JP3927684B2 - Variable magnification optical system with anti-vibration function - Google Patents

Variable magnification optical system with anti-vibration function Download PDF

Info

Publication number
JP3927684B2
JP3927684B2 JP11422198A JP11422198A JP3927684B2 JP 3927684 B2 JP3927684 B2 JP 3927684B2 JP 11422198 A JP11422198 A JP 11422198A JP 11422198 A JP11422198 A JP 11422198A JP 3927684 B2 JP3927684 B2 JP 3927684B2
Authority
JP
Japan
Prior art keywords
lens
group
optical system
refractive power
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11422198A
Other languages
Japanese (ja)
Other versions
JPH11295594A (en
Inventor
博之 浜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11422198A priority Critical patent/JP3927684B2/en
Publication of JPH11295594A publication Critical patent/JPH11295594A/en
Application granted granted Critical
Publication of JP3927684B2 publication Critical patent/JP3927684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は防振機能を有した変倍光学系に関し、特に変倍光学系の一部のレンズ群を光軸と垂直方向に移動させることにより、該変倍光学系が振動(傾動)したときの撮影画像のブレを光学的に補正して静止画像を得るようにし撮影画像の安定化を図った写真用カメラやビデオカメラ等に好適な防振機能を有した変倍光学系に関するものである。
【0002】
【従来の技術】
進行中の車や航空機等移動物体上から撮影をしようとすると撮影系に振動が伝わり手振れとなり撮影画像にブレが生じる。
【0003】
従来よりこのときの撮影画像のブレを防止する機能を有した防振光学系が種々と提案されている。
【0004】
例えば特公昭56−21133号公報では光学装置に振動状態を検知する検知手段からの出力信号に応じて、一部の光学部材を振動による画像の振動的変位を相殺する方向に移動させることにより画像の安定化を図っている。
【0005】
特開昭61−223819号公報では最も被写体側に屈折型可変頂角プリズムを配置した撮影系において、撮影系の振動に対応させて該屈折型可変頂角プリズムの頂角を変化させて画像を偏向させて画像の安定化を図っている。
【0006】
特公昭56−34847号公報、特公昭57−7414号公報等では撮影系の一部に振動に対して空間的に固定の光学部材を配置し、この光学部材の振動に対して生ずるプリズム作用を利用することにより撮影画像を偏向させ結像面上で静止画像を得ている。
【0007】
特開平1−116619号公報や特開平2−124521号公報では加速度センサー等を利用して撮影系の振動を検出し、このとき得られる信号に応じ、撮影系の一部のレンズ群を光軸と直交する方向に振動させることにより静止画像を得る方法も行なわれている。
【0008】
又、特開平7−128619号公報では、物体側より順に変倍及び合焦の際に固定の正の屈折力の第1群、変倍機能を有する負の屈折力の第2群、開口絞り、正の屈折力の第3群、そして変倍により変動する像面を補正する補正機能と合焦機能の双方の機能を有する正の屈折力の第4群の4つのレンズ群を有した変倍光学系であって、該第3群は負の屈折力の第31群と正の屈折力の第32群の2つのレンズ群より成り、該第32群を光軸と垂直方向に移動させて該変倍光学系が振動したときの撮影画像のブレを補正している。
【0009】
特開平7−199124号公報では、正、負、正そして正の屈折力の4つのレンズ群より成る4群構成の変倍光学系において、第3群全体を光軸と垂直方向に振動させて防振を行っている。
【0010】
一方、特開平5−60974号公報では、正、負、正そして正の屈折力の4つのレンズ群より成る4群構成の変倍光学系において、第3群を正レンズとメニスカス状の負レンズのテレフォトタイプより構成してレンズ全長の短縮化を図っている。
【0011】
【発明が解決しようとする課題】
一般に防振光学系を撮影系の前方に配置し、該防振光学系の一部の可動レンズ群を振動させて撮影画像のブレを無くし、静止画像を得る方法は装置全体が大型化し、且つ該可動レンズ群を移動させる為の移動機構が複雑化してくるという問題点があった。
【0012】
又、可動レンズ群を振動させたときの偏心収差の発生量が多くなり光学性能が大きく低下してくるという問題点もあった。
【0013】
可変頂角プリズムを利用して防振を行なう光学系では特に長焦点距離側(望遠側)において防振時に偏心倍率色収差の発生量が多くなるという問題点があった。
【0014】
一方、撮影系の一部のレンズを光軸に対して垂直方向に平行偏心させて防振を行なう光学系においては、防振の為に特別な光学系は要しないという利点はあるが、移動させるレンズの為の空間を必要とし、又防振時における偏心収差の発生量が多くなってくるという問題点があった。
【0015】
又前述した正、負、正そして正の屈折力の4つのレンズ群より成る4群構成の変倍光学系において、第3群全体を光軸に垂直方向に移動させて防振を行った場合、第3群をレンズ全長短縮のため正レンズとメニスカス状の負レンズのテレフォトタイプで構成したとき、偏心収差、特に偏心歪曲収差が多く発生する。これをビデオカメラ等の動画撮影を行うものに使った場合、防振時の画像の変形が目立つといった問題点があった。
【0016】
本発明は、変倍光学系の一部を構成する比較的小型軽量のレンズ群を光軸と垂直方向に移動させて、該変倍光学系が振動(傾動)したときの画像のブレを補正する際、該レンズ群のレンズ構成を適切に構成することにより、装置全体の小型化,機構上の簡素化及び駆動手段の負荷の軽減化を図りつつ該レンズ群を偏心させたときの偏心発生量を少なく抑え、偏心収差を良好に補正した防振機能を有した変倍光学系の提供を目的とする。
【0017】
【課題を解決するための手段】
本発明の防振機能を有した変倍光学系は、物体側より順に変倍及び合焦の際に固定の正の屈折力の第1群、変倍機能を有する負の屈折力の第2群、正の屈折力の第3群、そして変倍により変動する像面を補正する補正機能と合焦機能の双方の機能を有する正の屈折力の第4群の4つのレンズ群より構成された変倍光学系であって、該第3群は両レンズ面に非球面を施した正の第31レンズ、像面側に凹面を向けたメニスカス状の負の第32レンズ、正の第33レンズより成り、該第3群を光軸と垂直方向に移動させて該変倍光学系が振動したときの撮影画像のブレを補正しており、
該第32レンズと該第3群と広角端における全系の焦点距離を順にf32、f3、fwとしたとき、
0.8<|f32/f3|<1.7 ‥‥‥(1)
3.5<f3/fW<5.0 ‥‥‥(2)
なる条件を満足することを特徴としている。
この他、本発明の防振機能を有した変倍光学系は、物体側より順に変倍及び合焦の際に固定の正の屈折力の第1群、変倍機能を有する負の屈折力の第2群、正の屈折力の第3群、そして変倍により変動する像面を補正する補正機能と合焦機能の双方の機能を有する正の屈折力の第4群の4つのレンズ群より構成された変倍光学系であって、該第3群は両レンズ面に非球面を施した正の第31レンズ、像面側に凹面を向けたメニスカス状の負の第32レンズ、正の第33レンズより成り、該第3群を光軸と垂直方向に移動させて該変倍光学系が振動したときの撮影画像のブレを補正しており、
該第32レンズと該第33レンズと該第3群の焦点距離を順にf32、f33、f3としたとき、
0.8<|f32/f3|<1.7‥‥‥(1)
1.6<f33/f3<2.4 ‥‥‥(3)
なる条件を満足することを特徴としている。
【0018】
【発明の実施の形態】
図1は本発明の後述する数値実施例1〜3の近軸屈折力配置を示す概略図、図2〜図4は本発明の数値実施例1〜3の広角端のレンズ断面図である。図5〜図13は本発明の数値実施例1〜3の収差図である。
【0019】
図中、L1は正の屈折力の第1群、L2は負の屈折力の第2群、L3は正の屈折力の第3群である。本実施形態では、第3群L3を光軸と垂直方向に移動させて変倍光学系が振動(傾動)したときの撮影画像のブレを補正している。L4は正の屈折力の第4群である。SPは開口絞りであり、第3群L3の前方に配置している。Gはフェースプレート等のガラスブロックである。IPは像面である。FPはフレアー絞り(固定絞り)であり、第3群で防振を行ったときのフレアー成分をカットしている。収差図においてdはd線、gはg線、ΔMはメリディオナル像面、ΔSはサジタル像面、Wは半画角である。
【0020】
本実施形態では広角端から望遠端への変倍に際して矢印のように第2群を像面側へ移動させると共に、変倍に伴う像面変動を第4群を移動させて補正している。又、第4群を光軸上移動させてフォーカスを行うリヤーフォーカス式を採用している。同図に示す第4群の実線の曲線4aと点線の曲線4bは各々無限遠物体と近距離物体にフォーカスしているときの広角端から望遠端への変倍に伴う際の像面変動を補正する為の移動軌跡を示している。尚、第1群と第3群は変倍及びフォーカスの際固定であるが必要に応じて移動させてもよい。
【0021】
本実施形態においては第4群を移動させて変倍に伴う像面変動の補正を行うと共に第4群を移動させてフォーカスを行うようにしている。特に同図の曲線4a,4bに示すように広角端から望遠端への変倍に際して物体側へ凸状の軌跡を有するように移動させている。これにより第3群と第4群との空間の有効利用を図りレンズ全長の短縮化を効果的に達成している。
【0022】
本実施形態において、例えば望遠端において無限遠物体から近距離物体へフォーカスを行う場合は同図の直線4cに示すように第4群を前方へ繰り出すことにより行っている。
【0023】
本実施形態におけるズームレンズは第1群と第2群の合成系で形成した虚像を第3群と第4群で感光面上に結像するズーム方式をとっている。
【0024】
本実施形態では従来の所謂4群ズームレンズにおいて第1群を繰り出してフォーカスを行う場合に比べて前述のようなリヤーフォーカス方式を採ることにより第1群の偏心誤差による性能劣化を防止しつつ第1群のレンズ有効径の増大化を効果的に防止している。そして開口絞りを第3群の直前に配置することにより可動レンズ群による収差変動を少なくし、開口絞りより前方のレンズ群の間隔を短くすることにより前玉レンズ径の縮少化を容易に達成している。
【0025】
本発明の数値実施例1〜3においては第3群L3を光軸と垂直方向に移動させて変倍光学系が振動したときの像ブレを補正している。これにより従来の防振光学系に比べて防振の為のレンズ群や可変頂角プリズム等の光学部材を新たに付加することなく防振を行なっている。
【0026】
次に本発明に係る変倍光学系においてレンズ群を光軸と垂直方向に移動させて撮影画像のブレを補正する防振系の光学的原理を図14を用いて説明する。
【0027】
図14(A)に示すように光学系が固定群Y1・偏心群Y2そして固定群Y3の3つの部分から成り立っており、レンズから充分に離れた光軸上の物点Pが撮像面IPの中心に像点pとして結像しているものとする。今、撮像面IPを含めた光学系全体が図14(B)のように手振れにより瞬間的に傾いたとすると、物点Pは像点p′にやはり瞬間的に移動し、ブレた画像となる。一方、偏心群Y2を光軸と垂直方向に移動させると図14(C)のように、像点pはp″に移動し、その移動量・方向はパワー配置に依存し、そのレンズ群の偏心敏感度として表される。
【0028】
そこで図14(B)で手振れによってズレた像点p′を偏心群Y2を適切な量だけ光軸と垂直方向に移動させることによってもとの結像位置pに戻すことで図14(D)に示すとおり、手振れ補正つまり防振を行っている。
【0029】
今、光軸をθ°補正するために必要なシフトレンズ群(偏心群)の移動量(シフト量)をΔ、光学系全体の焦点距離をf、シフトレンズ群Y2の偏心敏感度をTSとすると、移動量Δは、
Δ=f・tan(θ)/TS
の式で与えられる。
【0030】
今、シフトレンズ群の偏心敏感度TSが大きすぎると移動量Δは小さな値となり、防振に必要なシフトレンズ群の移動量は小さくできるが、適切に防振を行う為の制御が困難になり、補正残りが生じてしまう。特にビデオカメラやデジタルスチルカメラではCCD等の撮像素子のイメージサイズが銀塩フィルムと比べて小さく、同一画角に対する焦点距離が短いため、同一角度を補正する為のシフトレンズ群のシフト量Δが小さくなる。
【0031】
従って、メカ(機構)の精度が同程度だと画面上での補正残りが相対的に大きくなることになってしまう。一方、偏心敏感度TSが小さすぎると制御のために必要なシフトレンズ群の移動量が大きくなってしまい、シフトレンズ群を駆動する為のアクチュエーター等の駆動手段も大きくなってしまう。
【0032】
本発明では各レンズ群の屈折力配置を適切な値に設定することで、第3群の偏心敏感度TSを適正な値とし、メカの制御誤差による防振の補正残りが少なく、アクチュエーター等の駆動手段の負荷も少ない光学系を達成している。
【0033】
本実施形態では第3群を物体側から順に物体側のレンズ面が凸面の正の第31レンズL31、像面側に強い凹面を向けたメニスカス状の負の第32レンズL32、両レンズ面が凸面の正の第33レンズL33より構成している。又、第31レンズは両レンズ面を非球面形状としている。
【0034】
第3群中に像面側に凹面を向けたメニスカス状の負の第32レンズを設けることにより第3群全体をテレフォト構成として、第2群と第3群の主点間隔を短縮し、レンズ全長の短縮化を達成している。
【0035】
このようなメニスカス状の負レンズを設けた場合、そのレンズ面で正の歪曲収差が発生する。
【0036】
今、第3群全体で正の歪曲収差を持っていたとする。例として図3を用いて説明すると、防振のために第3群全体が図3(A)に示すように上方向に偏心したとする。このとき点S1に来る軸外光線が第3群を通過する高さが小さくなり、正の歪曲が減少する。逆に点S2の側へ来る光線では正の歪曲が増加する。従って、4角形の物体は像面上で図3(B)の実線に示すような形に変形する。
【0037】
逆に第3群が下方向に移動した場合、図3(B)の点線のような形に変形するため、振動が加わった場合、それに伴って画像が変形し、特に動画像では観る人に違和感を与える。この減少を低減させるには第3群全体で発生する歪曲収差を少なくしてやればよい。
【0038】
本実施形態ではメニスカス状の負の第32レンズL32の像面側に正の第33レンズL33を配置することによってテレフォト構成を維持しつつ、第3群内で歪曲収差を補正し、第3群をシフトして防振を行う際に発生する偏心歪曲収差の発生を低減している。
【0039】
また本実施形態では第31レンズL31の両レンズ面に非球面を設けることにより、第3群で球面収差を抑制し、防振時に発生する偏心コマ収差を低減している。
【0040】
本発明の防振機能を有した変倍光学系は以上のような条件を満足することにより実現されるが、更にレンズ全長の短縮を図りつつ、良好な光学性能を達成する為には、以下の条件のうち少なくとも1つを満足することが望ましい。
【0041】
(イ-1) 前記第32レンズと前記第3群の焦点距離を各々f32,f3としたとき、
0.8<|f32/f3|<1.7・・・(1)
なる条件を満足することである。
【0042】
条件式(1)の下限値を越えて第3群中の負の第32レンズの屈折力が強くなるとレンズ全長の短縮化には有利だが、ペッツバール和が負の方向に増大してしまい像面湾曲の補正が困難になるので良くない。逆に限値を越えてしまうと全長短縮が不十分になってしまう。
【0043】
(イ-2) 前記第3群の焦点距離をf3、全系の広角端の焦点距離をfWとしたとき、
3.5<f3/fW<5.0・・・(2)
なる条件を満足することである。
【0044】
条件式(2)はレンズ全長の短縮化を図りつつ、防振のためのシフトレンズ群の敏感度を適切に設定し、防振性能を良好に維持する為のものである。条件式(2)の下限値を越えて第3群の屈折力を強くすると、シフトレンズ群の敏感度が大きくなりすぎ、メカ精度を厳しくしないと防振時の補正残りが大きくなってしまうので良くない。逆に上限値を越えて第3群の屈折力を弱くしてしまうと、防振のために必要な第3群のシフト量が大きくなったり、レンズ全長が大きくなったりするので良くない。
【0045】
(イ-3) 前記第33レンズと前記第3群の焦点距離を各々f33,f3としたとき、
1.6<f33/f3<2.4・・・(3)
なる条件を満足することである。
【0046】
条件式(3)は第3群のテレフォト型を維持しつつ、第3群内の歪曲収差と非点収差を補正し、防振時の光学性能を良好に維持するためのものである。条件式(3)の下限値を越えて第33レンズの屈折力が強くなり過ぎると第3群のテレフォト型が維持されず、レンズ全長の短縮効果が無くなるので良くない。逆に上限値を越えると第3群内での歪曲収差や非点収差の補正が不十分になり、防振時の光学性能が劣化してしまう。
【0047】
(イ-4) 前記第2群の焦点距離をf2、全系の広角端と望遠端の焦点距離を各々fW,fTとしたとき、
【0048】
【数2】
なる条件を満足することである。
【0049】
条件式(4)の下限値を越えて第2群の屈折力が強くなりすぎるとレンズ全長の短縮化には有利だが、像面湾曲や歪曲の変倍全域にわたる変動を補正するのが困難になるので良くない。また条件式(4)の上限値を越えて第2群の屈折力が弱くなりすぎると変倍に必要な第2群の移動量が大きくなりすぎるので良くない。
【0050】
(イ-5) 第2群は物体側から順に像面側に強い凹面を向けたメニスカス状の負の第21レンズ、両レンズ面が凹面の負の第22レンズ、そして正の第23レンズで構成するのが良いが、更に変倍比を上げたいときには更に像面側に負レンズを追加した4枚構成としても良い。
【0051】
(イ-6) 変倍時の非点収差や歪曲の変動の補正の為には、第2群に非球面を導入するのが良い。
【0052】
(イ-7) 第3群は防振のために移動する分、レンズ径をそれだけ大きくしている。従って、余計な軸上光束が入り過ぎないようにする為に第3群の物体側、あるいは像面側に固定の絞り(フレアー絞り)FPを配置するのが良い。本実施形態では第3群と第4群の間に固定絞りFPを配置することでスペースを有効に利用しつつ、不要な光束が感光面に入らないようにしている。
【0053】
次に本発明の数値実施例を示す。数値実施例においてRiは物体側より順に第i番目のレンズ面の曲率半径、Diは物体側より第i番目のレンズ厚及び空気間隔、Niとνiは各々物体側より順に第i番目のレンズのガラスの屈折率とアッベ数である。fは焦点距離、FnoはFナンバー、ωは半画角である。
【0054】
又前述の各条件式と数値実施例における諸数値との関係を表−1に示す。
【0055】
非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正としRを近軸曲率半径、A,B,C,D,Eを各々非球面係数としたとき、
【0056】
【数3】
なる式で表している。又「e−0X」は10-Xを意味している。
【0057】
【表1】
【0058】
【表2】
【0059】
【表3】
【0060】
【表1】
【0061】
【発明の効果】
本発明によれば、変倍光学系の一部を構成する比較的小型軽量のレンズ群を光軸と垂直方向に移動させて、該変倍光学系が振動(傾動)したときの画像のブレを補正する際、該レンズ群のレンズ構成を適切に構成することにより、装置全体の小型化,機構上の簡素化及び駆動手段の負荷の軽減化を図りつつ該レンズ群を偏心させたときの偏心発生量を少なく抑え、偏心収差を良好に補正した防振機能を有した変倍光学系を達成することができる。
【図面の簡単な説明】
【図1】 本発明に係る変倍光学系の近軸屈折力配置の概略図
【図2】 本発明の数値実施例1の広角端のレンズ断面図
【図3】 本発明の数値実施例2の広角端のレンズ断面図
【図4】 本発明の数値実施例3の広角端のレンズ断面図
【図5】 本発明の数値実施例1の広角端の諸収差図
【図6】 本発明の数値実施例1の望遠端の諸収差図
【図7】 本発明の数値実施例1の望遠端の諸収差図
【図8】 本発明の数値実施例2の広角端の諸収差図
【図9】 本発明の数値実施例2の望遠端の諸収差図
【図10】 本発明の数値実施例2の望遠端の諸収差図
【図11】 本発明の数値実施例3の広角端の諸収差図
【図12】 本発明の数値実施例3の望遠端の諸収差図
【図13】 本発明の数値実施例3の望遠端の諸収差図
【図14】 本発明に係る防振系の光学的原理の説明図
【符号の説明】
L1 第1群
L2 第2群
L3 第3群
L4 第4群
SP 絞り
IP 像面
FP フレアー絞り(固定絞り)
d d線
g g線
ΔM メリディオナル像面
ΔS サジタル像面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a variable magnification optical system having an anti-vibration function, and in particular, when the variable magnification optical system vibrates (tilts) by moving a part of the lens group of the variable magnification optical system in a direction perpendicular to the optical axis. The present invention relates to a variable magnification optical system having an image stabilization function suitable for a photographic camera, a video camera, etc., in which a still image is obtained by optically correcting a blur of the captured image in order to stabilize the captured image. .
[0002]
[Prior art]
If an attempt is made to shoot from a moving object such as an ongoing car or aircraft, vibrations are transmitted to the photographic system, causing camera shake and blurring of the captured image.
[0003]
Conventionally, various anti-vibration optical systems having a function of preventing blurring of a photographed image at this time have been proposed.
[0004]
For example, in Japanese Examined Patent Publication No. 56-21133, an image is obtained by moving some optical members in a direction that cancels the vibrational displacement of the image due to the vibration in accordance with an output signal from a detecting means for detecting a vibration state in the optical device. We are trying to stabilize.
[0005]
In JP-A-61-223819, in an imaging system in which a refractive variable apex angle prism is arranged closest to the subject, an image is obtained by changing the apex angle of the refractive variable apex angle prism in response to vibration of the imaging system. The image is stabilized by deflecting.
[0006]
In Japanese Patent Publication No. 56-34847, Japanese Patent Publication No. 57-7414, etc., an optical member spatially fixed with respect to vibration is arranged in a part of the photographing system, and the prism action generated against the vibration of this optical member is arranged. By utilizing this, the captured image is deflected to obtain a still image on the imaging plane.
[0007]
In JP-A-1-116619 and JP-A-2-124521, vibration of the photographing system is detected using an acceleration sensor or the like, and a part of the lens group of the photographing system is moved to the optical axis according to a signal obtained at this time. There is also a method of obtaining a still image by vibrating in a direction orthogonal to.
[0008]
Japanese Patent Laid-Open No. 7-128619 discloses a first group having a positive refractive power, a second group having a negative refractive power having a zooming function, and an aperture stop in order from the object side during zooming and focusing. A third lens unit having a positive refractive power, and a fourth lens unit having a positive refractive power fourth group having both a correction function for correcting an image plane fluctuating due to zooming and a focusing function. In the double optical system, the third group is composed of two lens groups of a negative refractive power group 31 and a positive refractive power group 32, and the group 32 is moved in a direction perpendicular to the optical axis. Thus, blurring of the photographed image when the variable magnification optical system vibrates is corrected.
[0009]
In Japanese Patent Application Laid-Open No. 7-199124, in a variable power optical system having a four-group configuration including four lens groups having positive, negative, positive and positive refractive powers, the entire third group is vibrated in a direction perpendicular to the optical axis. Anti-vibration is performed.
[0010]
On the other hand, in Japanese Patent Application Laid-Open No. 5-60974, in a variable power optical system having a four-group configuration including four lens groups having positive, negative, positive and positive refractive powers, the third group is a positive lens and a meniscus negative lens. The telephoto type is used to shorten the overall lens length.
[0011]
[Problems to be solved by the invention]
In general, a method for obtaining a still image by arranging a vibration-proof optical system in front of a photographing system, vibrating a part of the movable lens group of the vibration-proof optical system to eliminate a blur of a photographed image, and increasing the overall size of the apparatus. There is a problem that a moving mechanism for moving the movable lens group becomes complicated.
[0012]
Another problem is that the amount of decentration aberration generated when the movable lens group is vibrated increases and the optical performance is greatly reduced.
[0013]
In an optical system that performs vibration isolation using a variable apex angle prism, there is a problem that the amount of decentered chromatic aberration generated increases during image stabilization, particularly on the long focal length side (telephoto side).
[0014]
On the other hand, in an optical system that performs image stabilization by decentering a part of the lens of the imaging system in the direction perpendicular to the optical axis, there is an advantage that no special optical system is required for image stabilization. There is a problem that a space for the lens to be operated is required, and the amount of decentration aberrations generated during image stabilization increases.
[0015]
In the above-described four-unit variable magnification optical system including the four lens units having the positive, negative, positive, and positive refractive powers, the entire third unit is moved in the direction perpendicular to the optical axis to perform vibration isolation. When the third lens unit is configured with a telephoto type of a positive lens and a meniscus negative lens in order to shorten the total lens length, a large amount of decentration aberration, particularly decentration distortion, is generated. When this is used for moving images such as a video camera, there is a problem that the deformation of the image at the time of image stabilization is conspicuous.
[0016]
The present invention corrects blurring of an image when the zoom optical system vibrates (tilts) by moving a relatively small and lightweight lens group constituting a part of the zoom optical system in a direction perpendicular to the optical axis. When the lens group is appropriately configured, the occurrence of decentration occurs when the lens group is decentered while reducing the size of the entire apparatus, simplifying the mechanism, and reducing the load on the driving means. An object of the present invention is to provide a variable magnification optical system having an image stabilization function in which the amount is reduced and the decentration aberration is corrected well.
[0017]
[Means for Solving the Problems]
The variable power optical system having the image stabilization function according to the present invention includes, in order from the object side, a first group of fixed positive refractive powers during zooming and focusing, and a second negative refractive power having a variable power function. group, a third lens unit of positive refractive power, and is composed of four lens groups in the fourth lens unit of positive refractive power having a function of both the compensation function and the focusing function of correcting an image plane which varies with zooming The third group includes a positive thirty-first lens having aspheric surfaces on both lens surfaces, a meniscus negative thirty-second lens having a concave surface facing the image surface side, and a positive thirty-third lens. The lens comprises a lens, and the third group is moved in a direction perpendicular to the optical axis to correct blurring of a captured image when the variable magnification optical system vibrates .
When the focal lengths of the entire system at the 32nd lens, the third group, and the wide-angle end are f32, f3, and fw in this order,
0.8 <| f32 / f3 | <1.7 (1)
3.5 <f3 / fW <5.0 (2)
It is characterized by satisfying the following conditions .
In addition, the variable power optical system having the image stabilization function according to the present invention includes, in order from the object side, a first group of fixed positive refractive powers upon zooming and focusing, and a negative refractive power having a zooming function. And a fourth group of positive refractive power and a fourth group having both a correction function for correcting an image plane fluctuating due to zooming and a focusing function. The third lens unit includes a positive 31st lens having aspheric surfaces on both lens surfaces, a meniscus negative 32nd lens with a concave surface facing the image surface, a positive lens The third lens unit is moved in a direction perpendicular to the optical axis to correct blurring of a captured image when the variable magnification optical system vibrates ,
When the focal lengths of the thirty-second lens, the thirty-third lens, and the third group are f32, f33, and f3 in this order,
0.8 <| f32 / f3 | <1.7 (1)
1.6 <f33 / f3 <2.4 (3)
It is characterized by satisfying the following conditions .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic diagram showing a paraxial refractive power arrangement of numerical embodiments 1 to 3 described later of the present invention, and FIGS. 2 to 4 are sectional views of lenses at the wide angle end of numerical embodiments 1 to 3 of the present invention. 5 to 13 are aberration diagrams of Numerical Examples 1 to 3 of the present invention.
[0019]
In the figure, L1 is a first group having a positive refractive power, L2 is a second group having a negative refractive power, and L3 is a third group having a positive refractive power. In this embodiment, the third group L3 is moved in the direction perpendicular to the optical axis to correct blurring of the captured image when the variable magnification optical system vibrates (tilts). L4 is a fourth group having a positive refractive power. SP is an aperture stop, which is disposed in front of the third lens unit L3. G is a glass block such as a face plate. IP is the image plane. FP is a flare stop (fixed stop), which cuts off the flare component when the third group performs vibration isolation. In the aberration diagrams, d is the d-line, g is the g-line, ΔM is the meridional image plane, ΔS is the sagittal image plane, and W is the half field angle.
[0020]
In this embodiment, when zooming from the wide-angle end to the telephoto end, the second group is moved to the image plane side as indicated by an arrow, and the image plane variation accompanying zooming is corrected by moving the fourth group. In addition, a rear focus type is employed in which focusing is performed by moving the fourth group on the optical axis. The solid curve 4a and the dotted curve 4b of the fourth group shown in the figure show the image plane fluctuations accompanying the zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at close distance, respectively. The movement trajectory for correction is shown. The first group and the third group are fixed during zooming and focusing, but may be moved as necessary.
[0021]
In the present embodiment, the fourth group is moved to correct the image plane variation accompanying zooming, and the fourth group is moved to perform focusing. In particular, as shown by the curves 4a and 4b in the figure, the zoom lens is moved so as to have a convex locus toward the object side upon zooming from the wide-angle end to the telephoto end. As a result, the space between the third group and the fourth group is effectively used, and the overall length of the lens is effectively shortened.
[0022]
In the present embodiment, for example, when focusing from an infinitely distant object to a close object at the telephoto end, the fourth group is moved forward as indicated by a straight line 4c in FIG.
[0023]
The zoom lens according to the present embodiment employs a zoom system in which a virtual image formed by the combined system of the first group and the second group is formed on the photosensitive surface by the third group and the fourth group.
[0024]
In the present embodiment, the rear focus method as described above is used in the so-called four-group zoom lens in the conventional so-called four-group zoom lens, and the first group is used for focusing. This effectively prevents an increase in effective lens diameter of one group. By arranging the aperture stop in front of the third lens group, aberration fluctuation due to the movable lens group is reduced, and by shortening the distance between the lens groups in front of the aperture stop, the front lens diameter can be easily reduced. is doing.
[0025]
In Numerical Examples 1 to 3 of the present invention, image blur is corrected when the third lens unit L3 is moved in the direction perpendicular to the optical axis to vibrate the variable magnification optical system. As a result, as compared with the conventional image stabilization optical system, image stabilization is performed without newly adding an optical member such as a lens group or a variable apex angle prism for image stabilization.
[0026]
Next, the optical principle of the image stabilization system that corrects the blur of the captured image by moving the lens group in the direction perpendicular to the optical axis in the variable magnification optical system according to the present invention will be described with reference to FIG.
[0027]
As shown in FIG. 14A, the optical system is composed of three parts, a fixed group Y1, an eccentric group Y2, and a fixed group Y3, and an object point P on the optical axis sufficiently away from the lens is on the imaging surface IP. Assume that an image is formed at the center as an image point p. Assuming that the entire optical system including the imaging surface IP is instantaneously tilted due to camera shake as shown in FIG. 14B, the object point P is also instantaneously moved to the image point p ′, resulting in a blurred image. . On the other hand, when the eccentric group Y2 is moved in the direction perpendicular to the optical axis, the image point p moves to p ″ as shown in FIG. 14C, and the amount and direction of movement depend on the power arrangement, and the lens group Expressed as eccentric sensitivity.
[0028]
Therefore, the image point p ′ shifted due to the camera shake in FIG. 14B is returned to the original imaging position p by moving the decentration group Y2 by an appropriate amount in the direction perpendicular to the optical axis. As shown in FIG. 4, camera shake correction, that is, image stabilization is performed.
[0029]
Now, the movement amount (shift amount) of the shift lens group (eccentric group) necessary for correcting the optical axis by θ ° is Δ, the focal length of the entire optical system is f, and the eccentric sensitivity of the shift lens group Y2 is TS. Then, the movement amount Δ is
Δ = f · tan (θ) / TS
Is given by
[0030]
Now, if the decentering sensitivity TS of the shift lens group is too large, the movement amount Δ becomes a small value, and the shift lens group movement amount necessary for image stabilization can be reduced, but it is difficult to control for proper image stabilization. As a result, the correction remains. Particularly in video cameras and digital still cameras, the image size of an image sensor such as a CCD is smaller than that of a silver halide film, and the focal length for the same angle of view is short, so the shift amount Δ of the shift lens group for correcting the same angle is Get smaller.
[0031]
Therefore, if the accuracy of the mechanism (mechanism) is approximately the same, the remaining correction on the screen becomes relatively large. On the other hand, if the eccentricity sensitivity TS is too small, the amount of movement of the shift lens group necessary for control increases, and the driving means such as an actuator for driving the shift lens group also increases.
[0032]
In the present invention, the decentration sensitivity TS of the third group is set to an appropriate value by setting the refractive power arrangement of each lens group to an appropriate value, and there is little residual vibration correction due to a mechanical control error. An optical system with a small load on the driving means is achieved.
[0033]
In the present embodiment, in the third lens unit, from the object side, a positive 31st lens L31 having a convex lens surface on the object side, a meniscus negative 32nd lens L32 having a strong concave surface facing the image surface side, and both lens surfaces It is composed of a positive 33rd lens L33 having a convex surface. The 31st lens has both lens surfaces aspherical.
[0034]
By providing a meniscus negative 32nd lens having a concave surface facing the image surface side in the third group, the entire third group is made into a telephoto configuration, and the principal point interval between the second group and the third group is shortened. The overall length has been shortened.
[0035]
When such a meniscus negative lens is provided, positive distortion occurs on the lens surface.
[0036]
Now, suppose that the entire third lens group has positive distortion. If it demonstrates using FIG. 3 as an example, suppose that the 3rd whole group decentered upwards, as shown to FIG. 3 (A), for vibration isolation. At this time, the height at which the off-axis ray coming to the point S1 passes through the third group is reduced, and the positive distortion is reduced. On the contrary, the positive distortion increases in the light ray coming to the point S2. Therefore, the quadrangular object is deformed on the image plane as shown by the solid line in FIG.
[0037]
On the contrary, when the third group moves downward, it deforms into the shape shown by the dotted line in FIG. 3B. Therefore, when vibration is applied, the image is deformed accordingly, especially in the case of moving images. Gives a sense of incongruity. In order to reduce this decrease, it is only necessary to reduce the distortion occurring in the entire third group.
[0038]
In this embodiment, by disposing the positive 33rd lens L33 on the image plane side of the meniscus negative 32nd lens L32, the distortion is corrected in the 3rd group while maintaining the telephoto configuration, and the 3rd group. The occurrence of eccentric distortion that occurs when the image is shifted to reduce vibration is reduced.
[0039]
In this embodiment, by providing aspherical surfaces on both lens surfaces of the 31st lens L31, spherical aberration is suppressed in the third group, and decentration coma that occurs during image stabilization is reduced.
[0040]
The variable magnification optical system having the image stabilization function of the present invention is realized by satisfying the above-mentioned conditions, but in order to achieve good optical performance while further shortening the total lens length, It is desirable to satisfy at least one of the following conditions.
[0041]
(A-1) When the focal lengths of the thirty-second lens and the third group are f32 and f3, respectively.
0.8 <| f32 / f3 | <1.7 (1)
To satisfy the following conditions.
[0042]
Exceeding the lower limit of conditional expression (1) and increasing the refractive power of the negative 32nd lens in the third lens group is advantageous for shortening the overall length of the lens, but the Petzval sum increases in the negative direction. It is not good because it is difficult to correct the curvature. If exceeds the upper limit value length reductions becomes insufficient reversed.
[0043]
(A-2) When the focal length of the third lens unit is f3 and the focal length of the wide-angle end of the entire system is fW,
3.5 <f3 / fW <5.0 (2)
To satisfy the following conditions.
[0044]
Conditional expression (2) is for appropriately setting the sensitivity of the shift lens group for anti-vibration and maintaining good anti-vibration performance while shortening the total lens length. If the refractive power of the third lens unit is increased beyond the lower limit of conditional expression (2), the sensitivity of the shift lens unit will become too high, and if the mechanical accuracy is not tightened, the remaining correction during vibration isolation will increase. Not good. Conversely, if the upper limit is exceeded and the refractive power of the third group is weakened, the shift amount of the third group necessary for image stabilization becomes large and the total lens length becomes large, which is not good.
[0045]
(A-3) When the focal lengths of the 33rd lens and the third group are f33 and f3, respectively.
1.6 <f33 / f3 <2.4 (3)
To satisfy the following conditions.
[0046]
Conditional expression (3) is for maintaining the optical performance at the time of image stabilization by correcting the distortion and astigmatism in the third group while maintaining the telephoto type of the third group. If the lower limit of conditional expression (3) is exceeded and the refracting power of the 33rd lens becomes too strong, the telephoto type of the third lens group will not be maintained, and the effect of shortening the overall lens length will be lost. On the other hand, if the upper limit is exceeded, correction of distortion and astigmatism in the third lens group will be insufficient, and optical performance at the time of image stabilization will deteriorate.
[0047]
(B-4) When the focal length of the second group is f2, and the focal lengths of the wide-angle end and the telephoto end of the entire system are fW and fT, respectively.
[0048]
[Expression 2]
To satisfy the following conditions.
[0049]
If the refractive power of the second lens unit becomes too strong beyond the lower limit of conditional expression (4), it is advantageous for shortening the total lens length, but it is difficult to correct variations over the entire range of field curvature and distortion. It ’s not good. If the refractive power of the second group becomes too weak beyond the upper limit of conditional expression (4), the amount of movement of the second group necessary for zooming becomes too large, which is not good.
[0050]
(B-5) The second group is a meniscus negative 21st lens with a strong concave surface facing the image side in order from the object side, a negative 22nd lens with both lens surfaces concave, and a positive 23rd lens. Although it is preferable to configure the zoom lens, a four-lens configuration in which a negative lens is further added on the image plane side may be used to further increase the zoom ratio.
[0051]
(A-6) In order to correct astigmatism and distortion fluctuation at the time of zooming, it is preferable to introduce an aspherical surface to the second group.
[0052]
(B-7) The third lens unit has a larger lens diameter as it moves to prevent vibration. Therefore, in order to prevent an excessive on-axis light beam from entering excessively, it is preferable to dispose a fixed stop (flare stop) FP on the object side or the image plane side of the third group. In the present embodiment, the fixed stop FP is disposed between the third group and the fourth group to effectively use the space and prevent unnecessary light flux from entering the photosensitive surface.
[0053]
Next, numerical examples of the present invention will be shown. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air spacing from the object side, and Ni and νi are respectively the i-th lens in order from the object side. Refractive index and Abbe number of glass. f is a focal length, Fno is an F number, and ω is a half angle of view.
[0054]
Table 1 shows the relationship between the above-described conditional expressions and numerical values in the numerical examples.
[0055]
The aspherical shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, and A, B, C, D, and E are the aspheric coefficients. When
[0056]
[Equation 3]
It is expressed by the following formula. “E-0X” means 10 −X .
[0057]
[Table 1]
[0058]
[Table 2]
[0059]
[Table 3]
[0060]
[Table 1]
[0061]
【The invention's effect】
According to the present invention, a relatively small and light lens group constituting a part of a zoom optical system is moved in a direction perpendicular to the optical axis, and image blurring occurs when the zoom optical system vibrates (tilts). When the lens group is decentered while properly reducing the overall size of the apparatus, simplifying the mechanism, and reducing the load on the driving means. It is possible to achieve a variable magnification optical system having an anti-vibration function in which the amount of decentration is reduced and the decentration aberrations are corrected well.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a paraxial refractive power arrangement of a variable magnification optical system according to the present invention. FIG. 2 is a lens cross-sectional view at the wide-angle end of Numerical Example 1 of the present invention. 4 is a lens cross-sectional view at the wide-angle end of Numerical Example 3 of the present invention. FIG. 5 is a diagram of various aberrations at the wide-angle end of Numerical Example 1 of the present invention. FIG. 7 is a diagram of various aberrations at the telephoto end of Numerical Example 1 according to the present invention. FIG. 8 is a diagram of various aberrations at the wide-angle end according to Numerical Example 2 of the present invention. FIG. 10 is a diagram of various aberrations at the telephoto end of Numerical Example 2 according to the present invention. FIG. 11 is a diagram of various aberrations at the wide-angle end according to Numerical Example 3 of the present invention. FIG. 12 is a diagram of various aberrations at the telephoto end of Numerical Example 3 of the present invention. FIG. 13 is a diagram of various aberrations at the telephoto end of Numerical Example 3 of the present invention. Illustration of a biological principle DESCRIPTION OF SYMBOLS
L1 First group L2 Second group L3 Third group L4 Fourth group SP Aperture IP Image plane FP Flare aperture (fixed aperture)
d d line g g line ΔM meridional image plane ΔS sagittal image plane

Claims (5)

物体側より順に変倍及び合焦の際に固定の正の屈折力の第1群、変倍機能を有する負の屈折力の第2群、正の屈折力の第3群、そして変倍により変動する像面を補正する補正機能と合焦機能の双方の機能を有する正の屈折力の第4群の4つのレンズ群より構成された変倍光学系であって、該第3群は両レンズ面に非球面を施した正の第31レンズ、像面側に凹面を向けたメニスカス状の負の第32レンズ、正の第33レンズより成り、該第3群を光軸と垂直方向に移動させて該変倍光学系が振動したときの撮影画像のブレを補正しており、
該第32レンズと該第3群と広角端における全系の焦点距離を順にf32、f3、fwとしたとき、
0.8<|f32/f3|<1.7
3.5<f3/fW<5.0
なる条件を満足することを特徴とする防振機能を有した変倍光学系。
In order from the object side upon zooming and focusing, the first group of fixed positive refractive power, the second group of negative refractive power having a zooming function, the third group of positive refractive power, and the zooming A variable power optical system composed of four lens units of a fourth lens unit having a positive refractive power having both a correction function for correcting a fluctuating image plane and a focusing function. It consists of a positive 31st lens with an aspherical lens surface, a meniscus negative 32nd lens with a concave surface facing the image surface, and a positive 33rd lens. The third group is perpendicular to the optical axis. The blurring of the captured image when the variable magnification optical system is vibrated and moved is corrected ,
When the focal lengths of the entire system at the 32nd lens, the third group, and the wide-angle end are f32, f3, and fw in this order,
0.8 <| f32 / f3 | <1.7
3.5 <f3 / fW <5.0
A variable magnification optical system having an anti-vibration function characterized by satisfying the following conditions:
物体側より順に変倍及び合焦の際に固定の正の屈折力の第1群、変倍機能を有する負の屈折力の第2群、正の屈折力の第3群、そして変倍により変動する像面を補正する補正機能と合焦機能の双方の機能を有する正の屈折力の第4群の4つのレンズ群より構成された変倍光学系であって、該第3群は両レンズ面に非球面を施した正の第31レンズ、像面側に凹面を向けたメニスカス状の負の第32レンズ、正の第33レンズより成り、該第3群を光軸と垂直方向に移動させて該変倍光学系が振動したときの撮影画像のブレを補正しており、
該第32レンズと該第33レンズと該第3群の焦点距離を順にf32、f33、f3としたとき、
0.8<|f32/f3|<1.7
1.6<f33/f3<2.4
なる条件を満足することを特徴とする防振機能を有した変倍光学系。
In order from the object side, when zooming and focusing, the first group of fixed positive refractive power, the second group of negative refractive power having a zooming function, the third group of positive refractive power, and the zooming A variable power optical system composed of four lens units of a fourth lens unit having a positive refractive power having both a correction function for correcting a fluctuating image plane and a focusing function. It consists of a positive 31st lens with an aspherical lens surface, a meniscus negative 32nd lens with a concave surface facing the image surface, and a positive 33rd lens. The third group is perpendicular to the optical axis. The blur of the captured image when the variable magnification optical system is vibrated and moved is corrected ,
When the focal lengths of the thirty-second lens, the thirty-third lens, and the third group are f32, f33, and f3 in this order,
0.8 <| f32 / f3 | <1.7
1.6 <f33 / f3 <2.4
A variable magnification optical system having an anti-vibration function characterized by satisfying the following conditions:
広角端における全系の焦点距離をfWとしたとき、
3.5<f3/fW<5.0
なる条件を満足することを特徴とする請求項の防振機能を有した変倍光学系。
When the focal length of the entire system at the wide angle end is fW,
3.5 <f3 / fW <5.0
The variable power optical system having a vibration isolating function according to claim 2 , wherein the following condition is satisfied.
前記第2群の焦点距離をf2、全系の広角端と望遠端の焦点距離を各々fW,fTとしたとき、
なる条件を満足することを特徴とする請求項1、2又は3の防振機能を有した変倍光学系。
When the focal length of the second group is f2, and the focal lengths of the wide-angle end and the telephoto end of the entire system are fW and fT, respectively.
The zooming optical system having a vibration isolating function according to claim 1, 2 or 3, wherein:
請求項1乃至4のいずれか1項の防振機能を有した変倍光学系を有することを特徴とするカメラ。5. A camera comprising a variable magnification optical system having the image stabilization function according to claim 1.
JP11422198A 1998-04-09 1998-04-09 Variable magnification optical system with anti-vibration function Expired - Fee Related JP3927684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11422198A JP3927684B2 (en) 1998-04-09 1998-04-09 Variable magnification optical system with anti-vibration function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11422198A JP3927684B2 (en) 1998-04-09 1998-04-09 Variable magnification optical system with anti-vibration function

Publications (2)

Publication Number Publication Date
JPH11295594A JPH11295594A (en) 1999-10-29
JP3927684B2 true JP3927684B2 (en) 2007-06-13

Family

ID=14632273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11422198A Expired - Fee Related JP3927684B2 (en) 1998-04-09 1998-04-09 Variable magnification optical system with anti-vibration function

Country Status (1)

Country Link
JP (1) JP3927684B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672860B2 (en) * 2000-12-14 2011-04-20 キヤノン株式会社 Zoom lens and optical apparatus using the same
JP4944375B2 (en) * 2004-12-22 2012-05-30 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5038685B2 (en) * 2005-11-17 2012-10-03 パナソニック株式会社 Zoom lens system, imaging device and camera
US8040615B2 (en) 2007-02-27 2011-10-18 Nikon Corporation Zoom lens and optical apparatus equipped therewith
WO2008105249A1 (en) 2007-02-27 2008-09-04 Nikon Corporation Zoom lens and optical device with the same
JP5082499B2 (en) 2007-02-27 2012-11-28 株式会社ニコン Zoom lens and optical apparatus having the same
JP4659894B2 (en) * 2009-07-27 2011-03-30 キヤノン株式会社 Zoom lens and imaging device using the same
KR101710621B1 (en) * 2009-11-20 2017-03-08 삼성전자주식회사 Lens system and image pickup apparatus having the same

Also Published As

Publication number Publication date
JPH11295594A (en) 1999-10-29

Similar Documents

Publication Publication Date Title
JP2918115B2 (en) Variable power optical system with vibration proof function
JP4447704B2 (en) Variable magnification optical system and camera having the same
JP4438046B2 (en) Zoom lens and imaging apparatus having the same
JP4046834B2 (en) Variable magnification optical system with anti-vibration function
JP3814406B2 (en) Variable magnification optical system having anti-vibration function and camera having the same
JP3072815B2 (en) Variable power optical system
JP4672880B2 (en) Variable magnification optical system and optical apparatus using the same
JP4109884B2 (en) Zoom lens and optical apparatus having the same
JP3919580B2 (en) Zoom lens and optical apparatus having the same
JP4545849B2 (en) Variable magnification optical system
JPH11160617A (en) Inner focusing optical system having vibration-proof function
JP4095131B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus having the same
JP4829445B2 (en) Zoom lens and optical apparatus having the same
JP4109896B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus using the same
JP4447706B2 (en) Variable magnification optical system having anti-vibration function and optical apparatus including the same
JP3927684B2 (en) Variable magnification optical system with anti-vibration function
JPH10260355A (en) Variable power optical system with vibration-proof function
JP4630451B2 (en) Zoom lens and optical apparatus using the same
JP4324175B2 (en) Variable magnification optical system with anti-vibration function
JP4314248B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus having the same
JP2001356270A (en) Variable power optical system having vibration-proof function and optical equipment using the same
JP3927730B2 (en) Variable magnification optical system with anti-vibration function
JP4371468B2 (en) Variable magnification optical system with anti-vibration function
JP3070592B2 (en) Variable power optical system with anti-vibration function
JP5241898B2 (en) Zoom lens and optical apparatus having the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees