JP2000321494A - Variable power optical system provided with vibration- proof function - Google Patents

Variable power optical system provided with vibration- proof function

Info

Publication number
JP2000321494A
JP2000321494A JP12882499A JP12882499A JP2000321494A JP 2000321494 A JP2000321494 A JP 2000321494A JP 12882499 A JP12882499 A JP 12882499A JP 12882499 A JP12882499 A JP 12882499A JP 2000321494 A JP2000321494 A JP 2000321494A
Authority
JP
Japan
Prior art keywords
lens
lens group
optical system
image
variable power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12882499A
Other languages
Japanese (ja)
Other versions
JP4371468B2 (en
Inventor
Hiroyuki Hamano
博之 浜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12882499A priority Critical patent/JP4371468B2/en
Priority to US09/564,376 priority patent/US6414800B1/en
Publication of JP2000321494A publication Critical patent/JP2000321494A/en
Application granted granted Critical
Publication of JP4371468B2 publication Critical patent/JP4371468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a variable power optical system provided with vibration- proof function which obtains a still image by optically correcting the blur of a photographic image when the variable power optical system vibrates. SOLUTION: This variable power optical system has a 1st lens group L1 with positive refracting power which is fixed at the time of power variation and focusing, a 2nd lens group L2 with negative refracting power with a power varying function, a 3rd lens group L3 with positive refracting power, a 4th lens group L4 with positive refracting power which corrects an image plane varying as the power varies and has a focusing function in this order from the object side. In this case, the 3rd lens group L3 is moved at right angles to the optical axis to correct a blur of a photographic image when the variable power optical system vibrates and the 2nd lens group L2 consists of a negative meniscus lens 21 which has a very strong concave surface to the image plane side, a negative lens 22, a positive lens 23, and a negative lens 24 in this order from the object side and satisfies a condition of 0.05<|f2/ft|<0.07, where ft is the focal length of the whole system at the telephoto end and f2 is the focal length of the 2nd lens group.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は防振機能を有した変
倍光学系に関し、特に変倍光学系の一部のレンズ群を光
軸と垂直方向に移動させることにより、該変倍光学系が
振動(傾動)した時の撮影画像のぶれを光学的に補正し
て静止画像を得るようにし撮影画像の安定化を図ったビ
デオカメラや銀塩写真用カメラ、電子スチルカメラなど
に好適な防振機能を有した変倍光学系に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable power optical system having an image stabilizing function, and more particularly to a variable power optical system by moving a part of a lens group of the variable power optical system in a direction perpendicular to an optical axis. Suitable for video cameras, silver halide photography cameras, electronic still cameras, etc., which stabilize the captured image by optically correcting the blur of the captured image when the camera vibrates (tilt) to obtain a still image. The present invention relates to a variable power optical system having a vibration function.

【0002】[0002]

【従来の技術】進行中の車や航空機等、移動物体上から
撮影しようとすると撮影系に振動が伝わり手振れとなり
撮影画像にぶれが生じる。
2. Description of the Related Art When an image is taken from a moving object such as a car or an aircraft in progress, vibration is transmitted to an image taking system, resulting in camera shake and blurring of the taken image.

【0003】従来より撮影画像のぶれを防止する機能を
有した防振光学系が種々提案されている。
Conventionally, various anti-vibration optical systems having a function of preventing blurring of a captured image have been proposed.

【0004】例えば特開昭56−21133号公報では
光学装置に振動状態を検知する検知手段からの出力信号
に応じて、一部の光学部材を振動による画像の振動的変
位を相殺する方向に移動させることにより画像の安定化
を図っている。特開昭61−223819号公報では最
も物体側に可変頂角プリズムを配置した撮影系におい
て、撮影系の振動に対応させて該可変頂角プリズムの頂
角を変化させて画像の安定化を図っている。
For example, in Japanese Patent Application Laid-Open No. 56-21133, some optical members are moved in a direction to cancel the vibrational displacement of the image due to the vibration in response to the output signal from the detecting means for detecting the vibration state in the optical device. By doing so, the image is stabilized. Japanese Patent Application Laid-Open No. Sho 61-223819 discloses a photographing system in which a variable apex angle prism is arranged closest to the object side, thereby stabilizing an image by changing the apex angle of the variable apex angle prism in accordance with the vibration of the imaging system. ing.

【0005】特開平1−116619号公報や特開平2
−124521号公報では加速度センサー等を利用して
撮影系の振動を検出し、この時得られる信号に応じ、撮
影系の一部のレンズ群を光軸と垂直方向に振動されるこ
とにより静止画像を得ている。
[0005] Japanese Patent Application Laid-Open No. 1-116619 and Japanese Patent Application Laid-Open
In Japanese Patent Application Laid-Open No. 124452/1994, a still image is detected by detecting vibration of a photographing system using an acceleration sensor or the like, and vibrating some lens groups of the photographing system in a direction perpendicular to an optical axis according to a signal obtained at this time. Have gained.

【0006】また特開平7−128619号公報では物
体側より順に正、負、正そして正の屈折力のレンズ群よ
り成る4群構成の変倍光学系の第3レンズ群を正、負の
屈折力の2つのレンズ群で構成し、このうち正のレンズ
群を振動することにより防振を行っている。
In Japanese Patent Application Laid-Open No. Hei 7-128619, a third lens unit of a four-unit variable magnification optical system comprising a lens unit having positive, negative, positive and positive refractive powers is arranged in order from the object side. It is composed of two lens groups of power, and vibration is prevented by vibrating the positive lens group.

【0007】特開平7−199124号公報では物体側
より順に正、負、正そして正の屈折力のレンズ群より成
る4群構成の変倍光学系の第3レンズ群全体を振動させ
て防振を行っている。
In Japanese Patent Application Laid-Open No. Hei 7-199124, the entire third lens group of a four-unit variable magnification optical system including lens groups having positive, negative, positive, and positive refractive powers is sequentially oscillated from the object side. It is carried out.

【0008】一方、特開平5−60974号公報では物
体側より順に正、負、正そして正の屈折力のレンズ群よ
り成る4群構成の変倍光学系で第3レンズ群を正レンズ
とメニスカス状の負レンズのテレフォトタイプとしてレ
ンズ全長の短縮化を図っている。
On the other hand, in Japanese Patent Application Laid-Open No. 5-60974, a variable power optical system of four groups consisting of lens units having positive, negative, positive, and positive refractive powers is arranged in order from the object side. The overall length of the lens is shortened as a telephoto-type negative lens.

【0009】[0009]

【発明が解決しようとする課題】一般に防振光学系を撮
影系の前方に配置し、該防振光学系の一部の可動レンズ
群を振動させて撮影画像のぶれを無くし、静止画像を得
る方法は装置全体が大型化し、且つ該可動レンズ群を移
動させるための移動機構が複雑化してくるという問題点
があった。
Generally, an image stabilizing optical system is disposed in front of a photographing system, and a part of the movable lens group of the image stabilizing optical system is vibrated to eliminate blurring of a photographed image and obtain a still image. The method has a problem that the entire apparatus becomes large and a moving mechanism for moving the movable lens group becomes complicated.

【0010】可変頂角プリズムを利用して防振を行う光
学系では特に長焦点距離側において防振時に偏心倍率色
収差の発生量が多くなるという問題点があった。
In an optical system that performs image stabilization using a variable apex angle prism, there is a problem that the amount of eccentric magnification chromatic aberration increases during image stabilization, especially on the long focal length side.

【0011】一方撮影系の一部のレンズを光軸に対して
垂直方向に平行偏心させて防振を行う光学系において
は、防振のために特別に余分な光学系を必要としないと
いう利点はあるが、移動させるレンズのための空間を必
要とし、また防振時における偏心収差の発生量が多くな
ってくるという問題点があった。
On the other hand, in an optical system for performing image stabilization by decentering some lenses of the photographing system in a direction perpendicular to the optical axis, there is an advantage that no extra optical system is required for image stabilization. However, there is a problem in that a space for a lens to be moved is required, and the amount of eccentric aberration generated during image stabilization increases.

【0012】また正、負、正、正の屈折力のレンズより
成る4群構成の変倍光学系の第3レンズ群全体を光軸に
垂直方向に移動させて防振を行った場合、第3レンズ群
を全長短縮のため正レンズとメニスカス状の負レンズの
テレフォトタイプで構成したとき偏心収差、特に偏心歪
曲収差が発生する。これをビデオカメラなどの動画撮影
を行うものに使った場合、防振時の画像の変形が目立つ
といった問題が発生するという問題点があった。
When the entire third lens group of the four-unit variable power optical system including lenses having positive, negative, positive, and positive refractive powers is moved in a direction perpendicular to the optical axis, the vibration is reduced. When the three lens groups are formed of a telephoto type including a positive lens and a meniscus-shaped negative lens for shortening the overall length, eccentric aberration, particularly eccentric distortion, occurs. When this is used for a video camera or the like that shoots a moving image, there is a problem in that a problem such as noticeable deformation of an image during image stabilization occurs.

【0013】更に変倍比を大きくしていくと防振時に周
辺光量の変化が目立ってくるという問題点もあった。
If the zoom ratio is further increased, there is a problem that a change in peripheral light amount becomes conspicuous during image stabilization.

【0014】本発明は変倍光学系の一部を構成する比較
的小型軽量のレンズ群を光軸と垂直方向に移動させて、
該変倍光学系が振動(傾動)したときの画像ぶれを補正
するように構成するとともに、画像ぶれを補正するため
のレンズ群の構成を適切なものとすることにより、装置
全体の小型化、機構上の簡素化及び駆動手段の負荷の軽
減化を図りつつ該レンズ群を偏心させた時の偏心収差を
良好に補正した防振機能を有した変倍光学系の提供を目
的とする。
According to the present invention, a relatively small and light lens group constituting a part of a variable power optical system is moved in a direction perpendicular to the optical axis.
The zoom lens system is configured to correct image blurring when the zooming optical system is vibrated (tilted), and by appropriately configuring the lens group for correcting image blurring, the size of the entire apparatus can be reduced. It is an object of the present invention to provide a variable power optical system having an image stabilizing function that satisfactorily corrects eccentric aberration when the lens group is decentered while simplifying the mechanism and reducing the load on a driving unit.

【0015】[0015]

【課題を解決するための手段】請求項1の第1発明は、
物体側より順に変倍及び合焦の際に固定の正の屈折力の
第1レンズ群、変倍機能を有する負の屈折力の第2レン
ズ群、正の屈折カの第3レンズ群、変倍により変動する
像面を補正すると共に合焦機能を有する正の屈折力の第
4レンズ群を有した変倍光学系であって、該第3レンズ
群を光軸と垂直方向に移動させて該変倍光学系が振動し
た時の撮影画像のぶれを補正し、該第2レンズ群は物体
側から順に像面側に強い凹面を有するメニスカス状の負
の第21レンズ、負の第22レンズ、正の第23レン
ズ、負の第24レンズで構成され、全系の望遠端の焦点
距離をft、第2レンズ群の焦点距離をf2としたと
き、 0.05<|f2/ft|<0.07 の条件式を満足していることを特徴としている。
Means for Solving the Problems The first invention of claim 1 is:
A first lens unit having a fixed positive refractive power, a second lens unit having a negative refractive power having a variable power function, a third lens unit having a positive refractive power, and a variable power during zooming and focusing in order from the object side. A variable power optical system having a fourth lens unit having a positive refractive power and having a focusing function and correcting an image plane which fluctuates due to magnification, wherein the third lens unit is moved in a direction perpendicular to the optical axis. The second lens group includes a meniscus negative twenty-first lens and a negative twenty-second lens having a strong concave surface on the image surface side in order from the object side when the variable magnification optical system vibrates. 0.05 <| f2 / ft | <where the focal length at the telephoto end of the entire system is ft and the focal length of the second lens group is f2. It is characterized by satisfying the conditional expression of 0.07.

【0016】請求項3の第2発明は、物体側より順に変
倍及び合焦の際に固定の正の屈折力の第1レンズ群、変
倍機能を有する負の屈折力の第2レンズ群、正の屈折力
の第3レンズ群、変倍により変動する像面を補正すると
共に合焦機能を有する正の屈折力の第4レンズ群を有し
た変倍光学系であって、該第3レンズ群を光軸と垂直方
向に移動させて該変倍光学系が振動した時の撮影画像の
ぶれを補正し、該変倍光学系の最も物体側のレンズ面よ
り、該第3レンズ群の最も物体側のレンズ面までの距離
をLS、全系の望遠端の焦点距離をftとするとき 0.42<|LS/ft|<0.59 なる条件式を満足していることを特徴としている。
According to a second aspect of the present invention, there is provided a first lens unit having a positive refractive power fixed during zooming and focusing in order from the object side, and a second lens unit having a negative refractive power having a zooming function. A third lens unit having a positive refractive power, a variable power optical system having a fourth lens unit having a positive refractive power and having a focusing function while correcting an image plane that varies due to zooming; The lens group is moved in the direction perpendicular to the optical axis to correct the blur of the captured image when the variable power optical system vibrates, and the third lens group is moved from the most object side lens surface of the variable power optical system. When the distance to the lens surface closest to the object side is LS and the focal length at the telephoto end of the entire system is ft, the following conditional expression is satisfied: 0.42 <| LS / ft | <0.59 I have.

【0017】[0017]

【発明の実施の形態】図1は本発明の近軸屈折力配置を
示す概略図、図2は本発明における防振光学系の光学原
理の説明図、図3は本発明において防振時の光量変化の
説明図である。図4は本発明の数値実施例1の広角端の
レンズ断面図である。
FIG. 1 is a schematic view showing a paraxial refractive power arrangement according to the present invention, FIG. 2 is an explanatory view of the optical principle of a vibration-proof optical system according to the present invention, and FIG. FIG. 4 is an explanatory diagram of a light amount change. FIG. 4 is a sectional view of a lens at a wide angle end according to Numerical Embodiment 1 of the present invention.

【0018】図中、L1は正の屈折力の第1群、L2は
負の屈折力の第2群、L3は正の屈折力の第3群であ
る。本実施形態では第3群L3を光軸と垂直方向に移動
させて変倍光学系が振動(傾動)したときの撮影画像の
ぶれを補正している。L4は正の屈折力の第4群であ
る。SPは開口絞りであり、第3群L3の前方に配置し
ている。Gはフェースプレート等のガラスブロックであ
る。IPは像面である。FPはフレアーカット絞りであ
り第3群と第4群との間に配置し、変倍に伴い光軸上移
動させている。
In the drawing, L1 is a first group having a positive refractive power, L2 is a second group having a negative refractive power, and L3 is a third group having a positive refractive power. In the present embodiment, the third lens unit L3 is moved in the direction perpendicular to the optical axis to correct the blur of the captured image when the variable power optical system vibrates (tilts). L4 is a fourth unit having a positive refractive power. SP denotes an aperture stop, which is arranged in front of the third lens unit L3. G is a glass block such as a face plate. IP is an image plane. Reference numeral FP denotes a flare cut stop, which is arranged between the third and fourth units, and is moved on the optical axis with zooming.

【0019】本実施形態では広角端から望遠端への変倍
に際して、図1に示す矢印のように第2群を像面側へ移
動させると共に、変倍に伴う像面変動を第4群を移動さ
せて補正している。
In this embodiment, at the time of zooming from the wide-angle end to the telephoto end, the second unit is moved to the image plane side as indicated by the arrow in FIG. It is moved and corrected.

【0020】又、第4群を光軸上移動させてフォーカス
を行うリヤーフォーカス式を採用している。同図に示す
第4群の実線の曲線4aと点線の曲線4bは各々無限遠
物体と近距離物体にフォーカスしているときの広角端か
ら望遠端への変倍に伴う際の像面変動を補正する為の移
動軌跡を示している。尚、第1群と第3群は変倍及びフ
ォーカスの際固定である。
Also, a rear focus system is adopted in which the fourth unit is moved on the optical axis to perform focusing. A solid line curve 4a and a dotted line curve 4b of the fourth lens group shown in the same figure show the image plane fluctuation caused by zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at a short distance, respectively. The movement locus for correction is shown. The first and third units are fixed during zooming and focusing.

【0021】本実施形態においては第4群を移動させて
変倍に伴う像面変動の補正を行うと共に第4群を移動さ
せてフォーカスを行うようにしている。特に同図の曲線
4a,4bに示すように広角端から望遠端への変倍に際
して物体側へ凸状の軌跡を有するように移動させてい
る。これにより第3群と第4群との空間の有効利用を図
りレンズ全長の短縮化を効果的に達成している。
In the present embodiment, the fourth unit is moved to correct the image plane fluctuation caused by zooming, and the fourth unit is moved to perform focusing. In particular, as shown by curves 4a and 4b in the same figure, the zoom lens is moved so as to have a convex locus toward the object side when zooming from the wide-angle end to the telephoto end. Thus, the space between the third and fourth units is effectively used, and the overall length of the lens is effectively reduced.

【0022】本実施形態において、例えば望遠端におい
て無限遠物体から近距離物体へフォーカスを行う場合は
同図の直線4cに示すように第4群を前方へ繰り出すこ
とにより行っている。
In this embodiment, for example, when focusing from an object at infinity to an object at a short distance at the telephoto end, the fourth unit is moved forward as indicated by a straight line 4c in FIG.

【0023】本実施形態では従来の所謂4群ズームレン
ズにおいて第1群を繰り出してフォーカスを行う場合に
比べて前述のようなリヤーフォーカス方式を採ることに
より第1群の偏心誤差による性能劣化を防止しつつ第1
群のレンズ有効径の増大化を効果的に防止している。そ
して開口絞りを第3群の直前に配置することにより可動
レンズ群による収差変動を少なくし、開口絞りより前方
のレンズ群の間隔を短くすることにより前玉レンズ径の
縮少化を容易に達成している。
In this embodiment, as compared with the conventional so-called four-unit zoom lens, in which the first unit is extended and focused, the rear focus method is used to prevent the performance deterioration due to the eccentric error of the first unit. First while doing
This effectively prevents the effective lens diameter of the group from increasing. By arranging the aperture stop immediately before the third lens unit, aberration variation due to the movable lens unit is reduced, and the distance between the lens units in front of the aperture stop is shortened, so that the diameter of the front lens can be easily reduced. are doing.

【0024】本発明においては第3群L3を防振用とし
て光軸と垂直方向に移動させて変倍光学系が振動したと
きの像ぶれを補正している。これにより従来の防振光学
系に比べて防振の為のレンズ群や可変頂角プリズム等の
光学部材を新たに付加することなく防振を行なってい
る。
In the present invention, the third lens unit L3 is moved in the direction perpendicular to the optical axis for image stabilization to correct image blur when the variable power optical system vibrates. As a result, compared to the conventional anti-vibration optical system, anti-vibration is performed without newly adding an optical member such as a lens group or a variable apex prism for anti-vibration.

【0025】次に本発明に係る変倍光学系においてレン
ズ群を光軸と垂直方向に移動させて撮影画像のぶれを補
正する防振系の光学的原理を図2を用いて説明する。
Next, the optical principle of an image stabilizing system for correcting a blur of a photographed image by moving a lens group in a direction perpendicular to the optical axis in the variable power optical system according to the present invention will be described with reference to FIG.

【0026】図2(A)に示すように光学系が固定群Y
1・偏心群Y2そして固定群Y3の3つの部分から成り
立っており、レンズから充分に離れた光軸上の物点Pが
撮像面IPの中心に像点pとして結像しているものとす
る。
As shown in FIG. 2A, the optical system has a fixed group Y
1. It is composed of three parts of an eccentric group Y2 and a fixed group Y3, and it is assumed that an object point P on the optical axis sufficiently far from the lens is formed as an image point p at the center of the imaging plane IP. .

【0027】今、撮像面IPを含めた光学系全体が図2
(B)のように手振れにより瞬間的に傾いたとすると、
物点Pは像点p′にやはり瞬間的に移動し、ぶれた画像
となる。
Now, the entire optical system including the imaging plane IP is shown in FIG.
As shown in (B), if the camera is tilted momentarily due to camera shake,
The object point P also instantaneously moves to the image point p 'and becomes a blurred image.

【0028】一方、偏心群Y2を光軸と垂直方向に移動
させると図2(C)のように、像点pはp″に移動し、
その移動量・方向はパワー配置に依存し、そのレンズ群
の偏心敏感度として表される。
On the other hand, when the eccentric group Y2 is moved in the direction perpendicular to the optical axis, the image point p moves to p ″ as shown in FIG.
The moving amount and direction depend on the power arrangement, and are expressed as the eccentric sensitivity of the lens group.

【0029】そこで図2(B)で手振れによってズレた
像点p′を偏心群Y2を適切な量だけ光軸と垂直方向に
移動させることによってもとの結像位置pに戻すことで
図2(D)に示すとおり、手振れ補正つまり防振を行っ
ている。
In FIG. 2B, the image point p 'shifted by the camera shake is returned to the original image forming position p by moving the eccentric group Y2 in the direction perpendicular to the optical axis by an appropriate amount. As shown in (D), camera shake correction, that is, image stabilization is performed.

【0030】今、光軸をθ°補正するために必要なシフ
トレンズ群(偏心群)Y2の移動量をΔ、光学系全体の
焦点距離をf、シフトレンズ群Y2の偏心敏感度をTS
とすると、移動量Δは Δ=f・tan(θ)/TS の式で与えられる。
Now, the amount of movement of the shift lens group (eccentric group) Y2 required to correct the optical axis by θ ° is Δ, the focal length of the entire optical system is f, and the sensitivity of the shift lens group Y2 to eccentricity is TS.
Then, the movement amount Δ is given by the following equation: Δ = f · tan (θ) / TS.

【0031】今、シフトレンズ群Y2の偏心敏感度TS
が大きすぎると、移動量Δは小さな値となり防振に必要
なシフトレンズ群の移動量は小さくできるが、適切に防
振を行う為の制御が困難になり、補正残りが生じてしま
う。特に、ビデオカメラやデジタルスチルカメラではC
CD等の撮像素子のイメージサイズが銀塩フィルムと比
べて小さく、同一画角に対する焦点距離が短いため、同
一角度を補正する為のシフトレンズ群のシフト量Δが小
さくなる。
Now, the eccentric sensitivity TS of the shift lens group Y2
Is too large, the amount of movement Δ becomes a small value, and the amount of movement of the shift lens group necessary for image stabilization can be made small. However, it is difficult to perform appropriate image stabilization control, and correction remains. In particular, video cameras and digital still cameras use C
Since the image size of an image sensor such as a CD is smaller than that of a silver halide film and the focal length for the same angle of view is shorter, the shift amount Δ of the shift lens group for correcting the same angle becomes smaller.

【0032】従って、メカ(機構)の精度が同程度だと
画面上での補正残りが相対的に大きくなることになって
しまう。
Therefore, if the accuracy of the mechanism (mechanism) is almost the same, the uncorrected portion on the screen becomes relatively large.

【0033】一方偏心敏感度TSが小さすぎると制御の
ために必要なシフトレンズ群の移動量が大きくなってし
まい、シフトレンズ群を駆動するためのアクチュエータ
ーなどの駆動手段も大きくなってしまう。
On the other hand, if the eccentric sensitivity TS is too small, the amount of movement of the shift lens group necessary for control becomes large, and the driving means such as an actuator for driving the shift lens group also becomes large.

【0034】本発明では各レンズ群の屈折力配置を適切
な値に設定することで第3レンズ群の偏心敏感度TSを
適正な値とし、メカの制御誤差による防振の補正残りが
少なく、アクチュエーターなどの駆動手段の負荷も少な
い光学系を達成している。
In the present invention, the eccentricity sensitivity TS of the third lens unit is set to an appropriate value by setting the refractive power arrangement of each lens unit to an appropriate value. An optical system with less load on driving means such as an actuator has been achieved.

【0035】また、このような光学系の内部のレンズ群
を光軸に垂直方向にシフトさせて防振を行なった場合シ
フト方向に対して周辺光量分布の非対称が発生する。こ
のため動画撮影時には手振れの向きが時間的に変化する
ため周辺光量も時間的に変化し、これによって画面周辺
にちらつきが生じる。
Further, when the lens group inside such an optical system is shifted in a direction perpendicular to the optical axis to perform image stabilization, the peripheral light amount distribution is asymmetric with respect to the shift direction. For this reason, at the time of moving image shooting, the direction of camera shake changes over time, so that the amount of peripheral light also changes over time, thereby causing flickering around the screen.

【0036】これについて図3を用いて説明する。This will be described with reference to FIG.

【0037】光軸の補正角をθとしたとき、光学系の最
も物体側のレンズ面での光線の振れ量Hは補正レンズ
(第3群)L3より物体側の光学系で出来る補正レンズ
L3の像HPから光学系の最も物体側のレンズ面までの
距離をDSとすると図3(A)に示す様に H=DS・tanθ となる。
Assuming that the correction angle of the optical axis is θ, the deflection H of the light beam on the lens surface closest to the object side of the optical system is equal to the correction lens L3 formed by the optical system closer to the object side than the correction lens (third group) L3. Assuming that the distance from the image HP to the lens surface closest to the object side of the optical system is DS, H = DS · tan θ as shown in FIG.

【0038】図3(B)、(C)、(D)に防振時にお
ける周辺光量の変化を示す。図3(B)は通常状態、図
3(C)は光学系が下を向くような補正状態、図3
(D)は光学系が上を向く補正状態である。補正状態で
は光線の光束幅Wが変化するため光量が変化する。この
変化量は第1面を通過する中心光線の振れ量Hが大きい
程大きくなる。
FIGS. 3 (B), 3 (C) and 3 (D) show changes in the peripheral light amount during image stabilization. 3B is a normal state, FIG. 3C is a correction state in which the optical system faces downward, and FIG.
(D) is a correction state in which the optical system faces upward. In the correction state, the light amount changes because the light beam width W of the light beam changes. The amount of change increases as the amount H of fluctuation of the central ray passing through the first surface increases.

【0039】従って、光量変化を小さくするには第1面
からシフトする第3レンズ群L3までの距離を短くして
距離DSを小さくしなければならない。
Therefore, in order to reduce the change in the amount of light, the distance from the first surface to the third lens unit L3 to be shifted must be reduced to reduce the distance DS.

【0040】これには第2レンズ群の屈折力を大きくし
て第2レンズ群の変倍に要する移動量を小さくするのが
良い。
For this purpose, it is preferable to increase the refractive power of the second lens unit and to reduce the amount of movement required for zooming the second lens unit.

【0041】そこで第1発明では第2レンズ群の焦点距
離f2と全系の望遠端での焦点距離ftの関係を 0.05<|f2/ft|<0.07 (1) を満足するようにすることで変倍に必要な第2レンズ群
の移動量を小さくしている。
Therefore, in the first invention, the relationship between the focal length f2 of the second lens unit and the focal length ft at the telephoto end of the entire system is set so as to satisfy 0.05 <| f2 / ft | <0.07 (1). By doing so, the amount of movement of the second lens group necessary for zooming is reduced.

【0042】条件式(1)の下限を超えて第2レンズ群
の屈折力が強くなると変倍時の第2レンズ群の移動量は
小さくなるがペッツヴァール和が全体に負の方向に大き
くなり像面湾曲の補正が困難になるので良くない。逆に
(1)の上限を超えると第2レンズ群の変倍時の移動量
が大きくなり、レンズ系全体が小型にならないと共に防
振時の周辺光量変化に関しても不利になるので良くな
い。
When the refracting power of the second lens unit is increased beyond the lower limit of the conditional expression (1), the moving amount of the second lens unit at the time of zooming is reduced, but the Petzval sum increases in the negative direction as a whole. It is not preferable because it becomes difficult to correct the curvature of field. Conversely, if the value exceeds the upper limit of (1), the amount of movement of the second lens unit at the time of zooming becomes large, and the entire lens system is not reduced in size.

【0043】条件式(1)のもとで、20倍以上といっ
た高変倍比にすると、変倍に伴なう倍率色収差の補正が
困難になる。
If a high zoom ratio such as 20 times or more is used under the conditional expression (1), it becomes difficult to correct lateral chromatic aberration accompanying zooming.

【0044】本発明では第2レンズ群を物体側から順に
像面側に強い凹面を有するメニスカス状の負の第21レ
ンズ、負の第22レンズ、正の第23レンズ、そして負
の第24レンズで構成することで第2レンズ群の前後の
対称性を小さくすることで主点の色消し効果を高め、倍
率色収差の補正を効果的に行なっている。
In the present invention, the second lens group includes, in order from the object side, a meniscus negative 21st lens, a negative 22nd lens, a positive 23rd lens, and a negative 24th lens having a strong concave surface on the image plane side. By reducing the symmetry before and after the second lens unit, the achromatic effect of the principal point is enhanced, and the chromatic aberration of magnification is effectively corrected.

【0045】また、第1発明においては第24レンズの
焦点距離をf24とするとき 1.2<|f24/f2|<2.5 (2) を満足させるのが良い。
In the first aspect of the present invention, when the focal length of the twenty-fourth lens is f24, it is preferable to satisfy the following condition: 1.2 <| f24 / f2 | <2.5 (2)

【0046】条件式(2)は主に倍率色数差の補正を効
果的に行なうためのものである。条件式(2)の上限を
超えて第24レンズの焦点距離が小さくなり過ぎると色
収差の補正効果が不十分になる。逆に下限を超えると広
角端での歪曲収差の補正が困難になる。
Conditional expression (2) is mainly for effectively correcting the difference in magnification color number. If the focal length of the twenty-fourth lens is too small below the upper limit of conditional expression (2), the effect of correcting chromatic aberration will be insufficient. Conversely, if the lower limit is exceeded, it becomes difficult to correct distortion at the wide-angle end.

【0047】また第2発明においては防振時における周
辺光量の変化を小さくするために、撮影系(変倍光学
系)の最も物体側のレンズ面より、該第3レンズ群の防
振時に光軸垂直に移動する部分の最も物体側のレンズ面
までの距離をLS、全系の望遠端の焦点距離をftとす
るとき 0.42<|LS/ft|<0.59 (3) なる条件式を満足するようにしている。
In the second aspect of the present invention, in order to reduce a change in the amount of peripheral light during image stabilization, the light from the lens surface closest to the object side of the photographing system (variable optical system) is set at the time of image stabilization of the third lens group. When the distance to the lens surface closest to the object side of the portion moving perpendicular to the axis is LS, and the focal length at the telephoto end of the entire system is ft, the following condition is satisfied: 0.42 <| LS / ft | <0.59 (3) We are trying to satisfy the formula.

【0048】条件式(3)の上限を超えると高倍化の
際、防振時の光量変化が目立ち易くなり、逆に下限を超
えようとするには第2レンズ群の屈折力を大きくする必
要が出て変倍時の収差変動の補正が困難になる。
If the upper limit of conditional expression (3) is exceeded, the change in the amount of light during image stabilization becomes more conspicuous when the magnification is increased. Conversely, in order to exceed the lower limit, it is necessary to increase the refractive power of the second lens unit. And it becomes difficult to correct aberration fluctuations during zooming.

【0049】尚、第1発明において第2発明の条件式
(3)を満足させれば防振時の収差変更をより良好に補
正することができる。
Incidentally, in the first invention, if the conditional expression (3) of the second invention is satisfied, it is possible to better correct the aberration change at the time of image stabilization.

【0050】尚、第1、第2発明の防振機能を有した変
倍光学系は以上のような条件を満足することにより実現
されるが、更にレンズ全長の短縮を図りつつ、良好な光
学性能を達成するためには、以下の条件のうち少なくと
も1つを満足することが望ましい。
The variable power optical system having the image stabilizing function according to the first and second aspects of the present invention can be realized by satisfying the above-mentioned conditions. In order to achieve performance, it is desirable to satisfy at least one of the following conditions.

【0051】(ア-1)前記第3レンズ群は物体側から順に
正の第31レンズ、像面側に強い凹面を向けたメニスカ
ス状の負の第32レンズを有することである。
(A-1) The third lens group includes, in order from the object side, a positive 31st lens and a meniscus negative 32nd lens with a strong concave surface facing the image side.

【0052】(ア-2)第3レンズ群を物体側から順に正の
第31レンズ、像面側に強い凹面をむけたメニスカス状
の負の第32レンズ、そして正の第33レンズで構成す
ることである。
(A-2) The third lens group is composed of, in order from the object side, a positive 31st lens, a meniscus-shaped negative 32nd lens having a strong concave surface on the image side, and a positive 33rd lens. That is.

【0053】第3レンズ群中に像面側に強い凹面をむけ
たメニスカス状の負レンズを設けることにより第3レン
ズ群全体をテレフォト構成として第2レンズ群と第3レ
ンズ群の主点間隔を短縮し、レンズ全長の短縮化を達成
している。
By providing a meniscus-shaped negative lens having a strong concave surface on the image surface side in the third lens group, the entire third lens group is configured as a telephoto configuration to reduce the distance between the principal points of the second lens group and the third lens group. This shortens the overall length of the lens.

【0054】このようなメニスカス状の負レンズを設け
た場合、そのレンズ面で正の歪曲収差が発生し、これが
防振時における偏心歪曲が大きくなる原因となる。この
減少を低減させるには第3レンズ群全体で発生する歪曲
収差を少なくしてやればよい。
When such a meniscus-shaped negative lens is provided, a positive distortion occurs on the lens surface, which causes a large eccentric distortion at the time of image stabilization. In order to reduce this decrease, the distortion generated in the entire third lens group may be reduced.

【0055】本実施例ではメニスカス状の負の第32レ
ンズの像面側に正の第33レンズを配置することによっ
てある程度のテレフォト構成を維持しつつ、第3レンズ
群内で歪曲収差を補正し、第3レンズ群をシフトして防
振を行う際に発生する偏心歪曲収差の発生を低減してい
る。
In this embodiment, distortion is corrected in the third lens group while maintaining a certain telephoto configuration by arranging a positive 33rd lens on the image side of the negative 32nd meniscus lens. In addition, the occurrence of eccentric distortion generated when the third lens group is shifted to perform image stabilization is reduced.

【0056】(ア-3)第31レンズはその両側のレンズ面
を非球面形状とすることである。
(A-3) The thirty-first lens has an aspherical surface on both sides.

【0057】第31レンズの両側のレンズ面に非球面を
設けることにより、第3レンズ群で球面収差を抑制し、
防振時に発生する偏心コマ収差を低減している。
By providing aspherical surfaces on both lens surfaces of the thirty-first lens, spherical aberration is suppressed by the third lens unit,
Eccentric coma generated during image stabilization is reduced.

【0058】(ア-4)前記第32レンズと、第3レンズ群
全体の焦点距離を各々f32、f3としたとき 1.2<|f32/f3|<1.8 (4) なる条件式を満足することである。
(A-4) When the focal lengths of the 32nd lens and the entire third lens group are f32 and f3, respectively, 1.2 <| f32 / f3 | <1.8 (4) To be satisfied.

【0059】条件式(4)は第3レンズ群をテレフォト
タイプとして光学系全体の小型化を達成するためのもの
である。
Conditional expression (4) is for achieving the miniaturization of the entire optical system by making the third lens group a telephoto type.

【0060】条件式(4)の下限を超えて第3レンズ群
中の第32レンズの屈折力が強くなるとレンズ全長の短
縮化には有利だがペッツヴァール和が負の方向に増大し
てしまい像面湾曲の補正が困難になるので良くない。逆
に下限を超えてしまうと全長短縮が不十分になってしま
う。
If the refractive power of the 32nd lens in the third lens unit is increased beyond the lower limit of the conditional expression (4), it is advantageous for shortening the total length of the lens, but the Petzval sum increases in the negative direction, and the image becomes negative. It is not good because it becomes difficult to correct the surface curvature. Conversely, if the lower limit is exceeded, the overall length will be insufficiently reduced.

【0061】(ア-5)防振のためのシフト群の敏感度を適
切に設定することが防振性能に大きく影響する。
(A-5) Appropriately setting the sensitivity of the shift group for image stabilization greatly affects the image stabilization performance.

【0062】そこで広角端における全系の焦点距離をf
w、第3群の焦点距離をf3としたとき 3.5<f3/fw<5.5 (5) なる条件を満足するのが良い。これにより、レンズ全長
の短縮化を図りつつシフトレンズ群の敏感度を適切な値
に設定している。
Therefore, the focal length of the entire system at the wide-angle end is represented by f
w, when the focal length of the third lens unit is f3, it is preferable to satisfy the following condition: 3.5 <f3 / fw <5.5 (5) Thus, the sensitivity of the shift lens group is set to an appropriate value while shortening the overall length of the lens.

【0063】条件式(5)の下限を超えて第3レンズ群
の屈折力を強くすると、シフトレンズ群の敏感度が大き
くなり過ぎメカ精度を厳しくしないと防振時の補正残り
が大きくなってしまうので良くない。
If the refractive power of the third lens group is increased beyond the lower limit of the conditional expression (5), the sensitivity of the shift lens group becomes too large, and if the mechanical precision is not strict, the remaining correction during vibration reduction becomes large. Not so good.

【0064】逆に上限を超えて第3レンズ群の屈折力を
弱くしてしまうと防振のために必要な第3レンズ群のシ
フト量が大きくなったり、レンズ全長が大きくなったり
するので良くない。
Conversely, if the upper limit is exceeded and the refractive power of the third lens group is weakened, the shift amount of the third lens group required for image stabilization becomes large, or the overall length of the lens becomes large, which is good. Absent.

【0065】(ア-6)第3レンズ群のテレフォト構成を維
持しつつ、第3レンズ群内の歪曲収差や非点収差を補正
し、防振時の光学性能を良好に維持するには該33レン
ズの焦点距離をf33、第3群の焦点距離をf3とする
時 1.2<f33/f3<2.0 (6) なる条件を満足することが望ましい。
(A-6) It is necessary to correct distortion and astigmatism in the third lens group while maintaining the telephoto configuration of the third lens group, and to maintain good optical performance during image stabilization. When the focal length of the 33 lens is f33 and the focal length of the third lens unit is f3, it is preferable to satisfy the following condition: 1.2 <f33 / f3 <2.0 (6)

【0066】条件式(6)の下限を超えて第33レンズ
の屈折力が強くなり過ぎると第3レンズ群のテレフォト
性が維持されず全長短縮効果が無くなるので良くない。
逆に上限を超えると第3レンズ群内での歪曲収差や非点
収差の補正が不十分になり、防振時の光学性能が劣化し
てしまう。
If the refractive power of the 33rd lens becomes too strong below the lower limit of the conditional expression (6), the telephoto property of the third lens group is not maintained and the effect of shortening the entire length is lost, which is not good.
Conversely, if the upper limit is exceeded, the correction of distortion and astigmatism in the third lens group becomes insufficient, and the optical performance during image stabilization deteriorates.

【0067】(ア-7)防振時の光量変化低減を達成するた
めには変倍時に絞り開口径を望遠側で小さくして中心光
束を制限することで相対的に周辺光量を増加するように
してやるのが良い。
(A-7) In order to achieve a reduction in the change in light quantity during image stabilization, the diameter of the aperture is made smaller on the telephoto side during zooming so as to restrict the central light flux so that the peripheral light quantity is relatively increased. It is good to do.

【0068】(ア-8)変倍時の非点収差や歪曲の変動の補
正のため、第2レンズ群に非球面を導入するのが良い。
(A-8) It is preferable to introduce an aspherical surface into the second lens unit in order to correct astigmatism and distortion during zooming.

【0069】(ア-9)第3レンズ群は防振のために移動す
る分、レンズ径をそれだけ大きくしてやる必要がある。
(A-9) Since the third lens group moves for vibration reduction, it is necessary to increase the lens diameter accordingly.

【0070】従って余計な軸上光束が入り過ぎないよう
にするには第3レンズ群の物体側あるいは像面側に固定
の絞りを配置するのが望ましい。本実施例では第3レン
ズ群と第4レンズ群の間に固定絞りを配置することでス
ペースを有効に利用しつつ、不要な光束が入らないよう
にしている。
Therefore, it is desirable to dispose a fixed stop on the object side or the image plane side of the third lens group in order to prevent excessive on-axis light flux from entering. In the present embodiment, a fixed stop is arranged between the third lens unit and the fourth lens unit to effectively use a space and prevent unnecessary light beams from entering.

【0071】次に本発明の数値実施例を示す。数値実施
例においてRiは物体側より順に第i番目のレンズ面の
曲率半径、Diは物体側より順に第i番目のレンズ厚及
び空気間隔、Niとνiは各々物体側より順に第i番目
のレンズのガラスの屈折率とアッベ数である。また前述
の各条件式と数値実施例の関係を表−lに示す。
Next, numerical examples of the present invention will be described. In the numerical examples, Ri is the radius of curvature of the ith lens surface in order from the object side, Di is the ith lens thickness and air spacing in order from the object side, and Ni and νi are the ith lens in order from the object side. Are the refractive index and Abbe number of the glass. Table 1 shows the relationship between the above-described conditional expressions and the numerical examples.

【0072】非球面形状は光軸方向にX軸、光軸と垂直
方向にH軸、光の進行方向を正としRを近軸曲率半径、
A,B,C,D、Eを各々非球面係数としたとき
The aspheric surface has an X-axis in the optical axis direction, an H-axis in a direction perpendicular to the optical axis, a positive traveling direction of light, R is a paraxial radius of curvature,
When A, B, C, D, and E are aspherical coefficients

【0073】[0073]

【数1】 (Equation 1)

【0074】なる式で表している。 数値実族例1 f=1〜20.59 Fno=1.85〜3.17 2ω=63.0°〜3.4° R 1=11.517 D 1=0.35 N 1=1.846660 ν 1=23.8 R 2=6.297 D 2=1.43 N 2=1.603112 ν 2=60.6 R 3=-92.841 D 3=0.05 R 4=5.730 D 4=0.75 N 3=1.696797 ν 3=55.5 R 5=15.090 D 5=可変 R 6=9.859 D 6=0.20 N 4=1.834000 ν 4=37.2 R 7=1.328 D 7=0.68 R 8=13.880 D 8=0.17 N 5=1.834807 ν 5=42.7 R 9=15.420 D 9=0.07 R10=2.620 D10=0.69 N 6=1.846660 ν 6=23.8 R11=-4.562 D11=0.04 R12=-3.405 D12=0.17 N 7=1.804000 ν 7=46.6 R13=5.388 D13=可変 R14=絞り D14=0.30 R15=2.335(非球面) D15=0.93 N 8=1.583126 ν 8=59.4 R16=25.000(非球面) D16=0.10 R17=3.731 D17=0.20 N 9=1.846660 ν 9=23.8 R18=2.179 D18=0.40 R19=8.449 D19=0.57 N10=1.516330 ν10=64.1 R20=-5.658 D20=0.50 R21=固定絞り D21=可変 R22=3.043 D22=0.70 N11=1.516330 ν11=64.1 R23=-2.736 D23=0.17 N12=1.805181 ν12=25.4 R24=-5.522 D24=0.75 R25= ∞ D25= 0.82 N13=1.516330 ν13=64.2 R26= ∞ \焦点距離 1.00 6.15 20.59 可変間隔\ D5 0.18 4.44 5.65 D13 5.83 1.56 0.36 D21 2.17 0.65 2.44 非球面係数 R15 k=-3.75970e+00 B=3.18486e-02 C=-4.89959e-03 D=-1.95138e-03 E=1.32137e-03 R16 k=-1.05769e+02 B=7.80185e-03 C=-3.81520e-03 D=0.00000e+00 E=0.00000e+00 数値実施例2 f=1〜22.55 Fno=1.85〜3.98 2ω=63.0°〜3.1° R 1=12.297 D 1=0.38 N 1=1.846660 ν 1=23.8 R 2=6.682 D 2=1.52 N 2=1.603112 ν 2=60.6 R 3=-120.232 D 3=0.05 R 4=6.114 D 4=0.88 N 3=1.696797 ν 3=55.5 R 5=16.311 D 5=可変 R 6=12.864 D 6=0.20 N 4=1.834000 ν 4=37.2 R 7=1.344 D 7=0.74 R 8=-3.873(非球面) D 8=0.20 N 5=1.814740 ν 5=37.0 R 9=-75.000 D 9=0.07 R10=2.319 D10=0.70 N 6=1.846660 ν 6=23.8 R11=-3.711 D11=0.04 R12=-3.139 D12=0.17 N 7=1.806098 ν 7=40.9 R13=3.131 D13=可変 R14=絞り D14=0.38 R15=2.489(非球面) D15=0.85 N 8=1.583126 ν 8=59.4 R16=25.305(非球面) D16=0.10 R17=5.216 D17=0.20 N 9=1.846660 ν 9=23.8 R18=2.738 D18=0.33 R19=12.789 D19=0.55 N10=1.516330 ν10=64.1 R20=-4.292 D20=0.50 R21=固定絞り D21=可変 R22=3.060 D22=0.70 N11=1.516330 ν11=64.1 R23=-2.829 D23=0.17 N12=1.846660 ν12=23.8 R24=-5.411 D24=0.75 R25= ∞ D25=0.82 N13=1.516330 ν13=64.2 R26= ∞ \焦点距離 1.00 6.08 22.55 可変間隔\ D5 0.18 4.78 6.08 D13 6.25 1.65 0.35 D21 2.79 1.17 3.07 非球面係数 R8 k=2.64239e+00 B=6.73912e-03 C=2.62124e-04 D=3.71477e-03 E=0.00000e+00 R15 k=-3.31127e+00 B=2.18668e-02 C=-1.38403e-03 D=-1.75691e-03 E=1.28774e-03 R16 k=4.00000e+01 B=5.94845e-03 C=-1.05613e-04 D=0.00000e+00 E=0.00000e+00 数値実施例3 f=1〜22.34 Fno=1.85〜3.55 2ω=63.0°〜3.1° R 1=11.948 D 1=0.35 N 1=1.846660 ν 1=23.8 R 2=6.382 D 2=1.43 N 2=1.603112 ν 2=60.6 R 3=-87.012 D 3=0.05 R 4=5.919 D 4=0.75 N 3=1.696797 ν 3=55.5 R 5=16.039 D 5=可変 R 6=11.021 D 6=0.20 N 4=1.834000 ν 4=37.2 R 7=1.300 D 7=0.67 R 8=-3.802 D 8=0.17 N 5=1.834807 ν 5=42.7 R 9=13.482 D 9=0.07 R10=2.600 D10=0.69 N 6=1.846660 ν 6=23.8 R11=-3.471 D11=0.04 R12=-3.006 D12=0.17 N 7=1.804000 ν 7=46.6 R13=5.101 D13=可変 R14=絞り D14=0.25 R15=2.375(非球面) D15=1.07 N 8=1.583126 ν 8=59.4 R16=25.150(非球面) D16=0.05 R17=3.556 D17=0.20 N 9=1.846660 ν 9=23.8 R18=2.148 D18=0.42 R19=8.588 D19=0.57 N10=1.516330 ν10=64.1 R20=-8.185 D20=0.37 R21=固定絞り D21=可変 R22=3.393 D22=0.70 N11=1.516330 ν11=64.1 R23=-2.437 D23=0.17 N12=1.805181 ν12=25.4 R24=-4.575 D24=0.75 R25= ∞ D25=0.82 N13=1.516330 ν13=64.2 R26= ∞ \焦点距離 1.00 6.65 22.34 可変間隔\ D5 0.17 4.66 5.93 D13 6.10 1.61 0.35 D21 2.29 0.53 2.46 非球面係数 R15 k=-3.44285e+00 B=2.91925e-02 C=-4.87054e-03 D=-1.33859e-03 E=1.43602e-03 R16 k=-8.39783e+00 B=8.77241e-03 C=-6.49371e-03 D=2.03005e-03 E=0.00000e+00This is represented by the following equation. Numerical family example 1 f = 1 ~ 20.59 Fno = 1.85 ~ 3.17 2ω = 63.0 ° ~ 3.4 ° R 1 = 11.517 D 1 = 0.35 N 1 = 1.846660 ν 1 = 23.8 R 2 = 6.297 D 2 = 1.43 N 2 = 1.603112 ν 2 = 60.6 R 3 = -92.841 D 3 = 0.05 R 4 = 5.730 D 4 = 0.75 N 3 = 1.696797 ν 3 = 55.5 R 5 = 15.090 D 5 = Variable R 6 = 9.859 D 6 = 0.20 N 4 = 1.834000 ν 4 = 37.2 R 7 = 1.328 D 7 = 0.68 R 8 = 13.880 D 8 = 0.17 N 5 = 1.834807 ν 5 = 42.7 R 9 = 15.420 D 9 = 0.07 R10 = 2.620 D10 = 0.69 N 6 = 1.846660 ν 6 = 23.8 R11 = -4.562 D11 = 0.04 R12 = -3.405 D12 = 0.17 N 7 = 1.804000 ν 7 = 46.6 R13 = 5.388 D13 = Variable R14 = Aperture D14 = 0.30 R15 = 2.335 (Aspheric) D15 = 0.93 N 8 = 1.583126 ν 8 = 59.4 R16 = 25.000 (aspheric surface) D16 = 0.10 R17 = 3.731 D17 = 0.20 N 9 = 1.846660 ν 9 = 23.8 R18 = 2.179 D18 = 0.40 R19 = 8.449 D19 = 0.57 N10 = 1.516330 ν10 = 64.1 R20 = -5.658 D20 = 0.50 R21 = fixed aperture D21 = variable R22 = 3.043 D22 = 0.70 N11 = 1.516330 ν11 = 64.1 R23 = -2.736 D23 = 0.17 N12 = 1.805181 ν12 = 25.4 R24 = -5.522 D24 = 0.75 R25 = ∞ D25 = 0.82 N13 = 1.516330 ν13 = 64.2 R26 = ∞ \focal length 1.00 6.15 20.59 variable interval\ D5 0.18 4.44 5.65 D13 5.83 1.56 0.36 D21 2.17 0.65 2.44 Spherical coefficient R15 k = -3.775970e + 00 B = 3.18486e-02 C = -4.89959e-03 D = -1.95138e-03 E = 1.32137e-03 R16 k = -1.05769e + 02 B = 7.80185e-03 C = -3.881520e-03 D = 0.00000e + 00 E = 0.00000e + 00 Numerical example 2 f = 1 ~ 22.55 Fno = 1.85 ~ 3.98 2ω = 63.0 ° ~ 3.1 ° R 1 = 12.297 D 1 = 0.38 N 1 = 1.846660 ν 1 = 23.8 R 2 = 6.682 D 2 = 1.52 N 2 = 1.603112 ν 2 = 60.6 R 3 = -120.232 D 3 = 0.05 R 4 = 6.114 D 4 = 0.88 N 3 = 1.696797 ν 3 = 55.5 R 5 = 16.311 D 5 = variable R 6 = 12.864 D 6 = 0.20 N 4 = 1.834000 ν 4 = 37.2 R 7 = 1.344 D 7 = 0.74 R 8 = -3.873 (aspheric) D 8 = 0.20 N 5 = 1.814740 ν 5 = 37.0 R 9 = -75.000 D 9 = 0.07 R10 = 2.319 D10 = 0.70 N 6 = 1.846660 ν 6 = 23.8 R11 = -3.711 D11 = 0.04 R12 = -3.139 D12 = 0.17 N 7 = 1.806098 ν 7 = 40.9 R13 = 3.131 D13 = Variable R14 = Aperture D14 = 0.38 R15 = 2.489 (Aspheric) D15 = 0.85 N 8 = 1.583126 ν 8 = 59.4 R16 = 25.305 (Aspheric) D16 = 0.10 R17 = 5.216 D17 = 0.20 N 9 = 1.846660 ν 9 = 23.8 R18 = 2.738 D18 = 0.33 R19 = 12.789 D19 = 0.55 N10 = 1.516330 ν10 = 64.1 R20 = -4.292 D20 = 0.50 R21 = fixed aperture D21 = variable R22 = 3.060 D22 = 0.70 N11 = 1.516330 ν11 = 64.1 R23 = -2.829 D23 = 0.17 N12 = 1.846660 12 = 23.8 R24 = -5.411 D24 = 0.75 R25 = ∞ D25 = 0.82 N13 = 1.516330 ν13 = 64.2 R26 = ∞ \ Focal length 1.00 6.08 22.55 Variable interval\ D5 0.18 4.78 6.08 D13 6.25 1.65 0.35 D21 2.79 1.17 3.07 Aspheric coefficient R8 k = 2.64239e + 00 B = 6.73912e-03 C = 2.62124e-04 D = 3.71477e-03 E = 0.00000e + 00 R15 k = -3.31127e + 00 B = 2.18668e-02 C = -1.38403e- 03 D = -1.75691e-03 E = 1.28774e-03 R16 k = 4.00000e + 01 B = 5.94845e-03 C = -1.05613e-04 D = 0.00000e + 00 E = 0.00000e + 00 Numerical example 3 f = 1 ~ 22.34 Fno = 1.85 ~ 3.55 2ω = 63.0 ° ~ 3.1 ° R 1 = 11.948 D 1 = 0.35 N 1 = 1.846660 ν 1 = 23.8 R 2 = 6.382 D 2 = 1.43 N 2 = 1.603112 ν 2 = 60.6 R 3 = -87.012 D 3 = 0.05 R 4 = 5.919 D 4 = 0.75 N 3 = 1.696797 ν 3 = 55.5 R 5 = 16.039 D 5 = Variable R 6 = 11.021 D 6 = 0.20 N 4 = 1.834000 ν 4 = 37.2 R 7 = 1.300 D 7 = 0.67 R 8 = -3.802 D 8 = 0.17 N 5 = 1.834807 ν 5 = 42.7 R 9 = 13.482 D 9 = 0.07 R10 = 2.600 D10 = 0.69 N 6 = 1.846660 ν 6 = 23.8 R11 = -3.471 D11 = 0.04 R12 = -3.006 D12 = 0.17 N 7 = 1.804000 ν 7 = 46.6 R13 = 5.101 D13 = Variable R14 = Aperture D14 = 0.25 R15 = 2.375 (Aspheric) D15 = 1.07 N 8 = 1.583126 ν 8 = 59.4 R16 = 25.150 (Non Surface) D16 = 0.05 R17 = 3.556 D17 = 0.20 N 9 = 1.846660 ν 9 = 23.8 R18 = 2.148 D18 = 0.42 R19 = 8.588 D19 = 0.57 N10 = 1.516330 ν10 = 64.1 R20 = -8.185 D20 = 0.37 R21 = Fixed aperture D21 = Variable R22 = 3.393 D22 = 0.70 N11 = 1.516330 ν11 = 64.1 R23 = -2.437 D23 = 0.17 N12 = 1.805181 ν12 = 25.4 R24 = -4.575 D24 = 0.75 R25 = ∞ D25 = 0.82 N13 = 1.516330 ν13 = 64.2 R26 = \ \ Distance 1.00 6.65 22.34 Variable interval\ D5 0.17 4.66 5.93 D13 6.10 1.61 0.35 D21 2.29 0.53 2.46 Aspherical coefficient R15 k = -3.44285e + 00 B = 2.91925e-02 C = -4.87054e-03 D = -1.33859e-03 E = 1.43602e-03 R16 k = -8.39783e + 00 B = 8.77241e-03 C = -6.49371e-03 D = 2.03005e-03 E = 0.00000e + 00

【0075】[0075]

【表1】 [Table 1]

【0076】[0076]

【発明の効果】本発明によれば以上のように、変倍光学
系の一部を構成する比較的小型軽量のレンズ群を光軸と
垂直方向に移動させて、該変倍光学系が振動(傾動)し
たときの画像のぶれを補正するように構成することによ
り、装置全体の小型化、機構上の簡素化及び駆動手段の
負荷の軽減を図りつつ該レンズ群を偏心させたときの偏
心収差発生量を少なく抑え、偏心収差を良好に補正した
防振機能を有した変倍光学系を達成することが出来る。
As described above, according to the present invention, by moving the relatively small and light lens group constituting a part of the variable power optical system in the direction perpendicular to the optical axis, the variable power optical system is vibrated. By configuring so as to correct the image blurring caused by (tilting), the eccentricity when the lens group is decentered while reducing the size of the entire apparatus, simplifying the mechanism, and reducing the load on the driving means. It is possible to achieve a variable power optical system having an anti-vibration function in which the amount of generated aberration is reduced and the eccentric aberration is corrected well.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明における変倍光学系の近軸屈折力配置
の概略図
FIG. 1 is a schematic diagram of a paraxial refractive power arrangement of a variable power optical system according to the present invention.

【図2】 本発明における防振系の光学的原理の説明図FIG. 2 is an explanatory view of the optical principle of a vibration isolation system according to the present invention.

【図3】 防振時の光量変化を説明するための図FIG. 3 is a diagram for explaining a change in light amount during image stabilization.

【図4】 本発明の数値実施例1の広角端のレンズ断面
FIG. 4 is a sectional view of a lens at a wide angle end according to Numerical Embodiment 1 of the present invention.

【図5】 本発明の数値実施例1の広角端の諸収差図FIG. 5 is a diagram illustrating various aberrations at a wide-angle end according to Numerical Embodiment 1 of the present invention.

【図6】 本発明の数値実施例1の望遠端の諸収差図FIG. 6 is a diagram illustrating various aberrations at the telephoto end according to Numerical Embodiment 1 of the present invention.

【図7】 本発明の数値実施例1の望遠端の諸収差図FIG. 7 is a diagram showing various aberrations at the telephoto end according to Numerical Embodiment 1 of the present invention.

【図8】 本発明の数値実施例2の広角端の諸収差図FIG. 8 is a diagram illustrating various aberrations at the wide-angle end according to Numerical Example 2 of the present invention.

【図9】 本発明の数値実施例2の望遠端の諸収差図FIG. 9 is a diagram showing various aberrations at the telephoto end according to Numerical Example 2 of the present invention.

【図10】 本発明の数値実施例2の望遠端の諸収差図FIG. 10 is a diagram showing various aberrations at the telephoto end according to Numerical Example 2 of the present invention;

【図11】 本発明の数値実施例3の広角端の諸収差図FIG. 11 is a diagram illustrating various aberrations at a wide angle end according to Numerical Example 3 of the present invention.

【図12】 本発明の数値実施例3の望遠端の諸収差図FIG. 12 is a diagram illustrating various aberrations at the telephoto end according to Numerical Example 3 of the present invention.

【図13】 本発明の数値実施例3の望遠端の諸収差図FIG. 13 is a diagram illustrating various aberrations at the telephoto end according to Numerical Example 3 of the present invention.

【符号の説明】[Explanation of symbols]

L1 第1群 L2 第2群 L3 第3群 L4 第4群 SP 絞り FP 固定絞り IP 像面 d d線 g g線 ΔM メリディオナル像面 ΔS サジタル像面 L1 First lens unit L2 Second lens unit L3 Third lens unit L4 Fourth lens unit SP diaphragm FP fixed diaphragm IP image plane d d-line g g-line ΔM meridional image plane ΔS sagittal image plane

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に変倍及び合焦の際に固定
の正の屈折力の第1レンズ群、変倍機能を有する負の屈
折力の第2レンズ群、正の屈折カの第3レンズ群、変倍
により変動する像面を補正すると共に合焦機能を有する
正の屈折力の第4レンズ群を有した変倍光学系であっ
て、該第3レンズ群を光軸と垂直方向に移動させて該変
倍光学系が振動した時の撮影画像のぶれを補正し、該第
2レンズ群は物体側から順に像面側に強い凹面を有する
メニスカス状の負の第21レンズ、負の第22レンズ、
正の第23レンズ、負の第24レンズで構成され、全系
の望遠端の焦点距離をft、第2レンズ群の焦点距離を
f2としたとき、 0.05<|f2/ft|<0.07 の条件式を満足していることを特徴とする防振機能を有
した変倍光学系。
1. A first lens group having a fixed positive refractive power, a second lens group having a negative refractive power having a zooming function, and a second lens group having a positive refractive power during zooming and focusing in order from the object side. A variable power optical system having a third lens group and a fourth lens group having a positive refractive power and having a focusing function and correcting an image plane that fluctuates due to zooming, wherein the third lens group is perpendicular to the optical axis. The second lens group is moved in the direction to correct the blur of the captured image when the variable power optical system vibrates, and the second lens group is a meniscus-shaped negative 21st lens having a strong concave surface on the image surface side in order from the object side; The negative 22nd lens,
When the focal length at the telephoto end of the whole system is ft and the focal length of the second lens group is f2, 0.05 <| f2 / ft | <0. A zoom optical system having an anti-vibration function, which satisfies the following conditional expression.
【請求項2】 前記第24レンズの焦点距離をf24と
するとき、 1.2<|f24/f2|<2.5 なる条件式を満足することを特徴とする請求項1記載の
防振機能を有した変倍光学系。
2. The anti-vibration function according to claim 1, wherein a conditional expression of 1.2 <| f24 / f2 | <2.5 is satisfied, where f24 is a focal length of the 24th lens. Variable power optical system having
【請求項3】 物体側より順に変倍及び合焦の際に固定
の正の屈折力の第1レンズ群、変倍機能を有する負の屈
折力の第2レンズ群、正の屈折力の第3レンズ群、変倍
により変動する像面を補正すると共に合焦機能を有する
正の屈折力の第4レンズ群を有した変倍光学系であっ
て、該第3レンズ群を光軸と垂直方向に移動させて該変
倍光学系が振動した時の撮影画像のぶれを補正し、該変
倍光学系の最も物体側のレンズ面より、該第3レンズ群
の最も物体側のレンズ面までの距離をLS、全系の望遠
端の焦点距離をftとするとき 0.42<|LS/ft|<0.59 なる条件式を満足していることを特徴とする防振機能を
有した変倍光学系。
3. A first lens unit having a fixed positive refractive power, a second lens unit having a negative refractive power having a zooming function, and a second lens unit having a positive refractive power when zooming and focusing in order from the object side. A variable power optical system having a third lens group and a fourth lens group having a positive refractive power and having a focusing function and correcting an image plane that fluctuates due to zooming, wherein the third lens group is perpendicular to the optical axis. To correct the blur of the captured image when the variable power optical system vibrates, from the most object side lens surface of the variable power optical system to the most object side lens surface of the third lens group. Where LS is the distance of LS and ft is the focal length at the telephoto end of the entire system, the following conditional expression is satisfied: 0.42 <| LS / ft | <0.59 Variable power optical system.
【請求項4】 前記第3レンズ群は物体側から順に正の
第31レンズ、像面側に強い凹面を向けたメニスカス状
の負の第32レンズを有することを特徴とする請求項1
または3記載の防振機能を有した変倍光学系。
4. The third lens unit according to claim 1, wherein the third lens group includes a positive first lens in order from the object side, and a meniscus negative second lens having a strong concave surface facing the image surface side.
Or a variable power optical system having the anti-vibration function according to 3.
【請求項5】 前記第32レンズと、第3レンズ群全体
の焦点距離を各々f32、f3としたとき 1.2<|f32/f3|<1.8 なる条件式を満足することを特徴とする請求項1または
3記載の防振機能を有した変倍光学系。
5. When the focal lengths of the 32nd lens and the entire third lens group are f32 and f3, respectively, a conditional expression of 1.2 <| f32 / f3 | <1.8 is satisfied. 4. A variable power optical system having an image stabilizing function according to claim 1.
【請求項6】 変倍時に開放径を全系の焦点距離に応じ
て可変とする開口絞りを有していることを特徴とする請
求項1または3記載の防振機能を有した変倍光学系。
6. A variable-magnification optical system having an image stabilizing function according to claim 1, further comprising an aperture stop that varies an opening diameter according to a focal length of the entire system during zooming. system.
JP12882499A 1999-05-10 1999-05-10 Variable magnification optical system with anti-vibration function Expired - Fee Related JP4371468B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12882499A JP4371468B2 (en) 1999-05-10 1999-05-10 Variable magnification optical system with anti-vibration function
US09/564,376 US6414800B1 (en) 1999-05-10 2000-05-02 Variable magnification optical system and camera having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12882499A JP4371468B2 (en) 1999-05-10 1999-05-10 Variable magnification optical system with anti-vibration function

Publications (2)

Publication Number Publication Date
JP2000321494A true JP2000321494A (en) 2000-11-24
JP4371468B2 JP4371468B2 (en) 2009-11-25

Family

ID=14994328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12882499A Expired - Fee Related JP4371468B2 (en) 1999-05-10 1999-05-10 Variable magnification optical system with anti-vibration function

Country Status (1)

Country Link
JP (1) JP4371468B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182109A (en) * 2000-12-14 2002-06-26 Canon Inc Zoom lens and optical equipment using the same
JP2006178193A (en) * 2004-12-22 2006-07-06 Canon Inc Zoom lens and imaging apparatus having the same
JP2008209755A (en) * 2007-02-27 2008-09-11 Nikon Corp Zoom lens and optical device having the same
CN114442293A (en) * 2021-12-29 2022-05-06 河南中光学集团有限公司 Laser illumination beam expanding and zooming optical system
JP7387423B2 (en) 2019-12-25 2023-11-28 キヤノン株式会社 Zoom lens and imaging device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5397467B2 (en) * 2009-05-22 2014-01-22 三菱電機株式会社 Elevator monitoring control method, program, and elevator monitoring control apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182109A (en) * 2000-12-14 2002-06-26 Canon Inc Zoom lens and optical equipment using the same
JP4672860B2 (en) * 2000-12-14 2011-04-20 キヤノン株式会社 Zoom lens and optical apparatus using the same
JP2006178193A (en) * 2004-12-22 2006-07-06 Canon Inc Zoom lens and imaging apparatus having the same
JP2008209755A (en) * 2007-02-27 2008-09-11 Nikon Corp Zoom lens and optical device having the same
JP7387423B2 (en) 2019-12-25 2023-11-28 キヤノン株式会社 Zoom lens and imaging device
CN114442293A (en) * 2021-12-29 2022-05-06 河南中光学集团有限公司 Laser illumination beam expanding and zooming optical system
CN114442293B (en) * 2021-12-29 2023-09-12 河南中光学集团有限公司 Laser illumination beam expansion zoom optical system

Also Published As

Publication number Publication date
JP4371468B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
JP3359131B2 (en) Variable power optical system with anti-vibration function
JP4447704B2 (en) Variable magnification optical system and camera having the same
JPH11174329A (en) Variable power optical system having vibration-proof function
JP2007148056A (en) Zoom optical system
JP2009175324A (en) Zoom lens and imaging apparatus having the same
US6392816B1 (en) Variable magnification optical system and optical apparatus having the same
JP3814406B2 (en) Variable magnification optical system having anti-vibration function and camera having the same
JP2002244037A (en) Variable power optical system having vibrationproof function and optical equipment using it
JP2006189627A (en) Zoom lens and imaging apparatus having the same
JP4545849B2 (en) Variable magnification optical system
JP2003295057A (en) Zoom lens and optical equipment having the same
JP4829445B2 (en) Zoom lens and optical apparatus having the same
JP4095131B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus having the same
JP4630578B2 (en) Zoom lens and imaging apparatus having the same
JP4533437B2 (en) Zoom lens
JPH10260355A (en) Variable power optical system with vibration-proof function
JP2001124992A (en) Variable power optical system having vibration-proof function, and optical equipment equipped with the same
JP4314248B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus having the same
JP3927684B2 (en) Variable magnification optical system with anti-vibration function
JP4324175B2 (en) Variable magnification optical system with anti-vibration function
JP2001091830A (en) Zoom lens
JP4764524B2 (en) Variable magnification optical system and camera having the same
JP3927730B2 (en) Variable magnification optical system with anti-vibration function
JP2000321494A (en) Variable power optical system provided with vibration- proof function
JP5765533B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method for manufacturing the variable magnification optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees