a silicone resin cured product containing or not containing a predetermined amount of a thermally conductive filler is once produced, and the pulverized product contains a thermally conductive filler or It can be performed by blending with an uncured silicone resin not containing and curing. In any case, the average particle size of the pulverized product is preferably 20 to 400 μm. If the particle size is other than this, the heat dissipation, flexibility, and resilience approximate to a mere uniform mixture, and it becomes difficult to obtain a heat dissipation member having both higher flexibility and restorability.
[0015]
As for the flexibility of the heat radiation member of the present invention, it is preferable that the penetration measured by JIS K2207 is 90 (1/10 mm) or more. When the penetration is less than 90 (1/10 mm), the electronic component may be inferior in adhesiveness to the uneven portion, the distance between the heat-generating electronic component and the radiation fin may be increased, or a strong load may be applied to the electronic component. Leads to damage. Further, regarding the resilience of the heat radiating member, it is preferable that the compression set according to JIS K6262 is 40% or less. If the compression set is greater than 40%, the ability to follow the irregularities is poor, and the heat dissipating member after disassembly has a large trace of use, which makes reuse difficult. Further, the thermal conductivity is preferably 1 W / mK or more.
[0016]
The heat dissipating member of the present invention is manufactured through the steps of manufacturing the above-mentioned crushed material, mixing the crushed material with the uncured silicone resin, and forming. The production of the pulverized product is performed by mixing a predetermined amount of a thermally conductive filler with an uncured silicone resin, curing the mixture, and re-kneading the cured resin. The particle size of the pulverized material can be adjusted by the re-kneading time and kneading power. The obtained pulverized product is in the form of a compound. The mixing of the raw materials is performed using a universal mixer or the like, and the molding is desirably performed by a sheeting method using a doctor blade. In forming the sheet, it is preferable to use a film which has been subjected to a release treatment, for example, a polyethylene terephthalate film which has been subjected to silicone coating or fluorine treatment. Also, there is no problem in molding with a calender roll.
[0017]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0018]
Examples 1 to 7 Comparative Examples 1 to 6
A mixture of a two-part addition reaction type silicone (product name “SE1885A / B”, manufactured by Toray Dow Corning Silicone Co., Ltd.) in a volume ratio of 1: 1 and B solution, and alumina powder as a thermally conductive filler (Manufactured by Denki Kagaku Kogyo Co., Ltd., trade name "DAW-45") at a ratio shown in Table 1 to prepare a slurry, and after degassing at room temperature under vacuum, cured by treating at 120 ° C. for 6 hours, The mixture was re-kneaded to obtain a compound-like pulverized product shown in Table 1. The average particle size of 100 pulverized materials observed with a microscope was 90 μm.
[0019]
Next, a mixture obtained by mixing the A agent: B agent of addition type silicone (trade name “XE14-B8530”, manufactured by GE Toshiba Silicone Co., Ltd.) at a 1: 1 volume ratio, the alumina powder, and the pulverized product were used. After mixing at the ratios shown in Tables 2 and 3, vacuum degassing was performed at room temperature, sheeting was performed with a doctor blade coating machine, and the coating was heated and cured at 120 ° C. for 6 hours, and a heat radiation member (dimensions: width 500 mm, length) (500 mm, thickness 1 mm), and the thermal conductivity, penetration, compression ratio, and compression set were measured in the following manner. Tables 2 and 3 show the results.
[0020]
(1) The thermal conductivity heat radiation member is sandwiched between the TO-3 type copper heater case and the copper plate, set by applying a tightening torque of 200 g-cm with a torque wrench, and then applying 5 W of power to the copper heater case for 4 minutes. Hold, measure the temperature difference (° C) between the copper heater case and the copper plate, calculate the thermal resistance according to thermal resistance (° C / W) = temperature difference (° C) / power (W), and calculate the thermal conductivity (W / m · K) = thickness (m) / {thermal resistance (K / W) × measured area (m 2 )}.
[0021]
(2) Compression rate A 9.8 N force is applied to the heat-dissipating member cut out to a length of 10 mm and a width of 10 mm using a universal testing machine, and the deformation is measured with a laser displacement meter. The compression ratio (%) = the deformation (mm) / It was calculated from the original thickness (mm) × 100.
[0022]
(3) Penetration Measured according to JIS K2207.
[0023]
(4) Compression set Measured according to JIS K6301. That is, the vacuum defoaming slurry obtained in the middle of the above-mentioned Examples and Comparative Examples was cast into a mold, treated at 120 ° C. for 6 hours and cured to produce a test piece having a diameter of 29 mm and a thickness of 12.7 mm. After this was compressed by 25% (after the test piece was compressed to a thickness of 9.52 mm), it was left in the air at 150 ° C. for 22 hours. Thereafter, the compression is released at room temperature, and the thickness is measured after standing on a wooden plate for 30 minutes. Permanent compression strain (%) = [thickness before test (mm) −thickness after test (mm)] × 100 / [Thickness before test (mm) -thickness when compressed].
[0024]
[Table 1]
Figure 2004363272
[0025]
[Table 2]
Figure 2004363272
[0026]
[Table 3]
Figure 2004363272
[0027]
From the table, the heat radiating members of the examples have higher thermal conductivity and penetration than the comparative examples, and are excellent in followability and adhesion to the heat-generating electronic components. Further, since the compression set is 40% or less and the resilience is excellent, the resilience is excellent, and the reusability after disassembly is easy.
[0028]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the heat dissipation member which further improved the flexibility and the restorability was provided, maintaining high thermal conductivity.

Claims (6)

熱伝導性フィラーを含有するシリコーン樹脂硬化物の粉砕物と、熱伝導性フィラーを含有するか又は含有しない未硬化シリコーン樹脂との混合物を、成形・硬化させてなることを特徴とする放熱部材。A heat dissipating member obtained by molding and curing a mixture of a pulverized product of a cured silicone resin containing a thermally conductive filler and an uncured silicone resin containing or not containing a thermally conductive filler. 粉砕物の熱伝導性フィラーの割合が50体積%以上(100%は含まない)で、未硬化シリコーン樹脂の熱伝導性フィラーの割合が40体積%未満(0%は含まない)であることを特徴とする請求項1記載の放熱部材。The ratio of the thermally conductive filler in the pulverized material is 50% by volume or more (not including 100%), and the ratio of the thermally conductive filler in the uncured silicone resin is less than 40% by volume (excluding 0%). The heat dissipating member according to claim 1, wherein 粉砕物の熱伝導性フィラーの割合が50体積%未満(0%は含まない)で、未硬化シリコーン樹脂の熱伝導性フィラーの割合が40体積%以上(100%は含まない)であることを特徴とする請求項1記載の放熱部材。The ratio of the thermally conductive filler in the pulverized material is less than 50% by volume (excluding 0%), and the ratio of the thermally conductive filler in the uncured silicone resin is 40% by volume or more (excluding 100%). The heat dissipating member according to claim 1, wherein 熱伝導性フィラーを含有しないシリコーン樹脂硬化物の粉砕物と、熱伝導性フィラーを含有する未硬化シリコーン樹脂との混合物を、成形・硬化させてなることを特徴とする放熱部材。A heat dissipating member obtained by molding and curing a mixture of a pulverized product of a cured silicone resin containing no thermally conductive filler and an uncured silicone resin containing a thermally conductive filler. 未硬化シリコーン樹脂の熱伝導性フィラーの割合が40体積%以上(100%は含まない)であることを特徴とする請求項4記載の放熱部材。The heat dissipating member according to claim 4, wherein the proportion of the thermally conductive filler of the uncured silicone resin is 40% by volume or more (not including 100%). JIS K2207による針入度が90(1/10mm)以上、JIS K6262による圧縮永久歪みが40%以下、熱伝導率が1W/mK以上であることを特徴とする請求項1〜5のいずれかに記載の放熱部材。The penetration according to JIS K2207 is 90 (1/10 mm) or more, the compression set according to JIS K6262 is 40% or less, and the thermal conductivity is 1 W / mK or more. The heat dissipating member according to the above.
JP2003158923A 2003-06-04 2003-06-04 Heat dissipation member Expired - Fee Related JP3838994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003158923A JP3838994B2 (en) 2003-06-04 2003-06-04 Heat dissipation member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003158923A JP3838994B2 (en) 2003-06-04 2003-06-04 Heat dissipation member

Publications (2)

Publication Number Publication Date
JP2004363272A true JP2004363272A (en) 2004-12-24
JP3838994B2 JP3838994B2 (en) 2006-10-25

Family

ID=34052134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003158923A Expired - Fee Related JP3838994B2 (en) 2003-06-04 2003-06-04 Heat dissipation member

Country Status (1)

Country Link
JP (1) JP3838994B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086443A1 (en) * 2006-01-26 2007-08-02 Momentive Performance Materials Japan Llc Heat dissipating member and semiconductor device using same
WO2008133211A1 (en) * 2007-04-20 2008-11-06 Denki Kagaku Kogyo Kabushiki Kaisha Thermally conductive compound and process for producing the same
KR101328230B1 (en) * 2011-12-06 2013-11-14 전충규 Heat radiation composition and heat sink product using the same
WO2015005366A1 (en) * 2013-07-10 2015-01-15 デクセリアルズ株式会社 Thermally conductive sheet
US10012453B2 (en) 2013-06-19 2018-07-03 Dexerials Corporation Thermally conductive sheet and method for producing thermally conductive sheet

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086443A1 (en) * 2006-01-26 2007-08-02 Momentive Performance Materials Japan Llc Heat dissipating member and semiconductor device using same
US8187490B2 (en) 2006-01-26 2012-05-29 Momentive Performance Materials Japan Llc Heat dissipating material and semiconductor device using same
US8221645B2 (en) 2006-01-26 2012-07-17 Momentive Performance Materials Japan Llc Heat dissipating material and semiconductor device using same
JP4993611B2 (en) * 2006-01-26 2012-08-08 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Heat dissipation material and semiconductor device using the same
WO2008133211A1 (en) * 2007-04-20 2008-11-06 Denki Kagaku Kogyo Kabushiki Kaisha Thermally conductive compound and process for producing the same
KR101328230B1 (en) * 2011-12-06 2013-11-14 전충규 Heat radiation composition and heat sink product using the same
US10012453B2 (en) 2013-06-19 2018-07-03 Dexerials Corporation Thermally conductive sheet and method for producing thermally conductive sheet
WO2015005366A1 (en) * 2013-07-10 2015-01-15 デクセリアルズ株式会社 Thermally conductive sheet
JP2015035580A (en) * 2013-07-10 2015-02-19 デクセリアルズ株式会社 Thermally conductive sheet
CN105378914A (en) * 2013-07-10 2016-03-02 迪睿合株式会社 Thermally conductive sheet
US9437521B2 (en) 2013-07-10 2016-09-06 Dexerials Corporation Thermally conductive sheet
CN105378914B (en) * 2013-07-10 2017-08-29 迪睿合株式会社 Heat conductive sheet

Also Published As

Publication number Publication date
JP3838994B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
JP7096723B2 (en) Method for manufacturing a heat conductive sheet
JP6807355B2 (en) Thermal conductive sheet and its manufacturing method, mounting method of thermal conductive sheet
JP6999019B2 (en) Thermally conductive sheet and its manufacturing method, mounting method of thermally conductive sheet
JP2002164481A (en) Heat conductive sheet
JP2005054099A (en) Thermally conductive grease
JP4446514B2 (en) Thermally conductive silicone molded body heat dissipation member
JP2004363272A (en) Heat-dissipating member
JP4610764B2 (en) Heat dissipation spacer
JP4481019B2 (en) Mixed powder and its use
JP3721272B2 (en) Method for producing thermally conductive resin molding
JP3178805B2 (en) Heat radiation spacer
JP2002299534A (en) Heat radiation material and manufacturing method therefor
JP4514344B2 (en) Thermally conductive resin molding and its use
JPH1119948A (en) Manufacture of radiation member for electronic part
JP2000185328A (en) Heat conductive silicone moldings and manufacture thereof and use applications
JP3092699B2 (en) Heat radiation spacer, its use and silicone composition
JP3183502B2 (en) Heat radiation spacer
JP6105388B2 (en) Thermally conductive sheet
JP6125303B2 (en) Thermally conductive sheet
JP3464752B2 (en) Molded polymer material and its use
JP3563590B2 (en) Heat radiation spacer
JP4137288B2 (en) Method for producing thermally conductive silicone molding
JP2000233452A (en) Heat conductive silicone gel sheet
JP3606767B2 (en) High thermal conductive silicone molding and its use
TWI832016B (en) heat sink

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060801

R150 Certificate of patent or registration of utility model

Ref document number: 3838994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees