JP3927730B2 - Variable magnification optical system with anti-vibration function - Google Patents

Variable magnification optical system with anti-vibration function Download PDF

Info

Publication number
JP3927730B2
JP3927730B2 JP21337099A JP21337099A JP3927730B2 JP 3927730 B2 JP3927730 B2 JP 3927730B2 JP 21337099 A JP21337099 A JP 21337099A JP 21337099 A JP21337099 A JP 21337099A JP 3927730 B2 JP3927730 B2 JP 3927730B2
Authority
JP
Japan
Prior art keywords
lens
lens group
group
optical system
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21337099A
Other languages
Japanese (ja)
Other versions
JP2001042213A5 (en
JP2001042213A (en
Inventor
博之 浜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP21337099A priority Critical patent/JP3927730B2/en
Priority to US09/564,376 priority patent/US6414800B1/en
Publication of JP2001042213A publication Critical patent/JP2001042213A/en
Publication of JP2001042213A5 publication Critical patent/JP2001042213A5/ja
Application granted granted Critical
Publication of JP3927730B2 publication Critical patent/JP3927730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は防振機能を有した変倍光学系に関し、特に変倍光学系の一部のレンズ群を光軸と垂直方向に移動させることにより、該変倍光学系が振動(傾動)した時の撮影画像のぶれを光学的に補正して静止画像を得るようにし、撮影画像の安定化を図ったビデオカメラ、銀塩写真用カメラ、電子スチルカメラ、そしてデジタルカメラなどに好適な防振機能を有した変倍光学系に関するものである。
【0002】
【従来の技術】
進行中の車や航空機等移動物体上から撮影しようとすると撮影系に振動が伝わり手振れとなり撮影画像にぶれが生じる。
【0003】
従来より撮影画像のぶれを防止する機能を有した防振光学系が種々提案されている。
【0004】
例えば特開昭56−21133号公報では光学装置に振動状態を検知する検知手段からの出力信号に応じて、一部の光学部材を振動による画像の振動的変位を相殺する方向に移動させることにより画像の安定化を図っている。特開昭61−223819号公報では最も物体側に可変頂角プリズムを配置した撮影系において、撮影系の振動に対応させて該可変頂角プリズムの頂角を変化させて画像の安定化を図っている。
【0005】
特開平1−116619号公報や特開平2−124521号公報では加速度センサー等を利用して撮影系の振動を検出し、この時得られる信号に応じ、撮影系の一部のレンズ群を光軸と垂直方向に振動されることにより静止画像を得ている。
【0006】
また特開平7−128619号公報では正,負,正,正の屈折力のレンズ群より成る4群構成の変倍光学系の第3レンズ群を正,負の屈折力の2つのレンズ群で構成し、このうちの正のレンズ群を振動することにより防振を行い、静止画像を得ている。
【0007】
また、特開平7−199124号公報では正,負,正,正の屈折力のレンズ群より成る4群構成の変倍光学系において、第3レンズ群全体を振動させて防振を行っている。
【0008】
一方、特開平5−60974号公報では正,負,正,正の屈折力のレンズ群より成る4群構成の変倍光学系において、第3レンズ群を正レンズとメニスカス状の負レンズのテレフォトタイプより構成してレンズ全長の短縮化を図っている。
【0009】
【発明が解決しようとする課題】
一般に防振光学系を撮影系の前方に配置し、該防振光学系の一部の可動レンズ群を振動させて撮影画像のぶれを無くし、静止画像を得る方法は装置全体が大型化し、且つ該可動レンズ群を移動させるための移動機構が複雑化してくるという問題点があった。
【0010】
また、可変頂角プリズムを利用して防振を行う光学系では特に長焦点距離側において防振時に偏心倍率色収差の発生量が多くなることがあった。
【0011】
一方撮影系の一部のレンズを光軸に対して垂直方向に平行偏心させて防振を行う光学系においては、防振のために特別に余分な光学系を必要としないという利点はあるが、移動させるレンズのための空間を必要とし、また防振時における偏心収差の発生量が多くなってくるという問題点があった。
【0012】
また正,負,正,正の屈折力の4つのレンズ群より成る4群構成の変倍光学系の第3レンズ群全体を光軸に垂直方向に移動させて防振を行った場合、第3レンズ群を全長短縮のため正レンズとメニスカス状の負レンズのテレフォトタイプで構成したとき、偏心コマや偏心像面湾曲といった偏心収差が発生して画質が劣化するという問題点があった。
【0013】
更に以上の従来例でズーム比が8倍以上のものはビデオカメラ等には対応出来るが、100万画素相当の電子スチルカメラに使用するには収差補正の点で不十分であった。
【0014】
本発明は変倍光学系の一部を構成する比較的小型軽量のレンズ群を光軸と垂直方向に移動させて、該変倍光学系が振動(傾動)したときの画像のぶれを補正するように構成するとともに、ぶれを補正するためのレンズ群の構成を適切なものとすることにより、装置全体の小型化、機構上の簡素化及び駆動手段の負荷の軽減化を図りつつ該レンズ群を偏心させた時の偏心収差を良好に補正した防振機能を有し、特に100万画素以上の電子スチルカメラにも対応出来る防振機能を有した変倍光学系の提供を目的とする。
【0015】
【課題を解決するための手段】
請求項1の発明の防振機能を有した変倍光学系は、物体側より順に変倍及び合焦の際に固定の正の屈折力の第1レンズ群、変倍機能を有する負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、変倍により変動する像面を補正すると共に合焦機能を有する正の屈折力の第4レンズ群で構成された変倍光学系であって、該第3レンズ群全体を光軸と垂直方向に移動させて該変倍光学系が振動したときの像のぶれを補正し、該第2レンズ群は物体側から順に像面側に凹面を向けたメニスカス状の負レンズ、負レンズ、物体側に凸面を向けた正レンズ、そして負レンズで構成され、該第3レンズ群は物体側に凸面を有する正レンズ、像面側に凹面を有するメニスカス状の負レンズ、そして正レンズ、で構成され、第4レンズ群は2枚の正レンズと負レンズで構成されており、該第2レンズ群の焦点距離をf2、該第2レンズ群の最も像面側の負レンズの焦点距離をf24とするとき
1.4<|f24/f2|<4.6
なる条件式を満足することを特徴としている。
【0016】
請求項2の発明は、請求項1の発明において、前記第2レンズ群の焦点距離をf2、広角端と望遠端における全系の焦点距離を各々fw、ftとするとき
【数2】
なる条件を満足することを特徴としている。
【0017】
請求項3の発明は、請求項1又は2の発明において、前記第3レンズ群のメニスカス状の負の第32レンズ、第3レンズ群全体の焦点距離を各々f32、f3としたとき
1.1<|f32/f3|<3.5
なる条件式を満足することを特徴としている。
【0024】
【発明の実施の形態】
図1は本発明の後述する数値実施例1〜5の近軸屈折力配置を示す概略図、図2,図3,図4,図5は本発明の数値実施例1のレンズ断面図、広角端,中間,望遠端の収差図である。図6,図7,図8,図9は本発明の数値実施例2のレンズ断面図、広角端,中間,望遠端の収差図である。図10,図11,図12,図13は本発明の数値実施例3のレンズ断面図、広角端,中間,望遠端の収差図である。図14,図15,図16,図17は本発明の数値実施例4のレンズ断面図、広角端,中間,望遠端の収差図である。図18,図19,図20,図21は本発明の数値実施例5のレンズ断面図、広角端,中間,望遠端の収差図である。図22は本発明に係る防振系の光学的原理の説明図である。
【0025】
図中、L1は正の屈折力の第1群、L2は負の屈折力の第2群、L3は正の屈折力の第3群である。
【0026】
本実施形態では、第3群L3を光軸と垂直方向に移動させて変倍光学系が振動(傾動)したときの撮影画像のブレを補正している。
【0027】
L4は正の屈折力の第4群である。SPは開口絞りであり、第3群L3の前方に配置している。Gはフェースプレート等のガラスブロックである。IPは像面である。FPはフレアーカット絞りであり、第3群の像面側に配置しており、第3群で防振を行ったときのフレアー成分をカットしている。
【0028】
本実施形態では広角端から望遠端への変倍に際して矢印のように第2群を像面側へ移動させると共に、変倍に伴う像面変動を第4群を移動させて補正している。
【0029】
又、第4群を光軸上移動させてフォーカスを行うリヤーフォーカス式を採用している。同図に示す第4群の実線の曲線4aと点線の曲線4bは各々無限遠物体と近距離物体にフォーカスしているときの広角端から望遠端への変倍に伴う際の像面変動を補正する為の移動軌跡を示している。尚、第1群と第3群は変倍及びフォーカスの際固定であるが必要に応じて移動させても良い。
【0030】
本実施形態においては第4群を移動させて変倍に伴う像面変動の補正を行うと共に第4群を移動させてフォーカスを行うようにしている。特に同図の曲線4a,4bに示すように広角端から望遠端への変倍に際して物体側へ凸状の軌跡を有するように移動させている。これにより第3群と第4群との空間の有効利用を図りレンズ全長の短縮化を効果的に達成している。
【0031】
本実施形態において、例えば望遠端において無限遠物体から近距離物体へフォーカスを行う場合は同図の直線4cに示すように第4群を前方へ繰り出すことにより行っている。
【0032】
本実施形態では従来の所謂4群ズームレンズにおいて第1群を繰り出してフォーカスを行う場合に比べて前述のようなリヤーフォーカス方式を採ることにより第1群の偏心誤差による性能劣化を防止しつつ第1群のレンズ有効径の増大化を効果的に防止している。
【0033】
そして開口絞りを第3群の直前に配置することにより可動レンズ群による収差変動を少なくし、開口絞りより前方のレンズ群の間隔を短くすることにより前玉レンズ径の縮少化を容易に達成している。
【0034】
本発明の数値実施例1〜5においては第3群L3を光軸と垂直方向に移動させて変倍光学系が振動したときの像ブレを補正している。これにより従来の防振光学系に比べて防振の為のレンズ群や可変頂角プリズム等の光学部材を新たに付加することなく防振を行なっている。
【0035】
次に本発明に係る変倍光学系においてレンズ群を光軸と垂直方向に移動させて撮影画像のブレを補正する防振系の光学的原理を図22を用いて説明する。
【0036】
図22(A)に示すように光学系が固定群Y1・偏心群Y2そして固定群Y3の3つの部分から成り立っており、レンズから充分に離れた光軸上の物点Pが撮像面IPの中心に像点pとして結像しているものとする。
【0037】
今、撮像面IPを含めた光学系全体が図22(B)のように手振れにより瞬間的に傾いたとすると、物点Pは像点p′にやはり瞬間的に移動し、ブレた画像となる。
【0038】
一方、偏心群Y2を光軸と垂直方向に移動させると図22(C)のように、像点pはp″に移動し、その移動量・方向はパワー配置に依存し、そのレンズ群の偏心敏感度として表される。
【0039】
そこで図22(B)で手振れによってズレた像点p′を偏心群Y2を適切な量だけ光軸と垂直方向に移動させることによってもとの結像位置pに戻すことで図22(D)に示すとおり、手振れ補正つまり防振を行っている。
【0040】
今、光軸をθ°補正するために必要なシフトレンズ群(偏心群)の移動量(シフト量)をΔ、光学系全体の焦点距離をf、シフトレンズ群Y2の偏心敏感度をTSとすると、移動量Δは、
Δ=f・tan(θ)/TS
の式で与えられる。
【0041】
今、シフトレンズ群の偏心敏感度TSが大きすぎると移動量Δは小さな値となり、防振に必要なシフトレンズ群の移動量は小さくできるが、適切に防振を行う為の制御が困難になり、補正残りが生じてしまう。
【0042】
特にビデオカメラやデジタルスチルカメラではCCD等の撮像素子のイメージサイズが銀塩フィルムと比べて小さく、同一画角に対する焦点距離が短いため、同一角度を補正する為のシフトレンズ群のシフト量Δが小さくなる。
【0043】
従って、メカ(機構)の精度が同程度だと画面上での補正残りが相対的に大きくなることになってしまう。
【0044】
一方、偏心敏感度TSが小さすぎると制御のために必要なシフトレンズ群の移動量が大きくなってしまい、シフトレンズ群を駆動する為のアクチュエーター等の駆動手段も大きくなってしまう。
【0045】
本発明では各レンズ群の屈折力配置を適切な値に設定することで、第3群の偏心敏感度TSを適正な値とし、メカの制御誤差による防振の補正残りが少なく、アクチュエーター等の駆動手段の負荷も少ない光学系を達成している。
【0046】
本実施形態では第3群を物体側から順に物体側のレンズ面が凸面の正の第31レンズL31、物体側に比べ像面側に強い凹面を向けたメニスカス状の負の第32レンズL32、像面側面に凸面を向けた正の第33レンズL33より構成している。正の第31レンズL31の像面側のレンズ面を非球面形状としている。
【0047】
第3群中に像面側に凹面を向けたメニスカス状の負の第32レンズを設けることにより第3群全体をテレフォト構成として、第2群と第3群の主点間隔を短縮し、レンズ全長の短縮化を達成している。
【0048】
このようなメニスカス状の負レンズを設けた場合、そのレンズ面で正の歪曲収差が発生する。この正の歪曲収差が防振時における偏心歪曲が大きくなる原因となる。
【0049】
この歪曲収差を低減させるには第3レンズ群全体で発生する歪曲収差を少なくしてやればよい。
【0050】
本実施形態ではメニスカス状の負の第32レンズ32の像面側に正の第33レンズ33を配置することによってある程度のテレフォト構成を維持しつつ、第3レンズ群内で発生する歪曲収差を補正し、第3レンズ群をシフトして防振を行う際に発生する偏心歪曲収差の発生を低減している。
【0051】
また本実施形態では第31レンズに非球面を設けることにより、第3レンズ群で発生する球面収差を抑制し、防振時に発生する偏心コマ収差を低減している。
【0052】
また本発明では第4レンズ群を2枚の正レンズと1枚の負レンズで構成することにより、変倍時やフォーカス時に第4レンズ群が移動することによる球面収差や像面湾曲の変動を低減している。
【0053】
本発明の防振機能を有した変倍光学系は以上のような条件を満足することにより実現されるが、更にレンズ全長の短縮を図りつつ、良好な光学性能を達成する為には、以下の条件のうち少なくとも1つを満足することが望ましい。
【0054】
(ア-1)前記第2レンズ群は少なくとも3枚の負レンズと1枚の正レンズを有していることである。
【0055】
デジタルスチルカメラ用の撮影レンズのような高解像力が必要な光学系では変倍に伴なう倍率色収差を通常のビデオカメラ用の撮影レンズに比べて補正が必要である。
【0056】
そのためには第2レンズ群は少なくとも3枚の負レンズと1枚の正レンズを有することが望ましい。負レンズが2枚だけでは全長短縮のために第2レンズ群の屈折力を大きくして移動量を小さくしようとすると、倍率色収差の補正が困難になる。
【0057】
(ア-2)前記第2レンズ群は物体側から順に像面側に凹面を向けたメニスカス状の負レンズ、負レンズ、物体側に凸面を向けた正レンズ、そして負レンズを有することである。
【0058】
本発明はこれによって、第2レンズ群の前後の対称性を小さくすることで主点の色消し効果を高め、倍率色収差の補正を効果的に行なっている。
【0059】
(ア-3)前記第2レンズ群の焦点距離をf2、該第2レンズ群の最も像面側の負の第24レンズの焦点距離をf24とするとき
1.4<|f24/f2|<4.6…(1)
なる条件式を満足することである。
【0060】
条件式(1)は主に倍率色収差の補正を効果的に行う為のものである。条件式(1)の上限値を超えて負の第24レンズ24の焦点距離が小さくなり過ぎると色収差の補正効果が不十分になる。逆に下限値を超えると広角端での歪曲収差の補正が困難になる。
【0061】
(ア-4)広角端と望遠端における全系の焦点距離を各々fw、ftとするとき
【0062】
【数3】
【0063】
なる条件を満足することである。
【0064】
条件式(2)は高い光学性能を維持しつつ、レンズ全長の短縮を図る為のものである。条件式(2)の下限値を超えて第2レンズ群の屈折力が強くなると変倍時の第2レンズ群の移動量は小さくなるがペッツヴァール和が全体に負の方向に大きくなり、像面湾曲の補正が困難になるので良くない。逆に条件式(2)の上限値を超えると第2レンズ群の変倍時の移動量が大きくなり、レンズ系全体が小型にならないと共に防振時の周辺光量変化に関しても不利になるので良くない。
【0065】
(ア-5)変倍時に開口絞りの最大開放径を焦点距離に応じて可変とすることである。
【0066】
防振時の光量変化低減を達成するためには変倍時に絞り開口径を望遠側で小さくして中心光束を制限することで相対的に周辺光量を増加するようにしてやるのが良い。
【0067】
(ア-6)前記第3レンズ群のメニスカス状の負の第32レンズ、第3レンズ群全体の焦点距離を各々f32、f3としたとき
1.1<|f32/f3|<3.5…(3)
なる条件式を満足することである。
【0068】
条件式(3)は第3レンズ群をテレフォトタイプとして光学系全体の小型化を達成するためのものである。条件式(3)の下限値を超えて第3レンズ群中の負レンズの屈折力が強くなるとレンズ全長の短縮化には有利だがペッツヴァール和が負の方向に増大してしまい、像面湾曲の補正が困難になるので良くない。逆に下限値をこえてしまうと全長短縮が不十分になり、第3レンズ群内での色収差の補正が十分に行なわれず、偏心倍率色収差が大きくなるので良くない。
【0069】
(ア-7)防振のためのシフト群の敏感度を適切に設定することが防振性能に大きく影響する。
【0070】
本発明では第3群の焦点距離をf3、広角端における全系の焦点距離をfwとしたとき
3.3<f3/fw<4.8…(4)
なる条件を満足することである。
【0071】
これにより、レンズ全長の短縮化を図りつつシフトレンズ群の敏感度を適切な値に設定している。条件式(4)の下限値を超えて第3レンズ群の屈折力を強くすると、シフトレンズ群の敏感度が大きくなり過ぎ、メカ精度を厳しくしないと防振時の補正残りが大きくなってしまうので良くない。逆に上限値を超えて第3レンズ群の屈折力を弱くしてしまうと防振のために必要な第3レンズ群のシフト量が大きくなったり、レンズ全長が大きくなったりするので良くない。
【0072】
(ア-8)第3レンズ群のテレフォト構成を維持しつつ、第3レンズ群内の歪曲収差や非点収差を補正し、防振時の光学性能を良好に維持するには該33レンズの焦点距離をf33とする時
1.2<f33/f3<2.0…(6)
なる条件を満足することである。
【0073】
条件式(5)の下限値を越えて第33レンズの屈折力が強くなり過ぎると第3レンズ群のテレフォト性が維持されず全長短縮の効果が無くなるので良くない。逆に上限値を越えると第3レンズ群内での歪曲収差や非点収差の補正が不十分になり、防振時の光学性能が劣化してしまう。
【0074】
(ア-9)変倍時の非点収差や歪曲の変動の補正のため、第4レンズ群に非球面を導入しても良い。
【0075】
(ア-10)本発明において第3レンズ群は防振のために移動する分、レンズ径をそれだけ大きくしてやる必要がある。
【0076】
従って余計な軸上光束が入り過ぎないようにするには第3レンズ群の物体側あるいは像面側に固定の絞り(フレアー絞り)を配置することである。本実施例では第3レンズ群と第4レンズ群の間に固定絞りを配置することでスペースを有効に利用しつつ、不要な光束が入らないようにしている。
【0077】
(ア-11)レンズ全長の短縮を達成しつつ、良好な光学性能を得るには、第4レンズ群を物体側から順に正レンズ,負レンズ,正レンズの構成にするか、正レンズ,正レンズ,負レンズの構成にするのが良い。
【0078】
次に本発明の数値実施例を示す。数値実施例においてRiは物体側より順に第i番目の面の曲率半径、Diは物体側より順に第i番目の部材の厚さ又は空気間隔、Niとνiは各々物体側より順に第i番目の部材の屈折率とアッベ数である。又前述の各条件式と数値実施例の関係を表−1に示す。
【0079】
非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正としRを近軸曲率半径、A,B,C,D,Eを各々非球面係数としたとき
【0080】
【数4】
【0081】
なる式で表している。fは焦点距離、FnoはFナンバー、ωは半画角である。また「e−0X」は10-Xを意味している。
【0082】
【外1】
【0083】
【外2】
【0084】
【外3】
【0085】
【外4】
【0086】
【外5】
【0087】
【表1】
【0088】
【発明の効果】
本発明によれば以上のように、変倍光学系の一部を構成する比較的小型軽量のレンズ群を光軸と垂直方向に移動させて、該変倍光学系が振動(傾動)したときの画像のぶれを補正するように構成することにより、装置全体の小型化、機構上の簡素化及び駆動手段の負荷の軽減を図りつつ該レンズ群の偏心させたときの偏心収差発生量を少なく抑え、偏心収差を良好に補正した防振機能を有した変倍光学系を達成することが出来る。
【0089】
特に本発明では変倍比8程度の大きな変倍比を持ちながら、従来ビデオカメラ用レンズと比較して更に高い光学性能を有し、100万画素以上の画素を有する電子スチルカメラにも対応できる防振光学系を実現出来る。
【図面の簡単な説明】
【図1】 本発明に係る変倍光学系の近軸屈折力配置の概略図
【図2】 本発明の数値実施例1の広角端のレンズ断面図
【図3】 本発明の数値実施例1の広角端の諸収差図
【図4】 本発明の数値実施例1の中間の諸収差図
【図5】 本発明の数値実施例1の望遠端の諸収差図
【図6】 本発明の数値実施例2の広角端のレンズ断面図
【図7】 本発明の数値実施例2の広角端の諸収差図
【図8】 本発明の数値実施例2の中間の諸収差図
【図9】 本発明の数値実施例2の望遠端の諸収差図
【図10】 本発明の数値実施例3の広角端のレンズ断面図
【図11】 本発明の数値実施例3の広角端の諸収差図
【図12】 本発明の数値実施例3の中間の諸収差図
【図13】 本発明の数値実施例3の望遠端の諸収差図
【図14】 本発明の数値実施例4の広角端のレンズ断面図
【図15】 本発明の数値実施例4の広角端の諸収差図
【図16】 本発明の数値実施例4の中間の諸収差図
【図17】 本発明の数値実施例4の望遠端の諸収差図
【図18】 本発明の数値実施例5の広角端のレンズ断面図
【図19】 本発明の数値実施例5の広角端の諸収差図
【図20】 本発明の数値実施例5の中間の諸収差図
【図21】 本発明の数値実施例5の望遠端の諸収差図
【図22】 本発明に係る防振系の光学的原理の説明図
【符号の説明】
L1 第1群
L2 第2群
L3 第3群
L4 第4群
SP 絞り
IP 像面
FP フレアー絞り(固定絞り)
d d線
g g線
ΔM メリディオナル像面
ΔS サジタル像面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a variable magnification optical system having an anti-vibration function, and in particular, when the variable magnification optical system vibrates (tilts) by moving a part of the lens group of the variable magnification optical system in a direction perpendicular to the optical axis. Is suitable for video cameras, silver salt photography cameras, electronic still cameras, digital cameras, etc. The present invention relates to a variable magnification optical system having
[0002]
[Prior art]
If an attempt is made to shoot from a moving object such as an ongoing car or aircraft, vibrations are transmitted to the photographic system, causing camera shake and blurring of the captured image.
[0003]
Conventionally, various anti-vibration optical systems have been proposed that have a function of preventing blurring of captured images.
[0004]
For example, in Japanese Patent Application Laid-Open No. 56-21133, a part of optical members are moved in a direction that cancels the vibrational displacement of an image due to vibration in accordance with an output signal from a detecting means for detecting a vibration state in the optical device. Stabilize the image. In JP-A-61-223819, in an imaging system in which a variable apex angle prism is arranged closest to the object side, the apex angle of the variable apex angle prism is changed in accordance with the vibration of the imaging system to stabilize the image. ing.
[0005]
In Japanese Patent Application Laid-Open Nos. 1-116619 and 2-124521, vibration of the photographing system is detected using an acceleration sensor or the like, and a part of the lens group of the photographing system is placed on the optical axis according to a signal obtained at this time. A still image is obtained by vibrating in the vertical direction.
[0006]
In Japanese Patent Laid-Open No. 7-128619, the third lens group of the variable power optical system having a four-group structure composed of lens groups having positive, negative, positive and positive refractive powers is composed of two lens groups having positive and negative refractive powers. A positive lens group is vibrated to prevent vibration and obtain a still image.
[0007]
In Japanese Patent Laid-Open No. 7-199124, in the variable magnification optical system having a four-group configuration including positive, negative, positive, and positive refractive power lens groups, the entire third lens group is vibrated to prevent vibration. .
[0008]
On the other hand, in Japanese Patent Application Laid-Open No. 5-60974, in a variable power optical system having a four-group structure composed of positive, negative, positive, and positive refractive power lens groups, the third lens group is a telephoto lens having a positive lens and a meniscus negative lens. It consists of a photo type to shorten the overall lens length.
[0009]
[Problems to be solved by the invention]
In general, a method for obtaining a still image by arranging a vibration-proof optical system in front of a photographing system, vibrating a part of the movable lens group of the vibration-proof optical system to eliminate a blur of a photographed image, There has been a problem that a moving mechanism for moving the movable lens group becomes complicated.
[0010]
In addition, in an optical system that performs vibration isolation using a variable apex angle prism, the amount of decentered chromatic aberration that occurs during image stabilization, particularly on the long focal length side, may increase.
[0011]
On the other hand, in an optical system that performs vibration isolation by decentering some lenses of the photographing system in a direction perpendicular to the optical axis, there is an advantage that no extra optical system is required for image stabilization. However, there is a problem that a space for the lens to be moved is required, and that the amount of decentering aberration generated during vibration isolation increases.
[0012]
In addition, when the entire third lens unit of the variable power optical system having a four-group configuration including four lens units having positive, negative, positive, and positive refractive power is moved in the direction perpendicular to the optical axis, When the three lens units are configured with a telephoto type of a positive lens and a meniscus negative lens in order to shorten the overall length, there has been a problem that image quality deteriorates due to decentration aberrations such as decentration coma and decentered field curvature.
[0013]
Further, in the above conventional example, a zoom ratio of 8 times or more can be applied to a video camera or the like, but it is insufficient in terms of aberration correction for use in an electronic still camera equivalent to 1 million pixels.
[0014]
The present invention corrects image blurring when the zoom optical system vibrates (tilts) by moving a relatively small and lightweight lens group constituting a part of the zoom optical system in a direction perpendicular to the optical axis. In addition, the lens group for correcting the shake is made appropriate, thereby reducing the size of the entire apparatus, simplifying the mechanism, and reducing the load on the driving unit. An object of the present invention is to provide a variable magnification optical system having an image stabilization function that corrects decentration aberrations when the lens is decentered, and in particular, an image stabilization function that can be applied to an electronic still camera having 1 million pixels or more.
[0015]
[Means for Solving the Problems]
The zoom optical system having the image stabilization function according to the first aspect of the present invention includes a first lens unit having a fixed positive refractive power and a negative refraction having a zoom function in the order of zooming and focusing in order from the object side. A variable power optical system including a second lens group having a positive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power that corrects an image plane fluctuating due to zooming and has a focusing function. The third lens group is moved in the direction perpendicular to the optical axis to correct image blurring when the variable magnification optical system vibrates, and the second lens group is arranged in order from the object side to the image plane side. A negative meniscus lens having a concave surface, a negative lens, a positive lens having a convex surface facing the object side, and a negative lens. The third lens group is a positive lens having a convex surface on the object side, Consists of a meniscus negative lens having a concave surface, and a positive lens, and the fourth lens group includes two positive lenses. When the focal length of the second lens group is f2 and the focal length of the negative lens closest to the image plane in the second lens group is f24, 1.4 <| f24 / f2 | < 4.6
It satisfies the following conditional expression.
[0016]
The invention of claim 2 is the invention of claim 1, wherein the focal length of the second lens group is f2, and the focal lengths of the entire system at the wide-angle end and the telephoto end are fw and ft, respectively.
It is characterized by satisfying the following conditions.
[0017]
According to a third aspect of the present invention, in the first or second aspect of the present invention, the focal lengths of the meniscus negative 32nd lens and the entire third lens group of the third lens group are f32 and f3, respectively. 1.1 <| F32 / f3 | <3.5
It satisfies the following conditional expression.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic diagram showing a paraxial refractive power arrangement of numerical embodiments 1 to 5 described later of the present invention, and FIGS. 2, 3, 4, and 5 are sectional views of lenses of the numerical embodiment 1 of the present invention, wide angle It is an aberration diagram at the end, middle, and telephoto end. 6, FIG. 7, FIG. 8, and FIG. 9 are lens cross-sectional views of the second numerical embodiment of the present invention, and aberration diagrams at the wide-angle end, the middle, and the telephoto end. 10, FIG. 11, FIG. 12, and FIG. 13 are lens cross-sectional views of the third numerical embodiment of the present invention, and aberration diagrams at the wide-angle end, the middle, and the telephoto end. 14, FIG. 15, FIG. 16, and FIG. 17 are lens cross-sectional views of the numerical example 4 of the present invention, and aberration diagrams at the wide-angle end, the middle, and the telephoto end. 18, 19, 20, and 21 are lens cross-sectional views of the numerical value example 5 of the present invention, and aberration diagrams at the wide-angle end, in the middle, and at the telephoto end. FIG. 22 is an explanatory diagram of the optical principle of the vibration isolation system according to the present invention.
[0025]
In the figure, L1 is a first group having a positive refractive power, L2 is a second group having a negative refractive power, and L3 is a third group having a positive refractive power.
[0026]
In this embodiment, the third group L3 is moved in the direction perpendicular to the optical axis to correct blurring of the captured image when the variable magnification optical system vibrates (tilts).
[0027]
L4 is a fourth group having a positive refractive power. SP is an aperture stop, which is disposed in front of the third lens unit L3. G is a glass block such as a face plate. IP is the image plane. FP is a flare-cut stop, which is disposed on the image plane side of the third group, and cuts off the flare component when the third group performs image stabilization.
[0028]
In this embodiment, when zooming from the wide-angle end to the telephoto end, the second group is moved to the image plane side as indicated by an arrow, and the image plane variation accompanying zooming is corrected by moving the fourth group.
[0029]
In addition, a rear focus type is employed in which focusing is performed by moving the fourth group on the optical axis. The solid curve 4a and the dotted curve 4b of the fourth group shown in the figure show the image plane fluctuations accompanying the zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at close distance, respectively. The movement trajectory for correction is shown. The first group and the third group are fixed during zooming and focusing, but may be moved as necessary.
[0030]
In the present embodiment, the fourth group is moved to correct the image plane variation accompanying zooming, and the fourth group is moved to perform focusing. In particular, as shown by the curves 4a and 4b in the figure, the zoom lens is moved so as to have a convex locus toward the object side upon zooming from the wide-angle end to the telephoto end. As a result, the space between the third group and the fourth group is effectively used, and the overall length of the lens is effectively shortened.
[0031]
In the present embodiment, for example, when focusing from an infinitely distant object to a close object at the telephoto end, the fourth group is moved forward as indicated by a straight line 4c in FIG.
[0032]
In the present embodiment, the rear focus method as described above is used in the so-called four-group zoom lens in the conventional so-called four-group zoom lens, and the first group is used for focusing. This effectively prevents an increase in effective lens diameter of one group.
[0033]
By arranging the aperture stop in front of the third lens group, aberration fluctuation due to the movable lens group is reduced, and by shortening the distance between the lens groups in front of the aperture stop, the front lens diameter can be easily reduced. is doing.
[0034]
In Numerical Examples 1 to 5 of the present invention, the third lens unit L3 is moved in the direction perpendicular to the optical axis to correct image blur when the variable magnification optical system vibrates. As a result, as compared with the conventional image stabilization optical system, image stabilization is performed without newly adding an optical member such as a lens group or a variable apex angle prism for image stabilization.
[0035]
Next, the optical principle of the image stabilization system for correcting the blur of the photographed image by moving the lens group in the direction perpendicular to the optical axis in the variable magnification optical system according to the present invention will be described with reference to FIG.
[0036]
As shown in FIG. 22A, the optical system is composed of three parts, that is, a fixed group Y1, an eccentric group Y2, and a fixed group Y3. An object point P on the optical axis that is sufficiently away from the lens is on the imaging surface IP. Assume that an image is formed at the center as an image point p.
[0037]
If the entire optical system including the imaging surface IP is instantaneously tilted due to camera shake as shown in FIG. 22B, the object point P is also instantaneously moved to the image point p ′, resulting in a blurred image. .
[0038]
On the other hand, when the eccentric group Y2 is moved in the direction perpendicular to the optical axis, the image point p moves to p ″ as shown in FIG. 22C, and the amount and direction of movement depend on the power arrangement, and the lens group Expressed as eccentric sensitivity.
[0039]
Therefore, the image point p ′ shifted due to the camera shake in FIG. 22B is returned to the original imaging position p by moving the eccentric group Y2 by an appropriate amount in the direction perpendicular to the optical axis. As shown in FIG. 4, camera shake correction, that is, image stabilization is performed.
[0040]
Now, the movement amount (shift amount) of the shift lens group (eccentric group) necessary for correcting the optical axis by θ ° is Δ, the focal length of the entire optical system is f, and the eccentric sensitivity of the shift lens group Y2 is TS. Then, the movement amount Δ is
Δ = f · tan (θ) / TS
Is given by
[0041]
Now, if the decentering sensitivity TS of the shift lens group is too large, the movement amount Δ becomes a small value, and the shift lens group movement amount necessary for image stabilization can be reduced, but it is difficult to control for proper image stabilization. As a result, the correction remains.
[0042]
Particularly in video cameras and digital still cameras, the image size of an image sensor such as a CCD is smaller than that of a silver halide film, and the focal length for the same angle of view is short, so the shift amount Δ of the shift lens group for correcting the same angle is Get smaller.
[0043]
Therefore, if the accuracy of the mechanism (mechanism) is approximately the same, the remaining correction on the screen becomes relatively large.
[0044]
On the other hand, if the eccentricity sensitivity TS is too small, the amount of movement of the shift lens group necessary for control increases, and the driving means such as an actuator for driving the shift lens group also increases.
[0045]
In the present invention, the decentration sensitivity TS of the third group is set to an appropriate value by setting the refractive power arrangement of each lens group to an appropriate value, and there is little residual vibration correction due to a mechanical control error. An optical system with a small load on the driving means is achieved.
[0046]
In the present embodiment, the third lens unit in the order from the object side is a positive 31st lens L31 having a convex lens surface on the object side, a meniscus negative 32nd lens L32 having a strong concave surface on the image surface side compared to the object side, It is composed of a positive thirty-third lens L33 with the convex surface facing the image side surface. The image surface side lens surface of the positive thirty-first lens L31 has an aspherical shape.
[0047]
By providing a meniscus negative 32nd lens having a concave surface facing the image surface side in the third group, the entire third group is made into a telephoto configuration, and the principal point interval between the second group and the third group is shortened. The overall length has been shortened.
[0048]
When such a meniscus negative lens is provided, positive distortion occurs on the lens surface. This positive distortion causes a large eccentric distortion during vibration isolation.
[0049]
In order to reduce this distortion, the distortion generated in the entire third lens group may be reduced.
[0050]
In this embodiment, the positive 33rd lens 33 is arranged on the image plane side of the meniscus negative 32nd lens 32 to correct a distortion occurring in the third lens group while maintaining a certain telephoto configuration. In addition, the occurrence of decentration distortion that occurs when the third lens unit is shifted to perform image stabilization is reduced.
[0051]
In this embodiment, by providing an aspherical surface on the 31st lens, spherical aberration generated in the third lens group is suppressed, and decentration coma aberration generated at the time of image stabilization is reduced.
[0052]
Further, in the present invention, the fourth lens group is composed of two positive lenses and one negative lens, so that the spherical aberration and the curvature of field caused by the movement of the fourth lens group during zooming or focusing are reduced. Reduced.
[0053]
The variable magnification optical system having the image stabilization function of the present invention is realized by satisfying the above-mentioned conditions, but in order to achieve good optical performance while further shortening the total lens length, It is desirable to satisfy at least one of the following conditions.
[0054]
(A-1) The second lens group has at least three negative lenses and one positive lens.
[0055]
In an optical system that requires high resolving power, such as a photographic lens for a digital still camera, it is necessary to correct lateral chromatic aberration associated with zooming compared to a photographic lens for a normal video camera.
[0056]
For this purpose, it is desirable that the second lens group has at least three negative lenses and one positive lens. If only two negative lenses are used, if the refractive power of the second lens unit is increased to reduce the movement amount in order to shorten the overall length, it becomes difficult to correct lateral chromatic aberration.
[0057]
(A-2) The second lens group includes a meniscus negative lens having a concave surface facing the image surface side in order from the object side, a negative lens, a positive lens having a convex surface facing the object side, and a negative lens. .
[0058]
Accordingly, the present invention improves the achromatic effect of the principal point by reducing the front-rear symmetry of the second lens group, and effectively corrects the lateral chromatic aberration.
[0059]
(A-3) When the focal length of the second lens group is f2, and the focal length of the negative 24th lens closest to the image plane in the second lens group is f24, 1.4 <| f24 / f2 | < 4.6 (1)
The following conditional expression is satisfied.
[0060]
Conditional expression (1) is mainly for effectively correcting the lateral chromatic aberration. When the upper limit of conditional expression (1) is exceeded and the focal length of the negative 24th lens 24 becomes too small, the effect of correcting chromatic aberration becomes insufficient. Conversely, when the lower limit is exceeded, it becomes difficult to correct distortion at the wide-angle end.
[0061]
(A-4) When the focal lengths of the entire system at the wide-angle end and the telephoto end are fw and ft, respectively.
[Equation 3]
[0063]
To satisfy the following conditions.
[0064]
Conditional expression (2) is for shortening the total lens length while maintaining high optical performance. When the refractive power of the second lens unit is increased beyond the lower limit of conditional expression (2), the amount of movement of the second lens unit during zooming decreases, but the Petzval sum increases in the negative direction as a whole, and the image It is not good because it is difficult to correct the surface curvature. Conversely, if the upper limit of conditional expression (2) is exceeded, the amount of movement of the second lens unit during zooming will increase, and the entire lens system will not be miniaturized, and it will be disadvantageous in terms of changes in the amount of peripheral light during image stabilization. Absent.
[0065]
(A-5) The maximum aperture diameter of the aperture stop is variable according to the focal length at the time of zooming.
[0066]
In order to achieve a reduction in the change in the amount of light during image stabilization, it is preferable to relatively increase the amount of peripheral light by reducing the aperture diameter on the telephoto side during zooming to limit the central beam.
[0067]
(A-6) When the focal lengths of the meniscus negative 32nd lens and the entire third lens group of the third lens group are f32 and f3, respectively, 1.1 <| f32 / f3 | <3.5. (3)
The following conditional expression is satisfied.
[0068]
Conditional expression (3) is for achieving downsizing of the entire optical system by using the third lens group as a telephoto type. Exceeding the lower limit of conditional expression (3) and increasing the refractive power of the negative lens in the third lens group is advantageous for shortening the overall length of the lens, but the Petzval sum increases in the negative direction, causing curvature of field. It is not good because it becomes difficult to correct. On the contrary, if the lower limit is exceeded, the total length is not shortened sufficiently, and the chromatic aberration in the third lens group is not sufficiently corrected, and the eccentric chromatic aberration becomes large.
[0069]
(A-7) Properly setting the sensitivity of the shift group for anti-vibration greatly affects the anti-vibration performance.
[0070]
In the present invention, when the focal length of the third lens unit is f3 and the focal length of the entire system at the wide angle end is fw, 3.3 <f3 / fw <4.8 (4)
To satisfy the following conditions.
[0071]
Thereby, the sensitivity of the shift lens group is set to an appropriate value while shortening the total lens length. If the lower limit of conditional expression (4) is exceeded and the refractive power of the third lens unit is increased, the sensitivity of the shift lens unit will become too high, and the remaining correction will be increased when the mechanical accuracy is not tightened. So not good. On the contrary, if the refractive power of the third lens unit is weakened beyond the upper limit value, the shift amount of the third lens unit necessary for image stabilization becomes large or the total length of the lens becomes large.
[0072]
(A-8) In order to correct the distortion and astigmatism in the third lens group while maintaining the telephoto configuration of the third lens group, to maintain the optical performance at the time of image stabilization well, the 33 lens When the focal length is f33, 1.2 <f33 / f3 <2.0 (6)
To satisfy the following conditions.
[0073]
If the lower limit of conditional expression (5) is exceeded and the refracting power of the 33rd lens becomes too strong, the telephoto property of the third lens group will not be maintained and the effect of shortening the total length will be lost. On the other hand, if the upper limit is exceeded, correction of distortion and astigmatism in the third lens group will be insufficient, and optical performance during image stabilization will deteriorate.
[0074]
(A-9) An aspherical surface may be introduced into the fourth lens group in order to correct astigmatism and distortion fluctuation during zooming.
[0075]
(A-10) In the present invention, it is necessary to increase the lens diameter by an amount corresponding to the movement of the third lens group for image stabilization.
[0076]
Therefore, in order to prevent an excessive on-axis light beam from entering excessively, a fixed stop (flare stop) is disposed on the object side or the image plane side of the third lens group. In this embodiment, a fixed stop is disposed between the third lens group and the fourth lens group to effectively use the space and prevent unnecessary light flux from entering.
[0077]
(A-11) To achieve good optical performance while shortening the overall lens length, the fourth lens unit is configured with a positive lens, a negative lens, and a positive lens in order from the object side, or a positive lens, a positive lens, It is good to have a lens and negative lens configuration.
[0078]
Next, numerical examples of the present invention will be shown. In numerical examples, Ri is the radius of curvature of the i-th surface in order from the object side, Di is the thickness or air spacing of the i-th member in order from the object side, and Ni and νi are i-th in order from the object side. The refractive index and Abbe number of the member. Table 1 shows the relationship between the above-described conditional expressions and numerical examples.
[0079]
The aspherical shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, and A, B, C, D, and E are the aspheric coefficients. When [0080]
[Expression 4]
[0081]
It is expressed by the following formula. f is a focal length, Fno is an F number, and ω is a half angle of view. “E-0X” means 10 −X .
[0082]
[Outside 1]
[0083]
[Outside 2]
[0084]
[Outside 3]
[0085]
[Outside 4]
[0086]
[Outside 5]
[0087]
[Table 1]
[0088]
【The invention's effect】
According to the present invention, as described above, when the relatively small and light lens group constituting a part of the variable magnification optical system is moved in the direction perpendicular to the optical axis, the variable magnification optical system vibrates (tilts). The amount of decentration aberration when the lens group is decentered can be reduced while reducing the overall size of the apparatus, simplifying the mechanism, and reducing the load on the driving means. Therefore, it is possible to achieve a variable magnification optical system having an image stabilization function that suppresses and corrects decentration aberrations favorably.
[0089]
In particular, in the present invention, while having a large zoom ratio of about 8 zoom ratios, it has higher optical performance than conventional video camera lenses, and can be applied to an electronic still camera having 1 million pixels or more. Anti-vibration optical system can be realized.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a paraxial refractive power arrangement of a variable magnification optical system according to the present invention. FIG. 2 is a lens cross-sectional view at the wide-angle end of Numerical Example 1 of the present invention. FIG. 4 is a diagram showing aberrations in the middle of Numerical Example 1 of the present invention. FIG. 5 is a diagram showing various aberrations at the telephoto end of Numerical Example 1 in the present invention. Cross-sectional view of the lens at the wide-angle end of Example 2 [FIG. 7] Various aberration diagrams at the wide-angle end of Numerical Example 2 of the present invention [FIG. 8] Various aberration diagrams at the middle of Numerical Example 2 of the present invention [FIG. FIG. 10 is a lens cross-sectional view at the wide-angle end of Numerical Example 3 according to the present invention. FIG. 11 is a diagram of various aberrations at the wide-angle end according to Numerical Example 3 of the present invention. 12 is a diagram showing various aberrations in the middle of Numerical Example 3 of the present invention. FIG. 13 is a diagram showing various aberrations at the telephoto end of Numerical Example 3 of the present invention. FIG. 14 is a wide angle of Numerical Example 4 of the present invention. FIG. 15 is a diagram showing various aberrations at the wide-angle end of Numerical Example 4 of the present invention. FIG. 16 is a diagram showing various aberrations in the middle of Numerical Example 4 of the present invention. FIG. 18 is a lens cross-sectional view at the wide-angle end of Numerical Example 5 of the present invention. FIG. 19 is a diagram of various aberrations at the wide-angle end of Numerical Example 5 of the present invention. FIG. 21 is a diagram showing various aberrations at the telephoto end of Numerical Example 5 according to the present invention. FIG. 22 is a diagram illustrating the optical principle of the image stabilization system according to the present invention. ]
L1 First group L2 Second group L3 Third group L4 Fourth group SP Aperture IP Image plane FP Flare aperture (fixed aperture)
d d line g g line ΔM meridional image plane ΔS sagittal image plane

Claims (3)

物体側より順に変倍及び合焦の際に固定の正の屈折力の第1レンズ群、変倍機能を有する負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、変倍により変動する像面を補正すると共に合焦機能を有する正の屈折力の第4レンズ群で構成された変倍光学系であって、該第3レンズ群全体を光軸と垂直方向に移動させて該変倍光学系が振動したときの像のぶれを補正し、該第2レンズ群は物体側から順に像面側に凹面を向けたメニスカス状の負レンズ、負レンズ、物体側に凸面を向けた正レンズ、そして負レンズで構成され、該第3レンズ群は物体側に凸面を有する正レンズ、像面側に凹面を有するメニスカス状の負レンズ、そして正レンズ、で構成され、第4レンズ群は2枚の正レンズと負レンズで構成されており、該第2レンズ群の焦点距離をf2、該第2レンズ群の最も像面側の負レンズの焦点距離をf24とするとき
1.4<|f24/f2|<4.6
なる条件式を満足することを特徴とする防振機能を有した変倍光学系。
A first lens unit having a fixed positive refractive power, a second lens unit having a negative refractive power having a variable power function, a third lens group having a positive refractive power, A variable power optical system that is composed of a fourth lens unit having a positive refractive power that corrects an image plane fluctuating due to magnification and has a focusing function, and moves the entire third lens unit in a direction perpendicular to the optical axis. The second lens group is a meniscus negative lens having a concave surface facing the image surface in order from the object side, a negative lens, and a convex surface on the object side. The third lens group is composed of a positive lens having a convex surface on the object side, a meniscus negative lens having a concave surface on the image side, and a positive lens. fourth lens group is composed of two positive lenses and a negative lens, focus of the second lens group Distance f2, the focal length of the negative lens on the most image side of the second lens group and f24
1.4 <| f24 / f2 | <4.6
A variable magnification optical system having an anti-vibration function characterized by satisfying the following conditional expression:
前記第2レンズ群の焦点距離をf2、広角端と望遠端における全系の焦点距離を各々fw、ftとするとき
なる条件を満足することを特徴とする請求項1の防振機能を有した変倍光学系。
When the focal length of the second lens group is f2, and the focal lengths of the entire system at the wide-angle end and the telephoto end are fw and ft, respectively.
The zooming optical system having a vibration isolating function according to claim 1 , wherein the following condition is satisfied.
前記第3レンズ群のメニスカス状の負の第32レンズ、第3レンズ群全体の焦点距離を各々f32、f3としたとき
1.1<|f32/f3|<3.5
なる条件式を満足することを特徴とする請求項1又は2の防振機能を有した変倍光学系。
1.1 <| f32 / f3 | <3.5 when the focal lengths of the meniscus negative 32nd lens and the entire third lens group of the third lens group are f32 and f3, respectively.
The variable magnification optical system having a vibration isolating function according to claim 1 or 2 , wherein the following conditional expression is satisfied.
JP21337099A 1999-05-10 1999-07-28 Variable magnification optical system with anti-vibration function Expired - Fee Related JP3927730B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21337099A JP3927730B2 (en) 1999-07-28 1999-07-28 Variable magnification optical system with anti-vibration function
US09/564,376 US6414800B1 (en) 1999-05-10 2000-05-02 Variable magnification optical system and camera having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21337099A JP3927730B2 (en) 1999-07-28 1999-07-28 Variable magnification optical system with anti-vibration function

Publications (3)

Publication Number Publication Date
JP2001042213A JP2001042213A (en) 2001-02-16
JP2001042213A5 JP2001042213A5 (en) 2005-02-24
JP3927730B2 true JP3927730B2 (en) 2007-06-13

Family

ID=16638069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21337099A Expired - Fee Related JP3927730B2 (en) 1999-05-10 1999-07-28 Variable magnification optical system with anti-vibration function

Country Status (1)

Country Link
JP (1) JP3927730B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4829445B2 (en) * 2001-09-25 2011-12-07 キヤノン株式会社 Zoom lens and optical apparatus having the same
KR100615001B1 (en) * 2002-02-25 2006-08-25 마쯔시다덴기산교 가부시키가이샤 Zoom lens, and video camera and digital still camera using the zoom lens
JP3826061B2 (en) 2002-03-29 2006-09-27 キヤノン株式会社 Zoom lens and optical apparatus having the same
JP4944375B2 (en) * 2004-12-22 2012-05-30 キヤノン株式会社 Zoom lens and imaging apparatus having the same
WO2008105249A1 (en) 2007-02-27 2008-09-04 Nikon Corporation Zoom lens and optical device with the same
JP5241898B2 (en) * 2011-08-26 2013-07-17 キヤノン株式会社 Zoom lens and optical apparatus having the same
CN111435191B (en) * 2019-01-14 2022-10-14 杭州海康威视数字技术股份有限公司 Zoom lens, camera and monitoring equipment

Also Published As

Publication number Publication date
JP2001042213A (en) 2001-02-16

Similar Documents

Publication Publication Date Title
JP4447704B2 (en) Variable magnification optical system and camera having the same
JP4438046B2 (en) Zoom lens and imaging apparatus having the same
JP4789530B2 (en) Zoom lens and imaging apparatus having the same
JP4109884B2 (en) Zoom lens and optical apparatus having the same
JP4046834B2 (en) Variable magnification optical system with anti-vibration function
JP4672880B2 (en) Variable magnification optical system and optical apparatus using the same
JP3814406B2 (en) Variable magnification optical system having anti-vibration function and camera having the same
JP3919580B2 (en) Zoom lens and optical apparatus having the same
JP2002107625A (en) Zoom lens and optical equipment using the same
JP3745104B2 (en) Inner focus optical system with anti-vibration function
JP4545849B2 (en) Variable magnification optical system
JP4323584B2 (en) Variable magnification optical system with anti-vibration function
JP4829445B2 (en) Zoom lens and optical apparatus having the same
JP4447706B2 (en) Variable magnification optical system having anti-vibration function and optical apparatus including the same
JP4095131B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus having the same
JP4109896B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus using the same
JP4630451B2 (en) Zoom lens and optical apparatus using the same
JP3927730B2 (en) Variable magnification optical system with anti-vibration function
JP3927684B2 (en) Variable magnification optical system with anti-vibration function
JPH10260355A (en) Variable power optical system with vibration-proof function
JP2001356270A (en) Variable power optical system having vibration-proof function and optical equipment using the same
JP4324175B2 (en) Variable magnification optical system with anti-vibration function
JP4314248B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus having the same
JP4371468B2 (en) Variable magnification optical system with anti-vibration function
JP4921050B2 (en) Zoom lens and imaging apparatus having the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees