JP4533437B2 - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
JP4533437B2
JP4533437B2 JP2008044188A JP2008044188A JP4533437B2 JP 4533437 B2 JP4533437 B2 JP 4533437B2 JP 2008044188 A JP2008044188 A JP 2008044188A JP 2008044188 A JP2008044188 A JP 2008044188A JP 4533437 B2 JP4533437 B2 JP 4533437B2
Authority
JP
Japan
Prior art keywords
lens
lens group
positive
negative
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008044188A
Other languages
Japanese (ja)
Other versions
JP2008181147A (en
Inventor
彰宏 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008044188A priority Critical patent/JP4533437B2/en
Publication of JP2008181147A publication Critical patent/JP2008181147A/en
Application granted granted Critical
Publication of JP4533437B2 publication Critical patent/JP4533437B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Description

本発明は防振機能を有したズームレンズに関し、写真用カメラやビデオカメラ、そしてデジタルカメラ等に好適な防振機能を有したズームレンズに関するものである。   The present invention relates to a zoom lens having an image stabilization function, and more particularly to a zoom lens having an image stabilization function suitable for a photographic camera, a video camera, a digital camera, and the like.

特にズームレンズの一部のレンズ群を光軸と垂直方向に移動させることにより、ズームレンズが手振れ等で振動(傾動)したときの撮影画像のブレを光学的に補正して静止画像を得るようにし撮影画像の安定化を図る際に好適なものである。   In particular, by moving a part of the lens group of the zoom lens in a direction perpendicular to the optical axis, it is possible to obtain a still image by optically correcting the blur of the captured image when the zoom lens vibrates (tilts) due to camera shake or the like. This is suitable for stabilizing the captured image.

撮影系に振動が伝わり手振れが生ずると撮影画像にブレが生じる。従来よりこのときの撮影画像のブレを防止する機能を有した防振光学系が種々と提案されている。   When vibration is transmitted to the photographing system and camera shake occurs, the photographed image is blurred. Conventionally, various anti-vibration optical systems having a function of preventing blurring of a photographed image at this time have been proposed.

近年、写真用カメラ、ビデオカメラ、そしてデジタルカメラ等においてはより高画質化や撮影条件の拡大の目的のため手振れ等による画像ぶれを補正する防振機能を有したズームレンズが要望されている。   In recent years, there has been a demand for a zoom lens having an anti-vibration function for correcting image blur due to camera shake or the like for the purpose of higher image quality and expansion of shooting conditions in photographic cameras, video cameras, digital cameras, and the like.

防振機能を有したズームレンズとして、物体側より順に正、負、正、正の屈折力のレンズ群より成る4群ズームレンズにて第3レンズ群を正と正の屈折力のレンズ群に分離している。そして後方のレンズ群を光軸と垂直方向に移動させることにより像ぶれ補正を行っているのが知られている(特許文献1)。   As a zoom lens having an anti-vibration function, the third lens unit is changed to a lens unit having positive and positive refractive powers in a four-unit zoom lens composed of lens units having positive, negative, positive and positive refractive powers in order from the object side. It is separated. It is known that image blur correction is performed by moving the rear lens group in a direction perpendicular to the optical axis (Patent Document 1).

また主にビデオ用のズームレンズにおいてズーム中に第1レンズ群と第3レンズ群を固定とした正、負、正、正の屈折力のレンズ群より成る4群ズームにて第3レンズ群を正と負の屈折力のレンズ群に分離している。そしてどちらか一方のレンズ群を光軸と垂直方向に移動させることにより像ぶれ補正を行っているのが知られている(特許文献2)。   Also, in a zoom lens for video, the third lens group is formed by a four-group zoom including positive, negative, positive, and positive refractive power lens groups in which the first lens group and the third lens group are fixed during zooming. Separated into positive and negative lens groups. It is known that image blur correction is performed by moving one of the lens groups in a direction perpendicular to the optical axis (Patent Document 2).

又、変倍及び合焦の際に固定の正の屈折力の第1群、変倍機能を有する負の屈折力の第2群、開口絞り、正の屈折力の第3群、そして変倍機能と合焦機能を有する正の屈折力の第4群の変倍光学系が知られている。   Also, a first group of positive refractive power that is fixed during zooming and focusing, a second group of negative refractive power having a zooming function, an aperture stop, a third group of positive refractive power, and zooming A fourth variable power optical system having a positive refractive power having a function and a focusing function is known.

そして、該第3群は負の屈折力の第31群と正の屈折力の第32群の2つのレンズ群より成り、該第32群を光軸と垂直方向に移動させて該変倍光学系が振動したときの撮影画像のブレを補正しているのが知られている(特許文献3)。   The third group is composed of two lens groups, a negative refractive power group 31 and a positive refractive power group 32, and the zoom lens is moved by moving the 32nd group in a direction perpendicular to the optical axis. It is known to correct blurring of a captured image when the system vibrates (Patent Document 3).

又、正、負、正、そして正の屈折力の4つのレンズ群より成る4群構成の変倍光学系において、第3群全体を光軸と垂直方向に振動させて防振を行っているのが知られている(特許文献4)。
特開平9−230236号公報 特開平10−232420号公報 特開平7−128619号公報 特開平7−199124号公報
Further, in a variable magnification optical system having a four-group structure composed of four lens groups having positive, negative, positive, and positive refractive power, the entire third group is vibrated in a direction perpendicular to the optical axis to prevent vibration. Is known (Patent Document 4).
Japanese Patent Laid-Open No. 9-230236 Japanese Patent Laid-Open No. 10-232420 Japanese Patent Laid-Open No. 7-128619 JP-A-7-199124

一般に、撮影系の一部のレンズを光軸に対して垂直方向に平行偏心させて画像ぶれの補正を行う光学系においては、比較的容易に画像ぶれを補正することができる利点はある。しかしながら、移動させるレンズの為の駆動手段を必要とし、又防振時における偏心収差の発生量が多くなってくるという問題点がある。   In general, an optical system that corrects image blur by decentering a part of the lenses of a photographing system in the direction perpendicular to the optical axis has an advantage that image blur can be corrected relatively easily. However, there is a problem that a driving means for the lens to be moved is required, and the amount of decentering aberration generated at the time of image stabilization increases.

例えば画像ぶれの補正を行う補正レンズ群がレンズ構成枚数が多く、高重量であると電気的駆動を行う際に大きなトルクを必要とする。又、画像ぶれを補正する為の、補正レンズ群を適切に設定しないと一定量の画像ぶれの補正効果を得るために補正光学系の移動量を多くとる必要が生じてしまい、光学系全体が大型化してくるという問題がある。   For example, a correction lens group that corrects image blur has a large number of lens components and is heavy, requiring a large torque when performing electrical driving. In addition, if the correction lens group for correcting image blur is not set appropriately, it is necessary to increase the movement amount of the correction optical system in order to obtain a fixed amount of image blur correction effect. There is a problem of increasing the size.

本発明は、ズームレンズの一部を構成する比較的小型軽量のレンズ群を光軸と垂直方向に移動させて、ズームレンズが振動(傾動)したときの画像のブレを補正する。この際、ズームレンズのレンズ構成を適切に構成することにより、装置全体の小型化,機構上の簡素化及び駆動手段の負荷の軽減化を図りつつ該レンズ群の少ない偏心量で一定の画像ぶれを効果的に補正することができるズームレンズの提供を目的とする。   The present invention corrects image blurring when the zoom lens vibrates (tilts) by moving a relatively small and lightweight lens group constituting a part of the zoom lens in a direction perpendicular to the optical axis. At this time, by appropriately configuring the lens configuration of the zoom lens, it is possible to reduce the overall size of the apparatus, simplify the mechanism, and reduce the load on the driving means, while maintaining a constant image blur with a small amount of eccentricity of the lens group. An object of the present invention is to provide a zoom lens capable of effectively correcting the above.

請求項1の発明のズームレンズは、物体側より順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群から成り、少なくとも該第1,第3,第4レンズ群を光軸上移動させ各レンズ群の空気間隔を変化させて変倍を行うズームレンズであって、該第3レンズ群は正の屈折力の第31レンズ群と負の屈折力の第32レンズ群を有し、該第32レンズ群を光軸に対し垂直方向に移動させることにより結像位置を変化させており、全系の広角端と望遠端の焦点距離を各々Fw,Ft、該第3レンズ群の焦点距離をF3、該第32レンズ群の焦点距離をF32、該第31レンズ群の最も像面側のレンズ面の曲率半径をRa、該第32レンズ群の最も物体側のレンズ面の曲率半径をRbとし、

としたとき、
0.35<F3/Fm<1
−0.9<F3/F32<−0.18
−0.2<(Ra−Rb)/(Ra+Rb)≦0.450
の条件式を満足することを特徴としている。
The zoom lens according to the first aspect of the invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a positive lens having a positive refractive power. A zoom lens system comprising a fourth lens group, wherein zooming is performed by moving at least the first, third and fourth lens groups on the optical axis to change the air spacing of each lens group, and the third lens group Has a 31st lens group having a positive refractive power and a 32nd lens group having a negative refractive power, and the imaging position is changed by moving the 32nd lens group in a direction perpendicular to the optical axis . The focal lengths of the wide-angle end and the telephoto end of the entire system are Fw and Ft, the focal length of the third lens group is F3, the focal length of the 32nd lens group is F32, and the most image side of the 31st lens group is The radius of curvature of the lens surface is Ra, and the radius of curvature of the most object side lens surface of the thirty-second lens group is Rb. ,

When
0.35 <F3 / Fm <1
−0.9 <F3 / F32 <−0.18
−0.2 <(Ra−Rb) / (Ra + Rb) ≦ 0.450
It satisfies the following conditional expression.

請求項2の発明は請求項1の発明において、前記第32レンズ群は前記ズームレンズが振動したときに生ずる画像ぶれを補正していることを特徴としている。   According to a second aspect of the present invention, in the first aspect of the invention, the thirty-second lens group corrects image blur that occurs when the zoom lens vibrates.

請求項3の発明は請求項1又は2の発明において、前記第32レンズ群は1枚の正レンズと1枚の負レンズより成ることを特徴としている。   A third aspect of the invention is characterized in that, in the first or second aspect of the invention, the thirty-second lens group comprises one positive lens and one negative lens.

請求項4の発明は請求項1乃至3のいずれか1項の発明において、前記第31レンズ群は物体側より順に、像面側のレンズ面が凹面のメニスカス状の負レンズと正レンズを接合した全体として正の貼合わせレンズ群、正の単レンズまたは正レンズと負レンズが接合された全体として正の貼合わせレンズ群より成ることを特徴としている。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the thirty-first lens unit joins a negative meniscus lens having a concave image surface side and a positive lens in order from the object side. It is characterized by comprising a positive bonded lens group as a whole, a positive single lens or a positive bonded lens group as a whole in which a positive lens and a negative lens are cemented together.

請求項5の発明は請求項1乃至4のいずれか1項の発明において、前記第32レンズ群は像面側に凸面を向けた正レンズと物体側のレンズ面が凹面の負レンズが接合された全体として負の貼合わせレンズ群より成ることを特徴としている。   According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, in the thirty-second lens group, a positive lens having a convex surface facing the image surface and a negative lens having a concave lens surface on the object side are cemented. It is characterized by comprising a negatively bonded lens group as a whole.

請求項6の発明は請求項1乃至5のいずれか1項の発明において、前記第32レンズ群の像面側に、防振時に固定の負又は正の屈折力の第33レンズ群を有することを特徴としている。   According to a sixth aspect of the present invention, in the first to fifth aspects of the present invention, the image lens side of the thirty-second lens group has a thirty-third lens group having a negative or positive refractive power that is fixed during image stabilization. It is characterized by.

本発明は、ズームレンズの一部を構成する比較的小型軽量のレンズ群を光軸と垂直方向に移動させて、ズームレンズが振動(傾動)したときの画像のブレを補正する。この際、ズームレンズのレンズ構成を適切に構成する。これにより、装置全体の小型化,機構上の簡素化及び駆動手段の負荷の軽減化を図りつつ該レンズ群の少ない偏心量で一定の画像ぶれを効果的に補正することができる。   The present invention corrects image blurring when the zoom lens vibrates (tilts) by moving a relatively small and lightweight lens group constituting a part of the zoom lens in a direction perpendicular to the optical axis. At this time, the lens configuration of the zoom lens is appropriately configured. As a result, it is possible to effectively correct a certain image blur with a small amount of decentering of the lens group while reducing the size of the entire apparatus, simplifying the mechanism, and reducing the load on the driving means.

図1,図8,図15,図22,図29は本発明の数値実施例1〜5の広角端のレンズ断面図である。図2〜図4は本発明の数値実施例1の通常状態の広角端,中間,望遠端の収差図である。図5〜図7は本発明の数値実施例1の振動補償状態(画角0.3度の画像ぶれの補正)の通常状態の広角端,中間,望遠端の収差図である。   1, FIG. 8, FIG. 15, FIG. 22, and FIG. 29 are lens cross-sectional views at the wide angle end according to Numerical Examples 1 to 5 of the present invention. 2 to 4 are aberration diagrams of the first embodiment of the present invention at the wide-angle end, in the middle, and at the telephoto end in the normal state. FIGS. 5 to 7 are aberration diagrams at the wide-angle end, in the middle, and at the telephoto end in the normal state in the vibration compensation state (correction of image blur having a field angle of 0.3 degrees) according to Numerical Example 1 of the present invention.

図9〜図11は本発明の数値実施例2の広角端,中間,望遠端の収差図である。図12〜図14は本発明の数値実施例2の振動補償状態(画角0.3度の画像ぶれの補正)の広角端,中間,望遠端の収差図である。   9 to 11 are aberration diagrams at the wide-angle end, middle, and telephoto end according to Numerical Example 2 of the present invention. FIGS. 12 to 14 are aberration diagrams at the wide-angle end, in the middle, and at the telephoto end in the vibration compensation state (correction of image blur having a field angle of 0.3 degrees) according to Numerical Example 2 of the present invention.

図16〜図18は本発明の数値実施例3の通常状態の広角端,中間,望遠端の収差図である。図19〜図21は本発明の数値実施例3の振動補償状態(画角0.3度の画像ぶれの補正)の広角端,中間,望遠端の収差図である。   FIGS. 16 to 18 are aberration diagrams at the wide-angle end, in the middle, and at the telephoto end in the normal state according to Numerical Example 3 of the present invention. FIGS. 19 to 21 are aberration diagrams at the wide-angle end, in the middle, and at the telephoto end in the vibration compensation state (correction of image blur having an angle of view of 0.3 degrees) according to Numerical Example 3 of the present invention.

図23〜図25は本発明の数値実施例4の通常状態の広角端,中間,望遠端の収差図である。図26〜図28は本発明の数値実施例4の振動補償状態(画角0.3度の画像ぶれの補正)の広角端,中間,望遠端の収差図である。   23 to 25 are aberration diagrams at the wide-angle end, the intermediate end, and the telephoto end in the normal state according to Numerical Example 4 of the present invention. FIGS. 26 to 28 are aberration diagrams at the wide-angle end, in the middle, and at the telephoto end in the vibration compensation state (correction of image blur having a field angle of 0.3 degrees) according to Numerical Example 4 of the present invention.

図30〜図32は本発明の数値実施例5の通常状態の広角端,中間,望遠端の収差図である。図33〜図35は本発明の数値実施例5の振動補償状態(画角0.3度の画像ぶれの補正)の広角端,中間,望遠端の収差図である。   30 to 32 are aberration diagrams at the wide-angle end, intermediate point, and telephoto end in the normal state according to Numerical Example 5 of the present invention. FIGS. 33 to 35 are aberration diagrams at the wide-angle end, in the middle, and at the telephoto end in the vibration compensation state (correction of image blur having a field angle of 0.3 degrees) according to Numerical Example 5 of the present invention.

図中、L1は正の屈折力の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群、L4は正の屈折力の第4レンズ群である。矢印は広角側から望遠側への変倍を行う際の各レンズ群の移動方向を示す。SPは絞りで第2群と第3群との間に設けている。IPは像面である。   In the figure, L1 is a first lens group having a positive refractive power, L2 is a second lens group having a negative refractive power, L3 is a third lens group having a positive refractive power, and L4 is a fourth lens group having a positive refractive power. It is. The arrow indicates the moving direction of each lens unit when zooming from the wide angle side to the telephoto side. SP is a diaphragm provided between the second group and the third group. IP is the image plane.

図1,図8,図15において、第3レンズ群は正の屈折力の第31レンズ群L31と防振用の負の屈折力の第32レンズ群L32を有している。図22,図29において、第3レンズ群は正の屈折力の第31レンズ群L31と防振用の負の屈折力の第32レンズ群L32、そして負の屈折力の第33レンズ群L33を有している。   In FIGS. 1, 8, and 15, the third lens group includes a thirty-first lens unit L31 having a positive refractive power and a thirty-second lens unit L32 having a negative refractive power for image stabilization. 22 and 29, the third lens group includes a thirty-first lens unit L31 having a positive refractive power, a thirty-second lens unit L32 having a negative refractive power for image stabilization, and a thirty-third lens unit L33 having a negative refractive power. Have.

本発明のズームレンズにおいては、物体側より正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、正の屈折力を有する第3レンズ群、正の屈折力を有する第4レンズ群を有している。そして、少なくとも第1,第3,第4レンズ群を光軸上移動を行いつつ各レンズ群の空気間隔を変化させて変倍を行い、前記第3レンズ群中の負の屈折力の第32レンズ群L32を光軸に対し垂直方向に移動を行うことにより結像位置の変位を行っている。   In the zoom lens according to the present invention, the first lens group having a positive refractive power from the object side, the second lens group having a negative refractive power, the third lens group having a positive refractive power, and a positive refractive power. A fourth lens group is included. Then, while moving at least the first, third, and fourth lens groups on the optical axis, zooming is performed by changing the air interval of each lens group, and the negative refracting power of the 32nd negative power in the third lens group is changed. The imaging position is displaced by moving the lens unit L32 in the direction perpendicular to the optical axis.

変倍に際して第1レンズ群と第2レンズ群の空気間隔を変化させることにより主に第2レンズ群で変倍作用を行っている。第3レンズ群の移動で主に変倍に伴い変動する像面の補正作用を行うと同時に第3レンズ群と第4レンズ群の空気間隔を変化させることにより変倍に伴う軸外収差の変動を補正している。またこの際、第2レンズ群を光軸上固定としても良く、これによれば機構の簡略化を行える。そして正の屈折力を有する第3レンズ群中に負の屈折力の第32レンズ群を配置することにより第3レンズ群中の第32レンズ群以外のレンズ系のうち正の屈折作用のレンズ群で発生する諸収差を第32レンズ群の負の屈折作用でキャンセルしている。又それと同時に少ない移動量で大きい像位置の変位作用を行っている。   By changing the air gap between the first lens group and the second lens group at the time of zooming, the zooming action is mainly performed by the second lens group. The movement of the third lens group mainly corrects the image plane that fluctuates with zooming, and at the same time changes the air gap between the third lens group and the fourth lens group, thereby changing off-axis aberrations with zooming. Is corrected. At this time, the second lens group may be fixed on the optical axis, and the mechanism can be simplified. By disposing the 32nd lens group having a negative refractive power in the third lens group having a positive refractive power, the lens group having a positive refractive action among the lens systems other than the 32nd lens group in the third lens group. Are canceled by the negative refracting action of the thirty-second lens group. At the same time, a large image position is displaced with a small amount of movement.

この際、前記第3レンズ群は物体側より正の屈折力の第31レンズ群L31と負の屈折力の第32レンズ群を有している。又は正の屈折力を有する第31レンズ群L31と負の屈折力を有する第32レンズ群、そして負の屈折力の第33レンズ群を有している。そして、第32レンズ群を光軸に対し垂直方向に移動を行うことにより結像位置の変位を行っている。これにより第31レンズ群の収斂作用により第32レンズ群のレンズ系の小型化を行うとともに第32レンズ群の移動機構の簡易化を行っている。   At this time, the third lens group includes a thirty-first lens unit L31 having a positive refractive power and a thirty-second lens unit having a negative refractive power from the object side. Alternatively, the lens unit includes a thirty-first lens unit L31 having a positive refractive power, a thirty-second lens unit having a negative refractive power, and a thirty-third lens unit having a negative refractive power. The imaging position is displaced by moving the thirty-second lens group in the direction perpendicular to the optical axis. As a result, the lens system of the thirty-second lens group is reduced in size by the convergence action of the thirty-first lens group, and the moving mechanism of the thirty-second lens group is simplified.

本発明の目的とするズームレンズは以上の諸条件を満足することにより達成されるが、更に良好なる光学性能を有しつつ、光学系全体の小型化を図るには次の諸条件のうち少なくとも1つを満足させるのが良い。   The zoom lens that is the object of the present invention is achieved by satisfying the above-mentioned various conditions. In order to reduce the size of the entire optical system while having better optical performance, at least of the following conditions: Satisfy one.

(ア-1)全系の広角端と望遠端の焦点距離を各々Fw,Ft、前記第3レンズ群の焦点距離をF3、前記第32レンズ群の焦点距離をF32、   (A-1) The focal lengths of the wide-angle end and the telephoto end of the entire system are Fw and Ft, the focal length of the third lens group is F3, and the focal length of the 32nd lens group is F32.

としたとき、
0.35<F3/Fm<1…(1)
−0.9<F3/F32<−0.18…(2)
の条件式を満足することである。
When
0.35 <F3 / Fm <1 (1)
−0.9 <F3 / F32 <−0.18 (2)
Is satisfied.

条件式(1)の上限を越えて、第3レンズ群の屈折力が弱まってくると一定の焦点距離及び変倍比を確保するためのレンズ群の移動量が多くなり、レンズ系の全長が増大してしまうため良くない。   If the refractive power of the third lens group becomes weaker beyond the upper limit of conditional expression (1), the amount of movement of the lens group for securing a constant focal length and zoom ratio increases, and the total length of the lens system increases. It is not good because it increases.

他方、下限値を越えると第3レンズ群の屈折力が強くなりすぎて、負の球面収差が強く発生し、これを他のレンズ群にて全変倍域中良好に補正することが困難となってくる。   On the other hand, if the lower limit is exceeded, the refractive power of the third lens unit becomes too strong, and negative spherical aberration is strongly generated, which is difficult to correct well in the entire zooming range with other lens units. It becomes.

条件式(2)は第3レンズ群中の結像位置の変位作用を行う第32レンズ群の屈折力に関するもので、一定の像位置変位作用を行うための第32レンズ群の移動量を抑えつつ高画質を維持するためのものである。   Conditional expression (2) relates to the refracting power of the thirty-second lens group that performs the displacement action of the imaging position in the third lens group, and suppresses the amount of movement of the thirty-second lens group for performing a constant image position displacement action. While maintaining high image quality.

条件式(2)の上限を越えて第32レンズ群の負の屈折力が弱くなってくると一定の像位置変位作用を行うために第32レンズ群の移動量が増加してくるとともに移動時に一定の周辺光量を得るために第32レンズ群のレンズ径が増大してしまい良くない。   When the negative refracting power of the thirty-second lens unit becomes weaker beyond the upper limit of conditional expression (2), the amount of movement of the thirty-second lens unit increases to perform a constant image position displacement action, and at the time of movement. In order to obtain a constant peripheral light amount, the lens diameter of the thirty-second lens group increases, which is not good.

他方、下限値を越えると、第32レンズ群の負の屈折力が大きくなってくると同時に第3レンズ群中の第32レンズ群以外のレンズ系の正の屈折力を大きくしなければならなくなる。この結果、高次の球面収差やコマ収差が大きく発生してきて像位置の変位時の収差補正が困難となってくる。   On the other hand, when the lower limit is exceeded, the negative refractive power of the 32nd lens group becomes large, and at the same time, the positive refractive power of the lens system other than the 32nd lens group in the third lens group must be increased. . As a result, high-order spherical aberration and coma are greatly generated, and it becomes difficult to correct the aberration when the image position is displaced.

尚、更に好ましくは条件式(1),(2)を、
0.4<F3/Fm<0.8…(1a)
−0.8<F3/F32<−0.2…(2a)
とするのが良い。
More preferably, conditional expressions (1) and (2)
0.4 <F3 / Fm <0.8 (1a)
−0.8 <F3 / F32 <−0.2 (2a)
It is good to do.

(ア-2)前記第31レンズ群の最も像面側のレンズ面の曲率半径をRa、前記第32レンズ群の最も物体側のレンズ面の曲率半径をRbとしたとき、
−0.2<(Ra−Rb)/(Ra+Rb)≦0.450…(3)
の条件式を満足することである。
(A-2) When the radius of curvature of the lens surface closest to the image plane of the 31st lens group is Ra, and the radius of curvature of the lens surface closest to the object side of the 32nd lens group is Rb,
−0.2 < (Ra−Rb) / (Ra + Rb) ≦ 0.450 (3)
Is satisfied.

条件式(3)は更なる高画質を得る為に、第3レンズ群中のレンズ面形状を適切に配置する為のものである。条件式(3)の数値範囲を越えると結像位置の変位時と無変位時の相互レンズ面における球面収差とコマ収差のキャンセル関係が崩れてしまうため良くない。   Conditional expression (3) is for appropriately arranging the lens surface shape in the third lens group in order to obtain further high image quality. Exceeding the numerical range of conditional expression (3) is not good because the canceling relationship between spherical aberration and coma aberration on the mutual lens surfaces when the imaging position is displaced and when there is no displacement is lost.

尚、更に好ましくは条件式(3)を、
−0.15<(Ra−Rb)/(Ra+Rb)≦0.450…(3a)
とするのが良い。
More preferably, conditional expression (3) is
−0.15 < (Ra−Rb) / (Ra + Rb) ≦ 0.450 (3a)
It is good to do.

(ア-3)前記第iレンズ群の焦点距離をFiとしたとき、
0.7 < F1/Fm <2.8…(4)
0.15<|F2/Fm|<0.7…(5)
0.5 < F4/Fm <2.0…(6)
の条件式を満足することである。
(A-3) When the focal length of the i-th lens group is Fi,
0.7 <F1 / Fm <2.8 (4)
0.15 <| F2 / Fm | <0.7 (5)
0.5 <F4 / Fm <2.0 (6)
Is satisfied.

条件式(4)〜(6)は主に高画質でコンパクトな光学系の達成のためのものである。   Conditional expressions (4) to (6) are mainly for achieving a high-quality and compact optical system.

条件式(4)の上限値を越えると、第1レンズ群の屈折力が弱くなりすぎて、レンズ外径の増大やレンズ全長の増加を招き良くない。   If the upper limit value of conditional expression (4) is exceeded, the refractive power of the first lens group becomes too weak, which is not good for increasing the lens outer diameter and the total lens length.

他方、下限値を越えると第1レンズ群の屈折力が強まってきて、高次の球面収差が大きく発生してきてこの補正が困難となってくる。   On the other hand, if the lower limit is exceeded, the refractive power of the first lens group will increase, and high-order spherical aberration will occur greatly, making this correction difficult.

条件式(5)の上限値を越えると、第2レンズ群の屈折力が弱まり、一定の変倍比を得るためには各レンズ群の移動量が大きくなってしまい、結果としてレンズ系のコンパクト化が困難となってくる。   If the upper limit of conditional expression (5) is exceeded, the refractive power of the second lens group will be weakened, and the amount of movement of each lens group will become large in order to obtain a constant zoom ratio, resulting in a compact lens system. It becomes difficult.

また下限値を越えると、負の屈折力作用が大きくなるためペッツバール和が負に大となり、像面湾曲が大きくなってくるので良くない。   On the other hand, if the lower limit is exceeded, the negative refracting power action becomes large, so the Petzval sum becomes negatively large, and the field curvature becomes large.

条件式(6)の上限値を越えると第4レンズ群の屈折力が弱くなりすぎるためバックフォーカスが長くなってくるためレンズ全長が増大してきて良くない。   If the upper limit of conditional expression (6) is exceeded, the refractive power of the fourth lens group becomes too weak and the back focus becomes longer, so the total length of the lens may increase.

他方、下限値を越えるとレンズ全系のバックフォーカスが短くなりすぎてきて、例えば一眼レフレックスカメラに用いるとクイックリターンミラーとの干渉を生じてくると同時に像面湾曲等軸外の高次収差が大きく発生してくる。   On the other hand, if the lower limit is exceeded, the back focus of the entire lens system becomes too short. For example, when used in a single-lens reflex camera, it causes interference with the quick return mirror and at the same time, off-axis high-order aberrations such as field curvature. Will occur greatly.

尚、更に好ましくは条件式(4),(5),(6)は
0.9 < F1/Fm <2.3…(4a)
0.18<|F2/Fm|<0.6…(5a)
0.6 < F4/Fm <1.8…(6a)
とするのが良い。
More preferably, the conditional expressions (4), (5), (6) are 0.9 <F1 / Fm <2.3 (4a)
0.18 <| F2 / Fm | <0.6 (5a)
0.6 <F4 / Fm <1.8 (6a)
It is good to do.

(ア-4)前記第32レンズ群は各々1枚の正レンズと負レンズで構成することが良い。これによれば像位置の変位時のレンズ移動の際の収差変動を抑えるのに好ましい。   (A-4) Each of the thirty-second lens groups is preferably composed of one positive lens and one negative lens. This is preferable for suppressing aberration fluctuations during lens movement when the image position is displaced.

(ア-5)フォーカスは第1レンズ群又は第2レンズ群を物体側に移動することにより行うのが良い。特に第2レンズ群を移動させる方式は第1レンズ群のレンズ外径を増大させないために良い。また第1、第2レンズ群を共に物体側に移動させることによってフォーカスを行っても良い。   (A-5) Focusing is preferably performed by moving the first lens group or the second lens group to the object side. In particular, the method of moving the second lens group is good because it does not increase the lens outer diameter of the first lens group. Further, focusing may be performed by moving both the first and second lens groups to the object side.

(ア-6)第1レンズ群の構成を物体側より、物体側に比べ像面側のレンズ面が強い(以下、単に「像面側のレンズ面が強い」と略す。)屈折力の凹面の負レンズ、正レンズを有する。更に、像面側に比べ物体側のレンズ面が強い(以下、単に「物体側のレンズ面が強い」と略す。)屈折力の凸面の正レンズとするのが良い。   (A-6) Constitution of the first lens group from the object side, the lens surface on the image surface side is stronger than the object side (hereinafter simply referred to as “the lens surface on the image surface side is strong”) concave surface with refractive power Negative lens and positive lens. Further, it is preferable that the lens surface on the object side is stronger than the image surface side (hereinafter simply referred to as “the lens surface on the object side is strong”), and is a positive lens having a convex surface having a refractive power.

(ア-7)第2レンズ群の構成を物体側より、像面側のレンズ面が強い凹面の負レンズ、両レンズ面が凹面の負レンズ、物体側のレンズ面が強い凸面の正レンズ、物体側のレンズ面が強い凹面の負レンズとすることである。またもっとも像面側の負レンズは負レンズと正レンズの接合レンズとすればより高画質化の達成に良い。   (A-7) Constitution of the second lens group from the object side, a concave negative lens with a strong lens surface on the image side, a negative lens with a concave surface on both lens surfaces, a positive lens with a strong convex surface on the object side, The lens surface on the object side is a strong negative negative lens. Further, if the negative lens closest to the image plane is a cemented lens of a negative lens and a positive lens, better image quality can be achieved.

(ア-8)第31レンズ群は物体側より、像面側のレンズ面が強い凹面のメニスカス状の負レンズと正レンズを接合した全体として正の屈折力の貼合わせレンズ群を有する。更に、正の単レンズまたは正レンズと負レンズが接合された全体として正の屈折力の貼合わせレンズ群より構成するのが良い。   (A-8) The thirty-first lens unit has a cemented lens unit having a positive refractive power as a whole, in which a concave meniscus negative lens having a strong image surface side lens surface and a positive lens are cemented from the object side. Furthermore, it is preferable that the lens is composed of a positive single lens or a bonded lens group having a positive refractive power as a whole in which a positive lens and a negative lens are cemented.

(ア-9)第32レンズ群は像面側に凸面を向けた正レンズと物体側のレンズ面が強い凹面の負レンズが接合された全体として負の貼合わせレンズ群とするのが良い。   (A-9) The thirty-second lens group may be a negative cemented lens group as a whole, in which a positive lens having a convex surface facing the image surface and a negative negative lens having a strong object-side lens surface are cemented together.

(ア-10)第32レンズ群の像面側に防振時に固定の負又は正の屈折力の第33レンズ群を配置するのが良い。これによれば更なる収差補正効果が期待できる。   (A-10) It is preferable to dispose a 33rd lens group having a negative or positive refractive power that is fixed during image stabilization on the image plane side of the 32nd lens group. According to this, a further aberration correction effect can be expected.

(ア-11)第4レンズ群は物体側より、像面側が強い凸面の正レンズ、両レンズ面が凸面の正レンズ、物体側が強い凹面であるメニスカス状の負レンズとするのが良い。   (A-11) The fourth lens group may be a positive lens having a convex surface on the image side, a positive lens having a convex surface on both sides, and a meniscus negative lens having a strong concave surface on the object side.

(ア-12)光学性能向上のためレンズ系に非球面や回折光学素子、屈折分布光学材料を導入するのが良い。   (A-12) It is preferable to introduce an aspherical surface, a diffractive optical element, or a refractive distribution optical material into the lens system in order to improve optical performance.

次に本発明に関する数値実施例を示す。   Next, numerical examples relating to the present invention will be described.

数値実施例においてRiは物体側より順に第i番目のレンズ厚及び空気間隔、Niとνiは各々物体側より順に第i番目のレンズの材質の屈折率とアッベ数である。   In the numerical examples, Ri is the i-th lens thickness and air interval in order from the object side, and Ni and νi are the refractive index and Abbe number of the material of the i-th lens in order from the object side.

また非球面係数K,A,B,C,Dは次式   The aspheric coefficients K, A, B, C, D are as follows:

で与えるものとする。但し、Xはレンズ頂点光軸から方向への変位量、Hは光軸からの距離、Rは曲率半径である。又「e−X」は「×10-X」を意味している。 Shall be given in Where X is the amount of displacement in the direction from the lens apex optical axis, H is the distance from the optical axis, and R is the radius of curvature. “E-X” means “× 10 −X ”.

又前述の各条件式と数値実施例における諸数値との関係を表−1に示す。
Table 1 shows the relationship between the above-described conditional expressions and numerical values in the numerical examples.

数値実施例1
f=29.00〜101.37 Fno=4.54〜5.75 2ω=73.5°〜24.1°
R l=86.687 D 1=1.50 N 1=1.846660 ν 1=23.9
R 2=42.162 D 2=8.70 N 2=1.603112 ν 2=60.6
R 3=467.815 D 3=0.15
R 4=36.727 D 4=6.40 N 3=1.733997 ν 3=51.5
R 5=125.386 D 5=可変
R 6=64.747 D 6=1.20 N 4=1.834807 ν 4=42.7
R 7=11.848 D 7=5.34
R 8=-38.336 D 8=1.00 N 5=1.804000 ν 5=46.6
R 9=29.098 D 9=0.20
R10=21.706 D10=3.10 N 6=1.846660 ν 6=23.9
R11=-41.601 D11=0.60
R12=-22.294 D12=1.00 N 7=1.804000 ν 7=46.6
R13=-120.841 D13=可変
R14=絞り D14=0.15
R15=37.070 D15=0.90 N 8=1.805181 ν 8=25.4
R16=24.498 D16=3.00 N 9=1.639300 ν 9=44.9
R17=-39.035 D17=0.20
R18=40.272 D18=3.30 N10=1.570989 ν10=50.8
R19=-15.064 D19=0.90 N11=1.846660 ν11=23.9
R20=-36.396 D20=1.73
R21=-40.584 D21=2.00 N12=1.846660 ν12=23.9
R22=-13.785 D22=0.90 N13=1.749497 ν13=35.3
R23=83.142 D23=可変
R24=-132.327 D24=3.80 N14=1.487490 ν14=70.2
R25=-22.027 D25=0.20
R26=110.113 D26=4.00 N15=1.487490 ν15=70.2
R27=-41.738 D27=2.38
R28=-19.597 D28=1.40 N16=1.846660 ν16=23.9
R29=-33.679

\焦点距離 29.00 54.74 101.37
可変間隔\
D 5 1.89 10.94 22.39
D13 12.99 6.28 1.45
D23 11.52 8.24 7.12
Numerical example 1
f = 29.010 to 10.37 Fno = 4.54 to 5.75 2ω = 73.5 ° to 24.1 °
R l = 86.687 D 1 = 1.50 N 1 = 1.846660 ν 1 = 23.9
R 2 = 42.162 D 2 = 8.70 N 2 = 1.603112 ν 2 = 60.6
R 3 = 467.815 D 3 = 0.15
R 4 = 36.727 D 4 = 6.40 N 3 = 1.733997 ν 3 = 51.5
R 5 = 125.386 D 5 = variable
R 6 = 64.747 D 6 = 1.20 N 4 = 1.834807 ν 4 = 42.7
R 7 = 11.848 D 7 = 5.34
R 8 = -38.336 D 8 = 1.00 N 5 = 1.804000 ν 5 = 46.6
R 9 = 29.098 D 9 = 0.20
R10 = 21.706 D10 = 3.10 N 6 = 1.846660 ν 6 = 23.9
R11 = -41.601 D11 = 0.60
R12 = -22.294 D12 = 1.00 N 7 = 1.804000 ν 7 = 46.6
R13 = -120.841 D13 = variable
R14 = Aperture D14 = 0.15
R15 = 37.070 D15 = 0.90 N 8 = 1.805181 ν 8 = 25.4
R16 = 24.498 D16 = 3.00 N 9 = 1.639300 ν 9 = 44.9
R17 = -39.035 D17 = 0.20
R18 = 40.272 D18 = 3.30 N10 = 1.570989 ν10 = 50.8
R19 = -15.064 D19 = 0.90 N11 = 1.846660 ν11 = 23.9
R20 = -36.396 D20 = 1.73
R21 = -40.584 D21 = 2.00 N12 = 1.846660 ν12 = 23.9
R22 = -13.785 D22 = 0.90 N13 = 1.749497 ν13 = 35.3
R23 = 83.142 D23 = variable
R24 = -132.327 D24 = 3.80 N14 = 1.487490 ν14 = 70.2
R25 = -22.027 D25 = 0.20
R26 = 110.113 D26 = 4.00 N15 = 1.487490 ν15 = 70.2
R27 = -41.738 D27 = 2.38
R28 = -19.597 D28 = 1.40 N16 = 1.846660 ν16 = 23.9
R29 = -33.679

\ Focal length 29.00 54.74 101.37
Variable interval \
D 5 1.89 10.94 22.39
D13 12.99 6.28 1.45
D23 11.52 8.24 7.12

数値実施例2
f=29.00〜101.30 Fno=4.39〜5.75 2ω=73.5°〜24.1°
R l=83.702 D 1=1.50 N 1=1.846660 ν 1=23.9
R 2=41.079 D 2=8.40 N 2=1.603112 ν 2=60.6
R 3=359.634 D 3=0.15
R 4=38.654 D 4=6.40 N 3=1.719995 ν 3=50.2
R 5=150.065 D 5=可変
R 6=64.696 D 6=1.20 N 4=1.834807 ν 4=42.7
R 7=12.027 D 7=5.00
R 8=-37.123 D 8=1.00 N 5=1.804000 ν 5=46.6
R 9=28.835 D 9=0.20
R10=21.702 D10=3.10 N 6=1.846660 ν 6=23.9
R11=-39.022 D11=0.60
R12=-22.580 D12=1.00 N 7=1.804000 ν 7=46.6
R13=-120.841 D13=可変
R14=絞り D14=0.15
R15=37.553 D15=0.90 N 8=1.805181 ν 8=25.4
R16=25.970 D16=3.00 N 9=1.639300 ν 9=44.9
R17=-45.144 D17=0.20
R18=41.663 D18=3.30 N10=1.570989 ν10=50.8
R19=-14.860 D19=0.90 N11=1.846660 ν11=23.9
R20=-38.349 D20=1.50
R21=-42.901 D21=2.20 N12=1.846660 ν12=23.9
R22=-13.652 D22=0.90 N13=1.749497 ν13=35.3
R23=91.409 D23=可変
R24=-133.590 D24=3.80 N14=1.487490 ν14=70.2
R25=-21.523 D25=0.20
R26=107.117 D26=3.80 N15=1.487490 ν15=70.2
R27=-42.147 D27=2.60
R28=-19.781 D28=1.40 N16=1.846660 ν16=23.9
R29=-33.679

\焦点距離 29.00 55.00 101.30
可変間隔\
D 5 2.00 10.87 22.39
D13 13.51 6.31 1.45
D23 11.52 8.30 7.12
Numerical example 2
f = 29.01 to 10.30 Fno = 4.39 to 5.75 2ω = 73.5 ° to 24.1 °
R l = 83.702 D 1 = 1.50 N 1 = 1.846660 ν 1 = 23.9
R 2 = 41.079 D 2 = 8.40 N 2 = 1.603112 ν 2 = 60.6
R 3 = 359.634 D 3 = 0.15
R 4 = 38.654 D 4 = 6.40 N 3 = 1.719995 ν 3 = 50.2
R 5 = 150.065 D 5 = variable
R 6 = 64.696 D 6 = 1.20 N 4 = 1.834807 ν 4 = 42.7
R 7 = 12.027 D 7 = 5.00
R 8 = -37.123 D 8 = 1.00 N 5 = 1.804000 ν 5 = 46.6
R 9 = 28.835 D 9 = 0.20
R10 = 21.702 D10 = 3.10 N 6 = 1.846660 ν 6 = 23.9
R11 = -39.022 D11 = 0.60
R12 = -22.580 D12 = 1.00 N 7 = 1.804000 ν 7 = 46.6
R13 = -120.841 D13 = variable
R14 = Aperture D14 = 0.15
R15 = 37.553 D15 = 0.90 N 8 = 1.805181 ν 8 = 25.4
R16 = 25.970 D16 = 3.00 N 9 = 1.639300 ν 9 = 44.9
R17 = -45.144 D17 = 0.20
R18 = 41.663 D18 = 3.30 N10 = 1.570989 ν10 = 50.8
R19 = -14.860 D19 = 0.90 N11 = 1.846660 ν11 = 23.9
R20 = -38.349 D20 = 1.50
R21 = -42.901 D21 = 2.20 N12 = 1.846660 ν12 = 23.9
R22 = -13.652 D22 = 0.90 N13 = 1.749497 ν13 = 35.3
R23 = 91.409 D23 = variable
R24 = -133.590 D24 = 3.80 N14 = 1.487490 ν14 = 70.2
R25 = -21.523 D25 = 0.20
R26 = 107.117 D26 = 3.80 N15 = 1.487490 ν15 = 70.2
R27 = -42.147 D27 = 2.60
R28 = -19.781 D28 = 1.40 N16 = 1.846660 ν16 = 23.9
R29 = -33.679

\ Focal length 29.00 55.00 101.30
Variable interval \
D 5 2.00 10.87 22.39
D13 13.51 6.31 1.45
D23 11.52 8.30 7.12

数値実施例3
f=29.00〜101.50 Fno=4.10〜5.75 2ω=73.5°〜24.1°
R l=141.446 D 1=1.80 N 1=1.846660 ν 1=23.8
R 2=65.548 D 2=8.00 N 2=1.603112 ν 2=60.6
R 3=-1920.275 D 3=0.15
R 4=41.278 D 4=5.00 N 3=1.733997 ν 3=51.5
R 5=69.266 D 5=可変
R 6=26.753 D 6=1.20 N 4=1.834807 ν 4=42.7
R 7=12.779 D 7=6.97
R 8=-111.739 D 8=1.00 N 5=1.804000 ν 5=46.6
R 9=27.679 D 9=0.20
R10=20.183 D10=4.20 N 6=1.846660 ν 6=23.8
R11=-229.709 D11=1.20
R12=-34.939 D12=1.00 N 7=1.804000 ν 7=46.6
R13=343.160 D13=可変
R14=絞り D14=1.00
R15=382.311 D15=0.90 N 8=1.805181 ν 8=25.4
R16=13.917 D16=3.20 N 9=1.639300 ν 9=44.9
R17=-70.454 D17=0.20
R18=26.018 D18=2.50 N10=1.720000 ν10=43.7
R19=-51.100 D19=1.50
R20=-45.633 D20=2.40 N11=1.846660 ν11=23.8
R21=-15.099 D21=0.90 N12=1.749497 ν12=35.3
R22=225.399 D22=可変
R23=-25.512 D23=3.00 N13=1.487490 ν13=70.2
R24=-17.904 D24=0.20
R25=65.171 D25=4.00 N14=1.487490 ν14=70.2
R26=-43.800 D26=3.14
R27=-18.241 D27=1.40 N15=1.846660 ν15=23.8
R28=-31.177

\焦点距離 29.00 54.00 101.50
可変間隔\
D 5 1.80 15.36 29.97
D13 20.13 8.98 1.29
D22 14.01 10.76 9.85
Numerical Example 3
f = 29.010 to 1.50 Fno = 4.10 to 5.75 2ω = 73.5 ° to 24.1 °
R l = 141.446 D 1 = 1.80 N 1 = 1.846660 ν 1 = 23.8
R 2 = 65.548 D 2 = 8.00 N 2 = 1.603112 ν 2 = 60.6
R 3 = -1920.275 D 3 = 0.15
R 4 = 41.278 D 4 = 5.00 N 3 = 1.733997 ν 3 = 51.5
R 5 = 69.266 D 5 = variable
R 6 = 26.753 D 6 = 1.20 N 4 = 1.834807 ν 4 = 42.7
R 7 = 12.779 D 7 = 6.97
R 8 = -111.739 D 8 = 1.00 N 5 = 1.804000 ν 5 = 46.6
R 9 = 27.679 D 9 = 0.20
R10 = 20.183 D10 = 4.20 N 6 = 1.846660 ν 6 = 23.8
R11 = -229.709 D11 = 1.20
R12 = -34.939 D12 = 1.00 N 7 = 1.804000 ν 7 = 46.6
R13 = 343.160 D13 = variable
R14 = Aperture D14 = 1.00
R15 = 382.311 D15 = 0.90 N 8 = 1.805181 ν 8 = 25.4
R16 = 13.917 D16 = 3.20 N 9 = 1.639300 ν 9 = 44.9
R17 = -70.454 D17 = 0.20
R18 = 26.018 D18 = 2.50 N10 = 1.720000 ν10 = 43.7
R19 = -51.100 D19 = 1.50
R20 = -45.633 D20 = 2.40 N11 = 1.846660 ν11 = 23.8
R21 = -15.099 D21 = 0.90 N12 = 1.749497 ν12 = 35.3
R22 = 225.399 D22 = variable
R23 = -25.512 D23 = 3.00 N13 = 1.487490 ν13 = 70.2
R24 = -17.904 D24 = 0.20
R25 = 65.171 D25 = 4.00 N14 = 1.487490 ν14 = 70.2
R26 = -43.800 D26 = 3.14
R27 = -18.241 D27 = 1.40 N15 = 1.846660 ν15 = 23.8
R28 = -31.177

\ Focal length 29.00 54.00 101.50
Variable interval \
D 5 1.80 15.36 29.97
D13 20.13 8.98 1.29
D22 14.01 10.76 9.85

数値実施例4
f=29.01〜101.35 Fno=3.77〜5.80 2ω=73.4°〜24.1°
R l=126.261 D 1=1.80 N 1=1.846660 ν 1=23.8
R 2=66.940 D 2=8.00 N 2=1.603112 ν 2=60.6
R 3=-282.096 D 3=0.15
R 4=37.686 D 4=3.00 N 3=1.670000 ν 3=57.3
R 5=46.991 D 5=可変
R 6=33.243 D 6=1.20 N 4=1.873996 ν 4=35.3
R 7=14.216 D 7=6.40
R 8=-47.453 D 8=1.00 N 5=1.743198 ν 5=49.3
R 9=42.606 D 9=0.20
R10=25.841 D10=4.20 N 6=1.846660 ν 6=23.8
R11=-62.181 D11=1.02
R12=-28.083 D12=1.00 N 7=1.804000 ν 7=46.6
R13=-274.061 D13=可変
R14=絞り D14=1.00
R15=89.494 D15=0.90 N 8=1.784723 ν 8=25.7
R16=14.136 D16=4.00 N 9=1.670000 ν 9=57.3
R17=-236.326 D17=0.20
R18=24.385 D18=3.30 N10=1.647689 ν10=33.8
R19=-46.622 D19=1.00
R20=-47.442 D20=2.40 N11=1.846660 ν11=23.8
R21=-16.552 D21=0.90 N12=1.739997 ν12=31.7
R22=-615.178 D22=1.80
R23=-58.954 D23=1.80 N13=1.740999 ν13=52.6
*R24=-211.512 D24=可変
R25=-30.176 D25=3.00 N14=1.548141 ν14=45.8
R26=-20.181 D26=0.20
R27=62.613 D27=5.00 N15=1.510091 ν15=63.6
R28=-33.511 D28=2.07
R29=-20.285 D29=1.40 N16=1.846660 ν16=23.8
R30=-49.470

\焦点距離 29.01 53.97 101.35
可変間隔\
D 5 1.80 14.59 29.63
D13 21.08 8.91 1.00
D24 11.12 9.28 9.18

非球面係数
24面:k=-5.62727e+02
A=0 B=1.89300e-06 C=3.98391e-08 D=-7.41272e-11 E=0.00000e+00
Numerical Example 4
f = 29.01 ~ 101.35 Fno = 3.77 ~ 5.80 2ω = 73.4 ° 〜24.1 °
R l = 126.261 D 1 = 1.80 N 1 = 1.846660 ν 1 = 23.8
R 2 = 66.940 D 2 = 8.00 N 2 = 1.603112 ν 2 = 60.6
R 3 = -282.096 D 3 = 0.15
R 4 = 37.686 D 4 = 3.00 N 3 = 1.670000 ν 3 = 57.3
R 5 = 46.991 D 5 = variable
R 6 = 33.243 D 6 = 1.20 N 4 = 1.873996 ν 4 = 35.3
R 7 = 14.216 D 7 = 6.40
R 8 = -47.453 D 8 = 1.00 N 5 = 1.743198 ν 5 = 49.3
R 9 = 42.606 D 9 = 0.20
R10 = 25.841 D10 = 4.20 N 6 = 1.846660 ν 6 = 23.8
R11 = -62.181 D11 = 1.02
R12 = -28.083 D12 = 1.00 N 7 = 1.804000 ν 7 = 46.6
R13 = -274.061 D13 = variable
R14 = Aperture D14 = 1.00
R15 = 89.494 D15 = 0.90 N 8 = 1.784723 ν 8 = 25.7
R16 = 14.136 D16 = 4.00 N 9 = 1.670000 ν 9 = 57.3
R17 = -236.326 D17 = 0.20
R18 = 24.385 D18 = 3.30 N10 = 1.647689 ν10 = 33.8
R19 = -46.622 D19 = 1.00
R20 = -47.442 D20 = 2.40 N11 = 1.846660 ν11 = 23.8
R21 = -16.552 D21 = 0.90 N12 = 1.739997 ν12 = 31.7
R22 = -615.178 D22 = 1.80
R23 = -58.954 D23 = 1.80 N13 = 1.740999 ν13 = 52.6
* R24 = -211.512 D24 = variable
R25 = -30.176 D25 = 3.00 N14 = 1.548141 ν14 = 45.8
R26 = -20.181 D26 = 0.20
R27 = 62.613 D27 = 5.00 N15 = 1.510091 ν15 = 63.6
R28 = -33.511 D28 = 2.07
R29 = -20.285 D29 = 1.40 N16 = 1.846660 ν16 = 23.8
R30 = -49.470

\ Focal length 29.01 53.97 101.35
Variable interval \
D 5 1.80 14.59 29.63
D13 21.08 8.91 1.00
D24 11.12 9.28 9.18

Aspheric coefficient
24: k = -5.62727e + 02
A = 0 B = 1.89300e-06 C = 3.98391e-08 D = -7.41272e-11 E = 0.00000e + 00

数値実施例5
f=29.00〜101.50 Fno=3.86〜5.75 2ω=73.5°〜24.1°
R l=233.840 D 1=1.80 N 1=1.846660 ν 1=23.8
R 2=98.856 D 2=6.00 N 2=1.658296 ν 2=57.3
R 3=-305.171 D 3=0.15
R 4=51.919 D 4=3.00 N 3=1.603112 ν 3=60.7
R 5=80.974 D 5=可変
R 6=33.135 D 6=1.20 N 4=1.850259 ν 4=32.3
R 7=14.698 D 7=6.73
R 8=-66.153 D 8=1.00 N 5=1.712995 ν 5=53.9
R 9=34.324 D 9=0.20
R10=24.112 D10=4.20 N 6=1.846660 ν 6=23.8
R11=-131.824 D11=1.35
R12=-32.019 D12=1.00 N 7=1.743198 ν 7=49.3
R13=-263.558 D13=可変
R14=絞り D14=1.00
R15=47.410 D15=0.90 N 8=1.800999 ν 8=35.0
R16=12.758 D16=4.30 N 9=1.677900 ν 9=55.3
R17=114.951 D17=0.20
R18=26.510 D18=3.00 N10=1.677900 ν10=55.3
R19=-125.081 D19=1.30
R20=-47.415 D20=3.00 N11=1.846660 ν11=23.8
R21=-18.117 D21=0.90 N12=1.717362 ν12=29.5
R22=-311.396 D22=1.80
R23=195.852 D23=1.80 N13=1.670000 ν13=57.3
*R24=7619.687 D24=可変
R25=-30.835 D25=2.50 N14=1.568728 ν14=63.2
R26=-21.996 D26=0.20
R27=72.912 D27=4.80 N15=1.518206 ν15=65.0
R28=-28.835 D28=2.18
R29=-18.744 D29=1.40 N16=1.850259 ν16=32.3
R30=-51.138

\焦点距離 29.00 54.00 101.50
可変間隔\
D 5 1.80 17.95 36.60
D13 23.15 10.02 1.35
D24 10.14 8.31 8.09

非球面係数
24面:k=1.81112e+04
A=0 B=1.77443e-06 C=-2.39986e-08 D=-5.47733e-11 E=0.00000e+00
Numerical Example 5
f = 29.01 to 10.50 Fno = 3.86 to 5.75 2ω = 73.5 ° to 24.1 °
R l = 233.840 D 1 = 1.80 N 1 = 1.846660 ν 1 = 23.8
R 2 = 98.856 D 2 = 6.00 N 2 = 1.658296 ν 2 = 57.3
R 3 = -305.171 D 3 = 0.15
R 4 = 51.919 D 4 = 3.00 N 3 = 1.603112 ν 3 = 60.7
R 5 = 80.974 D 5 = variable
R 6 = 33.135 D 6 = 1.20 N 4 = 1.850259 ν 4 = 32.3
R 7 = 14.698 D 7 = 6.73
R 8 = -66.153 D 8 = 1.00 N 5 = 1.712995 ν 5 = 53.9
R 9 = 34.324 D 9 = 0.20
R10 = 24.112 D10 = 4.20 N 6 = 1.846660 ν 6 = 23.8
R11 = -131.824 D11 = 1.35
R12 = -32.019 D12 = 1.00 N 7 = 1.743198 ν 7 = 49.3
R13 = -263.558 D13 = variable
R14 = Aperture D14 = 1.00
R15 = 47.410 D15 = 0.90 N 8 = 1.800999 ν 8 = 35.0
R16 = 12.758 D16 = 4.30 N 9 = 1.677900 ν 9 = 55.3
R17 = 114.951 D17 = 0.20
R18 = 26.510 D18 = 3.00 N10 = 1.677900 ν10 = 55.3
R19 = -125.081 D19 = 1.30
R20 = -47.415 D20 = 3.00 N11 = 1.846660 ν11 = 23.8
R21 = -18.117 D21 = 0.90 N12 = 1.717362 ν12 = 29.5
R22 = -311.396 D22 = 1.80
R23 = 195.852 D23 = 1.80 N13 = 1.670000 ν13 = 57.3
* R24 = 7619.687 D24 = variable
R25 = -30.835 D25 = 2.50 N14 = 1.568728 ν14 = 63.2
R26 = -21.996 D26 = 0.20
R27 = 72.912 D27 = 4.80 N15 = 1.518206 ν15 = 65.0
R28 = -28.835 D28 = 2.18
R29 = -18.744 D29 = 1.40 N16 = 1.850259 ν16 = 32.3
R30 = -51.138

\ Focal length 29.00 54.00 101.50
Variable interval \
D 5 1.80 17.95 36.60
D13 23.15 10.02 1.35
D24 10.14 8.31 8.09

Aspheric coefficient
24: k = 1.81112e + 04
A = 0 B = 1.77443e-06 C = -2.39986e-08 D = -5.47733e-11 E = 0.00000e + 00

本発明の数値実施例1の広角端のレンズ断面図Cross-sectional view of the lens at the wide angle end according to Numerical Embodiment 1 of the present invention 本発明の数値実施例1の通常状態の広角端の収差図Aberration diagram at the wide-angle end in the normal state according to Numerical Example 1 of the present invention 本発明の数値実施例1の通常状態の中間の収差図Aberration diagram in the middle of normal state of Numerical Example 1 of the present invention 本発明の数値実施例1の通常状態の望遠端の収差図Aberration diagram at the telephoto end in the normal state according to Numerical Example 1 of the present invention 本発明の数値実施例1の画角0.3°分の画像ぶれの補正の広角端の収差図Aberration diagram at the wide-angle end of image blur correction for an angle of view of 0.3 ° according to Numerical Example 1 of the present invention. 本発明の数値実施例1の画角0.3°分の画像ぶれの補正の中間の収差図Aberration diagram in the middle of correction of image blur for angle of view of 0.3 ° according to Numerical Example 1 of the present invention 本発明の数値実施例1の画角0.3°分の画像ぶれの補正の望遠端の収差図Aberration diagram at the telephoto end of image blur correction for an angle of view of 0.3 ° according to Numerical Embodiment 1 of the present invention. 本発明の数値実施例2の広角端のレンズ断面図Cross-sectional view of lens at the wide angle end according to Numerical Example 2 of the present invention 本発明の数値実施例2の通常状態の広角端の収差図Aberration diagram at the wide-angle end in the normal state according to Numerical Example 2 of the present invention 本発明の数値実施例2の通常状態の中間の収差図Aberration diagram in the middle of normal state of Numerical Example 2 of the present invention 本発明の数値実施例2の通常状態の望遠端の収差図Aberration diagram at the telephoto end in the normal state according to Numerical Example 2 of the present invention 本発明の数値実施例2の画角0.3°分の画像ぶれの補正の広角端の収差図Aberration diagram at the wide-angle end of image blur correction for an angle of view of 0.3 ° according to Numerical Example 2 of the present invention. 本発明の数値実施例2の画角0.3°分の画像ぶれの補正の中間の収差図Aberration diagram in the middle of correction of image blur for angle of view of 0.3 ° in numerical embodiment 2 of the present invention 本発明の数値実施例2の画角0.3°分の画像ぶれの補正の望遠端の収差図Aberration diagram at the telephoto end for image blur correction for an angle of view of 0.3 ° according to Numerical Example 2 of the present invention. 本発明の数値実施例3の広角端のレンズ断面図Cross section of lens at wide angle end according to Numerical Embodiment 3 of the present invention 本発明の数値実施例3の通常状態の広角端の収差図Aberration diagram at wide angle end in normal state according to Numerical Example 3 of the present invention 本発明の数値実施例3の通常状態の中間の収差図Aberration diagram in the middle of normal state of Numerical Example 3 of the present invention 本発明の数値実施例3の通常状態の望遠端の収差図Aberration diagram at telephoto end in normal state according to Numerical Example 3 of the present invention 本発明の数値実施例3の画角0.3°分の画像ぶれの補正の広角端の収差図Aberration diagram at the wide-angle end of image blur correction for an angle of view of 0.3 ° according to Numerical Example 3 of the present invention 本発明の数値実施例3の画角0.3°分の画像ぶれの補正の中間の収差図Aberration diagram in the middle of correction of image blur for angle of view of 0.3 ° according to Numerical Example 3 of the present invention 本発明の数値実施例3の画角0.3°分の画像ぶれの補正の望遠端の収差図Aberration diagram at the telephoto end for image blur correction for an angle of view of 0.3 ° according to Numerical Example 3 of the present invention 本発明の数値実施例4の広角端のレンズ断面図Cross-sectional view of lens at wide angle end according to Numerical Example 4 of the present invention 本発明の数値実施例4の通常状態の広角端の収差図Aberration diagram at wide angle end in normal state according to Numerical Example 4 of the present invention 本発明の数値実施例4の通常状態の中間の収差図Aberration diagram of the middle of normal state of Numerical Example 4 of the present invention 本発明の数値実施例4の通常状態の望遠端の収差図Aberration diagram at telephoto end in normal state according to Numerical Example 4 of the present invention 本発明の数値実施例4の画角0.3°分の画像ぶれの補正の広角端の収差図Aberration diagram at wide-angle end of image blur correction for angle of view of 0.3 ° in numerical example 4 of the present invention 本発明の数値実施例4の画角0.3°分の画像ぶれの補正の中間の収差図Aberration diagram in the middle of correction of image blur for angle of view of 0.3 ° in numerical embodiment 4 of the present invention 本発明の数値実施例4の画角0.3°分の画像ぶれの補正の望遠端の収差図Aberration diagram at the telephoto end for image blur correction for an angle of view of 0.3 ° according to Numerical Example 4 of the present invention 本発明の数値実施例5の広角端のレンズ断面図Cross-sectional view of lens at wide angle end according to Numerical Example 5 of the present invention 本発明の数値実施例5の通常状態の広角端の収差図Aberration diagram at wide angle end in normal state according to Numerical Example 5 of the present invention 本発明の数値実施例5の通常状態の中間の収差図Aberration diagram of intermediate in normal state of Numerical Example 5 of the present invention 本発明の数値実施例5の通常状態の望遠端の収差図Aberration diagram at telephoto end in normal state according to Numerical Example 5 of the present invention 本発明の数値実施例5の画角0.3°分の画像ぶれの補正の広角端の収差図Aberration diagram at the wide-angle end of image blur correction for an angle of view of 0.3 ° according to Numerical Example 5 of the present invention 本発明の数値実施例5の画角0.3°分の画像ぶれの補正の中間の収差図Aberration diagram in the middle of correction of image blur for angle of view of 0.3 ° in numerical embodiment 5 of the present invention 本発明の数値実施例5の画角0.3°分の画像ぶれの補正の望遠端の収差図Aberration diagram at the telephoto end for image blur correction for an angle of view of 0.3 ° according to Numerical Example 5 of the present invention

符号の説明Explanation of symbols

L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
L31 第31レンズ群
L32 第32レンズ群
L33 第33レンズ群
L4 第4レンズ群
SP 開口絞り
IP 像面
d d線
g g線
ΔS サジタル像面
ΔM メリディオナル像面
h 像高
S.C 正弦条件
L1 1st lens group L2 2nd lens group L3 3rd lens group L31 31st lens group L32 32nd lens group L33 33rd lens group L4 4th lens group SP Aperture stop IP image surface d d line g g line ΔS sagittal image Surface ΔM meridional image surface h image height C sine condition

Claims (6)

物体側より順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群から成り、少なくとも該第1,第3,第4レンズ群を光軸上移動させ各レンズ群の空気間隔を変化させて変倍を行うズームレンズであって、該第3レンズ群は正の屈折力の第31レンズ群と負の屈折力の第32レンズ群を有し、該第32レンズ群を光軸に対し垂直方向に移動させることにより結像位置を変化させており、全系の広角端と望遠端の焦点距離を各々Fw,Ft、該第3レンズ群の焦点距離をF3、該第32レンズ群の焦点距離をF32、該第31レンズ群の最も像面側のレンズ面の曲率半径をRa、該第32レンズ群の最も物体側のレンズ面の曲率半径をRbとし、

としたとき、
0.35<F3/Fm<1
−0.9<F3/F32<−0.18
−0.2<(Ra−Rb)/(Ra+Rb)≦0.450
の条件式を満足することを特徴とするズームレンズ。
In order from the object side, the lens unit includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power. 1. A zoom lens that performs zooming by moving the first, third, and fourth lens groups on the optical axis to change the air interval of each lens group, and the third lens group is a thirty-first lens group having a positive refractive power And a negative refracting power of the thirty-second lens group, and the imaging position is changed by moving the thirty-second lens group in a direction perpendicular to the optical axis , and the focal points at the wide-angle end and the telephoto end of the entire system. The distances are Fw and Ft, the focal length of the third lens group is F3, the focal length of the 32nd lens group is F32, the radius of curvature of the lens surface closest to the image plane of the 31st lens group is Ra, The radius of curvature of the lens surface closest to the object side of the 32 lens group is Rb,

When
0.35 <F3 / Fm <1
−0.9 <F3 / F32 <−0.18
−0.2 <(Ra−Rb) / (Ra + Rb) ≦ 0.450
A zoom lens that satisfies the following conditional expression:
前記第32レンズ群は前記ズームレンズが振動したときに生ずる画像ぶれを補正していることを特徴とする請求項1のズームレンズ。 The zoom lens according to claim 1, wherein the thirty-second lens group corrects image blur that occurs when the zoom lens vibrates. 前記第32レンズ群は1枚の正レンズと1枚の負レンズより成ることを特徴とする請求項1又は2のズームレンズ。 3. The zoom lens according to claim 1, wherein the thirty-second lens group includes one positive lens and one negative lens. 前記第31レンズ群は物体側より順に、像面側のレンズ面が凹面のメニスカス状の負レンズと正レンズを接合した全体として正の貼合わせレンズ群、正の単レンズまたは正レンズと負レンズが接合された全体として正の貼合わせレンズ群より成ることを特徴とする請求項1乃至のいずれか1項のズームレンズ。 The thirty-first lens group, in order from the object side, is a positive cemented lens group, a positive single lens or a positive lens and a negative lens as a whole, in which a negative meniscus lens having a concave image surface side and a positive lens are cemented together There any one of the zoom lens according to claim 1 to 3, characterized in that consists of positive cemented lens group as a whole joined. 前記第32レンズ群は像面側に凸面を向けた正レンズと物体側のレンズ面が凹面の負レンズが接合された全体として負の貼合わせレンズ群より成ることを特徴とする請求項1乃至のいずれか1項のズームレンズ。 The thirty-second lens group comprises a negative cemented lens group as a whole in which a positive lens having a convex surface directed toward the image surface side and a negative lens having a concave lens surface on the object side are cemented together. 4. The zoom lens according to any one of 4 above. 前記第32レンズ群の像面側に、防振時に固定の負又は正の屈折力の第33レンズ群を有することを特徴とする請求項1乃至のいずれか1項のズームレンズ。 Wherein the first 32 lens image plane side of the group, any one of the zoom lens according to claim 1 to 5, characterized in that it has a first 33 lens unit having a negative or positive refractive power fixed during image stabilization.
JP2008044188A 2008-02-26 2008-02-26 Zoom lens Expired - Lifetime JP4533437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008044188A JP4533437B2 (en) 2008-02-26 2008-02-26 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008044188A JP4533437B2 (en) 2008-02-26 2008-02-26 Zoom lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP35151899A Division JP4146977B2 (en) 1999-12-10 1999-12-10 Zoom lens

Publications (2)

Publication Number Publication Date
JP2008181147A JP2008181147A (en) 2008-08-07
JP4533437B2 true JP4533437B2 (en) 2010-09-01

Family

ID=39725035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008044188A Expired - Lifetime JP4533437B2 (en) 2008-02-26 2008-02-26 Zoom lens

Country Status (1)

Country Link
JP (1) JP4533437B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5872791B2 (en) * 2011-05-02 2016-03-01 オリンパス株式会社 Zoom lens and image pickup apparatus including the same
JP6045442B2 (en) 2013-06-13 2016-12-14 富士フイルム株式会社 Zoom lens and imaging device
JP6045443B2 (en) * 2013-06-13 2016-12-14 富士フイルム株式会社 Zoom lens and imaging device
CN110596873B (en) 2014-03-27 2022-09-20 株式会社尼康 Variable power optical system and imaging device
JP6507479B2 (en) * 2014-03-27 2019-05-08 株式会社ニコン Variable magnification optical unit and imaging apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04324812A (en) * 1991-04-25 1992-11-13 Olympus Optical Co Ltd Variable power lens
JPH08136862A (en) * 1994-11-07 1996-05-31 Canon Inc Variable power optical system provided with vibration proofing function
JPH09230237A (en) * 1996-02-27 1997-09-05 Minolta Co Ltd Zoom lens provided with camera shake correcting function
JPH09230241A (en) * 1996-02-27 1997-09-05 Minolta Co Ltd Zoom lens having camera shake correcting function
JPH11174330A (en) * 1990-11-22 1999-07-02 Olympus Optical Co Ltd Zoom lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11174330A (en) * 1990-11-22 1999-07-02 Olympus Optical Co Ltd Zoom lens
JPH04324812A (en) * 1991-04-25 1992-11-13 Olympus Optical Co Ltd Variable power lens
JPH08136862A (en) * 1994-11-07 1996-05-31 Canon Inc Variable power optical system provided with vibration proofing function
JPH09230237A (en) * 1996-02-27 1997-09-05 Minolta Co Ltd Zoom lens provided with camera shake correcting function
JPH09230241A (en) * 1996-02-27 1997-09-05 Minolta Co Ltd Zoom lens having camera shake correcting function

Also Published As

Publication number Publication date
JP2008181147A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP4146977B2 (en) Zoom lens
JP5201809B2 (en) Zoom lens and imaging apparatus having the same
JP5100411B2 (en) Zoom lens and imaging apparatus having the same
JP4865239B2 (en) Zoom lens and imaging apparatus having the same
JP5006634B2 (en) Zoom lens and imaging apparatus having the same
JP4928165B2 (en) Zoom lens and imaging apparatus having the same
JP4944499B2 (en) Zoom lens and imaging apparatus having the same
JP2988164B2 (en) Rear focus zoom lens
JP4880940B2 (en) Zoom lens and imaging apparatus having the same
JP2009175324A5 (en)
JPH10206736A (en) Zoom lens
JP2006058584A (en) Zoom lens and imaging device incorporating it
JP4533437B2 (en) Zoom lens
JP2629904B2 (en) Rear focus zoom lens
JP4630578B2 (en) Zoom lens and imaging apparatus having the same
JP3097399B2 (en) Rear focus telephoto zoom lens
JP3147492B2 (en) Zoom lens
JP4717399B2 (en) Zoom lens and imaging apparatus having the same
JP3144059B2 (en) Rear focus zoom lens
JP3097395B2 (en) Rear focus zoom lens
JPH0651203A (en) Zoom lens with little near abberation fluctuation
JP3376143B2 (en) Zoom lens
JPH06230285A (en) Zoom lens
JP2006184430A (en) Zoom lens
JP3315671B2 (en) Zoom lens

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100611

R150 Certificate of patent or registration of utility model

Ref document number: 4533437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

EXPY Cancellation because of completion of term