JP4764524B2 - Variable magnification optical system and camera having the same - Google Patents

Variable magnification optical system and camera having the same Download PDF

Info

Publication number
JP4764524B2
JP4764524B2 JP2010285882A JP2010285882A JP4764524B2 JP 4764524 B2 JP4764524 B2 JP 4764524B2 JP 2010285882 A JP2010285882 A JP 2010285882A JP 2010285882 A JP2010285882 A JP 2010285882A JP 4764524 B2 JP4764524 B2 JP 4764524B2
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
image
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010285882A
Other languages
Japanese (ja)
Other versions
JP2011059726A (en
Inventor
博之 浜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010285882A priority Critical patent/JP4764524B2/en
Publication of JP2011059726A publication Critical patent/JP2011059726A/en
Application granted granted Critical
Publication of JP4764524B2 publication Critical patent/JP4764524B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は変倍光学系及びそれを有するカメラに関し、変倍光学系の一部のレンズ群を光軸と垂直方向に移動させることにより、該変倍光学系が振動(傾動)した時の撮影画像のぶれを光学的に補正するものである。特に本発明はこれによって静止画像を得るようにし撮影画像の安定化を図ったビデオカメラや銀塩写真用カメラ、電子スチルカメラ、デジタルカメラなどに好適なものである。   The present invention relates to a variable magnification optical system and a camera having the same, and takes a picture when the variable magnification optical system vibrates (tilts) by moving a part of the lens group of the variable magnification optical system in a direction perpendicular to the optical axis. This is to optically correct image blurring. In particular, the present invention is suitable for a video camera, a silver halide photographic camera, an electronic still camera, a digital camera, and the like that obtain a still image and thereby stabilize a photographed image.

進行中の車や航空機等移動物体上から撮影しようとすると撮影系に振動が伝わり手振れとなり撮影画像にぶれが生じる。   If an attempt is made to shoot from a moving object such as an ongoing car or aircraft, vibrations are transmitted to the photographic system, causing camera shake and blurring of the captured image.

従来より撮影画像のぶれを防止する機能を有した防振光学系が種々提案されている(特許文献1〜7)。   Conventionally, various anti-vibration optical systems having a function of preventing blurring of captured images have been proposed (Patent Documents 1 to 7).

例えば特許文献1では光学装置に振動状態を検知する検知手段からの出力信号に応じて、一部の光学部材を振動による画像の振動的変位を相殺する方向に移動させることにより画像の安定化を図っている。特許文献2では最も物体側に可変頂角プリズムを配置した撮影系において、撮影系の振動に対応させて該可変頂角プリズムの頂角を変化させて画像の安定化を図っている。   For example, in Patent Document 1, the image is stabilized by moving some optical members in a direction that cancels the vibrational displacement of the image due to the vibration in accordance with an output signal from a detection unit that detects a vibration state in the optical device. I am trying. In Patent Document 2, in an imaging system in which a variable apex angle prism is arranged on the most object side, the apex angle of the variable apex angle prism is changed in accordance with the vibration of the imaging system to stabilize the image.

特許文献3や特許文献4では加速度センサー等を利用して撮影系の振動を検出し、この時得られる信号に応じ、撮影系の一部のレンズ群を光軸と垂直方向に振動されることにより静止画像を得ている。   In Patent Document 3 and Patent Document 4, vibration of the photographing system is detected using an acceleration sensor or the like, and a part of the lens group of the photographing system is vibrated in a direction perpendicular to the optical axis according to a signal obtained at this time. A still image is obtained.

特許文献5では、物体側より順に変倍及び合焦の際に固定の正の屈折力の第1群、変倍機能を有する負の屈折力の第2群、開口絞り、正の屈折力の第3群を有している。更に、変倍により変動する像面を補正する補正機能と合焦機能の双方の機能を有する正の屈折力の第4群の4つのレンズ群を有した変倍光学系である。そして、該第3群は負の屈折力の第31群と正の屈折力の第32群の2つのレンズ群より成り、該第32群を光軸と垂直方向に移動させて該変倍光学系が振動したときの撮影画像のブレを補正している。   In Patent Document 5, in order from the object side, when zooming and focusing, a first group of fixed positive refractive power, a second group of negative refractive power having a zooming function, an aperture stop, a positive refractive power It has a third group. Further, the zoom lens system includes a fourth lens unit having a positive refractive power and a fourth lens unit having both a correction function for correcting an image plane fluctuating due to zooming and a focusing function. The third group is composed of two lens groups, a negative refractive power group 31 and a positive refractive power group 32, and the zoom lens is moved by moving the 32nd group in a direction perpendicular to the optical axis. Corrects the blurring of the captured image when the system vibrates.

特許文献6では、正,負,正,正の屈折力の4群構成の変倍光学系の第3群全体を振動させて防振を行なっている。   In Patent Document 6, the entire third group of the variable power optical system having a four-group configuration of positive, negative, positive, and positive refractive power is vibrated to prevent vibration.

一方、特許文献7では正,負,正,正の屈折力のレンズ群より成る4群構成のズームレンズにおいて第2、第3レンズ群で変倍を行ない第1レンズ群を正の単レンズで構成することでレンズ全長を短縮しつつ高性能化を図ったズームレンズを提案している。   On the other hand, in Patent Document 7, in a zoom lens having a four-group configuration including positive, negative, positive, and positive refractive power lens groups, zooming is performed by the second and third lens groups, and the first lens group is a positive single lens. We have proposed a zoom lens that is designed to improve performance while shortening the overall lens length.

特開昭56−21133号公報JP 56-21133 A 特開昭61−223819号公報JP-A-61-223819 特開平1−116619号公報JP-A-1-116619 特開平2−124521号公報Japanese Patent Laid-Open No. 2-124521 特開平7−128619号公報Japanese Patent Laid-Open No. 7-128619 特開平7−199124号公報JP-A-7-199124 特開平10−62687号公報JP-A-10-62687

一般に防振光学系を撮影系の前方に配置し、該防振光学系の一部の稼動レンズ群を振動させて撮影画像のぶれを無くし、静止画像を得る方法は装置全体が大型化し、且つ該稼動レンズ群を移動させるための移動機構が複雑化してくるという問題点があった。   In general, a method for obtaining a still image by arranging a vibration-proof optical system in front of the photographing system, vibrating a part of the operating lens group of the vibration-proof optical system to eliminate a blur of the photographed image, There is a problem that a moving mechanism for moving the operating lens group becomes complicated.

可変頂角プリズムを利用して防振を行う光学系では特に長焦点距離側において防振時に偏心倍率色収差の発生量が多くなるという問題点があった。   In an optical system that performs vibration isolation using a variable apex angle prism, there is a problem in that the amount of decentered chromatic aberration generated increases during image stabilization, particularly on the long focal length side.

一方撮影系の一部のレンズを光軸に対して垂直方向に平行偏心させて防振を行う光学系においては、防振のために特別に余分な光学系を必要としないという利点はある。しかしながら、移動させるレンズのための空間を必要とし、また防振時における偏心収差の発生量が多くなってくるという問題点があった。   On the other hand, an optical system that performs vibration isolation by decentering a part of the lenses of the photographing system in the direction perpendicular to the optical axis has an advantage that no extra optical system is required for image stabilization. However, there is a problem in that it requires a space for the lens to be moved, and the amount of decentration aberrations generated during image stabilization increases.

また正,負,正,正の屈折力のレンズ群より成る4群構成の変倍光学系の第3レンズ群全体を光軸に垂直方向に移動させて防振を行った場合には次の問題点が生じてくる。即ち、第3レンズ群を全長短縮のため正レンズとメニスカス状の負レンズのテレフォトタイプで構成したとき偏心コマや偏心像面湾曲といった偏心収差が発生して画質が劣化する。   In addition, when the entire third lens unit of the variable power optical system having a four-group configuration including positive, negative, positive, and positive refractive power lens units is moved in the direction perpendicular to the optical axis, Problems arise. That is, when the third lens unit is configured with a telephoto type of a positive lens and a meniscus negative lens in order to shorten the entire length, decentration aberrations such as decentration coma and decentration field curvature occur and image quality deteriorates.

更に以上の従来例のズームレンズでズーム比が8倍以上のものはビデオカメラ等には対応出来るが、100万画素相当の撮像素子を有する電子スチルカメラに使用するには収差補正の点で不十分であった。   Furthermore, although the zoom lens of the conventional example described above having a zoom ratio of 8 times or more can be used for a video camera or the like, it is inconvenient in terms of aberration correction when used for an electronic still camera having an image sensor equivalent to 1 million pixels. It was enough.

本発明は変倍光学系の一部を構成する比較的小型軽量のレンズ群を光軸と垂直方向に移動させて、該変倍光学系が振動(傾動)したときの画像のぶれを補正するように構成するとともにぶれを補正するためのレンズ群の構成を適切なものとする。これにより、装置全体の小型化、機構上の簡素化及び駆動手段の負荷の軽減化を図ることができる。更に該レンズ群を偏心させた時の偏心収差を良好に補正した防振機能を有し、例えば100万画素以上の撮像素子を有する電子スチルカメラにも十分対応出来る変倍光学系及びそれを有するカメラの提供を目的とする。   The present invention corrects image blurring when the zoom optical system vibrates (tilts) by moving a relatively small and lightweight lens group constituting a part of the zoom optical system in a direction perpendicular to the optical axis. In addition, the configuration of the lens group for correcting blur is appropriate. As a result, it is possible to reduce the size of the entire apparatus, simplify the mechanism, and reduce the load on the driving means. In addition, the zoom lens system has an anti-vibration function that satisfactorily corrects decentration aberrations when the lens group is decentered, and has a variable power optical system that can sufficiently handle, for example, an electronic still camera having an image sensor with 1 million pixels or more. The purpose is to provide a camera.

請求項1の発明の変倍光学系は、物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群から構成され、前記第1レンズ群と前記第2レンズ群と前記第3レンズ群を移動させて変倍を行う変倍光学系であって、前記第4レンズ群は1枚の正レンズにより構成され、前記第4レンズ群を光軸上移動させてフォーカシングを行い、前記第3レンズ群全体を光軸に対して垂直方向に移動させて該変倍光学系が振動したときの撮影画像のぶれを補正することができ、広角端から望遠端への変倍における前記第1レンズ群と前記第3レンズ群の移動量を各々M1、M3、前記第3レンズ群の焦点距離をf3、広角端における全系の焦点距離をfwとするとき、
0.2<M1/M3<1.5
1.5<f3/fw<3.0
なる条件式を満足することを特徴としている。
The zoom optical system according to the first aspect of the present invention includes, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, A variable power optical system that includes a fourth lens group having a positive refractive power and performs zooming by moving the first lens group, the second lens group, and the third lens group, and the fourth lens The group is composed of a single positive lens, and the fourth lens group is moved on the optical axis for focusing, and the entire third lens group is moved in the direction perpendicular to the optical axis to change the variable magnification optical system. Can correct the shake of the photographed image when the lens vibrates, and the amount of movement of the first lens group and the third lens group in zooming from the wide-angle end to the telephoto end is M1, M3 , and the third lens, respectively. When the focal length of the group is f3 and the focal length of the entire system at the wide angle end is fw ,
0.2 <M1 / M3 <1.5
1.5 <f3 / fw <3.0
It satisfies the following conditional expression.

請求項2の発明のカメラは、請求項1に記載の変倍光学系を備えることを特徴としている。   According to a second aspect of the present invention, there is provided a camera having the variable magnification optical system according to the first aspect.

本発明によれば以上のように、変倍光学系の一部を構成する比較的小型軽量のレンズ群を光軸と垂直方向に移動させて、該変倍光学系が振動(傾動)したときの画像のぶれを補正するように構成する。そして、それとともにぶれを補正するためのレンズ群の構成を適切なものとする。これにより、装置全体の小型化、機構上の簡素化及び駆動手段の負荷の軽減化を図ることができる。更に該レンズ群を偏心させた時の偏心収差を良好に補正した防振機能を有し、例えば100万画素以上の撮像素子を有する電子スチルカメラにも十分対応出来る変倍光学系を達成することが出来る。   According to the present invention, as described above, when the relatively small and light lens group constituting a part of the variable magnification optical system is moved in the direction perpendicular to the optical axis, the variable magnification optical system vibrates (tilts). It is configured to correct the image blurring. Along with that, the configuration of the lens group for correcting blur is made appropriate. As a result, it is possible to reduce the size of the entire apparatus, simplify the mechanism, and reduce the load on the driving means. Furthermore, to achieve a variable magnification optical system that has an anti-vibration function that satisfactorily corrects decentration aberrations when the lens group is decentered, and is sufficiently compatible with, for example, an electronic still camera having an image sensor with 1 million pixels or more. I can do it.

参考例1における変倍光学系の近軸屈折力配置の概略図Schematic diagram of paraxial refractive power arrangement of variable magnification optical system in Reference Example 1 本発明における防振系の光学的原理の説明図Explanatory drawing of optical principle of vibration isolation system in the present invention 参考例1の数値実施例1の広角端のレンズ断面図Cross-sectional view of the lens at the wide angle end of Numerical Example 1 of Reference Example 1 参考例2における変倍光学系の近軸屈折力配置の概略図Schematic diagram of paraxial refractive power arrangement of variable magnification optical system in Reference Example 2 実施形態1における変倍光学系の近軸屈折力配置の概略図Schematic of paraxial refractive power arrangement of the variable magnification optical system in Embodiment 1 実施形態1の数値実施例3の広角端のレンズ断面図Cross-sectional view of the lens at the wide angle end according to Numerical Example 3 of Embodiment 1 参考例1の数値実施例1の広角端の収差図Aberration diagram at the wide angle end in Numerical Example 1 of Reference Example 1. 参考例1の数値実施例1の中間の収差図Intermediate aberration diagram of Numerical Example 1 of Reference Example 1 参考例1の数値実施例1の望遠端の収差図Aberration diagram at telephoto end of Numerical Example 1 of Reference Example 1 参考例2の数値実施例2の広角端の収差図Aberration diagram at wide-angle end in Numerical example 2 of Reference example 2 参考例2の数値実施例2の中間の収差図Intermediate aberration diagram of Numerical Example 2 of Reference Example 2 参考例2の数値実施例2の望遠端の収差図Aberration diagram at telephoto end of Numerical Example 2 of Reference Example 2 実施形態1の数値実施例3の広角端の収差図Aberration diagram at wide-angle end in Numerical example 3 according to Embodiment 1 実施形態1の数値実施例3の中間の収差図Intermediate aberration diagram of Numerical Example 3 of Embodiment 1 実施形態1の数値実施例3の望遠端の収差図Aberration diagram at telephoto end in Numerical Example 3 according to Embodiment 1 参考例2の数値実施例2の広角端のレンズ断面図Lens sectional view at the wide-angle end of Numerical Example 2 of Reference Example 2

図1は本発明の参考例1の近軸屈折力配置を示す概略図である。図1においてL1は正の屈折力の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群、L4は正の屈折力の第4レンズ群である。   FIG. 1 is a schematic diagram showing the paraxial refractive power arrangement of Reference Example 1 of the present invention. In FIG. 1, L1 is a first lens group having a positive refractive power, L2 is a second lens group having a negative refractive power, L3 is a third lens group having a positive refractive power, and L4 is a fourth lens group having a positive refractive power. It is.

本参考例では第3レンズ群を光軸に垂直方向に移動させることにより、光学系全体が振動(傾動)したときの撮影画像のぶれ(画像ぶれ)を補正している。SPは開口絞りであり、第3レンズ群L3の前方に位置している。   In this reference example, by moving the third lens group in the direction perpendicular to the optical axis, blurring of the captured image (image blurring) when the entire optical system vibrates (tilts) is corrected. SP is an aperture stop, which is located in front of the third lens unit L3.

本参考例では広角端から望遠端への変倍に際して矢印のように第2レンズ群と第3レンズ群を光軸上を移動させている。また、第4レンズ群を光軸上移動させてフォーカシングを行うリヤーフォーカス式を採用している。尚、第1レンズ群は変倍及びフォーカスの際固定である。   In this reference example, the second lens group and the third lens group are moved on the optical axis as indicated by arrows when zooming from the wide-angle end to the telephoto end. Further, a rear focus type is employed in which the fourth lens group is moved on the optical axis to perform focusing. The first lens group is fixed during zooming and focusing.

広角端から望遠端への変倍に際しては第3レンズ群は物体側に移動し、第2レンズ群は最初は像面側にそして途中から物体側へ移動する。開口絞りSPは第3レンズ群と一体に物体側に移動するが必要に応じて独立に移動しても良い。   When zooming from the wide-angle end to the telephoto end, the third lens group moves to the object side, and the second lens group first moves to the image plane side and from the middle to the object side. The aperture stop SP moves to the object side integrally with the third lens group, but may move independently as necessary.

本参考例において例えば無限遠物体から近距離物体ヘフォーカスを行う場合には同図に示すように第4レンズ群を前方に繰り出すことにより行っている。   In this reference example, for example, when focusing from an object at infinity to an object at a short distance, the fourth lens group is moved forward as shown in FIG.

本参考例においては第3レンズ群L3を防振のために光軸と垂直方向に移動させて光学系全体が振動したときの画像ぶれを補正している。これにより可変頂角プリズム等の光学部材や防振のためのレンズ群を新たに付加することなく防振を行っている。   In this reference example, image blur when the entire optical system vibrates is corrected by moving the third lens unit L3 in the direction perpendicular to the optical axis for image stabilization. As a result, image stabilization is performed without adding an optical member such as a variable apex angle prism or a lens group for image stabilization.

次に本発明に係わる変倍光学系においてレンズ群を光軸と垂直方向に移動させて撮影画像のぶれを補正する防振系の光学的原理を図2を用いて説明する。   Next, the optical principle of the image stabilization system for correcting the shake of the photographed image by moving the lens group in the direction perpendicular to the optical axis in the variable magnification optical system according to the present invention will be described with reference to FIG.

図2(A)に示すように光学系が固定群Y1、偏心群Y2、そして固定群Y3の3つの部分から成り立っており、レンズから十分に離れた光軸上の物点Pが撮像面IPの中心に像点pとして結像しているものとする。今、撮像面IPを含めた光学系全体が図2(B)のように手ぶれにより瞬間的に傾いたとすると、物点Pは像点P′にやはり瞬間的に移動し、ぶれた画像となる。   As shown in FIG. 2A, the optical system is composed of three parts, a fixed group Y1, an eccentric group Y2, and a fixed group Y3, and an object point P on the optical axis sufficiently separated from the lens is an imaging surface IP. It is assumed that an image is formed as an image point p at the center of the image. Assuming that the entire optical system including the imaging surface IP is instantaneously tilted due to camera shake as shown in FIG. 2B, the object point P is also instantaneously moved to the image point P ′, resulting in a blurred image. .

一方、偏心群Y2を光軸と垂直方向に移動させると図2(C)のように、像点pはp"に移動し、その移動量・方向は屈折力配置に依存し、そのレンズ群の偏心敏感度として表される。そこで図2(B)で手振れによってずれた像点p′を偏心群Y2を適切な量だけ光軸と垂直方向に移動させることによってもとの結像位置pに戻すことで図2(D)に示すとおり、手振れ補正つまり防振を行っている。   On the other hand, when the eccentric group Y2 is moved in the direction perpendicular to the optical axis, the image point p moves to p "as shown in FIG. 2C, and the amount and direction of movement depend on the refractive power arrangement, and the lens group. 2B, the image point p ′ shifted due to camera shake in FIG. 2B is moved by an appropriate amount in the direction perpendicular to the optical axis by moving the eccentric group Y2 to the original imaging position p. By returning to the position, as shown in FIG. 2D, camera shake correction, that is, image stabilization is performed.

今、光軸をθ°補正するために必要なシフトレンズ群の移動量をΔ、光学系全体の焦点距離をf、シフト群Y2の偏心敏感度をTSとするとΔは以下の式で与えられる。   Now, Δ is given by the following equation, where Δ is the amount of shift lens group movement required to correct the optical axis by θ °, f is the focal length of the entire optical system, and TS is the eccentricity sensitivity of the shift group Y2. .

Δ=f・tan(θ)/TS
今、シフト群の偏心敏感度TSが大きすぎるとΔは小さな値となり防振に必要なシフト群の移動量は小さく出来るが、適切に防振を行うための制御が困難になり、補正残りが生じてしまう。
Δ = f · tan (θ) / TS
Now, if the eccentricity sensitivity TS of the shift group is too large, Δ becomes a small value and the shift group movement amount necessary for image stabilization can be reduced, but control for performing image stabilization becomes difficult, and the remaining correction remains. It will occur.

特にビデオカメラやデジタルスチルカメラではCCDなどの撮像素子のイメージサイズが銀塩フィルムと比べて小さく、同一画角に対する焦点距離が短いため、同一角度を補正するためのシフトレンズ群のシフト量Δが小さくなる。従って、メカの精度が同程度だと画面上での補正残りが相対的に大きくなることになってしまう。   Particularly in video cameras and digital still cameras, the image size of an image sensor such as a CCD is smaller than that of a silver halide film, and the focal length for the same angle of view is short. Therefore, the shift amount Δ of the shift lens group for correcting the same angle is small. Get smaller. Therefore, if the accuracy of the mechanism is approximately the same, the remaining correction on the screen becomes relatively large.

一方、偏心敏感度TSが小さすぎると制御のために必要なシフトレンズ群の移動量が大きくなってしまい、シフトレンズ群を駆動するためのアクチュエーターなどの駆動手段も大きくなってしまう。   On the other hand, if the eccentricity sensitivity TS is too small, the amount of movement of the shift lens group necessary for control becomes large, and the driving means such as an actuator for driving the shift lens group also becomes large.

本参考例では各レンズ群の屈折力配置を適切な値に設定することで第3レンズ群の偏心敏感度TSを適正な値とし、メカの制御誤差による防振の補正残りが少なく、アクチュエーターなどの駆動手段の負荷も少ない光学系を達成している。   In this reference example, the decentration sensitivity TS of the third lens group is set to an appropriate value by setting the refractive power arrangement of each lens group to an appropriate value, and there is little residual vibration correction due to mechanical control errors, and actuators, etc. This achieves an optical system with a small load on the driving means.

具体的には、該第3レンズ群全体を光軸と垂直方向に移動させて該変倍光学系が振動した時の撮影画像のぶれを補正し、少なくとも第2レンズ群と第3レンズ群を移動させて変倍を行なう。そして、第1レンズ群は正の単レンズまたは1枚の正レンズと1枚の負レンズで構成していることを特徴としている。   Specifically, the entire third lens group is moved in the direction perpendicular to the optical axis to correct the shake of the captured image when the variable magnification optical system vibrates, and at least the second lens group and the third lens group are moved. Move to scale. The first lens group is composed of a positive single lens or one positive lens and one negative lens.

図3に参考例1の数値実施例1の光学系の断面図を示す。   FIG. 3 shows a cross-sectional view of the optical system of Numerical Example 1 of Reference Example 1.

本参考例では第1レンズ群を正の単レンズで構成している。又第2レンズ群を物体側から順に像面側に強い凹面を向けたメニスカス状の負レンズ、負レンズ、物体側に強い凸面を向けた正レンズで構成している。ここで「像面側に強い」とは「屈折力の絶対値が物体側に比べて像面側のレンズ面が強い(大きい)」ことを意味する。第3レンズ群を物体側から順に正レンズ31、正レンズと像面側に強い凹面をむけた負レンズの貼り合せレンズ32、そして正レンズ33で構成している。正レンズ31はその物体側のレンズ面が非球面形状を有している。   In this reference example, the first lens group is composed of a positive single lens. Further, the second lens group is composed of a meniscus negative lens having a strong concave surface facing the image surface side in order from the object side, a negative lens, and a positive lens having a strong convex surface facing the object side. Here, “strong on the image plane side” means “the lens surface on the image plane side is stronger (larger) than the object side on the absolute value of refractive power”. The third lens group includes, in order from the object side, a positive lens 31, a positive lens and a negative lens cemented lens 32 having a strong concave surface on the image plane side, and a positive lens 33. The positive lens 31 has an aspheric lens surface on the object side.

第3レンズ群中に像面側に強い凹面をむけたメニスカス状の負レンズを設けることにより第3レンズ群全体をテレフォト構成として第2レンズ群と第3レンズ群の主点間隔を短縮し、レンズ全長の短縮化を達成している。   By providing a meniscus negative lens having a strong concave surface on the image surface side in the third lens group, the entire third lens group is made into a telephoto configuration, and the principal point interval between the second lens group and the third lens group is shortened. The overall length of the lens has been shortened.

本参考例ではメニスカス状の負レンズ32の像面側に正レンズ33を配置することによってある程度のテレフォト構成を維持しつつ、第3レンズ群内で歪曲収差を補正し、第3レンズ群をシフトして防振を行う際に発生する偏心歪曲収差の発生を低減している。また本参考例では正レンズ31に非球面を設けることにより、第3レンズ群で球面収差を抑制し、防振時に発生する偏心コマ収差を低減している。   In this reference example, the positive lens 33 is arranged on the image plane side of the meniscus negative lens 32 to maintain a certain telephoto configuration, while correcting distortion in the third lens group and shifting the third lens group. As a result, the occurrence of decentration distortion that occurs when performing vibration isolation is reduced. In this reference example, the positive lens 31 is provided with an aspherical surface, so that the third lens group suppresses spherical aberration and reduces decentration coma that occurs during image stabilization.

また第4レンズ群を1枚の正レンズで構成することでフォーカスのアクチュエーターの負荷を低減している。   In addition, the load of the focus actuator is reduced by configuring the fourth lens group with one positive lens.

第4レンズ群を正の単レンズで構成しているが、ここに負レンズを加えると更にフォーカシングの際の色収差の変動を低減することができる。   Although the fourth lens group is composed of a single positive lens, if a negative lens is added here, fluctuations in chromatic aberration during focusing can be further reduced.

本参考例では以上のように、レンズ構成を設定することにより、基準状態と防振状態において、全変倍範囲にわたり、又物体距離全体にわたり高い光学性能を得ている。   In the present reference example, by setting the lens configuration as described above, high optical performance is obtained over the entire zoom range and over the entire object distance in the reference state and the image stabilization state.

尚、本参考例の防振機能を有した変倍光学系において、更に良好なる光学性能を得るには、次の条件のうち少なくとも1つを満足させるのが良い。   In the variable magnification optical system having the image stabilization function of this reference example, in order to obtain further excellent optical performance, it is preferable to satisfy at least one of the following conditions.

(ア-1)第3レンズ群、及び第3レンズ群より像側に配置したレンズ群の望遠端での倍率を各々B3t、Brtとしたとき
0.5<|(1−B3t)・Brt|<3…(1)
なる条件式を満足することである。
(A-1) When the magnifications at the telephoto end of the third lens group and the lens group arranged on the image side from the third lens group are B3t and Brt, respectively, 0.5 <| (1-B3t) · Brt | <3 ... (1)
The following conditional expression is satisfied.

第3レンズ群の望遠端での偏心敏感度TS3は望遠端における第3レンズ群の倍率をB3t、第3レンズ群より像面側のレンズ群の倍率をBrtとしたとき
TS3=(1−B3t)・Brt
で与えられる。
The decentering sensitivity TS3 at the telephoto end of the third lens group is B3t when the magnification of the third lens group at the telephoto end is B3t, and the magnification of the lens group closer to the image plane than the third lens group is TS3 = (1-B3t ) ・ Brt
Given in.

本参考例においてはこの絶対値を
0.5<|(1−B3t)・Brt|<3…(1)
なる条件を満足するようにして偏心敏感度を適切な範囲に設定している。
In this reference example, this absolute value is set to 0.5 <| (1-B3t) · Brt | <3 (1)
The eccentricity sensitivity is set to an appropriate range so as to satisfy the following conditions.

条件式(1)の下限を超えると防振の際の第3レンズ群の移動量が大きくなり過ぎる。
逆に上限を超えると敏感度が大きくなりすぎて防振の制御が困難になる。
If the lower limit of conditional expression (1) is exceeded, the amount of movement of the third lens group during image stabilization becomes too large.
On the other hand, if the upper limit is exceeded, the sensitivity becomes too high, and it becomes difficult to control the image stabilization.

さらに制御性を良くしてかつ移動量を小さくするには条件式(1)の数値範囲を
0.6<|(1−B3t)・Brt|<2…(1a)
なる条件を満足するようにするのが望ましい。
In order to further improve the controllability and reduce the movement amount, the numerical range of the conditional expression (1) is changed to 0.6 <| (1-B3t) · Brt | <2 (1a)
It is desirable to satisfy the following conditions.

(ア-2)第3レンズ群の焦点距離をf3、広角端と望遠端における全系の焦点距離を各々fw,ftとするとき
1.5<f3/fw<3.0…(2)
2.0<ft/fw…(3)
なる条件式を満足するのが良い。
(A-2) When the focal length of the third lens group is f3, and the focal lengths of the entire system at the wide-angle end and the telephoto end are fw and ft, respectively. 1.5 <f3 / fw <3.0 (2)
2.0 <ft / fw (3)
It is good to satisfy the following conditional expression.

条件式(2)の下限を超えて第3レンズ群の屈折カが強くなり過ぎると全長の短縮化には有利だがペッツバール和が正の方向に大きくなりすぎて像面湾曲の補正が困難になるので良くない。逆に上限を超えると変倍に要する第3レンズ群の移動量が大きくなり過ぎて良くない。   If the lower limit of conditional expression (2) is exceeded and the refractive power of the third lens group becomes too strong, it is advantageous for shortening the overall length, but the Petzval sum becomes too large in the positive direction, making it difficult to correct field curvature. So not good. On the other hand, if the upper limit is exceeded, the amount of movement of the third lens group required for zooming becomes too large.

また条件式(3)を超えると所定のズーム比が得られない。   If the conditional expression (3) is exceeded, a predetermined zoom ratio cannot be obtained.

図4は本発明の参考例2の近軸屈折力配置を示す概略図である。図4においてL1は正の屈折力の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群、L4は正の屈折力の第4レンズ群である。第2レンズ群全体を光軸に垂直方向に移動させることにより、光学系全体が振動(傾動)したときの撮影画像のぶれを補正している。   FIG. 4 is a schematic diagram showing the paraxial refractive power arrangement of Reference Example 2 of the present invention. In FIG. 4, L1 is a first lens group having a positive refractive power, L2 is a second lens group having a negative refractive power, L3 is a third lens group having a positive refractive power, and L4 is a fourth lens group having a positive refractive power. It is. By moving the entire second lens group in the direction perpendicular to the optical axis, the shake of the captured image when the entire optical system vibrates (tilts) is corrected.

本参考例でも広角端から望遠端への変倍に際して矢印のように第2レンズ群と第3レンズ群を光軸上を移動させることにより変倍を行なっている。また、第4レンズ群を光軸上移動させてフォーカシングを行うリヤーフォーカス式を採用している。   Also in this reference example, zooming is performed by moving the second lens unit and the third lens unit on the optical axis as indicated by arrows when zooming from the wide-angle end to the telephoto end. Further, a rear focus type is employed in which the fourth lens group is moved on the optical axis to perform focusing.

第2レンズ群で防振を行なうことでレンズ径の大きさという点で参考例1に発明に比べて不利だが防振の際の周辺光量の変化をより低減している。防振における光学的作用は図2に示した参考例1と同様である。図16に参考例2の数値実施例2の広角端におけるレンズ断面図を示す。   By performing image stabilization with the second lens group, it is disadvantageous compared to the invention in Reference Example 1 in terms of the size of the lens diameter, but the change in the amount of peripheral light during image stabilization is further reduced. The optical action in image stabilization is the same as in Reference Example 1 shown in FIG. FIG. 16 is a lens cross-sectional view at the wide-angle end of Numerical Example 2 of Reference Example 2.

本発明の参考例2では第1レンズ群は正の単レンズ又は1枚の正レンズと1枚の負レンズで構成されていることを特徴としている。第1レンズ群と第3レンズ群のレンズ構成は参考例1と同様である。   Reference Example 2 of the present invention is characterized in that the first lens group is composed of a single positive lens or one positive lens and one negative lens. The lens configurations of the first lens group and the third lens group are the same as in Reference Example 1.

尚、本発明の参考例2において、基準状態と防振状態との双方において良好なる光学性能を得るには次の条件式を満足させるのが良い。   In Reference Example 2 of the present invention, the following conditional expression should be satisfied in order to obtain good optical performance in both the reference state and the image stabilization state.

(イ-1)本発明の参考例2において第2レンズ群の防振時の敏感度TS2は、該第2レンズ群、第2レンズ群より像側に配置したレンズ群の望遠端での倍率を各々B2t、Brtとしたとき
TS2=(1−B2t)・Brt
で与えられる。
(A-1) In the reference example 2 of the present invention, the sensitivity TS2 at the time of image stabilization of the second lens group is the magnification at the telephoto end of the second lens group and the lens group disposed on the image side from the second lens group. Where B2t and Brt are TS2 = (1-B2t) · Brt
Given in.

本発明の参考例2においては、この絶対値が
0.5<|(1−B2t)・Brt|<3…(4)
なる条件式を満足することが望ましい。
In Reference Example 2 of the present invention, this absolute value is 0.5 <| (1-B2t) · Brt | <3 (4)
It is desirable to satisfy the following conditional expression.

条件式の下限を超えて第2レンズ群の敏感度が小さくなると防振時の第2レンズ群の移動量が大きくなるので良くない。逆に上限を超えて敏感度が大きくなり過ぎると制御が困難になるので良くない。   If the sensitivity of the second lens group becomes smaller than the lower limit of the conditional expression, the amount of movement of the second lens group at the time of image stabilization increases, which is not good. On the other hand, if the sensitivity exceeds the upper limit and becomes too high, control becomes difficult, which is not good.

尚、本発明において更に基準状態と防振状態での光学性能を良好に維持するためには次の諸条件のうちの少なくとも1つを満足させるのが良い。   In the present invention, it is preferable to satisfy at least one of the following conditions in order to maintain good optical performance in the reference state and the image stabilization state.

(ウ-1)前記第2レンズ群は、物体側から順に、像面側に強い凹面を向けたメニスカス状の負レンズ、負レンズ、物体側に強い凸面を向けた正レンズを有することである。   (C-1) The second lens group includes, in order from the object side, a meniscus negative lens having a strong concave surface facing the image surface side, a negative lens, and a positive lens having a strong convex surface facing the object side. .

(ウ-2)該第1レンズ群は正の単レンズより成り、その物体側と像面側のレンズ面の曲率半径をそれぞれR1,R2、その材料のアッベ数をν1とするとき
−3<(R1+R2)/(R1−R2)<0…(5)
55<ν1…(6)
なる条件を満足するのが望ましい。
(C-2) The first lens unit is composed of a single positive lens, and when the radiuses of curvature of the object-side and image-side lens surfaces are R1 and R2, and the Abbe number of the material is ν1, −3 < (R1 + R2) / (R1-R2) <0 (5)
55 <ν1 (6)
It is desirable to satisfy the following conditions.

条件式(5)の下限を超えると望遠端で球面収差が負の方向に増大し過ぎ、逆に上限を超えるとコマ収差の補正が困難になるので良くない。   If the lower limit of conditional expression (5) is exceeded, spherical aberration will increase in the negative direction too much at the telephoto end, and conversely if it exceeds the upper limit, it will be difficult to correct coma aberration.

また(6)式の下限を超えると変倍に伴なう軸上及び倍率の色収差補正が困難になるので良くない。   On the other hand, if the lower limit of the expression (6) is exceeded, it will be difficult to correct on-axis and chromatic aberrations of magnification accompanying zooming.

図5は本発明の実施形態1の近軸屈折力配置を示す概略図である。図5においてL1は正の屈折力の第1レンズ群、L2は負の屈折カの第2レンズ群、L3は正の屈折力の第3レンズ群、L4は正の屈折力の第4レンズ群である。   FIG. 5 is a schematic diagram showing a paraxial refractive power arrangement according to the first embodiment of the present invention. In FIG. 5, L1 is a first lens group having a positive refractive power, L2 is a second lens group having a negative refractive power, L3 is a third lens group having a positive refractive power, and L4 is a fourth lens group having a positive refractive power. It is.

本実施形態では第3レンズ群全体を光軸に垂直方向に移動させることにより、光学系全体が振動(傾動)したときの撮影画像のぶれを補正している。SPは開口絞りであり、第3レンズ群L3の前方に位置している。   In this embodiment, the entire third lens group is moved in the direction perpendicular to the optical axis, thereby correcting blurring of the captured image when the entire optical system vibrates (tilts). SP is an aperture stop, which is located in front of the third lens unit L3.

本実施形態では広角端から望遠端への変倍に際して矢印のように第1レンズ群、第2レンズ群と第3レンズ群を光軸上を移動させことにより変倍を行なっている。また、第4レンズ群を光軸上移動させてフォーカシングを行うリヤーフォーカス式を採用している。   In the present embodiment, zooming is performed by moving the first lens group, the second lens group, and the third lens group on the optical axis as indicated by arrows when zooming from the wide-angle end to the telephoto end. Further, a rear focus type is employed in which the fourth lens group is moved on the optical axis to perform focusing.

広角端から望遠端への変倍に際しては第1レンズ群と第3レンズ群は物体側に移動し、第2レンズ群は最初は像面側に、そして途中から物体側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group and the third lens group move to the object side, and the second lens group first moves to the image plane side and then moves from the middle to the object side.

第1レンズ群L1を物体側に移動させることで変倍に要する第3レンズ群L3の移動量を小さくして広角端におけるレンズ全長の短縮を可能としている。開口絞りSPは第3レンズ群と一体に物体側に移動するが必要に応じて独立に移動しても良い。   By moving the first lens unit L1 to the object side, the movement amount of the third lens unit L3 required for zooming is reduced, and the total lens length at the wide angle end can be shortened. The aperture stop SP moves to the object side integrally with the third lens group, but may move independently as necessary.

本実施形態において例えば望遠端において無限遠物体から近距離物体ヘフォーカスを行う場合には同図に示すように第4レンズ群を前方に繰り出すことにより行っている。   In the present embodiment, for example, when focusing from an infinitely distant object to a close object at the telephoto end, the fourth lens group is moved forward as shown in FIG.

実施形態1において広角端におけるレンズ全長の短縮効果を十分に得るためには広角端から望遠端までの変倍に要する第1レンズ群の移動量をM1,第3レンズ群の移動量をM3とするとき
0.2<M1/M3<1.5…(7)
なる条件を満足するのが良い。
In the first embodiment, in order to sufficiently obtain the effect of shortening the total lens length at the wide angle end, the movement amount of the first lens group required for zooming from the wide angle end to the telephoto end is M1, and the movement amount of the third lens group is M3. When doing 0.2 <M1 / M3 <1.5 (7)
It is good to satisfy the condition.

下限値を超えて第1レンズ群の移動量が小さくなると、レンズ全長の短縮効果が十分に得られない。逆に上限を超えて第1レンズ群の移動量が大きくなり過ぎると第1レンズ群を繰り出すためのメカ機構が複雑になるので良くない。   If the amount of movement of the first lens unit becomes small beyond the lower limit, the effect of shortening the total lens length cannot be obtained sufficiently. On the other hand, if the amount of movement of the first lens unit becomes too large beyond the upper limit, the mechanical mechanism for extending the first lens unit becomes complicated, which is not good.

図6に実施形態1の数値実施例3の広角端のレンズ断面図をしめす。本実施形態では第1レンズ群を正と負の2枚のレンズで構成することで第1レンズ群で発生する軸上、倍率色収差を低減し、変倍に伴なう軸上及び倍率色収差の変動を改善している。   FIG. 6 shows a lens cross-sectional view at the wide angle end according to Numerical Example 3 of Embodiment 1. In this embodiment, the first lens group is composed of two positive and negative lenses, so that axial chromatic aberration and axial chromatic aberration caused by zooming are reduced. The fluctuation is improved.

尚、実施形態1においても、第2レンズ群を像面側に強い凹面を向けたメニスカス状の負レンズ、負レンズ、そして物体側に凸面を向けた正レンズより構成するのが良い。   In the first embodiment as well, the second lens group may be composed of a meniscus negative lens having a strong concave surface facing the image surface side, a negative lens, and a positive lens having a convex surface facing the object side.

次に本発明の実施形態1と参考例1、2の数値実施例を示す。各数値実施例においてRiは物体側より順に第i番目の面の曲率半径、Diは物体側より順に第i番目の面と第(i+1)番目の面の間隔、Niとνiは各々物体側より順に第i番目の光学部材のガラスの屈折率とアッベ数である。又前述の各条件式と数値実施例の関係を表1に示す。   Next, numerical examples of Embodiment 1 of the present invention and Reference Examples 1 and 2 are shown. In each numerical example, Ri is the radius of curvature of the i-th surface in order from the object side, Di is the distance between the i-th surface and the (i + 1) -th surface in order from the object side, and Ni and νi are from the object side, respectively. It is the refractive index and Abbe number of the glass of the i-th optical member in order. Table 1 shows the relationship between the above-described conditional expressions and numerical examples.

非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正としRを近軸
曲率半径、K,B,C,D,Eを各々非球面係数としたとき
The aspherical shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, and K, B, C, D and E are the aspheric coefficients. When

なる式で表している。 It is expressed by the following formula.

数値実施例1
f=1〜2.97 Fno=2.43〜3.60 2ω=64.2°〜23.9°
R 1=3.333 D 1=0.60 N 1=1.516330 ν 1=64.1
R 2=19.183 D 2=可変
R 3=5.356 D 3=0.13 N 2=1.834000 ν 2=37.2
R 4=1.141 D 4=0.63
R 5=-13.107(非球面) D 5=0.17 N 3=1.658441 ν 3=50.9
R 6=1.939 D 6=0.07
R 7=1.838 D 7=0.42 N 4=1.846660 ν 4=23.8
R 8=9.362 D 8=可変
R 9=絞り D 9=0.28
R10=1.422(非球面) D10=0.33 N 5=1.834807 ν 5=42.7
R11=-7.256 D11=0.03
R12=2.836 D12=0.40 N 6=1.834000 ν 6=37.2
R13=-1.997 D13=0.12 N 7=1.846660 ν 7=23.8
R14=0.936 D14=0.37
R15=-263.842 D15=0.37 N 8=1.772499 ν 8=49.6
R16=-4.052 D16=可変
R17=1.447(非球面) D17=0.36 N 9=1.806100 ν 9=40.7
R18=-74.627 D18=0.29
R19=∞ D19=0.45 N10=1.516330 ν10=64.1
R20=∞

焦点距離 1.00 2.65 2.97
可変間隔
D 2 0.09 1.19 1.07
D 8 2.88 0.54 0.30
D16 0.49 1.73 2.07

非球面係数
R 5 k=-3.23868e+02 B= 4.34086e-03 C=-3.26552e-03 D= 1.45007e-02
R10 k=-8.21638e-01 B=-2.15746e-02 C= 1.56862e-03 D=-9.29549e-03
R17 k=-2.11938e-01 B=-3.62716e-02 C=-8.77965e-03 D= 0.00000e+00

数値実施例2
f=1〜2.97 Fno=2.48〜3.60 2ω=64.2°〜23.9°
R 1=2.816 D 1=0.60 N 1=1.516330 ν 1=64.1
R 2=11.896 D 2=可変
R 3=6.390 D 3=0.13 N 2=1.834000 ν 2=37.2
R 4=1.119(非球面) D 4=0.63
R 5=-4.480 D 5=0.16 N 3=1.650158 ν 3=39.4
R 6=2.331 D 6=0.04
R 7=2.117 D 7=0.42 N 4=1.846660 ν 4=23.8
R 8=-18.814 D 8=可変
R 9=絞り D 9=0.39
R10=1.416(非球面) D10=0.33 N 5=1.834807 ν 5=42.7
R11=-10.288 D11=0.03
R12=2.667 D12=0.40 N 6=1.834000 ν 6=37.2
R13=-1.997 D13=0.12 N 7=1.846660 ν 7=23.8
R14=0.935 D14=0.37
R15=-263.842 D15=0.30 N 8=1.603112 ν 8=60.6
R16=-4.052 D16=可変
R17=1.881(非球面) D17=0.36 N 9=1.806100 ν 9=40.7
R18=-74.627 D18=0.29
R19=∞ D19=0.45 N10=1.516330 ν10=64.1
R20=∞

焦点距離 1.00 2.65 2.97
可変間隔
D 2 0.09 2.42 1.39
D 8 2.84 0.54 0.30
D16 0.22 1.26 1.56

非球面係数
R 4 k=-1.09438e-01 B=-1.68564e-02 C=2.08890e-02 D=-2.52790e-02
R10 k=-6.69154e-01 B=-2.13385e-02 C=4.37738e-03 D=-1.63567e-02
R17 k=-1.09618e-01 B=-2.44913e-02 C=2.08869e-03 D= 0.00000e+00

数値実施例3
f=1〜4.00 Fno=2.24〜3.60 2ω=64.2°〜17.8°
R 1=3.588 D 1=0.16 N 1=1.834000 ν 1=37.2
R 2=2.680 D 2=0.72 N 2=1.603112 ν 2=60.6
R 3=28.984 D 3=可変
R 4=4.182 D 4=0.13 N 3=1.834000 ν 3=37.2
R 5=1.207 D 5=0.66
R 6=-5.965 D 6=0.15 N 4=1.583126 ν 4=59.4
R 7=1.819 D 7=0.07
R 8=1.769 D 8=0.42 N 5=1.846660 ν 5=23.8
R 9=6.817 D 9=可変
R10=絞り D10=0.45
R11=1.364 D11=0.33 N 6=1.834807 ν 6=42.7
R12=-10.154 D12=0.03
R13=2.330 D13=0.40 N 7=1.834000 ν 7=37.2
R14=-1.997 D14=0.12 N 8=1.846660 ν 8=23.8
R15=0.844 D15=0.37
R16=-9.752 D16=0.37 N 9=1.772499 ν 9=49.6
R17=-4.788 D17=可変
R18=2.027(非球面) D18=0.36 N10=1.806100 ν10=40.7
R19=-74.627 D19=0.29
R20=∞ D20=0.45 N11=1.516330 ν11=64.1
R21=∞

焦点距離 1.00 3.36 4.00
可変間隔
D 3 0.09 1.95 2.06
D 9 2.96 0.60 0.36
D17 0.45 1.99 2.43

非球面係数
R 6 k= 1.76310e+01 B= 1.81049e-02 C=-4.77367e-03 D= 4.50945e-03
R11 k=-8.70146e-01 B=-1.25504e-02 C= 4.92439e-03 D=-1.44314e-02
R18 k=-1.10607e-02 B= 4.79091e-03 C=-5.01469e-04 D= 0.00000e+00
Numerical example 1
f = 1 ~ 2.97 Fno = 2.43 ~ 3.60 2ω = 64.2 ° ~ 23.9 °
R 1 = 3.333 D 1 = 0.60 N 1 = 1.516330 ν 1 = 64.1
R 2 = 19.183 D 2 = variable
R 3 = 5.356 D 3 = 0.13 N 2 = 1.834000 ν 2 = 37.2
R 4 = 1.141 D 4 = 0.63
R 5 = -13.107 (Aspherical) D 5 = 0.17 N 3 = 1.658441 ν 3 = 50.9
R 6 = 1.939 D 6 = 0.07
R 7 = 1.838 D 7 = 0.42 N 4 = 1.846660 ν 4 = 23.8
R 8 = 9.362 D 8 = variable
R 9 = Aperture D 9 = 0.28
R10 = 1.422 (Aspherical) D10 = 0.33 N 5 = 1.834807 ν 5 = 42.7
R11 = -7.256 D11 = 0.03
R12 = 2.836 D12 = 0.40 N 6 = 1.834000 ν 6 = 37.2
R13 = -1.997 D13 = 0.12 N 7 = 1.846660 ν 7 = 23.8
R14 = 0.936 D14 = 0.37
R15 = -263.842 D15 = 0.37 N 8 = 1.772499 ν 8 = 49.6
R16 = -4.052 D16 = variable
R17 = 1.447 (Aspherical) D17 = 0.36 N 9 = 1.806100 ν 9 = 40.7
R18 = -74.627 D18 = 0.29
R19 = ∞ D19 = 0.45 N10 = 1.516330 ν10 = 64.1
R20 = ∞

Focal length 1.00 2.65 2.97
Variable interval
D 2 0.09 1.19 1.07
D 8 2.88 0.54 0.30
D16 0.49 1.73 2.07

Aspheric coefficient
R 5 k = -3.23868e + 02 B = 4.34086e-03 C = -3.26552e-03 D = 1.45007e-02
R10 k = -8.21638e-01 B = -2.15746e-02 C = 1.56862e-03 D = -9.29549e-03
R17 k = -2.11938e-01 B = -3.62716e-02 C = -8.77965e-03 D = 0.00000e + 00

Numerical example 2
f = 1〜2.97 Fno = 2.48〜3.60 2ω = 64.2 ° 〜23.9 °
R 1 = 2.816 D 1 = 0.60 N 1 = 1.516330 ν 1 = 64.1
R 2 = 11.896 D 2 = variable
R 3 = 6.390 D 3 = 0.13 N 2 = 1.834000 ν 2 = 37.2
R 4 = 1.119 (Aspherical) D 4 = 0.63
R 5 = -4.480 D 5 = 0.16 N 3 = 1.650158 ν 3 = 39.4
R 6 = 2.331 D 6 = 0.04
R 7 = 2.117 D 7 = 0.42 N 4 = 1.846660 ν 4 = 23.8
R 8 = -18.814 D 8 = variable
R 9 = Aperture D 9 = 0.39
R10 = 1.416 (Aspherical) D10 = 0.33 N 5 = 1.834807 ν 5 = 42.7
R11 = -10.288 D11 = 0.03
R12 = 2.667 D12 = 0.40 N 6 = 1.834000 ν 6 = 37.2
R13 = -1.997 D13 = 0.12 N 7 = 1.846660 ν 7 = 23.8
R14 = 0.935 D14 = 0.37
R15 = -263.842 D15 = 0.30 N 8 = 1.603112 ν 8 = 60.6
R16 = -4.052 D16 = variable
R17 = 1.881 (Aspherical) D17 = 0.36 N 9 = 1.806100 ν 9 = 40.7
R18 = -74.627 D18 = 0.29
R19 = ∞ D19 = 0.45 N10 = 1.516330 ν10 = 64.1
R20 = ∞

Focal length 1.00 2.65 2.97
Variable interval
D 2 0.09 2.42 1.39
D 8 2.84 0.54 0.30
D16 0.22 1.26 1.56

Aspheric coefficient
R 4 k = -1.09438e-01 B = -1.68564e-02 C = 2.08890e-02 D = -2.52790e-02
R10 k = -6.69154e-01 B = -2.13385e-02 C = 4.37738e-03 D = -1.63567e-02
R17 k = -1.09618e-01 B = -2.44913e-02 C = 2.08869e-03 D = 0.00000e + 00

Numerical Example 3
f = 1 ~ 4.00 Fno = 2.24 ~ 3.60 2ω = 64.2 ° 〜17.8 °
R 1 = 3.588 D 1 = 0.16 N 1 = 1.834000 ν 1 = 37.2
R 2 = 2.680 D 2 = 0.72 N 2 = 1.603112 ν 2 = 60.6
R 3 = 28.984 D 3 = variable
R 4 = 4.182 D 4 = 0.13 N 3 = 1.834000 ν 3 = 37.2
R 5 = 1.207 D 5 = 0.66
R 6 = -5.965 D 6 = 0.15 N 4 = 1.583126 ν 4 = 59.4
R 7 = 1.819 D 7 = 0.07
R 8 = 1.769 D 8 = 0.42 N 5 = 1.846660 ν 5 = 23.8
R 9 = 6.817 D 9 = variable
R10 = Aperture D10 = 0.45
R11 = 1.364 D11 = 0.33 N 6 = 1.834807 ν 6 = 42.7
R12 = -10.154 D12 = 0.03
R13 = 2.330 D13 = 0.40 N 7 = 1.834000 ν 7 = 37.2
R14 = -1.997 D14 = 0.12 N 8 = 1.846660 ν 8 = 23.8
R15 = 0.844 D15 = 0.37
R16 = -9.752 D16 = 0.37 N 9 = 1.772499 ν 9 = 49.6
R17 = -4.788 D17 = variable
R18 = 2.027 (Aspherical) D18 = 0.36 N10 = 1.806100 ν10 = 40.7
R19 = -74.627 D19 = 0.29
R20 = ∞ D20 = 0.45 N11 = 1.516330 ν11 = 64.1
R21 = ∞

Focal length 1.00 3.36 4.00
Variable interval
D 3 0.09 1.95 2.06
D 9 2.96 0.60 0.36
D17 0.45 1.99 2.43

Aspheric coefficient
R 6 k = 1.76310e + 01 B = 1.81049e-02 C = -4.77367e-03 D = 4.50945e-03
R11 k = -8.70146e-01 B = -1.25504e-02 C = 4.92439e-03 D = -1.44314e-02
R18 k = -1.10607e-02 B = 4.79091e-03 C = -5.01469e-04 D = 0.00000e + 00

L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
L4 第4レンズ群
d d線
g g線
ΔM メリディオナル像面
ΔS サジタル像面
SP 絞り
IP 像面
L1 First lens group L2 Second lens group L3 Third lens group L4 Fourth lens group d d line g g line ΔM meridional image plane ΔS sagittal image plane SP aperture IP image plane

Claims (2)

物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群から構成され、前記第1レンズ群と前記第2レンズ群と前記第3レンズ群を移動させて変倍を行う変倍光学系であって、前記第4レンズ群は1枚の正レンズにより構成され、前記第4レンズ群を光軸上移動させてフォーカシングを行い、前記第3レンズ群全体を光軸に対して垂直方向に移動させて該変倍光学系が振動したときの撮影画像のぶれを補正することができ、広角端から望遠端への変倍における前記第1レンズ群と前記第3レンズ群の移動量を各々M1、M3、前記第3レンズ群の焦点距離をf3、広角端における全系の焦点距離をfwとするとき、
0.2<M1/M3<1.5
1.5<f3/fw<3.0
なる条件式を満足することを特徴とする変倍光学系。
In order from the object side to the image side, the lens unit includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power. , A variable power optical system that performs zooming by moving the first lens group, the second lens group, and the third lens group, and the fourth lens group is constituted by a single positive lens, The fourth lens group is moved on the optical axis to perform focusing, and the entire third lens group is moved in the direction perpendicular to the optical axis to correct the shake of the photographed image when the variable magnification optical system vibrates. The amount of movement of the first lens unit and the third lens unit in zooming from the wide-angle end to the telephoto end is respectively M1, M3 , the focal length of the third lens unit is f3, and the entire system at the wide-angle end When the focal length of is fw ,
0.2 <M1 / M3 <1.5
1.5 <f3 / fw <3.0
A variable magnification optical system characterized by satisfying the following conditional expression:
請求項1に記載の変倍光学系を備えることを特徴とするカメラ。 A camera comprising the variable magnification optical system according to claim 1.
JP2010285882A 2010-12-22 2010-12-22 Variable magnification optical system and camera having the same Expired - Fee Related JP4764524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010285882A JP4764524B2 (en) 2010-12-22 2010-12-22 Variable magnification optical system and camera having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010285882A JP4764524B2 (en) 2010-12-22 2010-12-22 Variable magnification optical system and camera having the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009286235A Division JP4724773B2 (en) 2009-12-17 2009-12-17 Variable magnification optical system and camera having the same

Publications (2)

Publication Number Publication Date
JP2011059726A JP2011059726A (en) 2011-03-24
JP4764524B2 true JP4764524B2 (en) 2011-09-07

Family

ID=43947324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010285882A Expired - Fee Related JP4764524B2 (en) 2010-12-22 2010-12-22 Variable magnification optical system and camera having the same

Country Status (1)

Country Link
JP (1) JP4764524B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5942194B2 (en) 2012-03-15 2016-06-29 パナソニックIpマネジメント株式会社 Lens system, interchangeable lens device, and camera system
WO2013140718A1 (en) 2012-03-22 2013-09-26 富士フイルム株式会社 Imaging lens and imaging device
CN106646827B (en) * 2016-12-14 2023-05-02 舜宇光学(中山)有限公司 Object image plane tilting optical system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05173068A (en) * 1991-12-20 1993-07-13 Olympus Optical Co Ltd Compact zoom lens
JPH06289296A (en) * 1993-03-30 1994-10-18 Nikon Corp Zoom lens with vibrationproofing function
JP3536128B2 (en) * 1994-05-31 2004-06-07 株式会社ニコン Zoom lens with anti-vibration function
JPH09325272A (en) * 1996-06-07 1997-12-16 Minolta Co Ltd Photographing optical system

Also Published As

Publication number Publication date
JP2011059726A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP4447704B2 (en) Variable magnification optical system and camera having the same
JP5064837B2 (en) Zoom lens with anti-vibration function
JP4845492B2 (en) Zoom optical system
JP5053750B2 (en) Zoom lens and imaging apparatus having the same
JP4789530B2 (en) Zoom lens and imaging apparatus having the same
JP4928165B2 (en) Zoom lens and imaging apparatus having the same
JP2007078834A (en) Zoom lens and imaging apparatus having the same
JP4109884B2 (en) Zoom lens and optical apparatus having the same
JP2008152190A (en) Zoom lens and imaging apparatus with same
JP2005242015A (en) Zoom lens and imaging apparatus having same
JP2009175324A (en) Zoom lens and imaging apparatus having the same
JP2006189627A (en) Zoom lens and imaging apparatus having the same
JPH11237550A (en) Variable power optical system provided with vibration proof function
JP5599022B2 (en) Zoom lens and imaging apparatus having the same
JP4545849B2 (en) Variable magnification optical system
JP2013037064A (en) Zoom lens and imaging apparatus including the same
JP5361496B2 (en) Zoom lens and imaging apparatus having the same
JP4829445B2 (en) Zoom lens and optical apparatus having the same
JP4095131B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus having the same
JP4764524B2 (en) Variable magnification optical system and camera having the same
JP4314248B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus having the same
JP4630451B2 (en) Zoom lens and optical apparatus using the same
JPH10260355A (en) Variable power optical system with vibration-proof function
JP4324175B2 (en) Variable magnification optical system with anti-vibration function
JP5765533B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method for manufacturing the variable magnification optical system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees