JP3315671B2 - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JP3315671B2
JP3315671B2 JP27198999A JP27198999A JP3315671B2 JP 3315671 B2 JP3315671 B2 JP 3315671B2 JP 27198999 A JP27198999 A JP 27198999A JP 27198999 A JP27198999 A JP 27198999A JP 3315671 B2 JP3315671 B2 JP 3315671B2
Authority
JP
Japan
Prior art keywords
lens
group
positive
refractive power
zoom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27198999A
Other languages
Japanese (ja)
Other versions
JP2000075205A (en
Inventor
常文 田中
宏志 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27198999A priority Critical patent/JP3315671B2/en
Publication of JP2000075205A publication Critical patent/JP2000075205A/en
Application granted granted Critical
Publication of JP3315671B2 publication Critical patent/JP3315671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144511Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+-+

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は一眼レフカメラやビ
デオカメラ等に好適なズームレンズに関し、特に負の屈
折力のレンズ群が先行する所謂ネガティブリード型の全
体として4つのレンズ群を有する比較的広画角で高変倍
の大口径のズームレンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens suitable for a single-lens reflex camera, a video camera, and the like, and more particularly, a so-called negative lead type lens, which is preceded by a lens group having a negative refractive power. The present invention relates to a large-aperture zoom lens having a wide angle of view and a high zoom ratio.

【0002】[0002]

【従来の技術】負の屈折力のレンズ群が先行するネガテ
ィブリード型のズームレンズは比較的広画角化が容易
で、かつ近接撮影距離が短くなる等の特長を有している
が、反面、絞り径が増大し、又高変倍化が難しい等の欠
点を有している。
2. Description of the Related Art A negative lead type zoom lens, which is preceded by a lens group having a negative refractive power, has features such as a relatively wide angle of view and a short close-up distance. However, there are drawbacks such as an increase in the aperture diameter and difficulty in increasing the zoom ratio.

【0003】これらの欠点を改善し、レンズ系全体の小
型化及び高変倍化を図ったズームレンズが例えば特公昭
49−23912号公報、特開昭53−34539号公
報、特開昭57−163213号公報、特開昭58−4
113号公報、特開昭63−241511号公報、そし
て特開平2−201310号公報等で提案されている。
[0003] A zoom lens which has improved these drawbacks and has achieved miniaturization and high zoom ratio of the whole lens system is disclosed in, for example, JP-B-49-23912, JP-A-53-34539, and JP-A-57-34539. 163213, JP-A-58-4
No. 113, JP-A-63-241511, and JP-A-2-201310.

【0004】これらの各公報ではズームレンズを物体側
より順に負、正、負、そして正の屈折力のレンズ群の全
体として4つのレンズ群より構成し、このうち所定のレ
ンズ群を適切に移動させて変倍を行っている。
In each of these publications, a zoom lens is composed of four lens groups as a whole in order from the object side, that is, a lens group having negative, positive, negative, and positive refractive power, and a predetermined lens group is appropriately moved. Let me change the magnification.

【0005】[0005]

【発明が解決しようとする課題】近年、一眼レフカメラ
やビデオカメラ等に用いる標準用のズームレンズとして
は広画角を含み、かつ高変倍比のものが要望されてい
る。例えば既に35mmフィルム用の一眼レフカメラで
は焦点距離35mm〜70mmや焦点距離28mm〜7
0mm程度の広画角のズームレンズが標準用のズームレ
ンズとして用いられている。
In recent years, as a standard zoom lens used for a single-lens reflex camera, a video camera, or the like, a zoom lens having a wide angle of view and a high zoom ratio has been demanded. For example, a single-lens reflex camera for 35 mm film already has a focal length of 35 mm to 70 mm or a focal length of 28 mm to 7 mm.
A zoom lens having a wide angle of view of about 0 mm is used as a standard zoom lens.

【0006】更に最近では焦点距離28mm〜80m
m、若しくは焦点距離28mm〜85mm程度の望遠側
に変倍範囲を拡大し、高変倍化を図った大口径比のズー
ムレンズが標準用のズームレンズとして要望されてい
る。
[0006] More recently, the focal length is 28 mm to 80 m.
There is a demand for a standard zoom lens having a large aperture ratio, which enlarges the zooming range to the telephoto side with a focal length of about 28 mm to 85 mm and achieves high zooming.

【0007】しかしながら一般にこの程度の撮影画角で
しかも高変倍比になるとレンズ全長が長くなり、又変倍
においては複雑なズーム移動が必要となり、この結果レ
ンズ鏡筒が多重の構成となり、レンズ鏡筒が大型化及び
複雑化してくるという問題点が生じてくる。
However, in general, when the photographing angle of view is as large as this and the zoom ratio is high, the entire length of the lens becomes long, and in zooming, a complicated zoom movement is required. There is a problem that the lens barrel becomes large and complicated.

【0008】本発明はズームレンズを全体として4つの
レンズ群より構成し、各レンズ群の屈折力や変倍に伴う
各レンズ群の移動条件等を適切に設定することにより、
レンズ全長を短縮し、かつレンズ鏡筒の大型化及び複雑
化を防止した比較的広画角でしかも高変倍比の全変倍範
囲にわたり高い光学性能を有したズームレンズの提供を
目的とする。
According to the present invention, the zoom lens is composed of four lens groups as a whole, and the refracting power of each lens group and the moving conditions of each lens group for zooming are appropriately set.
The objective is to provide a zoom lens that has a relatively wide angle of view and high optical performance over the entire zoom range with a high zoom ratio, while reducing the overall length of the lens and preventing the lens barrel from becoming large and complicated. .

【0009】特に本発明はFナンバー2.8と大口径比
で、かつ広角端での撮影画角が80度以上の広画角でし
かも変倍比3程度の高変倍比の全変倍範囲にわたり高い
光学性能を有したズームレンズの提供を目的とする。
In particular, the present invention is a full zoom lens having an F-number of 2.8, a large aperture ratio, a wide angle of view of 80 ° or more at the wide angle end, and a high zoom ratio of about 3 at a zoom ratio. It is intended to provide a zoom lens having high optical performance over a range.

【0010】[0010]

【課題を解決するための手段】請求項1の発明のズーム
レンズは、物体側より順に、負の屈折力の第1群、正の
屈折力の第2群、負の屈折力の第3群、そして正の屈折
力の第4群の4つのレンズ群を有し、各レンズ群の空気
間隔を変えて変倍を行うズームレンズであって、該第2
群は、物体側に凸面を向けたメニスカス状の負の第21
レンズと両レンズ面が凸面の正の第22レンズとを接合
した貼合わせレンズ、そして物体側に強い正の屈折面を
向けた正の第23レンズを有しており、該第21レンズ
又は該第23レンズの物体側の面を非球面とし、該貼合
わせレンズの接合レンズ面の曲率半径をR2,2、該第
23レンズのレンズ外径をDE、該第2群の焦点距離を
F2、該非球面の非球面形状が、光軸方向にX軸、光軸
と垂直方向にH軸、光の進行方向を正、近軸曲率半径を
R、非球面係数をA,B,C,D,Eとして、
According to a first aspect of the present invention, there is provided a zoom lens having a first unit having a negative refractive power, a second unit having a positive refractive power, and a third unit having a negative refractive power. And a fourth lens unit having a positive refractive power and a fourth lens unit, wherein zooming is performed by changing the air spacing of each lens unit.
The group includes a meniscus negative 21st surface with the convex surface facing the object side.
A cemented lens in which a lens and a positive twenty-second lens having both lens surfaces joined together, and a positive twenty-third lens with a strong positive refraction surface facing the object side, and the twenty-first lens or The object-side surface of the twenty-third lens is an aspheric surface, the radius of curvature of the cemented lens surface of the cemented lens is R2,2, the lens outer diameter of the twenty-third lens is DE, the focal length of the second group is F2, The aspheric shape of the aspheric surface is such that the X axis is in the optical axis direction, the H axis is perpendicular to the optical axis, the traveling direction of light is positive, the paraxial radius of curvature is R, and the aspheric coefficients are A, B, C, D, As E,

【数3】 で表されるとき、 0.6<R2,2/F2<1.0 ・・・(1a) B<0 ・・・(1b) B+C×(DE/2)2<0 ・・・(1c) なる条件を満足することを特徴としている。(Equation 3) 0.6 <R2, 2 / F2 <1.0 (1a) B <0 (1b) B + C × (DE / 2) 2 <0 (1c) It is characterized by satisfying certain conditions.

【0011】請求項4の発明のズームレンズは、物体側
より順に、負の屈折力の第1群、正の屈折力の第2群、
負の屈折力の第3群、そして正の屈折力の第4群の4つ
のレンズ群を有し、各レンズ群の空気間隔を変えて変倍
を行うズームレンズであって、該第2群は、物体側に凸
面を向けたメニスカス状の負の第21レンズと両レンズ
面が凸面の正の第22レンズとを接合した貼合わせレン
ズ、そして物体側に強い正の屈折面を向けた正の第23
レンズを有しており、該第22レンズの像側の面を非球
面とし、該貼合わせレンズの接合レンズ面の曲率半径を
R2,2、該第23レンズのレンズ外径をDE、該第2
群の焦点距離をF2、該非球面の非球面形状が光軸方向
にX軸、光軸と垂直方向にH軸、光の進行方向を正、近
軸曲率半径をR、非球面係数をA,B,C,D,Eとし
て、
According to a fourth aspect of the present invention, in the zoom lens, a first unit having a negative refractive power, a second unit having a positive refractive power,
A zoom lens having four lens groups, a third lens group having a negative refractive power and a fourth lens group having a positive refractive power, and performing zooming by changing an air interval between the lens groups, wherein Is a cemented lens in which a negative meniscus twenty-first lens with a convex surface facing the object side and a positive twenty-second lens with both lens surfaces convex, and a positive lens with a strong positive refractive surface facing the object side. 23rd
A lens having an aspherical surface on the image side of the twenty-second lens, a radius of curvature of a cemented lens surface of the cemented lens being R2,2, a lens outer diameter of the twenty-third lens being DE, 2
The focal length of the group is F2, the aspheric shape of the aspheric surface is the X axis in the optical axis direction, the H axis is perpendicular to the optical axis, the traveling direction of the light is positive, the paraxial radius of curvature is R, the aspheric coefficient is A, B, C, D, and E

【数4】 で表されるとき、 0.6<R2,2/F2<1.0 B>0 B+C×(DE/2)2>0 なる条件を満足することを特徴としている。(Equation 4) It is characterized by satisfying the following condition: 0.6 <R2,2 / F2 <1.0 B> 0 B + C × (DE / 2) 2 > 0

【0012】[0012]

【発明の実施の形態】図1〜図4は各々本発明の数値実
施例1〜4のレンズ断面図である。図5,図6は本発明
に対して参考となる数値実施例5,6のレンズ断面図で
ある。レンズ断面図においてL1は負の屈折力の第1
群、L2は正の屈折力の第2群、L3は負の屈折力の第
3群、L4は正の屈折力の第4群、SPは絞りである。
1 to 4 are sectional views of numerical examples 1 to 4 of the present invention, respectively. FIGS. 5 and 6 are lens cross-sectional views of Numerical Examples 5 and 6, which are reference to the present invention. In the lens sectional view, L1 is the first negative refractive power.
L2 is a second group having a positive refractive power, L3 is a third group having a negative refractive power, L4 is a fourth group having a positive refractive power, and SP is a stop.

【0013】本発明では各レンズ群の空気間隔が変化す
るように所定のレンズ群を移動させて変倍を行ってい
る。
In the present invention, zooming is performed by moving a predetermined lens group so that the air gap between the lens groups changes.

【0014】特に広角端から望遠端への変倍を第1群と
第2群との空気間隔が減少し、第2群と第3群との空気
間隔が増大し、第3群と第4群との空気間隔が減少する
ように少なくとも第1、第2、第4群を移動させて行っ
ている。具体的には広角端から望遠端への変倍を第1群
を像面側へ、第2群を物体側へ、第4群を物体側へ移動
させて変倍を行っている。
In particular, when changing the magnification from the wide-angle end to the telephoto end, the air gap between the first and second groups is reduced, the air gap between the second and third groups is increased, and the third and fourth groups are changed. At least the first, second, and fourth groups are moved so that the air gap between the groups is reduced. Specifically, zooming from the wide-angle end to the telephoto end is performed by moving the first unit to the image plane side, moving the second unit to the object side, and moving the fourth unit to the object side.

【0015】このとき第2群と第4群は各々独立に物体
側へ移動させても良く、又レンズ鏡筒の簡素化を図る為
に一体的に移動させても良い。又焦点合わせは第1群全
体を移動させて行う他に、第1群を物体側より第11群
と第12群の2つのレンズ群に分け、第12群を移動さ
せて行うようにしている。
At this time, the second lens unit and the fourth lens unit may be independently moved to the object side, or may be integrally moved to simplify the lens barrel. Focusing is performed by moving the entire first group, and the first group is divided into two lens groups, a 11th group and a twelfth group, from the object side, and the twelfth group is moved. .

【0016】次に図1〜図4に示す各数値実施例の特徴
について順に説明する。
Next, the features of the numerical embodiments shown in FIGS. 1 to 4 will be described in order.

【0017】(1−1) 図1、図2に示す数値実施例
1,2では、各レンズ群の空気間隔を変えて変倍を行
い、該第2群は物体側に凸面を向けたメニスカス状の負
の第21レンズと両レンズ面が凸面の正の第22レンズ
とを接合した貼合わせレンズ、そして物体側に強い正の
屈折面を向けた正の第23レンズを有しており、該第2
1レンズ又は該第23レンズの物体側の面を非球面とし
ている該貼合わせレンズの接合レンズ面の曲率半径をR
2,2、非球面の非球面形状を前述の式でも表したと
き、該非球面の非球面係数をB,C、該第23レンズの
レンズ外径をDE、該第2群の焦点距離をF2としたと
き 0.6<R2,2/F2<1.0 ‥‥‥(1−a) B<0 ‥‥‥(1−b) B+C×(DE/2)2<0 ‥‥‥(1−c) なる条件を満足するようにしている。これによりレンズ
全長の短縮化を図りつつ、変倍に伴う諸収差を良好に補
正し、全変倍範囲にわたり高い光学性能を得ている。
(1-1) In numerical embodiments 1 and 2 shown in FIGS. 1 and 2, zooming is performed by changing the air spacing of each lens unit, and the second unit is a meniscus having a convex surface facing the object side. A cemented lens in which a negative twenty-first lens having a convex shape and a positive twenty-second lens whose both lens surfaces are convex, and a positive twenty-third lens having a strong positive refractive surface facing the object side, The second
The radius of curvature of the cemented lens surface of the cemented lens having the aspherical surface on the object side of the first lens or the twenty-third lens is R
If the aspherical shape of 2, 2, aspherical surface is also expressed by the above equation
When the aspheric coefficients of the aspheric surface are B and C, the lens outer diameter of the 23rd lens is DE, and the focal length of the second group is F2, 0.6 <R2, 2 / F2 <1.0. {(1-a) B <0} (1-b) B + C × (DE / 2) 2 <0 ‥‥‥ (1-c) As a result, various aberrations associated with zooming are favorably corrected while shortening the overall length of the lens, and high optical performance is obtained over the entire zoom range.

【0018】本実施例では負の屈折力の第1群からは発
散光束が第2群に入射する。この為Fナンバーを明るく
すると第2群の光軸上から高い位置に光束が入射し、こ
の結果第2群の周辺部で著しく大きな収差が発生し、光
学性能が低下してくる。
In this embodiment, a divergent light beam enters the second group from the first group having a negative refractive power. For this reason, when the F number is increased, a light beam is incident at a high position from the optical axis of the second lens unit. As a result, a remarkably large aberration occurs in the peripheral portion of the second lens unit, and the optical performance is reduced.

【0019】これに対して第2群のレンズ枚数を増加さ
せたり、第2群の屈折力を弱めたりする方法がある。し
かしながらこれらの方法はレンズ全長が長くなり、又第
1群のレンズ外径が増大してくるので良くない。
On the other hand, there are methods of increasing the number of lenses in the second group and weakening the refractive power of the second group. However, these methods are not preferable because the overall length of the lens becomes longer and the outer diameter of the first lens unit increases.

【0020】そこで本実施例では第2群で多く発生する
諸収差、特に球面収差とコマ収差を前述の条件式(1−
a),(1−b),(1−c)を満足する3枚のレンズ
と非球面とにより良好に補正し、高い光学性能を得てい
る。
Therefore, in the present embodiment, various aberrations, particularly spherical aberration and coma, which frequently occur in the second lens unit are determined by the above-mentioned conditional expression (1-1).
a), the three lenses satisfying (1-b) and (1-c) and the aspherical surface are satisfactorily corrected to obtain high optical performance.

【0021】条件式(1−a)は主にコマ収差を補正す
る為のものである。条件式(1−a)の下限値を越える
とコマ収差が補正過剰となり、逆に上限値を越えると残
存するコマ収差を他のレンズ面で補正し、かつ球面収差
や非点収差等と共に良好に補正するのが難しくなってく
る。更に全系の諸収差をバランス良く補正するのが難し
くなってくる。
Conditional expression (1-a) is mainly for correcting coma. If the lower limit of conditional expression (1-a) is exceeded, coma will be over-corrected. If the upper limit is exceeded, the remaining coma will be corrected by another lens surface, and good with spherical aberration and astigmatism. It becomes difficult to correct for Furthermore, it becomes difficult to correct various aberrations of the entire system in a well-balanced manner.

【0022】条件式(1−b),(1−c)は非球面形
状を適切に設定し、特に球面収差とコマ収差を良好に補
正する為のものである。このうち条件式(1−b)は3
次収差成分を表わし、これを負、即ち周辺部で正の屈折
力を弱める作用を有するようにして、球面収差とコマ収
差を補正過剰方向にして、条件式(1−a)と合わせて
球面収差とコマ収差を良好に補正している。
The conditional expressions (1-b) and (1-c) are for appropriately setting the aspherical shape, and in particular for favorably correcting spherical aberration and coma. Conditional expression (1-b) is
Represents the next-order aberration component, which is negative, that is, has an action of weakening the positive refractive power in the peripheral portion, and makes the spherical aberration and the coma aberration excessively corrected. Aberration and coma are well corrected.

【0023】条件式(1−c)は5次収差成分まで含め
て非球面形状を適切に定め、特にレンズ外径DEの位置
での非球面量が周辺部で屈折力を弱める方向となるよう
にしている。これにより第2群に比較的強い正の屈折力
を持たせつつ、諸収差の発生を低減させている。又これ
により第1群に強い負の屈折力を持たせることができる
ようにしてレンズ全長の短縮化を図っている。
Conditional expression (1-c) appropriately determines the aspherical shape including the fifth-order aberration component, and in particular, the amount of the aspherical surface at the position of the lens outer diameter DE is a direction in which the refractive power is weakened in the peripheral portion. I have to. This reduces the occurrence of various aberrations while giving the second group a relatively strong positive refractive power. This also allows the first lens unit to have a strong negative refractive power, thereby shortening the overall length of the lens.

【0024】この他、本実施例では第1群は正レンズと
少なくとも2枚の負レンズとを有するようにしている。
これにより主に非点収差と歪曲収差を良好に補正してい
る。
In this embodiment, the first unit has a positive lens and at least two negative lenses.
As a result, mainly astigmatism and distortion are favorably corrected.

【0025】第1群は物体側より順に第11群と第12
群の2つのレンズ群を有し、該第12群を光軸上移動さ
せて焦点合わせを行っている。これにより焦点合わせを
行ってもレンズ全長が一定となるようにし、レンズが外
部に突出しないようにし、又比較的軽量小型の第12レ
ンズ群を移動させることにより、例えば自動焦点合わせ
をする際の駆動制御を容易にしている。
The first lens unit includes an eleventh lens unit and a twelfth lens unit in order from the object side.
It has two lens groups, and the twelfth group is moved on the optical axis for focusing. Thus, even when focusing is performed, the entire length of the lens is kept constant, the lens is prevented from protruding to the outside, and the relatively lightweight and small twelfth lens group is moved, for example, when performing automatic focusing. Drive control is easy.

【0026】(1−2) 図3、図4に示す数値実施例
3,4では、各レンズ群の空気間隔を変えて変倍を行
い、該第2群は物体側に凸面を向けたメニスカス状の負
の第21レンズと両レンズ面が凸面の正の第22レンズ
とを接合した貼合わせレンズ、そして物体側に強い正の
屈折面を向けた正の第23レンズを有しており、該第2
レンズの像側の面を非球面とし、該貼合わせレンズの
接合レンズ面の曲率半径をR2,2、非球面の非球面形
状を前述の式で表したとき、該非球面の非球面係数を
B,C、該第23レンズのレンズ外径をDE、該第2群
の焦点距離をF2としたとき 0.6<R2,2/F2<1.0 ‥‥‥(2−a) B>0 ‥‥‥(2−b) B+C×(DE/2)2>0 ‥‥‥(2−c) なる条件を満足するようにしている。これにより前述し
た数値実施例1,2と同様にレンズ全長の短縮化を図り
つつ、変倍に伴う諸収差を良好に補正し、全変倍範囲に
わたり高い光学性能を得ている。
(1-2) In the numerical examples 3 and 4 shown in FIGS. 3 and 4, zooming is performed by changing the air spacing of each lens unit, and the second unit is a meniscus having a convex surface facing the object side. A cemented lens in which a negative twenty-first lens having a convex shape and a positive twenty-second lens whose both lens surfaces are convex, and a positive twenty-third lens having a strong positive refractive surface facing the object side, The second
The image side surface of the two lenses is an aspheric surface, the radius of curvature of the cemented lens surface of the cemented lens is R2,2, and the aspheric surface is an aspheric surface
When the shape is expressed by the above equation, when the aspheric coefficients of the aspheric surface are B and C, the lens outer diameter of the 23rd lens is DE, and the focal length of the second group is F2, 0.6 <R2. 2 / F2 <1.0 ‥‥‥ (2-a) B> 0 ‥‥‥ (2-b) B + C × (DE / 2) 2 > 0 ‥‥‥ (2-c) I have to. As a result, as in Numerical Examples 1 and 2 described above, while reducing the overall length of the lens, various aberrations associated with zooming are satisfactorily corrected, and high optical performance is obtained over the entire zoom range.

【0027】本実施例では負の屈折力の第1群からは発
散光束が第2群に入射する。この為Fナンバーを明るく
すると第2群の光軸から高い位置に光束が入射し、この
結果第2群の周辺部で著しく大きな収差が発生し、光学
性能が低下してくる。
In this embodiment, a divergent light beam from the first group having negative refractive power enters the second group. Therefore, when the F-number is increased, a light beam enters a position higher than the optical axis of the second lens unit. As a result, a remarkably large aberration occurs in the periphery of the second lens unit, and the optical performance is reduced.

【0028】これに対して第2群のレンズ枚数を増加さ
せたり、第2群の屈折力を弱めたりする方法がある。し
かしながらこれらの方法はレンズ全長が長くなり、又第
1群のレンズ外径が増大してくるので良くない。
On the other hand, there are methods of increasing the number of lenses in the second group and weakening the refractive power of the second group. However, these methods are not preferable because the overall length of the lens becomes longer and the outer diameter of the first lens unit increases.

【0029】そこで本実施例では第2群で多く発生する
諸収差、特に球面収差とコマ収差を前述の条件式(2−
a),(2−b),(2−c)を満足する3枚のレンズ
と非球面とにより良好に補正し、高い光学性能を得てい
る。
Therefore, in the present embodiment, various aberrations, particularly spherical aberration and coma, which frequently occur in the second lens unit are corrected by the conditional expression (2-
a), three lenses satisfying (2-b) and (2-c) and an aspheric surface are satisfactorily corrected to obtain high optical performance.

【0030】条件式(2−a)は主にコマ収差を補正す
る為のものである。条件式(2−a)の下限値を越える
とコマ収差が補正過剰となり、逆に上限値を越えると残
存するコマ収差を他のレンズ面で補正し、かつ球面収差
や非点収差等と共に良好に補正するのが難しくなってく
る。更に全系の諸収差をバランス良く補正するのが難し
くなってくる。
Conditional expression (2-a) is mainly for correcting coma. If the lower limit of conditional expression (2-a) is exceeded, coma will be over-corrected. If the upper limit is exceeded, the remaining coma will be corrected by another lens surface, and good with spherical aberration and astigmatism. It becomes difficult to correct for Furthermore, it becomes difficult to correct various aberrations of the entire system in a well-balanced manner.

【0031】条件式(2−b),(2−c)は非球面形
状を適切に設定し、特に球面収差とコマ収差を良好に補
正する為のものである。このうち条件式(2−b)は3
次収差成分を表わし、これを負、即ち周辺部で正の屈折
力を弱める作用を有するようにして、球面収差とコマ収
差を補正過剰方向にして、条件式(2−a)と合わせて
球面収差とコマ収差を良好に補正している。
The conditional expressions (2-b) and (2-c) are for appropriately setting the aspherical shape, and particularly for favorably correcting spherical aberration and coma. Of these, conditional expression (2-b) is 3
Represents the next-order aberration component, which is negative, that is, has an action of weakening the positive refractive power at the peripheral portion, and makes the spherical aberration and the coma aberration excessively corrected. Aberration and coma are well corrected.

【0032】条件式(2−c)は5次収差成分まで含め
て非球面形状を適切に定め、特にレンズ外径DEの位置
での非球面量が周辺部で屈折力を弱める方向となるよう
にしている。これにより第2群に比較的強い正の屈折力
を持たせつつ、諸収差の発生を低減させている。又これ
により第1群に強い負の屈折力を持たせることができる
ようにしてレンズ全長の短縮化を図っている。
Conditional expression (2-c) appropriately determines the aspherical shape including the fifth-order aberration component, and in particular, the amount of the aspherical surface at the position of the lens outer diameter DE is such that the refractive power is weakened in the peripheral portion. I have to. This reduces the occurrence of various aberrations while giving the second group a relatively strong positive refractive power. This also allows the first lens unit to have a strong negative refractive power, thereby shortening the overall length of the lens.

【0033】この他、本実施例では前述した数値実施例
1,2と同様に、第1群は正レンズと少なくとも2枚の
負レンズとを有するようにしている。これにより主に非
点収差と歪曲収差を良好に補正している。
In addition, in the present embodiment, the first unit has a positive lens and at least two negative lenses, as in the first and second numerical embodiments. As a result, mainly astigmatism and distortion are favorably corrected.

【0034】又、第1群は物体側より順に第11群と第
12群の2つのレンズ群を有し、該第12群を光軸上移
動させて焦点合わせを行っている。これにより焦点合わ
せを行ってもレンズ全長が一定となるようにし、レンズ
が外部に突出しないようにし、又比較的軽量小型の第1
2レンズ群を移動させることにより、例えば自動焦点合
わせをする際の駆動制御を容易にしている。
The first unit has, in order from the object, two lens units, an eleventh unit and a twelfth unit. The twelfth unit is moved on the optical axis to perform focusing. As a result, even when focusing is performed, the entire length of the lens is kept constant, the lens is prevented from protruding to the outside, and the relatively light and small first lens is used.
By moving the two lens groups, for example, drive control when performing automatic focusing is facilitated.

【0035】次に本発明に対して参考となる数値実施例
5,6について説明する。
Next, Numerical Examples 5 and 6, which are reference to the present invention, will be described.

【0036】(1−3) 図5、図6に示す数値実施例
5,6では、広角端から望遠端への変倍を該第1群と第
2群との空気間隔を減少させ、該第2群と第3群との空
気間隔を増加させ、該第3群と第4群との空気間隔を減
少させて行い、該第4群は少なくとも1枚の負レンズと
少なくとも1枚の正レンズと少なくとも1つの非球面を
有しており、該非球面の屈折力をφ4a、光軸と該非球
面の交点及び非球面の最大径位置とで形成される曲率半
径をRmax、光軸と該非球面の交点及び光軸から高さ
Hでの非球面位置とで形成される曲率半径をRHとした
とき(|Rmax|−|RH|)・φ4a<0 ‥‥‥
(3−a)なる条件を満足するようにしている。これに
より高変倍化及び大口径比化を図りつつ全変倍範囲にわ
たり高い光学性能を確保している。
(1-3) In the numerical examples 5 and 6 shown in FIGS. 5 and 6, zooming from the wide-angle end to the telephoto end is performed by reducing the air gap between the first and second units. This is performed by increasing the air gap between the second group and the third group and decreasing the air gap between the third group and the fourth group. The fourth group is composed of at least one negative lens and at least one positive lens. The lens has at least one aspherical surface, the refractive power of the aspherical surface is φ4a, the radius of curvature formed by the intersection of the optical axis and the aspherical surface and the maximum radius position of the aspherical surface is Rmax, and the optical axis and the aspherical surface are Where RH is the radius of curvature formed by the intersection of the two and the aspherical position at height H from the optical axis (| Rmax |-| RH |) .phi.4a <0}
The condition (3-a) is satisfied. As a result, high optical performance is secured over the entire zoom range while achieving a high zoom ratio and a large aperture ratio.

【0037】本実施例では第1群を負の屈折力とし、広
画角化に有利なレンズ構成とし、かつ第1群、第2群の
他に第3群、第4群にも変倍を分担させ、高変倍化を容
易にしている。
In this embodiment, the first lens unit has a negative refractive power, has a lens structure advantageous for widening the angle of view, and has a variable power in the third lens unit and the fourth lens unit in addition to the first lens unit and the second lens unit. , Thereby facilitating a high zoom ratio.

【0038】又、一般に高変倍化及び大口径比化を図り
つつ、レンズ系全体の小型化を図るには各レンズ群の屈
折力を強くする必要がある。この結果収差の発生が多く
なりレンズ枚数を増加させて補正する必要がある。
In general, it is necessary to increase the refractive power of each lens unit in order to reduce the size of the entire lens system while increasing the zoom ratio and increasing the aperture ratio. As a result, the occurrence of aberration increases, and it is necessary to increase the number of lenses and correct the aberration.

【0039】そこで本実施例では第4群のレンズ構成を
前述の如く適切に設定し、特に非球面を用いることによ
り、少ないレンズ枚数で球面収差と非点収差等の諸収差
を良好に補正している。
Therefore, in this embodiment, the lens arrangement of the fourth group is appropriately set as described above, and various aberrations such as spherical aberration and astigmatism are favorably corrected with a small number of lenses by using an aspheric surface in particular. ing.

【0040】条件式(3−a)は第4群中に用いる非球
面形状を正の屈折力が光軸中心から離れるに従い、弱く
なる形状となるようにして主に球面収差と非点収差を良
好に補正している。条件式(3−a)を外れると球面収
差と非点収差が増大し、これらを補正するには第4群の
レンズ枚数を増加させねばならなく、この結果レンズ全
長が長くなってくるので良くない。
Conditional expression (3-a) is to mainly reduce spherical aberration and astigmatism by making the aspherical shape used in the fourth lens unit weaker as the positive refracting power moves away from the center of the optical axis. Corrected well. If conditional expression (3-a) is not satisfied, spherical aberration and astigmatism will increase. To correct them, the number of lenses in the fourth unit must be increased. As a result, the overall length of the lens becomes longer. Absent.

【0041】この他、本実施例では第1群は正レンズと
少なくとも2枚の負レンズとを有するようにしている。
これにより広角側の焦点距離を短くし、広画角化を図
り、かつ第1群のレンズ外径を小さくしている。又非点
収差と歪曲収差を良好に補正している。
In this embodiment, the first unit has a positive lens and at least two negative lenses.
As a result, the focal length on the wide-angle side is shortened, the angle of view is widened, and the outer diameter of the first lens unit is reduced. Also, astigmatism and distortion are well corrected.

【0042】第2群は物体側に凸面を向けたメニスカス
状の負の第21レンズと両レンズ面が凸面の正の第22
レンズとを接合した貼合わせレンズ、そして物体側に強
い正の屈折面を向けた正の第23レンズとを有してお
り、該貼合わせレンズの接合レンズ面の曲率半径をR
2,2、該第2群の焦点距離をF2としたとき 0.6<R2,2/F2<1.0 ‥‥‥(3−b) なる条件を満足するようにしている。
The second lens unit includes a negative meniscus twenty-first lens having a convex surface facing the object side and a positive twenty-second lens having both convex lens surfaces.
A cemented lens cemented with the lens and a positive twenty-third lens with a strong positive refractive surface facing the object side, and the radius of curvature of the cemented lens surface of the cemented lens is R
When the focal length of the second lens unit is F2, the following condition is satisfied: 0.6 <R2,2 / F2 <1.0 ‥‥‥ (3-b)

【0043】本実施例では第1群は負の屈折力を有して
いる為、第2群に入射する軸上光束は第1群よりも光軸
上高い位置に入射する。この為諸収差が発生しやすくな
る。そこで第2群を前述の如く構成し、諸収差を良好に
補正している。
In this embodiment, since the first lens unit has a negative refractive power, the axial light beam incident on the second lens unit is incident on a position higher on the optical axis than the first lens unit. For this reason, various aberrations are likely to occur. Therefore, the second lens unit is configured as described above, and various aberrations are satisfactorily corrected.

【0044】条件式(3−b)は貼合わせレンズの接合
レンズ面の曲率半径を適切に設定し主にコマ収差を良好
に補正する為のものである。条件式(3−b)の下限値
を越えて曲率半径R2,2が小さくなるとコマ収差が補
正過剰となり、逆に上限値を越えて曲率半径R2,2が
大きくなると残存するコマ収差を他のレンズ面で補正す
るのが難しくなってくる。
Conditional expression (3-b) is intended to appropriately set the radius of curvature of the cemented lens surface of the cemented lens and to satisfactorily correct coma mainly. When the radius of curvature R2,2 is smaller than the lower limit of conditional expression (3-b), the coma aberration is over-corrected. On the contrary, when the radius of curvature R2,2 is larger than the upper limit, the remaining coma aberration is reduced. It becomes difficult to correct on the lens surface.

【0045】次に本発明の数値実施例を示す。数値実施
例においてRiは物体側より順に第i番目のレンズ面の
曲率半径、Diは物体側より第i番目のレンズ厚及び空
気間隔、Niとνiは各々物体側より順に第i番目のレ
ンズのガラスの屈折率とアッベ数である。
Next, numerical examples of the present invention will be described. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air spacing from the object side, and Ni and νi are the i-th lens surfaces in order from the object side. The refractive index and Abbe number of glass.

【0046】非球面形状は光軸方向にX軸、光軸と垂直
方向にH軸、光の進行方向を正としRを近軸曲率半径、
A,B,C,D,Eを各々非球面係数としたとき
The aspheric surface has an X-axis in the optical axis direction, an H-axis in a direction perpendicular to the optical axis, a positive traveling direction of light, R is a paraxial radius of curvature,
When A, B, C, D, and E are each aspheric coefficients

【0047】[0047]

【数1】 (Equation 1)

【0048】なる式で表わしている。 数値実施例 1 F= 28.8 〜77.49 FNO=1:2.8 2ω= 73.8°〜31.2° R 1= 90.266 D 1= 2.00 N 1=1.77250 ν 1= 49.6 R 2= 38.296 D 2= 9.00 R 3= -461.888 D 3= 4.50 N 2=1.69895 ν 2= 30.1 R 4= -96.235 D 4= 0.12 R 5= -179.098 D 5= 1.80 N 3=1.77250 ν 3= 49.6 R 6= 59.711 D 6= 1.70 R 7= 39.696 D 7= 2.90 N 4=1.84666 ν 4= 23.9 R 8= 48.254 D 8= 可変 R 9= 61.886 D 9= 1.50 N 5=1.84666 ν 5= 23.8 R10= 36.536 D10= 7.00 N 6=1.71300 ν 6= 53.8 R11= -92.015 D11= 0.10 R12= 43.139 非球面 D12= 5.50 N 7=1.77250 ν 7= 49.6 R13= -469.393 D13= 1.50 N 8=1.84666 ν 8= 23.8 R14= 129.333 D14= 可変 R15=(絞り) D15= 1.00 R16= 805.385 D16= 4.10 N 9=1.84666 ν 9= 23.8 R17= -23.912 D17= 1.10 N10=1.77250 ν10= 49.6 R18= 56.787 D18= 2.80 R19= -32.304 D19= 1.10 N11=1.83481 ν11= 42.7 R20= -279.112 D20= 可変 R21= -61.974 D21= 1.20 N12=1.84666 ν12= 23.8 R22= 82.543 D22= 3.80 N13=1.71300 ν13= 53.8 R23= -34.909 D23= 0.10 R24= 49.546 D24= 1.80 N14=1.76182 ν14= 26.5 R25= 39.572 D25= 3.50 R26= -706.308 D26= 2.80 N15=1.69680 ν15= 55.5 R27= -64.519 D27= 0.10 R28= 77.104 D28= 4.80 N16=1.71300 ν16= 53.8 R29= -104.361 D29= 1.40 N17=1.84666 ν10= 23.8 R30= -193.661This is represented by the following equation. Numerical Example 1 F = 28.8 to 77.49 FNO = 1: 2.8 2ω = 73.8 ° to 31.2 ° R 1 = 90.266 D 1 = 2.00 N 1 = 1.77250 ν 1 = 49.6 R 2 = 38.296 D 2 = 9.00 R 3 = -461.888 D 3 = 4.50 N 2 = 1.69895 ν 2 = 30.1 R 4 = -96.235 D 4 = 0.12 R 5 = -179.098 D 5 = 1.80 N 3 = 1.77250 ν 3 = 49.6 R 6 = 59.711 D 6 = 1.70 R 7 = 39.696 D 7 = 2.90 N 4 = 1.84666 ν 4 = 23.9 R 8 = 48.254 D 8 = Variable R 9 = 61.886 D 9 = 1.50 N 5 = 1.84666 ν 5 = 23.8 R10 = 36.536 D10 = 7.00 N 6 = 1.71300 ν 6 = 53.8 R11 = -92.015 D11 = 0.10 R12 = 43.139 Aspheric surface D12 = 5.50 N 7 = 1.77250 ν 7 = 49.6 R13 = -469.393 D13 = 1.50 N 8 = 1.84666 ν 8 = 23.8 R14 = 129.333 D14 = Variable R15 = (Aperture) D15 = 1.00 R16 = 805.385 D16 = 4.10 N 9 = 1.84666 ν 9 = 23.8 R17 = -23.912 D17 = 1.10 N10 = 1.77250 ν10 = 49.6 R18 = 56.787 D18 = 2.80 R19 = -32.304 D19 = 1.10 N11 = 1.83481 ν11 = 42.7 R20 = -279.112 D20 = Variable R21 = -61.974 D21 = 1.20 N12 = 1.84666 ν12 = 23.8 R22 = 82.543 D22 = 3.80 N13 = 1.71300 ν13 = 53.8 R23 = -34.909 D23 = 0.10 R24 = 49.546 D24 = 1.80 N14 = 1.76182 ν14 = 26.5 R25 = 39.572 D25 = 3.50 R26 = -706.308 D26 = 2.80 N15 = 1.69680 ν15 = 55.5 R27 = -64.519 D27 = 0.10 R28 = 77.104 D28 = 4.80 N16 = 1.71300 ν16 = 53.8 R29 = -104.361 D29 = 1.40 N17 = 1.84666 ν10 = 23.8 R30 = -193.661

【0049】[0049]

【表1】 [Table 1]

【0050】 R12:非球面係数 A= 0 B=-1.67796×10-7 C=-1.68935×10-9 D=-1.43301×10-12 数値実施例 2 F= 28.8 〜77.63 FNO=1:2.8 2ω= 73.8°〜31.1° R 1= 107.701 非球面 D 1= 2.20 N 1=1.83481 ν 1= 42.7 R 2= 43.329 D 2= 16.00 R 3= -663.644 D 3= 2.00 N 2=1.83481 ν 2= 42.7 R 4= 35.965 D 4= 5.00 N 3=1.84666 ν 3= 23.8 R 5= 96.556 D 5= 1.50 R 6= 56.255 D 6= 2.50 N 4=1.84666 ν 4= 23.8 R 7= 62.609 D 7= 可変 R 8= 78.988 非球面 D 8= 1.50 N 5=1.84666 ν 5= 23.8 R 9= 39.104 D 9= 7.50 N 6=1.71300 ν 6= 53.8 R10= -85.722 D10= 0.10 R11= 41.699 D11= 7.00 N 7=1.77250 ν 7= 49.6 R12= -136.277 D12= 1.50 N 8=1.84666 ν 8= 23.8 R13= 183.298 D13= 可変 R14=(絞り) D14= 1.00 R15= 413.138 D15= 4.10 N 9=1.84666 ν 9= 23.8 R16= -27.684 D16= 1.10 N10=1.77250 ν10= 49.6 R17= 53.170 D17= 2.80 R18= -32.983 D18= 1.10 N11=1.83481 ν11= 42.7 R19=-4847.456 D19= 可変 R20= -80.792 D20= 1.20 N12=1.84666 ν12= 23.8 R21= -461.613 D21= 3.50 N13=1.71300 ν13= 53.8 R22= -36.396 D22= 0.10 R23= 45.586 D23= 1.80 N14=1.76182 ν14= 26.5 R24= 37.053 D24= 3.50 R25= -159.162 D25= 2.50 N15=1.69680 ν15= 55.5 R26= -56.467 D26= 0.10 R27= 95.167 D27= 5.00 N16=1.71300 ν16= 53.8 R28= -47.606 D28= 1.40 N17=1.84666 ν17= 23.8 R29= -121.554 R12: Aspherical surface coefficient A = 0 B = −1.67796 × 10 −7 C = −1.68935 × 10 −9 D = −1.43301 × 10 −12 Numerical Example 2 F = 28.8 to 77.63 FNO = 1: 2.82Ω = 73.8 ° -31.1 ° R 1 = 107.701 Aspherical surface D 1 = 2.20 N 1 = 1.83481 ν 1 = 42.7 R 2 = 43.329 D 2 = 16.00 R 3 = -663.644 D 3 = 2.00 N 2 = 1.83481 ν 2 = 42.7 R 4 = 35.965 D 4 = 5.00 N 3 = 1.84666 ν 3 = 23.8 R 5 = 96.556 D 5 = 1.50 R 6 = 56.255 D 6 = 2.50 N 4 = 1.84666 ν 4 = 23.8 R 7 = 62.609 D 7 = Variable R 8 = 78.988 Aspheric D 8 = 1.50 N 5 = 1.84666 ν 5 = 23.8 R 9 = 39.104 D 9 = 7.50 N 6 = 1.71300 ν 6 = 53.8 R10 = -85.722 D10 = 0.10 R11 = 41.699 D11 = 7.00 N 7 = 1.77250 ν 7 = 49.6 R12 = -136.277 D12 = 1.50 N 8 = 1.84666 ν 8 = 23.8 R13 = 183.298 D13 = Variable R14 = (Aperture) D14 = 1.00 R15 = 413.138 D15 = 4.10 N 9 = 1.84666 ν 9 = 23.8 R16 = -27.684 D16 = 1.10 N10 = 1.77250 ν10 = 49.6 R17 = 53.170 D17 = 2.80 R18 = -32.983 D18 = 1.10 N11 = 1.83481 ν11 = 42.7 R19 = -4847.456 D19 = Variable R20 = -80.792 D20 = 1.20 N12 = 1.84666 ν12 = 23.8 R21 =- 461.613 D21 = 3.50 N13 = 1.71300 ν13 = 53.8 R2 2 = -36.396 D22 = 0.10 R23 = 45.586 D23 = 1.80 N14 = 1.76182 ν14 = 26.5 R24 = 37.053 D24 = 3.50 R25 = -159.162 D25 = 2.50 N15 = 1.69680 ν15 = 55.5 R26 = -56.467 D26 = 0.10 R27 = 95.167 D27 = 5.00 N16 = 1.71300 ν16 = 53.8 R28 = -47.606 D28 = 1.40 N17 = 1.84666 ν17 = 23.8 R29 = -121.554

【0051】[0051]

【表2】 [Table 2]

【0052】 R1:非球面係数 A= 0 B= 7.15543×10-7 C=-2.45904×10-10 D=-1.41751×10-13 R8:非球面係数 A= 0 B= 3.12771×10-7 C= 9.59892×10-11 数値実施例 3 F= 28.8 〜77.43 FNO=1:2.8 2ω= 73.8°〜31.2° R 1= 72.775 D 1= 2.00 N 1=1.77250 ν 1= 49.6 R 2= 37.706 D 2= 9.00 R 3= -474.784 D 3= 4.50 N 2=1.69895 ν 2= 30.1 R 4= -94.031 D 4= 0.12 R 5= -151.662 D 5= 1.80 N 3=1.77250 ν 3= 49.6 R 6= 60.031 D 6= 1.70 R 7= 40.187 D 7= 2.90 N 4=1.84666 ν 4= 23.9 R 8= 46.071 D 8= 可変 R 9= 77.426 D 9= 1.50 N 5=1.84666 ν 5= 23.8 R10= 35.026 D10= 7.00 N 6=1.71300 ν 6= 53.8 R11= -89.434 非球面 D11= 0.10 R12= 39.339 D12= 5.50 N 7=1.77250 ν 7= 49.6 R13= 244.065 D13= 1.50 N 8=1.84666 ν 8= 23.8 R14= 139.168 D14= 可変 R15=(絞り) D15= 1.00 R16= 289.330 D16= 4.10 N 9=1.84666 ν 9= 23.8 R17= -24.625 D17= 1.10 N10=1.77250 ν10= 49.6 R18= 54.408 D18= 2.80 R19= -31.708 D19= 1.10 N11=1.83481 ν11= 42.7 R20= -632.173 D20= 可変 R21= -58.935 D21= 1.20 N12=1.84666 ν12= 23.8 R22= 83.573 D22= 3.80 N13=1.71300 ν13= 53.8 R23= -33.512 D23= 0.10 R24= 48.387 D24= 1.80 N14=1.76182 ν14= 26.5 R25= 39.391 D25= 3.50 R26= 263.616 D26= 2.80 N15=1.69680 ν15= 55.5 R27= -73.712 D27= 0.10 R28= 79.107 D28= 4.80 N16=1.71300 ν16= 53.8 R29= -103.977 D29= 1.40 N17=1.84666 ν17= 23.8 R30= -302.891R1: Aspherical surface coefficient A = 0 B = 7.15543 × 10 −7 C = −2.445904 × 10 −10 D = −1.41751 × 10 −13 R8: Aspherical surface coefficient A = 0 B = 3.12771 × 10 −7 C = 9.59892 × 10 -11 Numerical example 3 F = 28.8 to 77.43 FNO = 1: 2.8 2ω = 73.8 ° to 31.2 ° R 1 = 72.775 D 1 = 2.00 N 1 = 1.77250 ν 1 = 49.6 R 2 = 37.706 D 2 = 9.00 R 3 = -474.784 D 3 = 4.50 N 2 = 1.69895 ν 2 = 30.1 R 4 = -94.031 D 4 = 0.12 R 5 = -151.662 D 5 = 1.80 N 3 = 1.77250 ν 3 = 49.6 R 6 = 60.031 D 6 = 1.70 R 7 = 40.187 D 7 = 2.90 N 4 = 1.84666 ν 4 = 23.9 R 8 = 46.071 D 8 = Variable R 9 = 77.426 D 9 = 1.50 N 5 = 1.84666 ν 5 = 23.8 R10 = 35.026 D10 = 7.00 N 6 = 1.71300 ν 6 = 53.8 R11 = -89.434 Aspherical surface D11 = 0.10 R12 = 39.339 D12 = 5.50 N 7 = 1.77250 ν 7 = 49.6 R13 = 244.065 D13 = 1.50 N 8 = 1.84666 ν 8 = 23.8 R14 = 139.168 D14 = Variable R15 = (Aperture) D15 = 1.00 R16 = 289.330 D16 = 4.10 N 9 = 1.84666 ν 9 = 23.8 R17 = -24.625 D17 = 1.10 N10 = 1.77250 ν10 = 49.6 R18 = 54.408 D18 = 2.80 R19 = -31.708 D19 = 1.10 N11 = 1.83481 ν11 = 42.7 R20 = -632.173 D20 = Variable R21 =- 58.935 D21 = 1.20 N12 = 1.84666 ν12 = 23.8 R22 = 83.573 D22 = 3.80 N13 = 1.71300 ν13 = 53.8 R23 = -33.512 D23 = 0.10 R24 = 48.387 D24 = 1.80 N14 = 1.76182 ν14 = 26.5 R25 = 39.391 D25 = 3.50 R26 = 263.616 D26 = 2.80 N15 = 1.69680 ν15 = 55.5 R27 = -73.712 D27 = 0.10 R28 = 79.107 D28 = 4.80 N16 = 1.71300 ν16 = 53.8 R29 = -103.977 D29 = 1.40 N17 = 1.84666 ν17 = 23.8 R30 = -302.891

【0053】[0053]

【表3】 [Table 3]

【0054】 R11:非球面係数 A= 0 B=-3.75089×10-7 C= 2.89669×10-10 D= 6.62424×10-13 数値実施例 4 F= 28.8 〜77.4 FNO=1:2.8 2ω= 73.8°〜31.2° R 1= 112.318 非球面 D 1= 2.20 N 1=1.83481 ν 1= 42.7 R 2= 43.560 D 2= 16.00 R 3=-1512.328 D 3= 2.00 N 2=1.83481 ν 2= 42.7 R 4= 35.617 D 4= 5.00 N 3=1.84666 ν 3= 23.8 R 5= 88.280 D 5= 1.50 R 6= 53.563 D 6= 2.50 N 4=1.84666 ν 4= 23.8 R 7= 60.304 D 7= 可変 R 8= 79.550 D 8= 1.50 N 5=1.84666 ν 5= 23.8 R 9= 39.269 D 9= 7.50 N 6=1.71300 ν 6= 53.8 R10= -88.346 D10= 0.10 R11= 41.335 D11= 7.00 N 7=1.77250 ν 7= 49.6 R12= -147.232 D12= 1.50 N 8=1.84666 ν 8= 23.8 R13= 188.635 非球面 D13= 可変 R14=(絞り) D14= 1.00 R15= 662.981 D15= 4.10 N 9=1.84666 ν 9= 23.8 R16= -26.757 D16= 1.10 N10=1.77250 ν10= 49.6 R17= 55.441 D17= 2.80 R18= -33.069 D18= 1.10 N11=1.83481 ν11= 42.7 R19=-7905.451 D19= 可変 R20= -83.147 D20= 1.20 N12=1.84666 ν12= 23.8 R21= 833.745 D21= 3.50 N13=1.71300 ν13= 53.8 R22= -36.241 D22= 0.10 R23= 45.804 D23= 1.80 N14=1.76182 ν14= 26.5 R24= 37.229 D24= 3.50 R25= -182.280 D25= 2.50 N15=1.69680 ν15= 55.5 R26= -57.812 D26= 0.10 R27= 87.431 D27= 5.00 N16=1.71300 ν16= 53.8 R28= -56.322 D28= 1.40 N17=1.84666 ν17= 23.8 R29= -149.333 R11: Aspherical coefficient A = 0 B = −3.75089 × 10 −7 C = 2.89669 × 10 −10 D = 6.62424 × 10 −13 Numerical Example 4 F = 28.8 to 77.4 FNO = 1: 2.8 2ω = 73.8 ° ~ 31.2 ° R 1 = 112.318 Aspherical surface D 1 = 2.20 N 1 = 1.83481 ν 1 = 42.7 R 2 = 43.560 D 2 = 16.00 R 3 = -1512.328 D 3 = 2.00 N 2 = 1.83481 ν 2 = 42.7 R 4 = 35.617 D 4 = 5.00 N 3 = 1.84666 ν 3 = 23.8 R 5 = 88.280 D 5 = 1.50 R 6 = 53.563 D 6 = 2.50 N 4 = 1.84666 ν 4 = 23.8 R 7 = 60.304 D 7 = Variable R 8 = 79.550 D 8 = 1.50 N 5 = 1.84666 ν 5 = 23.8 R 9 = 39.269 D 9 = 7.50 N 6 = 1.71300 ν 6 = 53.8 R10 = -88.346 D10 = 0.10 R11 = 41.335 D11 = 7.00 N 7 = 1.77250 ν 7 = 49.6 R12 = -147.232 D12 = 1.50 N 8 = 1.84666 ν 8 = 23.8 R13 = 188.635 Aspherical surface D13 = Variable R14 = (Aperture) D14 = 1.00 R15 = 662.981 D15 = 4.10 N 9 = 1.84666 ν 9 = 23.8 R16 = -26.757 D16 = 1.10 N10 = 1.77250 ν10 = 49.6 R17 = 55.441 D17 = 2.80 R18 = -33.069 D18 = 1.10 N11 = 1.83481 ν11 = 42.7 R19 = -7905.451 D19 = Variable R20 = -83.147 D20 = 1.20 N12 = 1.84666 ν12 = 23.8 R21 = 833.745 D21 = 3.50 N13 = 1.71300 ν13 = 53.8 R22 = -36.241 D22 = 0.10 R23 = 45.804 D23 = 1.80 N14 = 1.76182 ν14 = 26.5 R24 = 37.229 D24 = 3.50 R25 = -182.280 D25 = 2.50 N15 = 1.69680 ν15 = 55.5 R26 = -57.812 D26 = 0.10 R27 = 87.431 D27 = 5.00 N16 = 1.71300 ν16 = 53.8 R28 = -56.322 D28 = 1.40 N17 = 1.84666 ν17 = 23.8 R29 = -149.333

【0055】[0055]

【表4】 [Table 4]

【0056】 R1:非球面係数 A= 0 B= 5.78991×10-7 C=-4.62210×10-11 D= 1.60066×10-14 R13:非球面係数 A= 0 B= 3.56175×10-7 C=-1.61754×10-11 D= 1.481666 ×10-13 数値実施例 5 F= 28.8 〜77.46 FNO=1:2.8 2ω= 73.8°〜31.2° R 1= 75.223 非球面 D 1= 2.20 N 1=1.83481 ν 1= 42.7 R 2= 37.278 D 2= 16.00 R 3=-1600.958 D 3= 2.00 N 2=1.83481 ν 2= 42.7 R 4= 32.493 D 4= 5.50 N 3=1.84666 ν 3= 23.8 R 5= 71.677 D 5= 1.50 R 6= 50.112 D 6= 3.00 N 4=1.84666 ν 4= 23.8 R 7= 61.032 D 7= 可変 R 8= 74.083 D 8= 1.50 N 5=1.84666 ν 5= 23.8 R 9= 32.486 D 9= 7.50 N 6=1.71300 ν 6= 53.8 R10= -289.769 D10= 0.10 R11= 76.844 D11= 5.50 N 7=1.77250 ν 7= 49.6 R12= -151.673 D12= 1.40 N 8=1.84666 ν 8= 23.8 R13= 340.344 D13= 0.10 R14= 54.698 D14= 4.50 N 9=1.77250 ν 9= 49.6 R15= 1076.398 D15= 可変 R16=(絞り) D16= 1.00 R17= 179.919 D17= 4.10 N10=1.84666 ν10= 23.8 R18= -29.320 D18= 1.10 N11=1.77250 ν11= 49.6 R19= 55.441 D19= 2.90 R20= -32.601 D20= 1.10 N12=1.83481 ν12= 42.7 R21= 199.184 D21= 可変 R22= -146.326 D22= 1.40 N13=1.84666 ν13= 23.8 R23= -238.520 D23= 3.80 N14=1.71300 ν14= 53.8 R24= -31.546 D24= 0.10 R25= -92.279 D25= 2.80 N15=1.69680 ν15= 55.5 R26= -56.757 D26= 0.10 R27= 125.405 非球面 D27= 5.00 N16=1.71300 ν16= 53.8 R28= -38.566 D28= 1.40 N17=1.84666 ν17= 23.8 R29= -373.726 R1: Aspherical surface coefficient A = 0 B = 5.77891 × 10 −7 C = −4.6210 × 10 −11 D = 1.60066 × 10 −14 R13: Aspherical surface coefficient A = 0 B = 3.56175 × 10 −7 C = -1.61754 × 10 -11 D = 1.481666 × 10 -13 Numerical example 5 F = 28.8 to 77.46 FNO = 1: 2.8 2ω = 73.8 ° to 31.2 ° R 1 = 75.223 Aspherical surface D 1 = 2.20 N 1 = 1.83481 ν 1 = 42.7 R 2 = 37.278 D 2 = 16.00 R 3 = -1600.958 D 3 = 2.00 N 2 = 1.83481 ν 2 = 42.7 R 4 = 32.493 D 4 = 5.50 N 3 = 1.84666 ν 3 = 23.8 R 5 = 71.677 D 5 = 1.50 R 6 = 50.112 D 6 = 3.00 N 4 = 1.84666 ν 4 = 23.8 R 7 = 61.032 D 7 = Variable R 8 = 74.083 D 8 = 1.50 N 5 = 1.84666 ν 5 = 23.8 R 9 = 32.486 D 9 = 7.50 N 6 = 1.71300 ν 6 = 53.8 R10 = -289.769 D10 = 0.10 R11 = 76.844 D11 = 5.50 N 7 = 1.77250 ν 7 = 49.6 R12 = -151.673 D12 = 1.40 N 8 = 1.84666 ν 8 = 23.8 R13 = 340.344 D13 = 0.10 R14 = 54.698 D14 = 4.50 N 9 = 1.77250 ν 9 = 49.6 R15 = 1076.398 D15 = Variable R16 = (Aperture) D16 = 1.00 R17 = 179.919 D17 = 4.10 N10 = 1.84666 ν10 = 23.8 R18 = -29.320 D18 = 1.10 N11 = 1.77250 ν11 = 49.6 R19 = 55.441 D19 = 2.90 R20 = -32.601 D20 = 1.10 N12 = 1.83481 ν12 = 42.7 R21 = 199.184 D21 = Variable R22 = -146.326 D22 = 1.40 N13 = 1.84666 ν13 = 23.8 R23 = -238.520 D23 = 3.80 N14 = 1.71300 ν14 = 53.8 R24 = -31.546 D24 = 0.10 R25 = -92.279 D25 = 2.80 N15 = 1.69680 ν15 = 55.5 R26 = -56.757 D26 = 0.10 R27 = 125.405 Aspheric surface D27 = 5.00 N16 = 1.71300 ν16 = 53.8 R28 = -38.566 D28 = 1.40 N17 = 1.84666 ν17 = 23.8 R29 = -373.726

【0057】[0057]

【表5】 [Table 5]

【0058】 R1:非球面係数 A= 0 B= 3.78122×10-7 C= 2.31162×10-10 D=-7.07093×10-14 R27:非球面係数 A= 0 B=-1.9333 ×10-6 C=-4.86862×10-9 D= 3.0832 ×10-12 数値実施例 6 F= 28.8 〜77.35 FNO=1:2.8 2ω= 73.8°〜31.2° R 1= 82.212 非球面 D 1= 2.20 N 1=1.83481 ν 1= 42.7 R 2= 40.145 D 2= 16.00 R 3= -734.079 D 3= 2.00 N 2=1.83481 ν 2= 42.7 R 4= 32.424 D 4= 5.50 N 3=1.84666 ν 3= 23.8 R 5= 65.788 D 5= 1.50 R 6= 49.287 D 6= 3.00 N 4=1.84666 ν 4= 23.8 R 7= 61.693 D 7= 可変 R 8= 77.960 D 8= 1.50 N 5=1.84666 ν 5= 23.8 R 9= 31.802 D 9= 7.50 N 6=1.71300 ν 6= 53.8 R10= -198.781 D10= 0.10 R11= 77.219 D11= 5.50 N 7=1.77250 ν 7= 49.6 R12= -168.989 D12= 1.40 N 8=1.84666 ν 8= 23.8 R13= 357.536 D13= 0.10 R14= 50.032 D14= 4.50 N 9=1.77250 ν 9= 49.6 R15= 1036.923 D15= 可変 R16=(絞り) D16= 1.00 R17= 159.183 D17= 4.10 N10=1.84666 ν10= 23.8 R18= -28.287 D18= 1.10 N11=1.77250 ν11= 49.6 R19= 53.088 D19= 2.90 R20= -34.394 D20= 1.10 N12=1.83481 ν12= 42.7 R21= 122.601 D21= 可変 R22= -152.863 D22= 1.40 N13=1.84666 ν13= 23.8 R23= -275.361 D23= 3.80 N14=1.71300 ν14= 53.8 R24= -31.874 D24= 0.10 R25= -92.992 D25= 2.80 N15=1.69680 ν15= 55.5 R26= -57.447 D26= 0.10 R27= 126.107 D27= 5.00 N16=1.71300 ν16= 53.8 R28= -38.422 D28= 1.40 N17=1.84666 ν17= 23.8 R29= -550.494 非球面 R1: Aspherical surface coefficient A = 0 B = 3.778122 × 10 -7 C = 2.31162 × 10 -10 D = -7.07093 × 10 -14 R27: Aspherical surface coefficient A = 0 B = -1.9333 × 10 -6 C = −4.86862 × 10 −9 D = 3.0832 × 10 −12 Numerical Example 6 F = 28.8 to 77.35 FNO = 1: 2.8 2ω = 73.8 ° to 31.2 ° R 1 = 82.212 Aspherical surface D 1 = 2.20 N 1 = 1.83481 ν 1 = 42.7 R 2 = 40.145 D 2 = 16.00 R 3 = -734.079 D 3 = 2.00 N 2 = 1.83481 ν 2 = 42.7 R 4 = 32.424 D 4 = 5.50 N 3 = 1.84666 ν 3 = 23.8 R 5 = 65.788 D 5 = 1.50 R 6 = 49.287 D 6 = 3.00 N 4 = 1.84666 ν 4 = 23.8 R 7 = 61.693 D 7 = Variable R 8 = 77.960 D 8 = 1.50 N 5 = 1.84666 ν 5 = 23.8 R 9 = 31.802 D 9 = 7.50 N 6 = 1.71300 ν 6 = 53.8 R10 = -198.781 D10 = 0.10 R11 = 77.219 D11 = 5.50 N 7 = 1.77250 ν 7 = 49.6 R12 = -168.989 D12 = 1.40 N 8 = 1.84666 ν 8 = 23.8 R13 = 357.536 D13 = 0.10 R14 = 50.032 D14 = 4.50 N 9 = 1.77250 ν 9 = 49.6 R15 = 1036.923 D15 = Variable R16 = (Aperture) D16 = 1.00 R17 = 159.183 D17 = 4.10 N10 = 1.84666 ν10 = 23.8 R18 = -28.287 D18 = 1.10 N11 = 1.77250 ν11 = 49.6 R19 = 53.088 D19 = 2.90 R20 =- 34.394 D20 = 1.10 N12 = 1.83481 ν12 = 42.7 R21 = 122.601 D21 = Variable R22 = -152.863 D22 = 1.40 N13 = 1.84666 ν13 = 23.8 R23 = -275.361 D23 = 3.80 N14 = 1.71300 ν14 = 53.8 R24 = -31.874 D24 = 0.10 R25 = -92.992 D25 = 2.80 N15 = 1.69680 ν15 = 55.5 R26 = -57.447 D26 = 0.10 R27 = 126.107 D27 = 5.00 N16 = 1.71300 ν16 = 53.8 R28 = -38.422 D28 = 1.40 N17 = 1.84666 ν17 = 23.8 R29 = -550.494 Aspheric

【0059】[0059]

【表6】 [Table 6]

【0060】R1:非球面係数 A= 0 B= 1.90348×10-7 C= 2.99605×10-10 D=-1.28883×10-13 R29:非球面係数 A= 0 B= 1.86774×10-6 C= 6.79916×10-9 D=-7.60901×10-12 R1: Aspherical surface coefficient A = 0 B = 1.90348 × 10 -7 C = 2.999605 × 10 -10 D = -1.28883 × 10 -13 R29: Aspherical surface coefficient A = 0 B = 1.86774 × 10 -6 C = 6.79916 × 10 -9 D = -7.60901 × 10 -12

【0061】[0061]

【発明の効果】本発明によれば前述の如く4つのレンズ
群の屈折力や変倍に伴う各レンズ群の移動条件等を特定
することにより、レンズ全長を短縮し、かつレンズ鏡筒
構造を簡素にしつつ、比較的広画角でしかも高変倍比の
全変倍範囲にわたり高い光学性能を有したズームレンズ
を達成することができる。
According to the present invention, the total length of the lens is reduced and the lens barrel structure is reduced by specifying the refracting power of the four lens units and the moving conditions of each lens unit upon zooming as described above. It is possible to achieve a zoom lens which has a relatively wide angle of view and high optical performance over the entire zoom range with a high zoom ratio while being simple.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の数値実施例1のレンズ断面図FIG. 1 is a sectional view of a lens according to a numerical example 1 of the present invention.

【図2】 本発明の数値実施例2のレンズ断面図FIG. 2 is a sectional view of a lens according to a numerical example 2 of the present invention.

【図3】 本発明の数値実施例3のレンズ断面図FIG. 3 is a sectional view of a lens according to a numerical example 3 of the present invention.

【図4】 本発明の数値実施例4のレンズ断面図FIG. 4 is a sectional view of a lens according to a numerical example 4 of the present invention.

【図5】 本発明の参考となる数値実施例5のレンズ
断面図
FIG. 5 is a lens cross-sectional view of Numerical Example 5 serving as a reference of the present invention.

【図6】 本発明の参考となる数値実施例6のレンズ
断面図
FIG. 6 is a lens sectional view of Numerical Example 6 serving as a reference of the present invention.

【図7】 本発明の数値実施例1の広角端のズーム位
置における収差図
FIG. 7 is an aberration diagram at a zoom position at a wide-angle end according to Numerical Embodiment 1 of the present invention.

【図8】 本発明の数値実施例1の中 間のズーム位
置における収差図
FIG. 8 is an aberration diagram at a zoom position in a numerical example 1 of the present invention.

【図9】 本発明の数値実施例1の望遠端のズーム位
置における収差図
FIG. 9 is an aberration diagram at a telephoto end zoom position according to Numerical Embodiment 1 of the present invention.

【図10】 本発明の数値実施例2の広角端のズーム位
置における収差図
FIG. 10 is an aberration diagram at a zoom position at a wide-angle end according to Numerical Embodiment 2 of the present invention.

【図11】 本発明の数値実施例2の中 間のズーム位
置における収差図
FIG. 11 is an aberration diagram at a zoom position in a numerical example 2 of the present invention.

【図12】 本発明の数値実施例2の望遠端のズーム位
置における収差図
FIG. 12 is an aberration diagram at a zoom position at a telephoto end in Numerical Example 2 of the present invention;

【図13】 本発明の数値実施例3の広角端のズーム位
置における収差図
FIG. 13 is an aberration diagram at a zoom position at a wide-angle end according to Numerical Embodiment 3 of the present invention.

【図14】 本発明の数値実施例3の中 間のズーム位
置における収差図
FIG. 14 is an aberration diagram at a zoom position in a numerical example 3 of the present invention.

【図15】 本発明の数値実施例3の望遠端のズーム位
置における収差図
FIG. 15 is an aberration diagram at a zoom position at a telephoto end according to Numerical Example 3 of the present invention;

【図16】 本発明の数値実施例4の広角端のズーム位
置における収差図
FIG. 16 is an aberration diagram at a zoom position at a wide angle end according to Numerical Embodiment 4 of the present invention.

【図17】 本発明の数値実施例4の中 間のズーム位
置における収差図
FIG. 17 is an aberration diagram at a zoom position in a numerical example 4 of the present invention.

【図18】 本発明の数値実施例4の望遠端のズーム位
置における収差図
FIG. 18 is an aberration diagram at a telephoto end zoom position in Numerical Example 4 of the present invention.

【図19】 本発明の参考となる数値実施例5の広角端
のズーム位置における収差図
FIG. 19 is an aberration diagram at a zoom position at a wide-angle end according to Numerical Example 5 serving as a reference of the present invention.

【図20】 本発明の参考となる数値実施例5の中 間
のズーム位置における収差図
FIG. 20 is an aberration diagram at a zoom position in Numerical Example 5 serving as a reference of the present invention;

【図21】 本発明の参考となる数値実施例5の望遠端
のズーム位置における収差図
FIG. 21 is an aberration diagram at a zoom position at a telephoto end in Numerical Example 5 which is a reference of the present invention.

【図22】 本発明の参考となる数値実施例6の広角端
のズーム位置における収差図
FIG. 22 is an aberration diagram at a zoom position at a wide-angle end according to Numerical Example 6 serving as a reference of the present invention.

【図23】 本発明の参考となる数値実施例6の中 間
のズーム位置における収差図
FIG. 23 is an aberration diagram at a zoom position in Numerical Example 6 serving as a reference of the present invention;

【図24】 本発明の参考となる数値実施例6の望遠端
のズーム位置における収差図
FIG. 24 is an aberration diagram at a zoom position at a telephoto end in Numerical Example 6 which is a reference of the present invention.

【符号の説明】[Explanation of symbols]

L1 第1群 L2 第2群 L3 第3群 L4 第4群 SP 絞り d フラウンホーファーd線での球面収差 g フラウンホーファーg線での球面収差 S,C 正弦条件での不満足量 S サジタル断面での像面 M メリジオナル断面での像面 L1 First group L2 Second group L3 Third group L4 Fourth group SP Aperture d Spherical aberration at Fraunhofer d-line g Spherical aberration at Fraunhofer g-line S, C Unsatisfactory amount under sine condition S Sagittal section Image plane M Image plane in meridional section

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−19169(JP,A) 特開 平5−134184(JP,A) 特開 昭59−229517(JP,A) 特開 昭61−62013(JP,A) 特開 昭62−63909(JP,A) 特開 平2−136812(JP,A) 特開 平4−163415(JP,A) 特開 平2−201310(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 9/00 - 17/08 G02B 21/02 - 21/04 G02B 25/00 - 25/04 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-19169 (JP, A) JP-A-5-134184 (JP, A) JP-A-59-229517 (JP, A) JP-A-61- 62013 (JP, A) JP-A-62-63909 (JP, A) JP-A-2-136812 (JP, A) JP-A-4-163415 (JP, A) JP-A-2-201310 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) G02B 9/00-17/08 G02B 21/02-21/04 G02B 25/00-25/04

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 物体側より順に負の屈折力の第1群、
正の屈折力の第2群、負の屈折力の第3群、そして正の
屈折力の第4群の4つのレンズ群を有し、各レンズ群の
空気間隔を変えて変倍を行うズームレンズであって、該
第2群は物体側に凸面を向けたメニスカス状の負の第
21レンズと両レンズ面が凸面の正の第22レンズとを
接合した貼合わせレンズ、そして物体側に強い正の屈折
面を向けた正の第23レンズを有しており、該第21レ
ンズ又は該第23レンズの物体側の面を非球面とし、該
貼合わせレンズの接合レンズ面の曲率半径をR2,2、
該第23レンズのレンズ外径をDE、該第2群の焦点距
離をF2、該非球面の非球面形状が、光軸方向にX軸、
光軸と垂直方向にH軸、光の進行方向を正、近軸曲率半
径をR、非球面係数をA,B,C,D,Eとして、 【数1】 で表されるとき、 0.6<R2,2/F2<1.0 B<0 B+C×(DE/2)2<0 なる条件を満足することを特徴とするズームレンズ。
A first group having a negative refractive power , in order from the object side;
Second lens unit of positive refractive power, a third lens unit of negative refractive power and a four lens groups of the fourth lens unit of positive refractive power, intends row zooming by changing the air space between the lens units a zoom lens, the second group, alignment adhered 21st lens and both lens surfaces of the negative meniscus form convex toward the object side are joined and the negative second lens 22 of the convex lenses and the object side, A positive twenty-third lens with a strong positive refracting surface facing the lens, the object-side surface of the twenty-first lens or the twenty-third lens being an aspheric surface, and a radius of curvature of a cemented lens surface of the cemented lens. To R2,2,
The lens outer diameter of the 23rd lens is DE, and the focal length of the second group is
The separation is F2, the aspherical shape of the aspherical surface is the X axis in the optical axis direction,
H axis perpendicular to the optical axis, positive in the light traveling direction, half paraxial curvature
Assuming that the diameter is R and the aspheric coefficients are A, B, C, D, and E, A zoom lens characterized by satisfying the following condition : 0.6 <R2, 2 / F2 <1.0 B <0 B + C × (DE / 2) 2 <0
【請求項2】 前記第1群は、正レンズと少なくとも2
枚の負レンズとを有していることを特徴とする請求項1
のズームレンズ。
2. The first group includes a positive lens and at least two lenses.
2. The apparatus according to claim 1 , further comprising a negative lens.
Zoom lens.
【請求項3】 前記第1群は物体側より順に第11群
と第12群の2つのレンズ群を有し、該第12群を光軸
上移動させて焦点合わせを行っていることを特徴とする
請求項1のズームレンズ。
3. The first lens unit includes two lens units, an eleventh lens unit and a twelfth lens unit, in order from the object side, and focuses by moving the twelfth lens unit on the optical axis. Feature
The zoom lens according to claim 1 .
【請求項4】 物体側より順に負の屈折力の第1群、
正の屈折力の第2群、負の屈折力の第3群、そして正の
屈折力の第4群の4つのレンズ群を有し、各レンズ群の
空気間隔を変えて変倍を行うズームレンズであって、該
第2群は、物体側に凸面を向けたメニスカス状の負の第
21レンズと両レンズ面が凸面の正の第22レンズとを
接合した貼合わせレンズ、そして物体側に強い正の屈折
面を向けた正の第23レンズを有しており、該第22レ
ンズの像側の面を非球面とし、該貼合わせレンズの接合
レンズ面の曲率半径をR2,2、該第23レンズのレン
ズ外径をDE、該第2群の焦点距離をF2、該非球面の
非球面形状が光軸方向にX軸、光軸と垂直方向にH軸、
光の進行方向を正、近軸曲率半径をR、非球面係数を
A,B,C,D,Eとして、 【数2】 で表されるとき、 0.6<R2,2/F2<1.0 B>0 B+C×(DE/2)2>0 なる条件を満足することを特徴とするズームレンズ。
4. A first group having a negative refractive power in order from the object side,
Second lens unit of positive refractive power, a third lens unit of negative refractive power and a four lens groups of the fourth lens unit of positive refractive power, intends row zooming by changing the air space between the lens units A zoom lens , wherein the second group includes a cemented lens formed by joining a negative meniscus twenty-first lens with a convex surface facing the object side and a positive twenty-second lens with both lens surfaces convex, and an object-side lens. A positive 23rd lens with a strong positive refracting surface facing the lens .
The surface on the image side of the lens is an aspheric surface, the radius of curvature of the cemented lens surface of the cemented lens is R2,2, and the lens of the 23rd lens is
Is the outer diameter of the lens, the focal length of the second group is F2,
X-axis in the optical axis direction, H-axis in the direction perpendicular to the optical axis,
The light traveling direction is positive, the paraxial radius of curvature is R, and the aspheric coefficient is
As A, B, C, D, and E, A zoom lens characterized by satisfying the following condition : 0.6 <R2,2 / F2 <1.0 B> 0 B + C × (DE / 2) 2 > 0
【請求項5】 前記第1群は、正レンズと少なくとも2
枚の負レンズとを有していることを特徴とする請求項4
のズームレンズ。
5. The first group includes a positive lens and at least two lenses.
5. The image forming apparatus according to claim 4 , further comprising a negative lens.
Zoom lens.
【請求項6】 前記第1群は物体側より順に第11
群と第12群の2つのレンズ群を有し、該第12群を光
軸上移動させて焦点合わせを行っていることを特徴とす
請求項4のズームレンズ。
Wherein said first group comprises, in order from the object side, a 11
The zoom lens according to claim 4 , further comprising two lens groups, a group and a twelfth group, wherein the twelfth group is moved on the optical axis to perform focusing.
JP27198999A 1999-09-27 1999-09-27 Zoom lens Expired - Fee Related JP3315671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27198999A JP3315671B2 (en) 1999-09-27 1999-09-27 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27198999A JP3315671B2 (en) 1999-09-27 1999-09-27 Zoom lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4078433A Division JP3018723B2 (en) 1992-02-28 1992-02-28 Zoom lens

Publications (2)

Publication Number Publication Date
JP2000075205A JP2000075205A (en) 2000-03-14
JP3315671B2 true JP3315671B2 (en) 2002-08-19

Family

ID=17507610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27198999A Expired - Fee Related JP3315671B2 (en) 1999-09-27 1999-09-27 Zoom lens

Country Status (1)

Country Link
JP (1) JP3315671B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4955875B2 (en) * 2001-09-12 2012-06-20 キヤノン株式会社 Zoom lens and optical apparatus having the same
JP4508525B2 (en) * 2002-12-25 2010-07-21 オリンパス株式会社 Optical path bending zoom optical system
JP4507543B2 (en) * 2003-09-29 2010-07-21 株式会社ニコン Zoom lens
JP4898200B2 (en) 2005-11-30 2012-03-14 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5489322B2 (en) * 2009-04-13 2014-05-14 株式会社タムロン Wide angle zoom lens
JP6152641B2 (en) * 2012-12-26 2017-06-28 リコーイメージング株式会社 Zoom lens system and electronic imaging apparatus including the same
CN107643591B (en) * 2017-11-01 2023-08-15 河南中光学集团有限公司 Anti-attenuation fog-penetrating visible light lens and implementation method

Also Published As

Publication number Publication date
JP2000075205A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
US5576890A (en) Zoom lens
JP3109342B2 (en) Rear focus zoom lens
JP4819414B2 (en) Zoom lens and imaging apparatus having the same
JP4146977B2 (en) Zoom lens
US5585969A (en) Zoom lens
US5000550A (en) Wide-angle type zoom lens having inner-focus lens
JP2988164B2 (en) Rear focus zoom lens
JPH10206736A (en) Zoom lens
JPH0749453A (en) Zoom lens
JP3102200B2 (en) Zoom lens
JP3018723B2 (en) Zoom lens
JP2001116992A (en) Zoom lens
JP2006337647A (en) Zoom lens
JP2629904B2 (en) Rear focus zoom lens
JP3018742B2 (en) Zoom lens
JP3144193B2 (en) Zoom lens
JP2001042217A (en) Zoom lens
JP3147492B2 (en) Zoom lens
JP4533437B2 (en) Zoom lens
JP3144153B2 (en) Zoom lens
JP3134611B2 (en) Zoom lens
JP3315671B2 (en) Zoom lens
JP3376143B2 (en) Zoom lens
JP3260798B2 (en) Wide-angle zoom lens
JPH06230285A (en) Zoom lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees