JPH10260355A - Variable power optical system with vibration-proof function - Google Patents
Variable power optical system with vibration-proof functionInfo
- Publication number
- JPH10260355A JPH10260355A JP9084428A JP8442897A JPH10260355A JP H10260355 A JPH10260355 A JP H10260355A JP 9084428 A JP9084428 A JP 9084428A JP 8442897 A JP8442897 A JP 8442897A JP H10260355 A JPH10260355 A JP H10260355A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- optical system
- group
- image
- refractive power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/16—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
- G02B15/163—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
- G02B15/167—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
- G02B15/173—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/64—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
- G02B27/646—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Lenses (AREA)
- Adjustment Of Camera Lenses (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は防振機能を有した変
倍光学系に関し、特に変倍光学系の一部のレンズ群を光
軸と垂直方向に移動させることにより、該変倍光学系が
振動(傾動)したときの撮影画像のブレを光学的に補正
して静止画像を得るようにし撮影画像の安定化を図った
写真用カメラやビデオカメラ等に好適な防振機能を有し
た変倍光学系に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable power optical system having an image stabilizing function, and more particularly to a variable power optical system by moving a part of a lens group of the variable power optical system in a direction perpendicular to an optical axis. A camera having a vibration reduction function suitable for a photographic camera, a video camera, or the like that stabilizes the captured image by optically correcting a blur of the captured image when the camera vibrates (tilts) to obtain a still image. It relates to a magnification optical system.
【0002】[0002]
【従来の技術】進行中の車や航空機等移動物体上から撮
影をしようとすると撮影系に振動が伝わり手振れとなり
撮影画像にブレが生じる。2. Description of the Related Art When an image is taken from a moving object such as a car or an aircraft in progress, vibration is transmitted to an image taking system, resulting in camera shake and blurring of the taken image.
【0003】従来よりこのときの撮影画像のブレを防止
する機能を有した防振光学系が種々と提案されている。Conventionally, various anti-vibration optical systems having a function of preventing blurring of a photographed image at this time have been proposed.
【0004】例えば特公昭56−21133号公報では
光学装置に振動状態を検知する検知手段からの出力信号
に応じて、一部の光学部材を振動による画像の振動的変
位を相殺する方向に移動させることにより画像の安定化
を図っている。For example, in Japanese Patent Publication No. 56-21133, some optical members are moved in a direction to cancel the vibrational displacement of an image due to vibration in response to an output signal from a detecting means for detecting a vibration state in an optical device. This stabilizes the image.
【0005】特開昭61−223819号公報では最も
被写体側に屈折型可変頂角プリズムを配置した撮影系に
おいて、撮影系の振動に対応させて該屈折型可変頂角プ
リズムの頂角を変化させて画像を偏向させて画像の安定
化を図っている。In Japanese Patent Application Laid-Open No. 61-223819, in a photographing system in which a refraction type variable apex angle prism is arranged closest to the subject, the apex angle of the refraction type variable apex angle prism is changed according to the vibration of the imaging system. The image is deflected to stabilize the image.
【0006】特公昭56−34847号公報、特公昭5
7−7414号公報等では撮影系の一部に振動に対して
空間的に固定の光学部材を配置し、この光学部材の振動
に対して生ずるプリズム作用を利用することにより撮影
画像を偏向させ結像面上で静止画像を得ている。Japanese Patent Publication No. 56-34847, Japanese Patent Publication No. 5
In JP-A-7-7414, an optical member spatially fixed to vibration is arranged in a part of a photographing system, and a photographed image is deflected by utilizing a prism effect generated by vibration of the optical member. A still image is obtained on the image plane.
【0007】特開平1−116619号公報や特開平2
−124521号公報では加速度センサー等を利用して
撮影系の振動を検出し、このとき得られる信号に応じ、
撮影系の一部のレンズ群を光軸と直交する方向に振動さ
せることにより静止画像を得る方法も行なわれている。[0007] Japanese Patent Application Laid-Open Nos.
In Japanese Patent Application Laid-Open No. -125211, vibration of a photographing system is detected using an acceleration sensor or the like, and according to a signal obtained at this time,
There is also a method of obtaining a still image by vibrating a part of a lens group of a photographing system in a direction orthogonal to an optical axis.
【0008】特開平7−128619号公報では、物体
側より順に変倍及び合焦の際に固定の正の屈折力の第1
群、変倍機能を有する負の屈折力の第2群、開口絞り、
正の屈折力の第3群、そして変倍により変動する像面を
補正する補正機能と合焦機能の双方の機能を有する正の
屈折力の第4群の4つのレンズ群を有した変倍光学系で
あって、該第3群は負の屈折力の第31群と正の屈折力
の第32群の2つのレンズ群より成り、該第32群を光
軸と垂直方向に移動させて該変倍光学系が振動したとき
の撮影画像のブレを補正している。In Japanese Patent Laid-Open Publication No. Hei 7-128619, a first positive refractive power which is fixed during zooming and focusing in order from the object side.
Group, a second group of negative refractive power having a zooming function, an aperture stop,
A zoom lens having four lens groups, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power having both a correction function and a focusing function for correcting an image plane which fluctuates due to zooming. An optical system, wherein the third unit includes two lens units, a first unit having a negative refractive power and a second unit having a positive refractive power. The third unit is moved in a direction perpendicular to the optical axis. The shake of the captured image when the variable magnification optical system vibrates is corrected.
【0009】[0009]
【発明が解決しようとする課題】一般に防振光学系を撮
影系の前方に配置し、該防振光学系の一部の可動レンズ
群を振動させて撮影画像のブレを無くし、静止画像を得
る方法は装置全体が大型化し、且つ該可動レンズ群を移
動させる為の移動機構が複雑化してくるという問題点が
あった。In general, an anti-vibration optical system is disposed in front of a photographing system, and a part of the movable lens group of the anti-vibration optical system is vibrated to eliminate a blur of a photographed image and obtain a still image. The method has a problem that the whole apparatus becomes large and a moving mechanism for moving the movable lens group becomes complicated.
【0010】又、可動レンズ群を振動させたときの偏心
収差の発生量が多くなり光学性能が大きく低下してくる
という問題点もあった。There is also a problem that the amount of eccentric aberration generated when the movable lens group is vibrated increases, and the optical performance is greatly reduced.
【0011】可変頂角プリズムを利用して防振を行なう
光学系では特に長焦点距離側(望遠側)において防振時
に偏心倍率色収差の発生量が多くなるという問題点があ
った。An optical system that performs image stabilization using a variable apex angle prism has a problem that the amount of eccentric magnification chromatic aberration increases during image stabilization, especially on the long focal length side (telephoto side).
【0012】一方、撮影系の一部のレンズを光軸に対し
て垂直方向に平行偏心させて防振を行なう光学系におい
ては、防振の為に特別な光学系は要しないという利点は
あるが、移動させるレンズの為の空間を必要とし、又防
振時における偏心収差の発生量が多くなってくるという
問題点があった。On the other hand, an optical system that performs image stabilization by decentering some lenses of the photographing system in a direction perpendicular to the optical axis has the advantage that no special optical system is required for image stabilization. However, there is a problem that a space for the lens to be moved is required, and the amount of eccentric aberration generated during image stabilization increases.
【0013】又、正、負、正そして正の屈折力の4つの
レンズ群より成る4群構成の変倍光学系において第3群
全体を光軸に垂直方向に移動させて防振を行う方式にお
いては、光学系全体の小型化を図るためにCCD等の撮
像素子を小型化しようとすると、防振のための第3群の
偏心位置に対する精度が厳しくなりすぎてしまうという
問題点があった。In a four-unit variable magnification optical system including four lens units having positive, negative, positive, and positive refractive powers, a method of performing image stabilization by moving the entire third unit in a direction perpendicular to the optical axis. In this case, when the size of an image pickup device such as a CCD is reduced in order to reduce the size of the entire optical system, there is a problem that the accuracy with respect to the eccentric position of the third group for vibration reduction becomes too severe. .
【0014】本発明は、変倍光学系の一部を構成する比
較的小型軽量のレンズ群を光軸と垂直方向に移動させ
て、該変倍光学系が振動(傾動)したときの画像のブレ
を補正するように構成することにより、装置全体の小型
化,機構上の簡素化及び駆動手段の負荷の軽減化を図り
つつ該レンズ群を偏心させたときの偏心発生量を少なく
抑え、偏心収差を良好に補正し、また偏心レンズ群の防
振のための敏感度を小さくして防振の補正誤差を少なく
した防振機能を有した変倍光学系の提供を目的とする。According to the present invention, a relatively small and light lens group constituting a part of a variable power optical system is moved in a direction perpendicular to the optical axis, and an image obtained when the variable power optical system vibrates (tilts) is obtained. By configuring so as to correct the blur, the amount of eccentricity generated when the lens group is decentered is reduced while the size of the entire apparatus is reduced, the mechanism is simplified, and the load on the driving unit is reduced. It is an object of the present invention to provide a variable power optical system having an image stabilizing function that satisfactorily corrects aberration and reduces the sensitivity of the eccentric lens group for image stabilization to reduce an image stabilization correction error.
【0015】[0015]
【課題を解決するための手段】本発明の防振機能を有し
た変倍光学系は、(1−1)物体側より順に変倍及び合
焦の際に固定の正の屈折力の第1群、変倍機能を有する
負の屈折力の第2群、正の屈折力の第3群、そして変倍
により変動する像面を補正する補正機能と合焦機能の双
方の機能を有する正の屈折力の第4群の4つのレンズ群
を有した変倍光学系であって、該第3群は正の屈折力の
2つのレンズ群を有し、このうち一方のレンズ群FLを
固定とし、他方のレンズ群SLを光軸と垂直方向に移動
させて該変倍光学系が振動したときの撮影画像のブレを
補正していることを特徴としている。According to the present invention, there is provided a variable power optical system having an image stabilizing function comprising: (1-1) a first lens having a fixed positive refractive power which is fixed during zooming and focusing in order from the object side; Group, a second group having a negative refractive power having a zooming function, a third group having a positive refractive power, and a positive group having both a correcting function and a focusing function for correcting an image plane which fluctuates due to zooming. A variable power optical system having four lens groups of a fourth group of refractive power, wherein the third group has two lens groups of positive refractive power, one of which is fixed. In addition, the other lens group SL is moved in a direction perpendicular to the optical axis to correct blurring of a captured image when the variable power optical system vibrates.
【0016】[0016]
【発明の実施の形態】図1は本発明の近軸屈折力配置を
示す概略図、図2〜図4は本発明の数値実施例1〜3の
広角端のレンズ断面図である。FIG. 1 is a schematic view showing a paraxial refractive power arrangement according to the present invention, and FIGS. 2 to 4 are lens sectional views at the wide-angle end of Numerical Examples 1 to 3 of the present invention.
【0017】図中、L1は正の屈折力の第1群、L2は
負の屈折力の第2群、L3は正の屈折力の第3群であ
り、正の屈折力の2つのレンズ群SL,FLを有してい
る。In the drawing, L1 is a first group having a positive refractive power, L2 is a second group having a negative refractive power, L3 is a third group having a positive refractive power, and two lens groups having a positive refractive power. It has SL and FL.
【0018】数値実施例1〜3ではレンズ群FLを固定
とし、レンズ群SLを光軸と垂直方向に移動させて変倍
光学系が振動(傾動)したときの撮影画像のブレを補正
している。In Numerical Embodiments 1 to 3, the lens group FL is fixed, and the lens group SL is moved in the direction perpendicular to the optical axis to correct the blur of the photographed image when the variable magnification optical system vibrates (tilts). I have.
【0019】L4は正の屈折力の第4群である。SPは
開口絞りであり、第3群L3の前方、又はレンズ群FL
とレンズ群SLとの間に配置している。Gはフェースプ
レート等のガラスブロックである。IPは像面である。L4 is a fourth lens unit having a positive refractive power. SP denotes an aperture stop, which is located in front of the third unit L3 or the lens unit FL.
And the lens group SL. G is a glass block such as a face plate. IP is an image plane.
【0020】本実施形態では広角端から望遠端への変倍
に際して矢印のように第2群を像面側へ移動させると共
に、変倍に伴う像面変動を第4群を移動させて補正して
いる。In this embodiment, when zooming from the wide-angle end to the telephoto end, the second lens unit is moved to the image plane side as indicated by an arrow, and the image plane fluctuation due to zooming is corrected by moving the fourth lens unit. ing.
【0021】又、第4群を光軸上移動させてフォーカス
を行うリヤーフォーカス式を採用している。同図に示す
第4群の実線の曲線4aと点線の曲線4bは各々無限遠
物体と近距離物体にフォーカスしているときの広角端か
ら望遠端への変倍に伴う際の像面変動を補正する為の移
動軌跡を示している。尚、第1群と第3群は変倍及びフ
ォーカスの際固定である。Also, a rear focus system is employed in which the fourth unit is moved on the optical axis to perform focusing. A solid line curve 4a and a dotted line curve 4b of the fourth lens group shown in the same figure show the image plane fluctuation caused by zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at a short distance, respectively. The movement locus for correction is shown. The first and third units are fixed during zooming and focusing.
【0022】本実施形態においては第4群を移動させて
変倍に伴う像面変動の補正を行うと共に第4群を移動さ
せてフォーカスを行うようにしている。特に同図の曲線
4a,4bに示すように広角端から望遠端への変倍に際
して物体側へ凸状の軌跡を有するように移動させてい
る。これにより第3群と第4群との空間の有効利用を図
りレンズ全長の短縮化を効果的に達成している。In the present embodiment, the fourth unit is moved to correct the image plane fluctuation caused by zooming, and the fourth unit is moved for focusing. In particular, as shown by curves 4a and 4b in the same figure, the zoom lens is moved so as to have a convex locus toward the object side when zooming from the wide-angle end to the telephoto end. Thereby, the space between the third and fourth units is effectively used, and the overall length of the lens is effectively reduced.
【0023】本実施形態において、例えば望遠端におい
て無限遠物体から近距離物体へフォーカスを行う場合は
同図の直線4cに示すように第4群を前方へ繰り出すこ
とにより行っている。In this embodiment, for example, when focusing from an object at infinity to an object at a short distance at the telephoto end, the fourth unit is moved forward as indicated by a straight line 4c in FIG.
【0024】本実施形態におけるズームレンズは第1群
と第2群の合成系で形成した虚像を第3群と第4群で感
光面上に結像するズーム方式をとっている。The zoom lens of the present embodiment employs a zoom system in which a virtual image formed by a combined system of the first and second units is formed on the photosensitive surface by the third and fourth units.
【0025】本実施形態では従来の所謂4群ズームレン
ズにおいて第1群を繰り出してフォーカスを行う場合に
比べて前述のようなリヤーフォーカス方式を採ることに
より第1群の偏心誤差による性能劣化を防止しつつ第1
群のレンズ有効径の増大化を効果的に防止している。In the present embodiment, the deterioration of the first lens unit due to the eccentricity error is prevented by adopting the rear focus method as described above, as compared with a conventional so-called four-unit zoom lens in which the first lens unit is extended and focused. First while doing
This effectively prevents the effective lens diameter of the group from increasing.
【0026】そして開口絞りを第3群の直前、又はレン
ズ群FLとレンズ群SLとの間に配置することにより可
動レンズ群による収差変動を少なくし、開口絞りより前
方のレンズ群の間隔を短くすることにより前玉レンズ径
の縮少化を容易に達成している。By arranging the aperture stop immediately before the third lens unit or between the lens unit FL and the lens unit SL, aberration fluctuation due to the movable lens unit is reduced, and the distance between the lens units in front of the aperture stop is shortened. As a result, the diameter of the front lens can be easily reduced.
【0027】本発明の数値実施例1〜3においては第3
群L3を正の屈折力の2つのレンズ群SL,FLより構
成し、このうちレンズ群SLを防振用として光軸と垂直
方向に移動させて変倍光学系が振動したときの像ブレを
補正している。これにより従来の防振光学系に比べて防
振の為のレンズ群や可変頂角プリズム等の光学部材を新
たに付加することなく防振を行なっている。In the first to third numerical embodiments of the present invention, the third
The group L3 is composed of two lens groups SL and FL having a positive refractive power. Of these, the lens group SL is moved in the direction perpendicular to the optical axis for vibration reduction to prevent image blurring when the variable magnification optical system vibrates. Has been corrected. As a result, compared to the conventional anti-vibration optical system, anti-vibration is performed without newly adding an optical member such as a lens group or a variable apex prism for anti-vibration.
【0028】次に本発明に係る変倍光学系においてレン
ズ群を光軸と垂直方向に移動させて撮影画像のブレを補
正する防振系の光学的原理を図14を用いて説明する。Next, the optical principle of the image stabilizing system for correcting the blurring of the photographed image by moving the lens group in the direction perpendicular to the optical axis in the variable power optical system according to the present invention will be described with reference to FIG.
【0029】図14(A)に示すように光学系が固定群
Y1・偏心群Y2そして固定群Y3の3つの部分から成
り立っており、レンズから充分に離れた光軸上の物点P
が撮像面IPの中心に像点pとして結像しているものと
する。As shown in FIG. 14A, the optical system is composed of three parts, a fixed group Y1, an eccentric group Y2, and a fixed group Y3, and the object point P on the optical axis sufficiently separated from the lens.
Is formed as an image point p at the center of the imaging plane IP.
【0030】今、撮像面IPを含めた光学系全体が図1
4(B)のように手振れにより瞬間的に傾いたとする
と、物点Pは像点p′にやはり瞬間的に移動し、ブレた
画像となる。Now, the entire optical system including the imaging plane IP is shown in FIG.
Assuming that the object point P is instantaneously tilted due to camera shake as shown in FIG. 4B, the object point P also instantaneously moves to the image point p ', resulting in a blurred image.
【0031】一方、偏心群Y2を光軸と垂直方向に移動
させると図14(C)のように、像点pはp″に移動
し、その移動量・方向はパワー配置に依存し、そのレン
ズ群の偏心敏感度として表される。On the other hand, when the eccentric group Y2 is moved in the direction perpendicular to the optical axis, the image point p moves to p ″ as shown in FIG. 14C, and the amount and direction of the movement depends on the power arrangement. It is expressed as the eccentric sensitivity of the lens group.
【0032】そこで図14(B)で手振れによってズレ
た像点p′を偏心群Y2を適切な量だけ光軸と垂直方向
に移動させることによってもとの結像位置pに戻すこと
で図14(D)に示すとおり、手振れ補正つまり防振を
行っている。Therefore, the image point p 'shifted by the camera shake in FIG. 14B is returned to the original image forming position p by moving the eccentric group Y2 in the direction perpendicular to the optical axis by an appropriate amount. As shown in (D), camera shake correction, that is, image stabilization is performed.
【0033】今、光軸をθ°補正するために必要なシフ
トレンズ群(偏心群)Y2の移動量をΔ、光学系全体の
焦点距離をf、シフトレンズ群Y2の偏心敏感度をTS
とすると、移動量Δは Δ=f・tan(θ)/TS の式で与えられる。Now, the amount of movement of the shift lens group (eccentric group) Y2 required to correct the optical axis by θ ° is Δ, the focal length of the entire optical system is f, and the sensitivity of the shift lens group Y2 to eccentricity is TS.
Then, the movement amount Δ is given by the following equation: Δ = f · tan (θ) / TS.
【0034】今、シフトレンズ群Y2の偏心敏感度TS
が大きすぎると、移動量Δは小さな値となり防振に必要
なシフトレンズ群の移動量は小さくできるが、適切に防
振を行う為の制御が困難になり、補正残りが生じてしま
う。Now, the eccentric sensitivity TS of the shift lens group Y2
Is too large, the amount of movement Δ becomes a small value, and the amount of movement of the shift lens group necessary for image stabilization can be made small. However, it is difficult to perform appropriate image stabilization control, and correction remains.
【0035】特に、ビデオカメラやデジタルスチルカメ
ラではCCD等の撮像素子のイメージサイズが銀塩フィ
ルムと比べて小さく、同一画角に対する焦点距離が短い
ため、同一角度を補正する為のシフトレンズ群のシフト
量Δが小さくなる。In particular, in a video camera or a digital still camera, the image size of an image pickup device such as a CCD is smaller than that of a silver halide film, and the focal length for the same angle of view is short, so that a shift lens group for correcting the same angle is used. The shift amount Δ becomes smaller.
【0036】従って、メカ(機構)の精度が同程度だと
画面上での補正残りが相対的に大きくなることになって
しまう。Therefore, if the accuracy of the mechanism (mechanism) is almost the same, the remaining correction on the screen will be relatively large.
【0037】ビデオカメラ用のレンズに用いられている
正、負、正そして正の屈折力の4群構成ズームでは、第
3群の偏心敏感度を小さくしようとすると、第3群の屈
折力を小さくする必要が生じて、光学系全体の小型化に
適さなくなってしまう。In a four-unit zoom having a positive, negative, positive and positive refractive power used in a lens for a video camera, the refractive power of the third lens unit is reduced in order to reduce the eccentric sensitivity of the third lens unit. It becomes necessary to reduce the size of the optical system, which is not suitable for miniaturizing the entire optical system.
【0038】そこで本発明では、第3群を正の屈折力の
2つのレンズ群SL,FLに分割することによりシフト
レンズ群SLの屈折力を小さくし、その偏心敏感度TS
も小さくすることで、メカの制御誤差による防振の補正
の残りの少ない光学系を達成している。Accordingly, in the present invention, the refractive power of the shift lens group SL is reduced by dividing the third lens unit into two lens units SL and FL having a positive refractive power.
Also, by reducing the size of the optical system, an optical system with less remaining vibration compensation due to mechanical control errors is achieved.
【0039】図2の本発明の数値実施例1では、第3群
L3を物体側から順に防振のために光軸に垂直方向にシ
フトするレンズ群SL、固定のレンズ群FLで構成し、
レンズ群SLを物体側に凸面を向けた正レンズ、像面側
に強い凹面を向けたメニスカス状の負レンズ、レンズ群
FLを両レンズ面が凸面の正レンズで構成している。In the first numerical embodiment of the present invention shown in FIG. 2, the third lens unit L3 is composed of a lens unit SL that shifts in the vertical direction to the optical axis for vibration reduction in order from the object side, and a fixed lens unit FL.
The lens unit SL includes a positive lens having a convex surface facing the object side, a meniscus negative lens having a strong concave surface facing the image surface side, and the lens unit FL includes a positive lens having both lens surfaces convex.
【0040】そしてレンズ群SLとレンズ群FLの少な
くとも1面に非球面レンズを設けることにより、各レン
ズ群内で発生する諸収差を小さくし、防振時の光学性能
の劣化を抑制している。By providing an aspheric lens on at least one surface of the lens group SL and the lens group FL, various aberrations generated in each lens group are reduced, and deterioration of optical performance during image stabilization is suppressed. .
【0041】本実施形態では、レンズ群SL、レンズ群
FLの最も物体側に非球面を導入し、各レンズ群内で発
生する球面収差、コマ収差を小さくすることにより、防
振時に発生する偏心収差、特に偏心コマ収差を良好に補
正している。非球面の位置は各レンズ群の異なるレンズ
面でもよい。In this embodiment, an aspheric surface is introduced on the most object side of the lens units SL and FL, and the spherical aberration and coma generated in each lens unit are reduced, so that the eccentricity generated during image stabilization is reduced. Aberrations, especially eccentric coma, are satisfactorily corrected. The position of the aspheric surface may be a different lens surface of each lens group.
【0042】また偏心の倍率色収差や偏心による像面湾
曲を補正するためには、シフト群単独でできるだけ色収
差が補正されて、ペッツヴァール和が小さくなっている
ことが望ましい。従ってシフトレンズ群(レンズ群S
L)には少なくとも1枚の負レンズ群を含むように構成
するのが、色収差の補正やペッツヴァール和を小さくす
るのに効果的である。In order to correct decentered chromatic aberration of magnification and field curvature caused by eccentricity, it is desirable that chromatic aberration is corrected as much as possible by the shift group alone and the Petzval sum is reduced. Therefore, the shift lens group (lens group S
A configuration including at least one negative lens group in L) is effective for correcting chromatic aberration and reducing Petzval sum.
【0043】図3の本発明の数値実施例2では、第3群
を物体側から固定のレンズ群FL、防振のために光軸に
垂直方向にシフトするレンズ群SLで構成し、レンズ群
FLをメニスカス状の正レンズより構成し、レンズ群S
Lを両レンズ面が凸面の正レンズと物体側に強い凹面を
向けたメニスカス状の負レンズで構成している。レンズ
群SLの最も物体側に非球面を導入して、レンズ群SL
内の球面収差やコマ収差を小さくして、防振時に発生す
る偏心コマ収差の発生を抑制している。In Numerical Embodiment 2 of the present invention shown in FIG. 3, the third unit is constituted by a fixed lens unit FL from the object side and a lens unit SL shifted vertically to the optical axis for image stabilization. FL is composed of a meniscus positive lens, and a lens unit S
L is composed of a positive lens having both convex surfaces and a negative meniscus lens having a strong concave surface facing the object side. An aspherical surface is introduced on the most object side of the lens group SL, and the lens group SL
Spherical aberration and coma aberration are reduced to suppress the occurrence of eccentric coma that occurs during image stabilization.
【0044】又本実施形態では、第3群の最も像面側に
負レンズを配置することで、第3群全体をテレフォトタ
イプに近づけ、光学系全体のレンズ全長の短縮を達成し
ている。In the present embodiment, by disposing the negative lens closest to the image plane side of the third lens unit, the entire third lens unit is made closer to a telephoto type, and the entire lens length of the entire optical system is shortened. .
【0045】図4の本発明の数値実施例3では、第3群
を物体側から固定のレンズ群FL、防振のためにシフト
するレンズ群SLで構成し、レンズFLとレンズ群SL
との間に開口絞りSPを配置することにより、レンズ群
SLを通過する軸外光線の通過位置を低くし、防振によ
る像面湾曲や歪曲の変動を小さくしている。又レンズ群
SLとレンズ群FLの最も物体側に非球面を施して諸収
差を良好に補正している。In Numerical Embodiment 3 of the present invention shown in FIG. 4, the third unit is composed of a fixed lens unit FL from the object side and a lens unit SL shifted for image stabilization.
By disposing the aperture stop SP between the first lens and the second lens, the position at which an off-axis ray passing through the lens group SL passes is lowered, and the fluctuation of the field curvature and distortion due to image stabilization is reduced. In addition, an aspheric surface is provided on the most object side of the lens unit SL and the lens unit FL to correct various aberrations well.
【0046】本発明の防振機能を有した変倍光学系は以
上のような条件を満足することにより実現されるが、更
に光学性能を良好に維持しつつ、レンズ全長の短縮を達
成する為には、以下の条件のうち少なくとも1つを満足
することが望ましい。The variable power optical system having the image stabilizing function of the present invention is realized by satisfying the above conditions. However, in order to further shorten the overall length of the lens while maintaining good optical performance. It is desirable that at least one of the following conditions be satisfied.
【0047】(イ−1)前記第3群と前記レンズ群SL
の焦点距離を各々f3,fSLとしたとき、 1.3<fSL/f3<2.0 ・・・・・・(1) なる条件を満足することである。(A-1) The Third Group and the Lens Group SL
Where f3 and fSL are respectively set as f3 and fSL, the following condition is satisfied: 1.3 <fSL / f3 <2.0 (1)
【0048】条件式(1) は第3群を構成する2つのレン
ズ群の屈折力配置に関するものである。条件式(1) の下
限値を越えてレンズ群SLの屈折力が大きくなれば、偏
心敏感度も大きくなって先に述べたようにメカ誤差の影
響による防振の補正残りが大きくなってしまう。逆に上
限値を越えてレンズ群SLの屈折力が小さくなると防振
時に必要なレンズ群SLの移動量が大きくなりすぎ、こ
れを駆動するためのアクチュエーター等の部材も大きく
なってしまうので良くない。Conditional expression (1) relates to the refractive power arrangement of the two lens units constituting the third unit. If the refractive power of the lens group SL is increased beyond the lower limit value of the conditional expression (1), the eccentricity sensitivity is also increased, and as described above, the remaining amount of correction for image stabilization due to the influence of the mechanical error increases. . Conversely, if the refractive power of the lens group SL is reduced beyond the upper limit value, the amount of movement of the lens group SL required during image stabilization becomes too large, and members such as an actuator for driving the lens group SL become large, which is not good. .
【0049】(イ−2)前記第2群の焦点距離をf2、
全系の広角端と望遠端の焦点距離を各々fW,fTとす
るとき、(A-2) The focal length of the second lens unit is f2,
When the focal lengths at the wide-angle end and the telephoto end of the entire system are fW and fT, respectively,
【0050】[0050]
【数2】 なる条件を満足することである。(Equation 2) Satisfying the following conditions.
【0051】条件式(2) の下限値を越えて第2群の屈折
力が強くなりすぎるとレンズ全長の短縮化には有利だ
が、像面湾曲や歪曲の変倍全域にわたる変動を補正する
のが困難になるので良くない。また条件式(2) の上限値
を越えて第2群の屈折力が弱くなりすぎると変倍に必要
な第2群の移動量が大きくなりすぎるので良くない。If the refractive power of the second lens unit becomes too strong beyond the lower limit value of the conditional expression (2), it is advantageous for shortening the overall length of the lens, but it is necessary to correct the variation of the field curvature and distortion over the entire zoom range. Is not good because it becomes difficult. If the refractive power of the second lens unit becomes too weak beyond the upper limit of conditional expression (2), the amount of movement of the second lens unit required for zooming becomes too large, which is not good.
【0052】条件式(3) の下限値を越えて第3群の屈折
力が強くなるとレンズ全長の短縮には有利だが、バック
フォーカスの確保が困難になってしまうので良くない。
また条件式(3) の上限値を越えて第3群の屈折力が弱く
なってしまうとレンズ全長の短縮が困難になる。If the refractive power of the third lens unit is increased beyond the lower limit of conditional expression (3), it is advantageous for shortening the overall length of the lens, but it is not preferable because it becomes difficult to secure the back focus.
If the refractive power of the third lens unit is weakened beyond the upper limit value of the conditional expression (3), it becomes difficult to shorten the entire length of the lens.
【0053】(イ−3)前記SLレンズ群の最も物体側
の凸面はレンズ中心からレンズ周辺にいくに従って正の
屈折力が弱くなる形状の非球面であることである。(A-3) The convex surface closest to the object side of the SL lens group is an aspherical surface having a shape such that the positive refractive power becomes weaker from the lens center to the lens periphery.
【0054】次に本発明の数値実施例を示す。数値実施
例においてRiは物体側より順に第i番目のレンズ面の
曲率半径、Diは物体側より第i番目のレンズ厚及び空
気間隔、Niとνiは各々物体側より順に第i番目のレ
ンズのガラスの屈折率とアッベ数である。Next, numerical examples of the present invention will be described. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air spacing from the object side, and Ni and νi are the i-th lens surfaces in order from the object side. The refractive index and Abbe number of glass.
【0055】又前述の各条件式と数値実施例における諸
数値との関係を表−1に示す。Table 1 shows the relationship between the above-described conditional expressions and various numerical values in the numerical examples.
【0056】非球面形状は光軸方向にX軸、光軸と垂直
方向にH軸、光の進行方向を正としRを近軸曲率半径、
A,B,C,D,Eを各々非球面係数としたとき、The aspherical shape has an X axis in the optical axis direction, an H axis in a direction perpendicular to the optical axis, a positive traveling direction of light, and R as a paraxial radius of curvature.
When A, B, C, D, and E are aspheric coefficients, respectively,
【0057】[0057]
【数3】 なる式で表わしている。又「e-0X」は10-Xを意味してい
る。 (数値実施例1) F= 1〜9.75 FNO= 1.85 〜 2.43 2ω= 60.5°〜 6.8° R 1= 13.432 D 1= 0.18 N 1=1.84666 ν 1= 23.8 R 2= 4.279 D 2= 1.21 N 2=1.71299 ν 2= 53.8 R 3= -16.292 D 3= 0.04 R 4= 3.174 D 4= 0.60 N 3=1.77249 ν 3= 49.6 R 5= 6.374 D 5=可変 R 6= 4.590 D 6= 0.14 N 4=1.88299 ν 4= 40.8 R 7= 1.088 D 7= 0.56 R 8= -1.302 D 8= 0.12 N 5=1.71700 ν 5= 47.9 R 9= 1.618 D 9= 0.44 N 6=1.84666 ν 6= 23.8 R10= -7.312 D10=可変 R11= 絞り D11= 0.31 R12= 1.614非球面 D12= 0.45 N 7=1.58312 ν 7= 59.4 R13= 23.575 D13= 0.02 R14= 2.006 D14= 0.14 N 8=1.84666 ν 8= 23.8 R15= 1.372 D15= 0.43 R16= 5.106非球面 D16= 0.26 N 9=1.58312 ν 9= 59.4 R17= -21.356 D17=可変 R18= 2.762非球面 D18= 0.64 N10=1.58312 ν10= 59.4 R19= -1.484 D19= 0.12 N11=1.84666 ν11= 23.8 R20= -2.909 D20= 0.71 R21= ∞ D21= 0.88 N12=1.51633 ν12= 64.1 R22= ∞ 非球面係数 R12 K=-1.847e-02 B=-2.316e-02 C= 1.045e-03 D=-4.875e-03 E= 0 R16 K= 9.862e+00 B=-1.198e-02 C=-1.155e-03 D=-2.915e-03 E= 5.173e-03 R18 K=-1.754e+00 B= 6.556e-03 C=-5.764e-03 D= 1.252e-02 E=-3.690e-03(Equation 3) It is represented by the following equation. "E-0X" means 10- X . (Numerical Example 1) F = 1 to 9.75 FNO = 1.85 to 2.43 2ω = 60.5 ° to 6.8 ° R 1 = 13.432 D 1 = 0.18 N 1 = 1.84666 ν 1 = 23.8 R 2 = 4.279 D 2 = 1.21 N 2 = 1.71299 ν 2 = 53.8 R 3 = -16.292 D 3 = 0.04 R 4 = 3.174 D 4 = 0.60 N 3 = 1.77249 ν 3 = 49.6 R 5 = 6.374 D 5 = Variable R 6 = 4.590 D 6 = 0.14 N 4 = 1.88299 ν 4 = 40.8 R 7 = 1.088 D 7 = 0.56 R 8 = -1.302 D 8 = 0.12 N 5 = 1.71700 ν 5 = 47.9 R 9 = 1.618 D 9 = 0.44 N 6 = 1.84666 ν 6 = 23.8 R10 = -7.312 D10 = Variable R11 = Aperture D11 = 0.31 R12 = 1.614 Aspherical surface D12 = 0.45 N 7 = 1.58312 ν 7 = 59.4 R13 = 23.575 D13 = 0.02 R14 = 2.006 D14 = 0.14 N 8 = 1.84666 ν 8 = 23.8 R15 = 1.372 D15 = 0.43 R16 = 5.106 aspheric surface D16 = 0.26 N 9 = 1.58312 ν 9 = 59.4 R17 = -21.356 D17 = variable R18 = 2.762 aspheric surface D18 = 0.64 N10 = 1.58312 ν10 = 59.4 R19 = -1.484 D19 = 0.12 N11 = 1.84666 ν11 = 23.8 R20 = -2.909 D20 = 0.71 R21 = ∞ D21 = 0.88 N12 = 1.51633 ν12 = 64.1 R22 = ∞ Aspherical coefficient R12 K = -1.847e-02 B = -2.316e-02 C = 1.045e-03 D = -4.875 e-03 E = 0 R16 K = 9.862e + 00 B = -1.198e-02 C = -1.155e-03 D = -2.915e-03 E = 5.173e-03 R18 K = -1.754 e + 00 B = 6.556e-03 C = -5.764e-03 D = 1.252e-02 E = -3.690e-03
【0058】[0058]
【表1】 (数値実施例2) F= 1〜9.75 FNO= 1.85 〜 2.43 2ω= 60.5°〜 6.8° R 1= 13.123 D 1= 0.18 N 1=1.84666 ν 1= 23.8 R 2= 4.332 D 2= 1.21 N 2=1.71299 ν 2= 53.8 R 3= -15.563 D 3= 0.04 R 4= 3.205 D 4= 0.60 N 3=1.77249 ν 3= 49.6 R 5= 6.250 D 5=可変 R 6= 4.973 D 6= 0.14 N 4=1.88299 ν 4= 40.8 R 7= 1.098 D 7= 0.53 R 8= -1.293 D 8= 0.12 N 5=1.71700 ν 5= 47.9 R 9= 1.554 D 9= 0.44 N 6=1.84666 ν 6= 23.8 R10= -7.532 D10=可変 R11= 絞り D11= 0.31 R12= 2.768非球面 D12= 0.33 N 7=1.66910 ν 7= 55.4 R13= 4.909 D13= 0.24 R14= 1.673非球面 D14= 0.45 N 8=1.58312 ν 8= 59.4 R15= -17.228 D15= 0.02 R16= 2.003 D16= 0.14 N 9=1.84666 ν 9= 23.8 R17= 1.290 D17=可変 R18= 2.427非球面 D18= 0.64 N10=1.58312 ν10= 59.4 R19= -1.533 D19= 0.12 N11=1.84666 ν11= 23.8 R20= -3.220 D20= 0.71 R21= ∞ D21= 0.88 N12=1.51633 ν12= 64.1 R22= ∞ 非球面係数 R12 K=-6.606e+00 B= 2.935e-02 C=-9.942e-03 D= 3.892e-03 E=-2.100e-03 R14 K=-3.167e-01 B=-1.124e-02 C=-4.208e-03 D= 2.283e-03 E= 0 R18 K=-2.585e+00 B= 1.786e-02 C=-1.134e-02 D= 1.482e-02 E=-2.606e-03[Table 1] (Numerical Example 2) F = 1 to 9.75 FNO = 1.85 to 2.43 2ω = 60.5 ° to 6.8 ° R 1 = 13.123 D 1 = 0.18 N 1 = 1.84666 ν 1 = 23.8 R 2 = 4.332 D 2 = 1.21 N 2 = 1.71299 ν 2 = 53.8 R 3 = -15.563 D 3 = 0.04 R 4 = 3.205 D 4 = 0.60 N 3 = 1.77249 ν 3 = 49.6 R 5 = 6.250 D 5 = variable R 6 = 4.973 D 6 = 0.14 N 4 = 1.88299 ν 4 = 40.8 R 7 = 1.098 D 7 = 0.53 R 8 = -1.293 D 8 = 0.12 N 5 = 1.71700 ν 5 = 47.9 R 9 = 1.554 D 9 = 0.44 N 6 = 1.84666 ν 6 = 23.8 R10 = -7.532 D10 = Variable R11 = Aperture D11 = 0.31 R12 = 2.768 Aspherical surface D12 = 0.33 N 7 = 1.66910 ν 7 = 55.4 R13 = 4.909 D13 = 0.24 R14 = 1.673 Aspherical surface D14 = 0.45 N 8 = 1.58312 ν 8 = 59.4 R15 = -17.228 D15 = 0.02 R16 = 2.003 D16 = 0.14 N 9 = 1.84666 ν 9 = 23.8 R17 = 1.290 D17 = Variable R18 = 2.427 Aspherical surface D18 = 0.64 N10 = 1.58312 ν10 = 59.4 R19 = -1.533 D19 = 0.12 N11 = 1.84666 ν11 = 23.8 R20 = -3.220 D20 = 0.71 R21 = ∞ D21 = 0.88 N12 = 1.51633 ν12 = 64.1 R22 = ∞ Aspherical coefficient R12 K = -6.606e + 00 B = 2.935e-02 C = -9.942e-03 D = 3.892e -03 E = -2.100e-03 R14 K = -3.167e-01 B = -1.124e-02 C = -4.208e-03 D = 2.283e-03 E = 0 R18 K = -2.585e +00 B = 1.786e-02 C = -1.134e-02 D = 1.482e-02 E = -2.606e-03
【0059】[0059]
【表2】 (数値実施例3) F= 1〜9.75 FNO= 1.85 〜 2.25 2ω= 60.5°〜 6.8° R 1= 13.453 D 1= 0.18 N 1=1.84666 ν 1= 23.8 R 2= 4.446 D 2= 1.29 N 2=1.69679 ν 2= 55.5 R 3= -13.988 D 3= 0.04 R 4= 3.223 D 4= 0.60 N 3=1.77249 ν 3= 49.6 R 5= 6.152 D 5=可変 R 6= 5.790 D 6= 0.14 N 4=1.88299 ν 4= 40.8 R 7= 1.116 D 7= 0.53 R 8= -1.274 D 8= 0.12 N 5=1.69350 ν 5= 53.2 R 9= 1.679 D 9= 0.44 N 6=1.84666 ν 6= 23.8 R10= -8.414 D10=可変 R11= 3.966非球面 D11= 0.29 N 7=1.66910 ν 7= 55.4 R12= 23.810 D12= 0.24 R13= 絞り D13= 0.33 R14= 1.637非球面 D14= 0.45 N 8=1.58312 ν 8= 59.4 R15= -14.062 D15= 0.02 R16= 2.342 D16= 0.14 N 9=1.84666 ν 9= 23.8 R17= 1.365 D17=可変 R18= 2.331非球面 D18= 0.60 N10=1.58312 ν10= 59.4 R19= -1.690 D19= 0.12 N11=1.84666 ν11= 23.8 R20= -3.598 D20= 0.71 R21= ∞ D21= 0.88 N12=1.51633 ν12= 64.1 R22= ∞ 非球面係数 R11 K=-1.316e+01 B= 2.207e-02 C=-9.331e-03 D=-1.570e-03 E= 2.801e-03 R14 K=-4.979e-01 B=-1.037e-02 C= 1.652e-04 D= 5.116e-04 E= 0 R18 K=-1.937e+00 B= 1.339e-02 C=-1.140e-02 D= 1.230e-02 E=-2.217e-04[Table 2] (Numerical Example 3) F = 1 to 9.75 FNO = 1.85 to 2.25 2ω = 60.5 ° to 6.8 ° R 1 = 13.453 D 1 = 0.18 N 1 = 1.84666 ν 1 = 23.8 R 2 = 4.446 D 2 = 1.29 N 2 = 1.69679 ν 2 = 55.5 R 3 = -13.988 D 3 = 0.04 R 4 = 3.223 D 4 = 0.60 N 3 = 1.77249 ν 3 = 49.6 R 5 = 6.152 D 5 = Variable R 6 = 5.790 D 6 = 0.14 N 4 = 1.88299 ν 4 = 40.8 R 7 = 1.116 D 7 = 0.53 R 8 = -1.274 D 8 = 0.12 N 5 = 1.69350 ν 5 = 53.2 R 9 = 1.679 D 9 = 0.44 N 6 = 1.84666 ν 6 = 23.8 R10 = -8.414 D10 = Variable R11 = 3.966 aspheric surface D11 = 0.29 N 7 = 1.66910 ν 7 = 55.4 R12 = 23.810 D12 = 0.24 R13 = aperture D13 = 0.33 R14 = 1.637 aspheric surface D14 = 0.45 N 8 = 1.58312 ν 8 = 59.4 R15 = -14.062 D15 = 0.02 R16 = 2.342 D16 = 0.14 N 9 = 1.84666 ν 9 = 23.8 R17 = 1.365 D17 = Variable R18 = 2.331 Aspherical surface D18 = 0.60 N10 = 1.58312 ν10 = 59.4 R19 = -1.690 D19 = 0.12 N11 = 1.84666 ν11 = 23.8 R20 = -3.598 D20 = 0.71 R21 = ∞ D21 = 0.88 N12 = 1.51633 ν12 = 64.1 R22 = ∞ Aspherical coefficient R11 K = -1.316e + 01 B = 2.207e-02 C = -9.331e-03 D = -1.570 e-03 E = 2.801e-03 R14 K = -4.979e-01 B = -1.037e-02 C = 1.652e-04 D = 5.116e-04 E = 0 R18 K = -1.937 e + 00 B = 1.339e-02 C = -1.140e-02 D = 1.230e-02 E = -2.217e-04
【0060】[0060]
【表3】 [Table 3]
【0061】[0061]
【表4】 [Table 4]
【0062】[0062]
【発明の効果】本発明によれば以上のように、変倍光学
系の一部を構成する比較的小型軽量のレンズ群を光軸と
垂直方向に移動させて、該変倍光学系が振動(傾動)し
たときの画像のブレを補正するように構成することによ
り、装置全体の小型化,機構上の簡素化及び駆動手段の
負荷の軽減化を図りつつ該レンズ群を偏心させたときの
偏心発生量を少なく抑え、偏心収差を良好に補正し、ま
た偏心レンズ群の防振のための敏感度を小さくして防振
の補正誤差を少なくした防振機能を有した変倍光学系を
達成することができる。As described above, according to the present invention, by moving the relatively small and light lens group constituting a part of the variable power optical system in the direction perpendicular to the optical axis, the variable power optical system is vibrated. When the lens group is decentered while reducing the overall size of the apparatus, simplifying the mechanism, and reducing the load on the driving means, the configuration is such that image blurring caused by (tilting) is corrected. A variable power optical system with an anti-vibration function that minimizes the amount of eccentricity, satisfactorily corrects eccentric aberrations, and reduces the sensitivity of the eccentric lens group for anti-vibration to reduce the correction error of anti-vibration. Can be achieved.
【図1】 本発明に係る変倍光学系の近軸屈折力配置の
概略図FIG. 1 is a schematic diagram of a paraxial refractive power arrangement of a variable power optical system according to the present invention.
【図2】 本発明の数値実施例1の広角端のレンズ断面
図FIG. 2 is a sectional view of a lens at a wide-angle end according to Numerical Embodiment 1 of the present invention.
【図3】 本発明の数値実施例2の広角端のレンズ断面
図FIG. 3 is a sectional view of a lens at a wide-angle end according to a second numerical embodiment of the present invention;
【図4】 本発明の数値実施例3の広角端のレンズ断面
図FIG. 4 is a sectional view of a lens at a wide-angle end according to a third numerical embodiment of the present invention.
【図5】 本発明の数値実施例1の広角端の諸収差図FIG. 5 is a diagram illustrating various aberrations at a wide-angle end according to Numerical Embodiment 1 of the present invention.
【図6】 本発明の数値実施例1の望遠端の諸収差図FIG. 6 is a diagram illustrating various aberrations at the telephoto end according to Numerical Embodiment 1 of the present invention.
【図7】 本発明の数値実施例1の望遠端の諸収差図FIG. 7 is a diagram showing various aberrations at the telephoto end according to Numerical Embodiment 1 of the present invention.
【図8】 本発明の数値実施例2の広角端の諸収差図FIG. 8 is a diagram illustrating various aberrations at the wide-angle end according to Numerical Example 2 of the present invention.
【図9】 本発明の数値実施例2の望遠端の諸収差図FIG. 9 is a diagram showing various aberrations at the telephoto end according to Numerical Example 2 of the present invention.
【図10】 本発明の数値実施例2の望遠端の諸収差図FIG. 10 is a diagram showing various aberrations at the telephoto end according to Numerical Example 2 of the present invention;
【図11】 本発明の数値実施例3の広角端の諸収差図FIG. 11 is a diagram illustrating various aberrations at a wide angle end according to Numerical Example 3 of the present invention.
【図12】 本発明の数値実施例3の望遠端の諸収差図FIG. 12 is a diagram illustrating various aberrations at the telephoto end according to Numerical Example 3 of the present invention.
【図13】 本発明の数値実施例3の望遠端の諸収差図FIG. 13 is a diagram illustrating various aberrations at the telephoto end according to Numerical Example 3 of the present invention.
【図14】 本発明に係る防振系の光学的原理の説明図FIG. 14 is an explanatory diagram of the optical principle of the vibration isolation system according to the present invention.
L1 第1群 L2 第2群 L3 第3群 L4 第4群 SL レンズ群 FL レンズ群 SP 絞り IP 像面 d d線 g g線 ΔM メリディオナル像面 ΔS サジタル像面 L1 First group L2 Second group L3 Third group L4 Fourth group SL Lens group FL Lens group SP Aperture IP Image plane d d line gg line ΔM Meridional image plane ΔS Sagittal image plane
Claims (5)
の正の屈折力の第1群、変倍機能を有する負の屈折力の
第2群、正の屈折力の第3群、そして変倍により変動す
る像面を補正する補正機能と合焦機能の双方の機能を有
する正の屈折力の第4群の4つのレンズ群を有した変倍
光学系であって、該第3群は正の屈折力の2つのレンズ
群を有し、このうち一方のレンズ群FLを固定とし、他
方のレンズ群SLを光軸と垂直方向に移動させて該変倍
光学系が振動したときの撮影画像のブレを補正している
ことを特徴とする防振機能を有した変倍光学系。1. A first lens unit having a fixed positive refractive power, a second lens unit having a negative refractive power having a zooming function, and a third lens unit having a positive refractive power during zooming and focusing in order from the object side. A variable power optical system having four lens units of a fourth lens unit having a positive refractive power and having both a correction function and a focusing function of correcting an image plane that fluctuates due to zooming; The third group has two lens groups having a positive refractive power. Of these, one lens group FL is fixed, and the other lens group SL is moved in a direction perpendicular to the optical axis, so that the variable power optical system vibrates. A variable power optical system having an image stabilizing function characterized by correcting blurring of a captured image at the time.
離を各々f3,fSLとしたとき、 1.3<fSL/f3<2.0 なる条件を満足することを特徴とする請求項1の防振機
能を有した変倍光学系。2. The condition that 1.3 <fSL / f3 <2.0 is satisfied when the focal lengths of the third group and the lens group SL are f3 and fSL, respectively. Variable magnification optical system with anti-vibration function.
た正レンズと物体側に凸面を向けたメニスカス状の負レ
ンズより成り、前記FLレンズ群は両レンズ面が凸面の
正レンズより成っていることを特徴とする請求項1又は
2の防振機能を有した変倍光学系。3. The SL lens group includes a positive lens having a convex surface facing the object side and a meniscus negative lens having a convex surface facing the object side. The FL lens group includes a positive lens having both lens surfaces convex. 3. The variable power optical system according to claim 1, wherein the variable power optical system has an image stabilizing function.
レンズ中心からレンズ周辺にいくに従って正の屈折力が
弱くなる形状の非球面であることを特徴とする請求項2
又は3の防振機能を有した変倍光学系。4. The lens system according to claim 2, wherein the convex surface closest to the object side of the SL lens group is an aspheric surface having a shape in which positive refractive power becomes weaker from the lens center toward the lens periphery.
Or a variable power optical system having an anti-vibration function of 3.
角端と望遠端の焦点距離を各々fW,fTとするとき、 【数1】 なる条件を満足することを特徴とする請求項2,3又は
4の防振機能を有した変倍光学系。5. When the focal length of the second lens unit is f2, and the focal lengths at the wide-angle end and the telephoto end of the entire system are fW and fT, respectively: 5. A variable power optical system having an anti-vibration function according to claim 2, wherein the following condition is satisfied.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9084428A JPH10260355A (en) | 1997-03-18 | 1997-03-18 | Variable power optical system with vibration-proof function |
DE69828215T DE69828215T2 (en) | 1997-03-18 | 1998-03-17 | Optical system of variable magnification with image stabilization |
EP98104787A EP0872751B1 (en) | 1997-03-18 | 1998-03-17 | Variable magnification optical system having image stabilizing function |
KR1019980009242A KR100320280B1 (en) | 1997-03-18 | 1998-03-18 | Variable magnification optical system having image stabilizing function |
US09/251,415 US6473231B2 (en) | 1997-03-18 | 1999-02-17 | Variable magnification optical system having image stabilizing function |
US09/997,088 US6606194B2 (en) | 1997-03-18 | 2001-11-30 | Variable magnification optical system having image stabilizing function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9084428A JPH10260355A (en) | 1997-03-18 | 1997-03-18 | Variable power optical system with vibration-proof function |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10260355A true JPH10260355A (en) | 1998-09-29 |
Family
ID=13830320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9084428A Pending JPH10260355A (en) | 1997-03-18 | 1997-03-18 | Variable power optical system with vibration-proof function |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10260355A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999036821A1 (en) * | 1998-01-14 | 1999-07-22 | Matsushita Electric Industrial Co., Ltd. | Zoom lens and video camera and electronic still camera using this |
JP2002049069A (en) * | 2000-08-04 | 2002-02-15 | Canon Inc | Vibration-proof zoom lens device and camera system |
JP2005134548A (en) * | 2003-10-29 | 2005-05-26 | Sony Corp | Zoom lens |
US7023624B2 (en) | 2003-08-11 | 2006-04-04 | Canon Kabushiki Kaisha | Zoom lens system and imaging apparatus having the same |
JP2006301193A (en) * | 2005-04-19 | 2006-11-02 | Canon Inc | Zoom lens and imaging apparatus equipped with the same |
JP2010266505A (en) * | 2009-05-12 | 2010-11-25 | Fujifilm Corp | Zoom lens and imaging device |
JP2010286855A (en) * | 2010-08-20 | 2010-12-24 | Sony Corp | Zoom lens |
JP2011107708A (en) * | 2009-11-20 | 2011-06-02 | Samsung Electronics Co Ltd | Optical system of zoom lens with image stabilization |
JP2017081119A (en) * | 2015-10-30 | 2017-05-18 | キヤノン株式会社 | Recording device, recording method, and program |
CN113296252A (en) * | 2021-05-24 | 2021-08-24 | 江西凤凰光学科技有限公司 | Zoom lens |
CN115202014A (en) * | 2022-06-02 | 2022-10-18 | 昆明物理研究所 | Compact uncooled long-wave infrared continuous zooming optical system |
-
1997
- 1997-03-18 JP JP9084428A patent/JPH10260355A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999036821A1 (en) * | 1998-01-14 | 1999-07-22 | Matsushita Electric Industrial Co., Ltd. | Zoom lens and video camera and electronic still camera using this |
JP2002049069A (en) * | 2000-08-04 | 2002-02-15 | Canon Inc | Vibration-proof zoom lens device and camera system |
US7023624B2 (en) | 2003-08-11 | 2006-04-04 | Canon Kabushiki Kaisha | Zoom lens system and imaging apparatus having the same |
JP2005134548A (en) * | 2003-10-29 | 2005-05-26 | Sony Corp | Zoom lens |
JP4750458B2 (en) * | 2005-04-19 | 2011-08-17 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
JP2006301193A (en) * | 2005-04-19 | 2006-11-02 | Canon Inc | Zoom lens and imaging apparatus equipped with the same |
JP2010266505A (en) * | 2009-05-12 | 2010-11-25 | Fujifilm Corp | Zoom lens and imaging device |
JP2011107708A (en) * | 2009-11-20 | 2011-06-02 | Samsung Electronics Co Ltd | Optical system of zoom lens with image stabilization |
JP2010286855A (en) * | 2010-08-20 | 2010-12-24 | Sony Corp | Zoom lens |
JP2017081119A (en) * | 2015-10-30 | 2017-05-18 | キヤノン株式会社 | Recording device, recording method, and program |
CN113296252A (en) * | 2021-05-24 | 2021-08-24 | 江西凤凰光学科技有限公司 | Zoom lens |
CN113296252B (en) * | 2021-05-24 | 2022-10-28 | 江西凤凰光学科技有限公司 | Zoom lens |
CN115202014A (en) * | 2022-06-02 | 2022-10-18 | 昆明物理研究所 | Compact uncooled long-wave infrared continuous zooming optical system |
CN115202014B (en) * | 2022-06-02 | 2023-11-03 | 昆明物理研究所 | Compact uncooled long-wave infrared continuous zooming optical system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3359131B2 (en) | Variable power optical system with anti-vibration function | |
JP4447704B2 (en) | Variable magnification optical system and camera having the same | |
JP5100411B2 (en) | Zoom lens and imaging apparatus having the same | |
JP3072815B2 (en) | Variable power optical system | |
JP4109884B2 (en) | Zoom lens and optical apparatus having the same | |
JP2007148056A (en) | Zoom optical system | |
JP2009175324A5 (en) | ||
JP3814406B2 (en) | Variable magnification optical system having anti-vibration function and camera having the same | |
JP2002244037A (en) | Variable power optical system having vibrationproof function and optical equipment using it | |
JP3919580B2 (en) | Zoom lens and optical apparatus having the same | |
JP4545849B2 (en) | Variable magnification optical system | |
JP4829445B2 (en) | Zoom lens and optical apparatus having the same | |
JPH10260355A (en) | Variable power optical system with vibration-proof function | |
JP4095131B2 (en) | Variable magnification optical system having anti-vibration function and imaging apparatus having the same | |
JP2006047771A (en) | Zoom lens and imaging apparatus using the same | |
JP2001124992A (en) | Variable power optical system having vibration-proof function, and optical equipment equipped with the same | |
JP4314248B2 (en) | Variable magnification optical system having anti-vibration function and imaging apparatus having the same | |
JP2001356270A (en) | Variable power optical system having vibration-proof function and optical equipment using the same | |
JP2005345970A (en) | Zoom lens and imaging apparatus having the same | |
JP3927684B2 (en) | Variable magnification optical system with anti-vibration function | |
JP4324175B2 (en) | Variable magnification optical system with anti-vibration function | |
JP4764524B2 (en) | Variable magnification optical system and camera having the same | |
JP3927730B2 (en) | Variable magnification optical system with anti-vibration function | |
JP3278783B2 (en) | Variable power optical system with anti-vibration function | |
JP4371468B2 (en) | Variable magnification optical system with anti-vibration function |