JP4371468B2 - Variable magnification optical system with anti-vibration function - Google Patents

Variable magnification optical system with anti-vibration function Download PDF

Info

Publication number
JP4371468B2
JP4371468B2 JP12882499A JP12882499A JP4371468B2 JP 4371468 B2 JP4371468 B2 JP 4371468B2 JP 12882499 A JP12882499 A JP 12882499A JP 12882499 A JP12882499 A JP 12882499A JP 4371468 B2 JP4371468 B2 JP 4371468B2
Authority
JP
Japan
Prior art keywords
lens
lens group
optical system
group
variable magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12882499A
Other languages
Japanese (ja)
Other versions
JP2000321494A (en
Inventor
博之 浜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12882499A priority Critical patent/JP4371468B2/en
Priority to US09/564,376 priority patent/US6414800B1/en
Publication of JP2000321494A publication Critical patent/JP2000321494A/en
Application granted granted Critical
Publication of JP4371468B2 publication Critical patent/JP4371468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は防振機能を有した変倍光学系に関し、特に変倍光学系の一部のレンズ群を光軸と垂直方向に移動させることにより、該変倍光学系が振動(傾動)した時の撮影画像のぶれを光学的に補正して静止画像を得るようにし撮影画像の安定化を図ったビデオカメラや銀塩写真用カメラ、電子スチルカメラなどに好適な防振機能を有した変倍光学系に関するものである。
【0002】
【従来の技術】
進行中の車や航空機等、移動物体上から撮影しようとすると撮影系に振動が伝わり手振れとなり撮影画像にぶれが生じる。
【0003】
従来より撮影画像のぶれを防止する機能を有した防振光学系が種々提案されている。
【0004】
例えば特開昭56−21133号公報では光学装置に振動状態を検知する検知手段からの出力信号に応じて、一部の光学部材を振動による画像の振動的変位を相殺する方向に移動させることにより画像の安定化を図っている。特開昭61−223819号公報では最も物体側に可変頂角プリズムを配置した撮影系において、撮影系の振動に対応させて該可変頂角プリズムの頂角を変化させて画像の安定化を図っている。
【0005】
特開平1−116619号公報や特開平2−124521号公報では加速度センサー等を利用して撮影系の振動を検出し、この時得られる信号に応じ、撮影系の一部のレンズ群を光軸と垂直方向に振動されることにより静止画像を得ている。
【0006】
また特開平7−128619号公報では物体側より順に正、負、正そして正の屈折力のレンズ群より成る4群構成の変倍光学系の第3レンズ群を正、負の屈折力の2つのレンズ群で構成し、このうち正のレンズ群を振動することにより防振を行っている。
【0007】
特開平7−199124号公報では物体側より順に正、負、正そして正の屈折力のレンズ群より成る4群構成の変倍光学系の第3レンズ群全体を振動させて防振を行っている。
【0008】
一方、特開平5−60974号公報では物体側より順に正、負、正そして正の屈折力のレンズ群より成る4群構成の変倍光学系で第3レンズ群を正レンズとメニスカス状の負レンズのテレフォトタイプとしてレンズ全長の短縮化を図っている。
【0009】
【発明が解決しようとする課題】
一般に防振光学系を撮影系の前方に配置し、該防振光学系の一部の可動レンズ群を振動させて撮影画像のぶれを無くし、静止画像を得る方法は装置全体が大型化し、且つ該可動レンズ群を移動させるための移動機構が複雑化してくるという問題点があった。
【0010】
可変頂角プリズムを利用して防振を行う光学系では特に長焦点距離側において防振時に偏心倍率色収差の発生量が多くなるという問題点があった。
【0011】
一方撮影系の一部のレンズを光軸に対して垂直方向に平行偏心させて防振を行う光学系においては、防振のために特別に余分な光学系を必要としないという利点はあるが、移動させるレンズのための空間を必要とし、また防振時における偏心収差の発生量が多くなってくるという問題点があった。
【0012】
また正、負、正、正の屈折力のレンズより成る4群構成の変倍光学系の第3レンズ群全体を光軸に垂直方向に移動させて防振を行った場合、第3レンズ群を全長短縮のため正レンズとメニスカス状の負レンズのテレフォトタイプで構成したとき偏心収差、特に偏心歪曲収差が発生する。これをビデオカメラなどの動画撮影を行うものに使った場合、防振時の画像の変形が目立つといった問題が発生するという問題点があった。
【0013】
更に変倍比を大きくしていくと防振時に周辺光量の変化が目立ってくるという問題点もあった。
【0014】
本発明は変倍光学系の一部を構成する比較的小型軽量のレンズ群を光軸と垂直方向に移動させて、該変倍光学系が振動(傾動)したときの画像ぶれを補正するように構成するとともに、画像ぶれを補正するためのレンズ群の構成を適切なものとすることにより、装置全体の小型化、機構上の簡素化及び駆動手段の負荷の軽減化を図りつつ該レンズ群を偏心させた時の偏心収差を良好に補正した防振機能を有した変倍光学系の提供を目的とする。
【0015】
【課題を解決するための手段】
請求項1の発明は、物体側より順に変倍及び合焦の際に固定の正の屈折力の第1レンズ群、変倍機能を有する負の屈折力の第2レンズ群、変倍及び合焦の際に光軸方向について固定の正の屈折カの第3レンズ群、変倍により変動する像面を補正すると共に合焦機能を有する正の屈折力の第4レンズ群より構成される変倍光学系であって、該第3レンズ群を光軸と垂直方向に移動させて該変倍光学系が振動した時の撮影画像のぶれを補正し、該第2レンズ群は物体側から順に像面側に強い凹面を有するメニスカス状の負の第21レンズ、負の第22レンズ、正の第23レンズ、負の第24レンズで構成され、前記第3レンズ群は物体側から順に正の第31レンズ、像面側に強い凹面を向けたメニスカス状の負の第32レンズ、正の第33レンズで構成され、全系の望遠端の焦点距離をft、第2レンズ群の焦点距離をf2、前記第24レンズの焦点距離をf24、該変倍光学系の最も物体側のレンズ面から該第3レンズ群の最も物体側のレンズ面までの距離をLS、全系の望遠端の焦点距離をftとしたとき、
0.05<|f2/ft|<0.07
1.2<|f24/f2|<2.5
0.42<|LS/ft|<0.59
なる条件式を満足することを特徴としている。
【0016】
請求項2の発明は請求項1の発明において、前記第32レンズと、前記第3レンズ群の焦点距離をそれぞれf32、f3としたとき
1.2<|f32/f3|<1.8
なる条件式を満足することを特徴としている。
請求項3の発明は請求項1又は2の発明において、変倍時に開放径を全系の焦点距離に応じて可変とする開口絞りを有することを特徴としている。
【0017】
【発明の実施の形態】
図1は本発明の近軸屈折力配置を示す概略図、図2は本発明における防振光学系の光学原理の説明図、図3は本発明において防振時の光量変化の説明図である。図4は本発明の数値実施例1の広角端のレンズ断面図である。
【0018】
図中、L1は正の屈折力の第1群、L2は負の屈折力の第2群、L3は正の屈折力の第3群である。本実施形態では第3群L3を光軸と垂直方向に移動させて変倍光学系が振動(傾動)したときの撮影画像のぶれを補正している。L4は正の屈折力の第4群である。SPは開口絞りであり、第3群L3の前方に配置している。Gはフェースプレート等のガラスブロックである。IPは像面である。FPはフレアーカット絞りであり第3群と第4群との間に配置し、変倍に伴い光軸上移動させている。
【0019】
本実施形態では広角端から望遠端への変倍に際して、図1に示す矢印のように第2群を像面側へ移動させると共に、変倍に伴う像面変動を第4群を移動させて補正している。
【0020】
又、第4群を光軸上移動させてフォーカスを行うリヤーフォーカス式を採用している。同図に示す第4群の実線の曲線4aと点線の曲線4bは各々無限遠物体と近距離物体にフォーカスしているときの広角端から望遠端への変倍に伴う際の像面変動を補正する為の移動軌跡を示している。尚、第1群と第3群は変倍及びフォーカスの際固定である。
【0021】
本実施形態においては第4群を移動させて変倍に伴う像面変動の補正を行うと共に第4群を移動させてフォーカスを行うようにしている。特に同図の曲線4a,4bに示すように広角端から望遠端への変倍に際して物体側へ凸状の軌跡を有するように移動させている。これにより第3群と第4群との空間の有効利用を図りレンズ全長の短縮化を効果的に達成している。
【0022】
本実施形態において、例えば望遠端において無限遠物体から近距離物体へフォーカスを行う場合は同図の直線4cに示すように第4群を前方へ繰り出すことにより行っている。
【0023】
本実施形態では従来の所謂4群ズームレンズにおいて第1群を繰り出してフォーカスを行う場合に比べて前述のようなリヤーフォーカス方式を採ることにより第1群の偏心誤差による性能劣化を防止しつつ第1群のレンズ有効径の増大化を効果的に防止している。そして開口絞りを第3群の直前に配置することにより可動レンズ群による収差変動を少なくし、開口絞りより前方のレンズ群の間隔を短くすることにより前玉レンズ径の縮少化を容易に達成している。
【0024】
本発明においては第3群L3を防振用として光軸と垂直方向に移動させて変倍光学系が振動したときの像ぶれを補正している。これにより従来の防振光学系に比べて防振の為のレンズ群や可変頂角プリズム等の光学部材を新たに付加することなく防振を行なっている。
【0025】
次に本発明に係る変倍光学系においてレンズ群を光軸と垂直方向に移動させて撮影画像のぶれを補正する防振系の光学的原理を図2を用いて説明する。
【0026】
図2(A)に示すように光学系が固定群Y1・偏心群Y2そして固定群Y3の3つの部分から成り立っており、レンズから充分に離れた光軸上の物点Pが撮像面IPの中心に像点pとして結像しているものとする。
【0027】
今、撮像面IPを含めた光学系全体が図2(B)のように手振れにより瞬間的に傾いたとすると、物点Pは像点p′にやはり瞬間的に移動し、ぶれた画像となる。
【0028】
一方、偏心群Y2を光軸と垂直方向に移動させると図2(C)のように、像点pはp″に移動し、その移動量・方向はパワー配置に依存し、そのレンズ群の偏心敏感度として表される。
【0029】
そこで図2(B)で手振れによってズレた像点p′を偏心群Y2を適切な量だけ光軸と垂直方向に移動させることによってもとの結像位置pに戻すことで図2(D)に示すとおり、手振れ補正つまり防振を行っている。
【0030】
今、光軸をθ°補正するために必要なシフトレンズ群(偏心群)Y2の移動量をΔ、光学系全体の焦点距離をf、シフトレンズ群Y2の偏心敏感度をTSとすると、移動量Δは
Δ=f・tan(θ)/TS
の式で与えられる。
【0031】
今、シフトレンズ群Y2の偏心敏感度TSが大きすぎると、移動量Δは小さな値となり防振に必要なシフトレンズ群の移動量は小さくできるが、適切に防振を行う為の制御が困難になり、補正残りが生じてしまう。特に、ビデオカメラやデジタルスチルカメラではCCD等の撮像素子のイメージサイズが銀塩フィルムと比べて小さく、同一画角に対する焦点距離が短いため、同一角度を補正する為のシフトレンズ群のシフト量Δが小さくなる。
【0032】
従って、メカ(機構)の精度が同程度だと画面上での補正残りが相対的に大きくなることになってしまう。
【0033】
一方偏心敏感度TSが小さすぎると制御のために必要なシフトレンズ群の移動量が大きくなってしまい、シフトレンズ群を駆動するためのアクチュエーターなどの駆動手段も大きくなってしまう。
【0034】
本発明では各レンズ群の屈折力配置を適切な値に設定することで第3レンズ群の偏心敏感度TSを適正な値とし、メカの制御誤差による防振の補正残りが少なく、アクチュエーターなどの駆動手段の負荷も少ない光学系を達成している。
【0035】
また、このような光学系の内部のレンズ群を光軸に垂直方向にシフトさせて防振を行なった場合シフト方向に対して周辺光量分布の非対称が発生する。このため動画撮影時には手振れの向きが時間的に変化するため周辺光量も時間的に変化し、これによって画面周辺にちらつきが生じる。
【0036】
これについて図3を用いて説明する。
【0037】
光軸の補正角をθとしたとき、光学系の最も物体側のレンズ面での光線の振れ量Hは補正レンズ(第3群)L3より物体側の光学系で出来る補正レンズL3の像HPから光学系の最も物体側のレンズ面までの距離をDSとすると図3(A)に示す様に
H=DS・tanθ
となる。
【0038】
図3(B)、(C)、(D)に防振時における周辺光量の変化を示す。図3(B)は通常状態、図3(C)は光学系が下を向くような補正状態、図3(D)は光学系が上を向く補正状態である。補正状態では光線の光束幅Wが変化するため光量が変化する。この変化量は第1面を通過する中心光線の振れ量Hが大きい程大きくなる。
【0039】
従って、光量変化を小さくするには第1面からシフトする第3レンズ群L3までの距離を短くして距離DSを小さくしなければならない。
【0040】
これには第2レンズ群の屈折力を大きくして第2レンズ群の変倍に要する移動量を小さくするのが良い。
【0041】
そこで発明では第2レンズ群の焦点距離f2と全系の望遠端での焦点距離ftの関係を
0.05<|f2/ft|<0.07 (1)
を満足するようにすることで変倍に必要な第2レンズ群の移動量を小さくしている。
【0042】
条件式(1)の下限を超えて第2レンズ群の屈折力が強くなると変倍時の第2レンズ群の移動量は小さくなるがペッツヴァール和が全体に負の方向に大きくなり像面湾曲の補正が困難になるので良くない。逆に(1)の上限を超えると第2レンズ群の変倍時の移動量が大きくなり、レンズ系全体が小型にならないと共に防振時の周辺光量変化に関しても不利になるので良くない。
【0043】
条件式(1)のもとで、20倍以上といった高変倍比にすると、変倍に伴なう倍率色収差の補正が困難になる。
【0044】
本発明では第2レンズ群を物体側から順に像面側に強い凹面を有するメニスカス状の負の第21レンズ、負の第22レンズ、正の第23レンズ、そして負の第24レンズで構成することで第2レンズ群の前後の対称性を小さくすることで主点の色消し効果を高め、倍率色収差の補正を効果的に行なっている。
【0045】
また、発明においては第24レンズの焦点距離をf24とするとき
1.2<|f24/f2|<2.5 (2)
を満足させるのが良い。
【0046】
条件式(2)は主に倍率色数差の補正を効果的に行なうためのものである。条件式(2)の上限を超えて第24レンズの焦点距離が小さくなり過ぎると色収差の補正効果が不十分になる。逆に下限を超えると広角端での歪曲収差の補正が困難になる。
【0047】
また発明においては防振時における周辺光量の変化を小さくするために、撮影系(変倍光学系)の最も物体側のレンズ面より、該第3レンズ群の防振時に光軸垂直に移動する部分の最も物体側のレンズ面までの距離をLS、全系の望遠端の焦点距離をftとするとき
0.42<|LS/ft|<0.59 (3)
なる条件式を満足するようにしている。
【0048】
条件式(3)の上限を超えると高倍化の際、防振時の光量変化が目立ち易くなり、逆に下限を超えようとするには第2レンズ群の屈折力を大きくする必要が出て変倍時の収差変動の補正が困難になる。
【0050】
尚、発明の防振機能を有した変倍光学系は以上のような条件を満足することにより実現されるが、更にレンズ全長の短縮を図りつつ、良好な光学性能を達成するためには、以下の条件のうち少なくとも1つを満足することが望ましい。
【0051】
(ア-1)前記第3レンズ群は物体側から順に正の第31レンズ、像面側に強い凹面を向けたメニスカス状の負の第32レンズを有することである。
【0052】
(ア-2)第3レンズ群を物体側から順に正の第31レンズ、像面側に強い凹面をむけたメニスカス状の負の第32レンズ、そして正の第33レンズで構成することである。
【0053】
第3レンズ群中に像面側に強い凹面をむけたメニスカス状の負レンズを設けることにより第3レンズ群全体をテレフォト構成として第2レンズ群と第3レンズ群の主点間隔を短縮し、レンズ全長の短縮化を達成している。
【0054】
このようなメニスカス状の負レンズを設けた場合、そのレンズ面で正の歪曲収差が発生し、これが防振時における偏心歪曲が大きくなる原因となる。この減少を低減させるには第3レンズ群全体で発生する歪曲収差を少なくしてやればよい。
【0055】
本実施例ではメニスカス状の負の第32レンズの像面側に正の第33レンズを配置することによってある程度のテレフォト構成を維持しつつ、第3レンズ群内で歪曲収差を補正し、第3レンズ群をシフトして防振を行う際に発生する偏心歪曲収差の発生を低減している。
【0056】
(ア-3)第31レンズはその両側のレンズ面を非球面形状とすることである。
【0057】
第31レンズの両側のレンズ面に非球面を設けることにより、第3レンズ群で球面収差を抑制し、防振時に発生する偏心コマ収差を低減している。
【0058】
(ア-4)前記第32レンズと、第3レンズ群全体の焦点距離を各々f32、f3としたとき
1.2<|f32/f3|<1.8 (4)
なる条件式を満足することである。
【0059】
条件式(4)は第3レンズ群をテレフォトタイプとして光学系全体の小型化を達成するためのものである。
【0060】
条件式(4)の下限を超えて第3レンズ群中の第32レンズの屈折力が強くなるとレンズ全長の短縮化には有利だがペッツヴァール和が負の方向に増大してしまい像面湾曲の補正が困難になるので良くない。逆に下限を超えてしまうと全長短縮が不十分になってしまう。
【0061】
(ア-5)防振のためのシフト群の敏感度を適切に設定することが防振性能に大きく影響する。
【0062】
そこで広角端における全系の焦点距離をfw、第3群の焦点距離をf3としたとき
3.5<f3/fw<5.5 (5)
なる条件を満足するのが良い。これにより、レンズ全長の短縮化を図りつつシフトレンズ群の敏感度を適切な値に設定している。
【0063】
条件式(5)の下限を超えて第3レンズ群の屈折力を強くすると、シフトレンズ群の敏感度が大きくなり過ぎメカ精度を厳しくしないと防振時の補正残りが大きくなってしまうので良くない。
【0064】
逆に上限を超えて第3レンズ群の屈折力を弱くしてしまうと防振のために必要な第3レンズ群のシフト量が大きくなったり、レンズ全長が大きくなったりするので良くない。
【0065】
(ア-6)第3レンズ群のテレフォト構成を維持しつつ、第3レンズ群内の歪曲収差や非点収差を補正し、防振時の光学性能を良好に維持するには該33レンズの焦点距離をf33、第3群の焦点距離をf3とする時
1.2<f33/f3<2.0 (6)
なる条件を満足することが望ましい。
【0066】
条件式(6)の下限を超えて第33レンズの屈折力が強くなり過ぎると第3レンズ群のテレフォト性が維持されず全長短縮効果が無くなるので良くない。逆に上限を超えると第3レンズ群内での歪曲収差や非点収差の補正が不十分になり、防振時の光学性能が劣化してしまう。
【0067】
(ア-7)防振時の光量変化低減を達成するためには変倍時に絞り開口径を望遠側で小さくして中心光束を制限することで相対的に周辺光量を増加するようにしてやるのが良い。
【0068】
(ア-8)変倍時の非点収差や歪曲の変動の補正のため、第2レンズ群に非球面を導入するのが良い。
【0069】
(ア-9)第3レンズ群は防振のために移動する分、レンズ径をそれだけ大きくしてやる必要がある。
【0070】
従って余計な軸上光束が入り過ぎないようにするには第3レンズ群の物体側あるいは像面側に固定の絞りを配置するのが望ましい。本実施例では第3レンズ群と第4レンズ群の間に固定絞りを配置することでスペースを有効に利用しつつ、不要な光束が入らないようにしている。
【0071】
次に本発明の数値実施例を示す。数値実施例においてRiは物体側より順に第i番目のレンズ面の曲率半径、Diは物体側より順に第i番目のレンズ厚及び空気間隔、Niとνiは各々物体側より順に第i番目のレンズのガラスの屈折率とアッベ数である。また前述の各条件式と数値実施例の関係を表−lに示す。
【0072】
非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正としRを近軸曲率半径、A,B,C,D、Eを各々非球面係数としたとき
【0073】
【数1】

Figure 0004371468
【0074】
なる式で表している。
Figure 0004371468
Figure 0004371468
Figure 0004371468
Figure 0004371468
Figure 0004371468
【0075】
【表1】
Figure 0004371468
【0076】
【発明の効果】
本発明によれば以上のように、変倍光学系の一部を構成する比較的小型軽量のレンズ群を光軸と垂直方向に移動させて、該変倍光学系が振動(傾動)したときの画像のぶれを補正するように構成することにより、装置全体の小型化、機構上の簡素化及び駆動手段の負荷の軽減を図りつつ該レンズ群を偏心させたときの偏心収差発生量を少なく抑え、偏心収差を良好に補正した防振機能を有した変倍光学系を達成することが出来る。
【図面の簡単な説明】
【図1】 本発明における変倍光学系の近軸屈折力配置の概略図
【図2】 本発明における防振系の光学的原理の説明図
【図3】 防振時の光量変化を説明するための図
【図4】 本発明の数値実施例1の広角端のレンズ断面図
【図5】 本発明の数値実施例1の広角端の諸収差図
【図6】 本発明の数値実施例1の望遠端の諸収差図
【図7】 本発明の数値実施例1の望遠端の諸収差図
【図8】 本発明の数値実施例2の広角端の諸収差図
【図9】 本発明の数値実施例2の望遠端の諸収差図
【図10】 本発明の数値実施例2の望遠端の諸収差図
【図11】 本発明の数値実施例3の広角端の諸収差図
【図12】 本発明の数値実施例3の望遠端の諸収差図
【図13】 本発明の数値実施例3の望遠端の諸収差図
【符号の説明】
L1 第1群
L2 第2群
L3 第3群
L4 第4群
SP 絞り
FP 固定絞り
IP 像面
d d線
g g線
ΔM メリディオナル像面
ΔS サジタル像面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a variable magnification optical system having an anti-vibration function, and in particular, when the variable magnification optical system vibrates (tilts) by moving a part of the lens group of the variable magnification optical system in a direction perpendicular to the optical axis. A zoom that has a vibration-proof function suitable for video cameras, silver halide photography cameras, electronic still cameras, etc., which stabilizes the captured images by optically correcting the blur of the captured images. The present invention relates to an optical system.
[0002]
[Prior art]
When shooting from a moving object such as a car or aircraft in progress, vibrations are transmitted to the shooting system, causing camera shake and blurring of the shot image.
[0003]
Conventionally, various anti-vibration optical systems have been proposed that have a function of preventing blurring of captured images.
[0004]
For example, in Japanese Patent Application Laid-Open No. 56-21133, a part of optical members are moved in a direction that cancels the vibrational displacement of an image due to vibration in accordance with an output signal from a detecting means for detecting a vibration state in the optical device. Stabilize the image. In JP-A-61-223819, in an imaging system in which a variable apex angle prism is arranged closest to the object side, the apex angle of the variable apex angle prism is changed in accordance with the vibration of the imaging system to stabilize the image. ing.
[0005]
In Japanese Patent Application Laid-Open Nos. 1-116619 and 2-124521, vibration of the photographing system is detected using an acceleration sensor or the like, and a part of the lens group of the photographing system is placed on the optical axis according to a signal obtained at this time. A still image is obtained by vibrating in the vertical direction.
[0006]
In Japanese Patent Laid-Open No. 7-128619, a third lens unit of a variable power optical system having a four-group configuration including lens units having positive, negative, positive, and positive refractive powers in order from the object side has a positive and negative refractive power of 2. The lens is composed of two lens groups, and the positive lens group is vibrated to prevent vibration.
[0007]
In Japanese Patent Laid-Open No. 7-199124, the entire third lens unit of the variable magnification optical system having a four-group configuration including lens units having positive, negative, positive, and positive refractive powers in order from the object side is vibrated to prevent vibration. Yes.
[0008]
On the other hand, in Japanese Patent Laid-Open No. 5-60974, the third lens unit is a negative lens having a meniscus shape and a positive lens in a variable magnification optical system having a four-group structure including positive, negative, positive, and positive lens units in order from the object side. The lens's overall length is shortened as a telephoto type lens.
[0009]
[Problems to be solved by the invention]
In general, a method for obtaining a still image by arranging a vibration-proof optical system in front of a photographing system, vibrating a part of the movable lens group of the vibration-proof optical system to eliminate a blur of a photographed image, There has been a problem that a moving mechanism for moving the movable lens group becomes complicated.
[0010]
In an optical system that performs vibration isolation using a variable apex angle prism, there is a problem in that the amount of decentered chromatic aberration generated increases during image stabilization, particularly on the long focal length side.
[0011]
On the other hand, in an optical system that performs vibration isolation by decentering some lenses of the photographing system in a direction perpendicular to the optical axis, there is an advantage that no extra optical system is required for image stabilization. However, there is a problem that a space for the lens to be moved is required, and that the amount of decentering aberration generated during vibration isolation increases.
[0012]
When the entire third lens group of the variable power optical system having a four-group configuration including positive, negative, positive, and positive refractive power lenses is moved in the direction perpendicular to the optical axis, the third lens group Decentration aberration, especially decentration distortion, occurs when the lens is constructed with a telephoto type of a positive lens and a meniscus negative lens to shorten the overall length. When this is used for a camera such as a video camera, there has been a problem that the deformation of the image at the time of image stabilization is conspicuous.
[0013]
Further, when the zoom ratio is increased, there is a problem that the change in the amount of peripheral light becomes conspicuous during image stabilization.
[0014]
According to the present invention, a relatively small and light lens group constituting a part of a variable magnification optical system is moved in a direction perpendicular to the optical axis so as to correct an image blur when the variable magnification optical system vibrates (tilts). In addition, the lens group for correcting image blur is made appropriate, thereby reducing the overall size of the apparatus, simplifying the mechanism, and reducing the load on the driving unit. An object of the present invention is to provide a variable magnification optical system having an image stabilization function in which decentration aberrations when the lens is decentered are corrected well.
[0015]
[Means for Solving the Problems]
According to the first aspect of the present invention, the first lens unit having a fixed positive refractive power, the second lens unit having a negative refractive power having a zooming function, zooming and focusing in order from the object side upon zooming and focusing. a third lens unit having positive refractive mosquito fixed for the optical axis direction during focusing, variable composed of the fourth lens unit having positive refractive power having a focusing function along with correcting the image plane which varies with zooming A magnification optical system, wherein the third lens group is moved in a direction perpendicular to the optical axis to correct a shake of a captured image when the variable magnification optical system vibrates, and the second lens group is sequentially arranged from the object side. A negative meniscus 21st lens having a strong concave surface on the image side, a negative 22nd lens, a positive 23rd lens, and a negative 24th lens. The third lens group is positive in order from the object side. 31st lens, meniscus negative 32nd lens with strong concave surface facing image side, positive 33rd lens Is configured, the focal length at the telephoto end of the entire system ft, the focal length of the second lens group f2, the focal length of the 24 lens f24, third the most object side lens surface of the variable magnification optical system When the distance to the lens surface closest to the object side of the lens group is LS, and the focal length of the telephoto end of the entire system is ft ,
0.05 <| f2 / ft | <0.07
1.2 <| f24 / f2 | <2.5
0.42 <| LS / ft | <0.59
It satisfies the following conditional expression .
[0016]
The invention of claim 2 is the invention of claim 1, wherein the focal lengths of the thirty-second lens and the third lens group are f32 and f3, respectively .
1.2 <| f32 / f3 | <1.8
It satisfies the following conditional expression.
The invention of claim 3 is characterized by having an aperture stop to be variable in accordance in the invention of claim 1 or 2, the opening diameter at the time of zooming the focal length of the entire system.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic diagram showing a paraxial refractive power arrangement according to the present invention, FIG. 2 is an explanatory diagram of the optical principle of an image stabilization optical system according to the present invention, and FIG. 3 is an explanatory diagram of changes in light quantity during image stabilization in the present invention. . FIG. 4 is a lens cross-sectional view at the wide angle end according to Numerical Embodiment 1 of the present invention.
[0018]
In the figure, L1 is a first group having a positive refractive power, L2 is a second group having a negative refractive power, and L3 is a third group having a positive refractive power. In this embodiment, the third lens unit L3 is moved in the direction perpendicular to the optical axis to correct the shake of the captured image when the variable magnification optical system vibrates (tilts). L4 is a fourth group having a positive refractive power. SP is an aperture stop, which is disposed in front of the third lens unit L3. G is a glass block such as a face plate. IP is the image plane. FP is a flare-cut stop, which is disposed between the third group and the fourth group, and is moved on the optical axis with zooming.
[0019]
In the present embodiment, when zooming from the wide-angle end to the telephoto end, the second group is moved to the image plane side as indicated by the arrow shown in FIG. 1, and the image plane variation caused by zooming is moved by moving the fourth group. It is corrected.
[0020]
In addition, a rear focus type is employed in which focusing is performed by moving the fourth group on the optical axis. The solid curve 4a and the dotted curve 4b of the fourth group shown in the figure show the image plane fluctuations accompanying the zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at close distance, respectively. The movement trajectory for correction is shown. The first group and the third group are fixed during zooming and focusing.
[0021]
In the present embodiment, the fourth group is moved to correct the image plane variation accompanying zooming, and the fourth group is moved to perform focusing. In particular, as shown by the curves 4a and 4b in the figure, the zoom lens is moved so as to have a convex locus toward the object side upon zooming from the wide-angle end to the telephoto end. As a result, the space between the third group and the fourth group is effectively used, and the overall length of the lens is effectively shortened.
[0022]
In the present embodiment, for example, when focusing from an infinitely distant object to a close object at the telephoto end, the fourth group is moved forward as indicated by a straight line 4c in FIG.
[0023]
In the present embodiment, the rear focus method as described above is used in the so-called four-group zoom lens in the conventional so-called four-group zoom lens, and the first group is used for focusing. This effectively prevents an increase in effective lens diameter of one group. By arranging the aperture stop in front of the third lens group, aberration fluctuation due to the movable lens group is reduced, and by shortening the distance between the lens groups in front of the aperture stop, the front lens diameter can be easily reduced. is doing.
[0024]
In the present invention, the third lens unit L3 is moved in the direction perpendicular to the optical axis for image stabilization to correct image blurring when the variable magnification optical system vibrates. As a result, as compared with the conventional image stabilization optical system, image stabilization is performed without newly adding an optical member such as a lens group or a variable apex angle prism for image stabilization.
[0025]
Next, the optical principle of the image stabilization system for correcting the shake of the photographed image by moving the lens group in the direction perpendicular to the optical axis in the variable magnification optical system according to the present invention will be described with reference to FIG.
[0026]
As shown in FIG. 2A, the optical system is composed of three parts, a fixed group Y1, an eccentric group Y2, and a fixed group Y3, and an object point P on the optical axis sufficiently separated from the lens is on the imaging surface IP. Assume that an image is formed at the center as an image point p.
[0027]
Assuming that the entire optical system including the imaging surface IP is instantaneously tilted due to camera shake as shown in FIG. 2B, the object point P is also instantaneously moved to the image point p ′, resulting in a blurred image. .
[0028]
On the other hand, when the eccentric group Y2 is moved in the direction perpendicular to the optical axis, the image point p moves to p ″ as shown in FIG. 2C, and the amount and direction of movement depend on the power arrangement, and the lens group Expressed as eccentric sensitivity.
[0029]
Therefore, the image point p ′ shifted due to the camera shake in FIG. 2B is returned to the original imaging position p by moving the eccentric group Y2 by an appropriate amount in the direction perpendicular to the optical axis. As shown in FIG. 4, camera shake correction, that is, image stabilization is performed.
[0030]
Now, assuming that the shift amount of the shift lens group (eccentric group) Y2 necessary for correcting the optical axis by θ is Δ, the focal length of the entire optical system is f, and the eccentric sensitivity of the shift lens group Y2 is TS, The quantity Δ is Δ = f · tan (θ) / TS
Is given by
[0031]
If the decentering sensitivity TS of the shift lens group Y2 is too large, the movement amount Δ is small and the shift lens group movement amount necessary for image stabilization can be reduced, but it is difficult to control for proper image stabilization. As a result, the remaining correction occurs. In particular, in a video camera or a digital still camera, the image size of an image sensor such as a CCD is smaller than that of a silver halide film, and the focal length with respect to the same angle of view is short. Therefore, the shift amount Δ of the shift lens group for correcting the same angle Becomes smaller.
[0032]
Therefore, if the accuracy of the mechanism (mechanism) is approximately the same, the remaining correction on the screen becomes relatively large.
[0033]
On the other hand, if the eccentricity sensitivity TS is too small, the amount of movement of the shift lens group necessary for control increases, and the driving means such as an actuator for driving the shift lens group also increases.
[0034]
In the present invention, the decentration sensitivity TS of the third lens unit is set to an appropriate value by setting the refractive power arrangement of each lens unit to an appropriate value. An optical system with a small load on the driving means is achieved.
[0035]
Further, when the lens group in such an optical system is shifted in the direction perpendicular to the optical axis to perform image stabilization, an asymmetry of the peripheral light amount distribution occurs with respect to the shift direction. For this reason, during moving image shooting, the direction of camera shake changes with time, so the amount of peripheral light also changes with time, which causes flickering around the screen.
[0036]
This will be described with reference to FIG.
[0037]
When the correction angle of the optical axis is θ, the light beam shake amount H on the lens surface closest to the object side of the optical system is an image HP of the correction lens L3 that can be generated by the optical system closer to the object side than the correction lens (third group) L3. When the distance from the lens surface to the most object side of the optical system is DS, as shown in FIG. 3A, H = DS · tan θ
It becomes.
[0038]
FIGS. 3B, 3C, and 3D show changes in the amount of peripheral light during image stabilization. 3B shows a normal state, FIG. 3C shows a correction state in which the optical system faces downward, and FIG. 3D shows a correction state in which the optical system faces upward. In the corrected state, the amount of light changes because the beam width W of the light beam changes. This amount of change increases as the shake amount H of the central ray passing through the first surface increases.
[0039]
Therefore, in order to reduce the change in the amount of light, the distance DS from the first surface to the third lens unit L3 to be shifted must be shortened to reduce the distance DS.
[0040]
For this purpose, it is preferable to increase the refractive power of the second lens unit to reduce the amount of movement required for zooming of the second lens unit.
[0041]
Therefore, in the present invention, the relationship between the focal length f2 of the second lens group and the focal length ft at the telephoto end of the entire system is expressed as 0.05 <| f2 / ft | <0.07 (1)
Thus, the amount of movement of the second lens group necessary for zooming is reduced.
[0042]
If the refractive power of the second lens unit is increased beyond the lower limit of conditional expression (1), the amount of movement of the second lens unit during zooming decreases, but the Petzval sum increases in the negative direction as a whole, and the field curvature It is not good because it becomes difficult to correct. On the other hand, if the upper limit of (1) is exceeded, the amount of movement of the second lens unit at the time of zooming becomes large, the entire lens system is not miniaturized, and it is disadvantageous with respect to changes in the amount of peripheral light during image stabilization.
[0043]
Under the conditional expression (1), when the zoom ratio is high, such as 20 times or more, it becomes difficult to correct lateral chromatic aberration associated with zooming.
[0044]
In the present invention, the second lens group is composed of a meniscus negative 21st lens having a strong concave surface on the image side from the object side, a negative 22nd lens, a positive 23rd lens, and a negative 24th lens. By reducing the symmetry of the second lens group before and after, the achromatic effect of the principal point is enhanced, and the lateral chromatic aberration is effectively corrected.
[0045]
In the present invention, when the focal length of the 24th lens is f24, 1.2 <| f24 / f2 | <2.5 (2)
It is good to satisfy.
[0046]
Conditional expression (2) is mainly for effectively correcting the magnification color difference. If the upper limit of conditional expression (2) is exceeded and the focal length of the 24th lens becomes too small, the effect of correcting chromatic aberration will be insufficient. Conversely, if the lower limit is exceeded, it becomes difficult to correct distortion at the wide-angle end.
[0047]
Further, in the present invention, in order to reduce the change in the amount of peripheral light during image stabilization, the optical system moves vertically from the lens surface closest to the object side of the imaging system (variable magnification optical system) during image stabilization of the third lens unit. 0.42 <| LS / ft | <0.59 (3) where LS is the distance to the lens surface closest to the object side and ft is the focal length of the telephoto end of the entire system
The following conditional expression is satisfied.
[0048]
If the upper limit of conditional expression (3) is exceeded, the change in the amount of light during image stabilization tends to be noticeable when the magnification is increased. Conversely, in order to exceed the lower limit, it is necessary to increase the refractive power of the second lens group. It is difficult to correct aberration fluctuations during zooming.
[0050]
The variable magnification optical system having the image stabilization function of the present invention is realized by satisfying the above conditions, but in order to achieve good optical performance while further shortening the overall lens length. It is desirable to satisfy at least one of the following conditions.
[0051]
(A-1) The third lens group has a positive 31st lens in order from the object side, and a meniscus negative 32nd lens with a strong concave surface facing the image surface side.
[0052]
(A-2) The third lens group is composed of a positive 31st lens in order from the object side, a meniscus negative 32nd lens with a strong concave surface on the image surface side, and a positive 33rd lens. .
[0053]
By providing a meniscus negative lens having a strong concave surface on the image surface side in the third lens group, the entire third lens group is made into a telephoto configuration, and the principal point interval between the second lens group and the third lens group is shortened. The overall length of the lens has been shortened.
[0054]
When such a meniscus-shaped negative lens is provided, positive distortion occurs on the lens surface, which causes a large amount of eccentric distortion during image stabilization. In order to reduce this decrease, it is only necessary to reduce distortion generated in the entire third lens group.
[0055]
In this embodiment, the positive 33rd lens is arranged on the image plane side of the meniscus negative 32nd lens to maintain a certain telephoto configuration, while correcting the distortion aberration in the third lens group. The occurrence of decentering distortion that occurs when the lens group is shifted to perform vibration isolation is reduced.
[0056]
(A-3) The thirty-first lens has an aspherical shape on both lens surfaces.
[0057]
By providing aspheric surfaces on the lens surfaces on both sides of the 31st lens, spherical aberration is suppressed in the third lens group, and decentration coma that occurs during image stabilization is reduced.
[0058]
(A-4) 1.2 <| f32 / f3 | <1.8 where the focal lengths of the thirty-second lens and the third lens group are f32 and f3, respectively (4)
The following conditional expression is satisfied.
[0059]
Conditional expression (4) is for achieving downsizing of the entire optical system by using the third lens group as a telephoto type.
[0060]
If the refracting power of the 32nd lens in the third lens group becomes stronger beyond the lower limit of conditional expression (4), it is advantageous for shortening the overall length of the lens, but the Petzval sum increases in the negative direction and the field curvature is reduced. It is not good because correction becomes difficult. On the other hand, if the lower limit is exceeded, the total length is not sufficiently shortened.
[0061]
(A-5) Properly setting the sensitivity of the shift group for anti-vibration greatly affects the anti-vibration performance.
[0062]
Therefore, when the focal length of the entire system at the wide angle end is fw and the focal length of the third lens unit is f3, 3.5 <f3 / fw <5.5 (5)
It is good to satisfy the condition. Thereby, the sensitivity of the shift lens group is set to an appropriate value while shortening the total lens length.
[0063]
If the refractive power of the third lens unit is increased beyond the lower limit of the conditional expression (5), the sensitivity of the shift lens unit becomes too high, and if the mechanical accuracy is not strict, the remaining correction at the time of image stabilization will increase. Absent.
[0064]
Conversely, if the refractive power of the third lens group is weakened beyond the upper limit, the shift amount of the third lens group necessary for image stabilization becomes large, and the total lens length becomes large, which is not good.
[0065]
(A-6) In order to correct distortion and astigmatism in the third lens group while maintaining the telephoto configuration of the third lens group, and to maintain good optical performance during image stabilization, the 33 lens When the focal length is f33 and the focal length of the third lens unit is f3, 1.2 <f33 / f3 <2.0 (6)
It is desirable to satisfy the following conditions.
[0066]
If the lower limit of conditional expression (6) is exceeded and the refracting power of the 33rd lens becomes too strong, the telephoto property of the third lens group will not be maintained and the effect of shortening the overall length will be lost. Conversely, when the upper limit is exceeded, correction of distortion and astigmatism in the third lens group becomes insufficient, and the optical performance during image stabilization deteriorates.
[0067]
(A-7) In order to achieve a reduction in the change in the amount of light during image stabilization, the peripheral aperture is relatively increased by reducing the aperture diameter on the telephoto side during zooming to limit the central beam. Is good.
[0068]
(A-8) It is preferable to introduce an aspherical surface to the second lens group in order to correct astigmatism and distortion fluctuation during zooming.
[0069]
(A-9) It is necessary to increase the lens diameter by the amount that the third lens group moves for image stabilization.
[0070]
Accordingly, in order to prevent an excessive on-axis light beam from entering excessively, it is desirable to dispose a fixed stop on the object side or the image plane side of the third lens group. In this embodiment, a fixed stop is disposed between the third lens group and the fourth lens group to effectively use the space and prevent unnecessary light flux from entering.
[0071]
Next, numerical examples of the present invention will be shown. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air spacing in order from the object side, and Ni and νi are the i-th lens in order from the object side. The refractive index and Abbe number of the glass. Table 1 shows the relationship between the above-described conditional expressions and numerical examples.
[0072]
The aspheric shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, and A, B, C, D, and E are the aspheric coefficients. When [0073]
[Expression 1]
Figure 0004371468
[0074]
It is expressed by the following formula.
Figure 0004371468
Figure 0004371468
Figure 0004371468
Figure 0004371468
Figure 0004371468
[0075]
[Table 1]
Figure 0004371468
[0076]
【The invention's effect】
According to the present invention, as described above, when the relatively small and light lens group constituting a part of the variable magnification optical system is moved in the direction perpendicular to the optical axis, the variable magnification optical system vibrates (tilts). The amount of decentering aberration when the lens group is decentered is reduced while reducing the size of the entire device, simplifying the mechanism, and reducing the load on the driving means. Therefore, it is possible to achieve a variable magnification optical system having an image stabilization function that suppresses and corrects decentration aberrations favorably.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a paraxial refractive power arrangement of a variable magnification optical system according to the present invention. FIG. 2 is an explanatory diagram of an optical principle of a vibration isolating system according to the present invention. FIG. 4 is a lens cross-sectional view at the wide-angle end of Numerical Example 1 of the present invention. FIG. 5 is a diagram of various aberrations at the wide-angle end of Numerical Example 1 of the present invention. FIG. 7 is a diagram of various aberrations at the telephoto end of Numerical Example 1 of the present invention. FIG. 8 is a diagram of various aberrations at the wide-angle end of Numerical Example 2 of the present invention. FIG. 10 is a diagram of various aberrations at the telephoto end of Numerical Example 2 according to the present invention. FIG. 11 is a diagram of various aberrations at the wide-angle end according to Numerical Example 3 of the present invention. FIG. 13 is a diagram showing various aberrations at the telephoto end according to Numerical Example 3 of the present invention. FIG. 13 is a diagram showing various aberrations at the telephoto end according to Numerical Example 3 according to the present invention.
L1 1st group L2 2nd group L3 3rd group L4 4th group SP Aperture FP Fixed aperture IP Image plane d d line g g line ΔM Meridional image plane ΔS Sagittal image plane

Claims (3)

物体側より順に変倍及び合焦の際に固定の正の屈折力の第1レンズ群、変倍機能を有する負の屈折力の第2レンズ群、変倍及び合焦の際に光軸方向について固定の正の屈折カの第3レンズ群、変倍により変動する像面を補正すると共に合焦機能を有する正の屈折力の第4レンズ群より構成される変倍光学系であって、該第3レンズ群を光軸と垂直方向に移動させて該変倍光学系が振動した時の撮影画像のぶれを補正し、該第2レンズ群は物体側から順に像面側に強い凹面を有するメニスカス状の負の第21レンズ、負の第22レンズ、正の第23レンズ、負の第24レンズで構成され、前記第3レンズ群は物体側から順に正の第31レンズ、像面側に強い凹面を向けたメニスカス状の負の第32レンズ、正の第33レンズで構成され、全系の望遠端の焦点距離をft、第2レンズ群の焦点距離をf2、前記第24レンズの焦点距離をf24、該変倍光学系の最も物体側のレンズ面から該第3レンズ群の最も物体側のレンズ面までの距離をLS、全系の望遠端の焦点距離をftとしたとき、
0.05<|f2/ft|<0.07
1.2<|f24/f2|<2.5
0.42<|LS/ft|<0.59
なる条件式を満足することを特徴とする防振機能を有する変倍光学系。
A first lens unit having a fixed positive refractive power during zooming and focusing in order from the object side, a second lens unit having a negative refractive power having a zooming function, and an optical axis direction during zooming and focusing A variable power optical system composed of a fourth lens group having a positive refractive power and a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power that corrects an image plane fluctuating by zooming and has a focusing function, The third lens group is moved in a direction perpendicular to the optical axis to correct blurring of a captured image when the variable magnification optical system vibrates, and the second lens group has a strong concave surface on the image plane side in order from the object side. And a negative meniscus 21st lens, a negative 22nd lens, a positive 23rd lens, and a negative 24th lens. The third lens group includes a positive 31st lens and an image plane side in order from the object side. strong concave meniscus shape having a negative 32nd lens having its consists of a positive 33 lens, the entire system The focal length of the far end ft, the focal length of the second lens group f2, the focal length of the 24 lens f24, the most object side of the third lens group from the lens surface closest to the object side variable magnification optical system Where LS is the distance to the lens surface and ft is the focal length of the telephoto end of the entire system .
0.05 <| f2 / ft | <0.07
1.2 <| f24 / f2 | <2.5
0.42 <| LS / ft | <0.59
Variable magnification optical system to have a vibration damping function, characterized by satisfying the conditional expression.
前記第32レンズと、前記第3レンズ群の焦点距離をそれぞれf32、f3としたとき
1.2<|f32/f3|<1.8
なる条件式を満足することを特徴とする請求項1記載の防振機能を有する変倍光学系。
When the focal lengths of the thirty-second lens and the third lens group are f32 and f3, respectively .
1.2 <| f32 / f3 | <1.8
Variable magnification optical system to have a vibration reduction function according to claim 1, characterized by satisfying the conditional expression.
変倍時に開放径を全系の焦点距離に応じて可変とする開口絞りを有することを特徴とする請求項1または2に記載の防振機能を有する変倍光学系。Variable magnification optical system to have a vibration reduction function according to claim 1 or 2, characterized in that an aperture stop which is variable in accordance with open diameter upon zooming the focal length of the entire system.
JP12882499A 1999-05-10 1999-05-10 Variable magnification optical system with anti-vibration function Expired - Fee Related JP4371468B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12882499A JP4371468B2 (en) 1999-05-10 1999-05-10 Variable magnification optical system with anti-vibration function
US09/564,376 US6414800B1 (en) 1999-05-10 2000-05-02 Variable magnification optical system and camera having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12882499A JP4371468B2 (en) 1999-05-10 1999-05-10 Variable magnification optical system with anti-vibration function

Publications (2)

Publication Number Publication Date
JP2000321494A JP2000321494A (en) 2000-11-24
JP4371468B2 true JP4371468B2 (en) 2009-11-25

Family

ID=14994328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12882499A Expired - Fee Related JP4371468B2 (en) 1999-05-10 1999-05-10 Variable magnification optical system with anti-vibration function

Country Status (1)

Country Link
JP (1) JP4371468B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102438930B (en) * 2009-05-22 2015-05-20 三菱电机株式会社 Elevator monitoring and control method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672860B2 (en) * 2000-12-14 2011-04-20 キヤノン株式会社 Zoom lens and optical apparatus using the same
JP4944375B2 (en) * 2004-12-22 2012-05-30 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5040360B2 (en) * 2007-02-27 2012-10-03 株式会社ニコン Zoom lens and optical apparatus having the same
JP7387423B2 (en) * 2019-12-25 2023-11-28 キヤノン株式会社 Zoom lens and imaging device
CN114442293B (en) * 2021-12-29 2023-09-12 河南中光学集团有限公司 Laser illumination beam expansion zoom optical system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102438930B (en) * 2009-05-22 2015-05-20 三菱电机株式会社 Elevator monitoring and control method

Also Published As

Publication number Publication date
JP2000321494A (en) 2000-11-24

Similar Documents

Publication Publication Date Title
JP4447704B2 (en) Variable magnification optical system and camera having the same
JP4046834B2 (en) Variable magnification optical system with anti-vibration function
JP4672880B2 (en) Variable magnification optical system and optical apparatus using the same
JP4438046B2 (en) Zoom lens and imaging apparatus having the same
JP3814406B2 (en) Variable magnification optical system having anti-vibration function and camera having the same
JP4109884B2 (en) Zoom lens and optical apparatus having the same
JP4789530B2 (en) Zoom lens and imaging apparatus having the same
JP3919580B2 (en) Zoom lens and optical apparatus having the same
JPH07104218A (en) Variable power optical system
JP3745104B2 (en) Inner focus optical system with anti-vibration function
JP4545849B2 (en) Variable magnification optical system
JP4323584B2 (en) Variable magnification optical system with anti-vibration function
JP4109896B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus using the same
JP4447706B2 (en) Variable magnification optical system having anti-vibration function and optical apparatus including the same
JP4829445B2 (en) Zoom lens and optical apparatus having the same
JP4095131B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus having the same
JP4630451B2 (en) Zoom lens and optical apparatus using the same
JP3927684B2 (en) Variable magnification optical system with anti-vibration function
JP4324175B2 (en) Variable magnification optical system with anti-vibration function
JP3927730B2 (en) Variable magnification optical system with anti-vibration function
JPH10260355A (en) Variable power optical system with vibration-proof function
JP2001356270A (en) Variable power optical system having vibration-proof function and optical equipment using the same
JP4371468B2 (en) Variable magnification optical system with anti-vibration function
JP4314248B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus having the same
JP5241898B2 (en) Zoom lens and optical apparatus having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees