JP2000188455A - Composite material for transfer method, its manufacture, and printed-circuit board and semiconductor device using the same - Google Patents

Composite material for transfer method, its manufacture, and printed-circuit board and semiconductor device using the same

Info

Publication number
JP2000188455A
JP2000188455A JP11281974A JP28197499A JP2000188455A JP 2000188455 A JP2000188455 A JP 2000188455A JP 11281974 A JP11281974 A JP 11281974A JP 28197499 A JP28197499 A JP 28197499A JP 2000188455 A JP2000188455 A JP 2000188455A
Authority
JP
Japan
Prior art keywords
transfer method
composite material
wiring
wiring forming
barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11281974A
Other languages
Japanese (ja)
Inventor
Kentaro Yano
健太郎 矢野
Susumu Okikawa
進 沖川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP11281974A priority Critical patent/JP2000188455A/en
Publication of JP2000188455A publication Critical patent/JP2000188455A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate high-density wiring by giving optimum characteristics to a wiring forming material, a barrier material, and a carrier material for composing a composite material for a transfer method. SOLUTION: An orientation property on the surface of a wiring forming material for composing a composite material where a carrier material, a barrier material, and a wiring system forming material are laminated and joined should satisfy a relationship of (200)/((200)+(220)+(311)+(111)+(222))>35%. A barrier material 2 that becomes an intermediate layer while being sandwiched by a wiring forming material 1 and a carrier material 3 forms a continuously surface essentially without any defect. A Cu-system electrolytic foil and a rolled foil with at least a pull strength of 300 Mpa and a width dimension of 300 mm for the carrier material 3. Then, the upper limit of the thickness is set to 5 μm or less. The barrier material 2 is used to prevent an etching liquid from reaching an opposite surface side when the carrier material 3 is eliminated by etching and at the same time the wiring forming material 1 is subjected to wiring patterning with the etching solution. It needs to be a metal with different etching condition from that of the carrier material 3 and the wiring forming material 1, and the barrier material 2 is finally eliminated by etching.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体パッケージ
に等用いられる転写法用複合材およびその製造方法なら
びにそれを用いたプリント基板および半導体装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite material for a transfer method used for a semiconductor package and the like, a method of manufacturing the same, and a printed circuit board and a semiconductor device using the same.

【0002】[0002]

【従来の技術】近年、マルチメディア機器の高性能化
や、携帯機器の急増によって半導体パッケージに用いら
れる配線幅も狭ピッチ化が求めれてきた。この問題に対
して、配線部の銅箔の厚みを5〜18μm程度に薄くす
ることで対応する試みがなされている。中でも、図1に
示すように樹脂に埋め込まれて配線となる配線形成材
(1)と、ハンドリング性向上のためのキャリア材(3)と、
キャリア材をエッチングで除去する際において、配線形
成材にエッチング溶液を到達させないために用いられ、
また逆に、配線形成材をエッチング溶液で配線パターニ
ングを行う際に、エッチング溶液をキャリア材まで到達
させないために用いられるバリア材(3)の三層で構成さ
れる複合材(4)を用いた転写法と呼ばれる技術は狭ピッ
チ化に好適であり、前記転写法を用いれば、ガラスエポ
キシ樹脂等に転写された配線の銅箔は、キャリア材のみ
を選択エッチで除去後、バリア材のみを選択エッチで除
去し、微細配線のみをガラスエポキシ樹脂に残留させる
ことが可能で、配線部を微細化する方法として優れてい
る。
2. Description of the Related Art In recent years, there has been a demand for narrower wiring widths used for semiconductor packages due to higher performance of multimedia devices and rapid increase of portable devices. Attempts have been made to address this problem by reducing the thickness of the copper foil in the wiring section to about 5 to 18 μm. Among them, as shown in FIG. 1, a wiring forming material embedded in a resin to become a wiring
(1) and carrier material (3) for improving handling
Used to prevent the etching solution from reaching the wiring forming material when removing the carrier material by etching,
Conversely, when performing wiring patterning of the wiring forming material with an etching solution, a composite material (4) composed of three layers of a barrier material (3) used to prevent the etching solution from reaching the carrier material was used. The technique called the transfer method is suitable for narrowing the pitch, and if the transfer method is used, the copper foil of the wiring transferred to the glass epoxy resin or the like is selected only by the carrier material, and after the etch is removed, only the barrier material is selected. Since it is possible to remove only fine wiring in the glass epoxy resin by removing it by etching, it is an excellent method for miniaturizing a wiring portion.

【0003】この転写法に用いる複合材としては、例え
ば図10(a)〜(f)に示すような三層構造の複合材を用い
た転写法が提案されている。しかしながら、この場合の
製造方法としては、キャリア材(3)上に、めっき法で二
層目のバリア層(2)と三層目の配線形成層(1)を積層させ
(図10(a))、配線形成材上にドライフィルムレジス
ト(5)をラミネートし、露光、現像により図10(b)のよ
うなレジストパターンを形成後、電気めっき法のアディ
ティブ法、若しくはその変形の方法により配線層(7)を
再度積層させ(図10(c))、レジストを除去(図10
(d))し、ガラスエポキシ樹脂(6)に配線形成層を圧着し
(図10(e))、キャリア材、バリア層、配線形成層を
順にエッチングで除去し、配線層をガラスエポキシ樹脂
に残留させるものであり、厚付け無電解Cuめっきはめ
っき速度が遅いこと(2μm/H)、介在物が多いこ
と、硫酸銅箔を用いた電解銅浴を用いた電解銅めっきに
しても時間がかかり価格が大幅にアップするので現在は
Flip Chip実装の一部に用いられているだけである。
As a composite material used in this transfer method, for example, a transfer method using a composite material having a three-layer structure as shown in FIGS. 10A to 10F has been proposed. However, as a manufacturing method in this case, the second barrier layer (2) and the third wiring forming layer (1) are laminated on the carrier material (3) by plating (FIG. 10A). ), Laminating a dry film resist (5) on a wiring forming material, forming a resist pattern as shown in FIG. 10 (b) by exposure and development, and then forming a wiring layer by an additive method of electroplating or a modification thereof. (7) is laminated again (FIG. 10 (c)), and the resist is removed (FIG. 10 (c)).
(d)) and press-bond the wiring forming layer to the glass epoxy resin (6) (FIG. 10 (e)), remove the carrier material, the barrier layer, and the wiring forming layer in order by etching, and convert the wiring layer to the glass epoxy resin. Thick electroless Cu plating has a low plating rate (2 μm / H), a large amount of inclusions, and a long time even in electrolytic copper plating using an electrolytic copper bath using copper sulfate foil. At present, the price increases significantly so
It is only used as part of the Flip Chip implementation.

【0004】これに対して、図11に示されるような三
層構造の複合材も提案されている。この方法は、転写法
用複合材(4)の配線形成材(1)上に、ドライフィルムレジ
スト(5)をラミネートし、露光、現像によって図11(b)
のような所望のレジストパターンを形成した後、配線形
成材を選択エッチする。(図11(c)) 続いて、配線形成材上に残留するドライフィルムレジス
トを除去(図11(d))し、約180℃に加熱されたガ
ラスエポキシ基板(6)に配線形成材側を圧着する。(図
11(e))次に、キャリア材を選択エッチで除去後、バ
リア材を選択エッチで除去し、配線の転写が完了する。
(図11(f)) この方法はより狭ピッチ化に対応可能で、且つ低価格化
が図れる方法として優れており、例えば特開平8−29
3510号に開示されている。しかしながら、図11で
示される三層構造の複合材においても、上述のめっき法
による積層でバリア材、配線形成材に求められる厚みが
形成されるため、1Pathで2〜3μm位の厚みしか
得られず、Path回数を数回通さないと希望する10μm
のCuめっきを施すことはできず量産には不適であるば
かりか、三層構造の複合材の配線形成材に対して量産的
に配線をエッチングで形成するために必要な300mm
×300mm程度の大きさ以上の複合材を低コストで得
ることは不可能に近いものであった。
On the other hand, a composite material having a three-layer structure as shown in FIG. 11 has also been proposed. This method comprises laminating a dry film resist (5) on a wiring forming material (1) of a composite material for a transfer method (4), and exposing and developing the same as shown in FIG.
After forming a desired resist pattern as described above, a wiring forming material is selectively etched. (FIG. 11 (c)) Subsequently, the dry film resist remaining on the wiring forming material is removed (FIG. 11 (d)), and the wiring forming material side is placed on a glass epoxy substrate (6) heated to about 180 ° C. Crimp. (FIG. 11E) Next, after removing the carrier material by selective etching, the barrier material is removed by selective etching, and the transfer of the wiring is completed.
(FIG. 11 (f)) This method is excellent as a method capable of responding to a narrower pitch and reducing the cost.
No. 3510. However, in the composite material having a three-layer structure shown in FIG. 11, the thickness required for the barrier material and the wiring forming material is formed by lamination by the above-described plating method, so that only a thickness of about 2 to 3 μm can be obtained at 1 Path. 10 μm, which is not required to pass the number of passes several times
Not only is not suitable for mass production because it cannot be subjected to Cu plating, but also 300 mm which is necessary for mass-producing wiring by etching on a wiring forming material of a three-layered composite material.
It was almost impossible to obtain a composite material having a size of about 300 mm or more at low cost.

【0005】[0005]

【発明が解決しようとする課題】上述した如く、従来用
いられてきた三層構造の複合材はめっき法を用いて製造
されるため、めっきの制約から量産に適用できるもので
はなく、また、転写法用複合材を構成する配線形成材の
エッチング特性や、バリア材の最適な厚み、更にはキャ
リア材のハンドリング性やエッチング性の向上等といっ
た、諸問題に対して、なんら検討がなされてはいなかっ
た。本発明の目的は、電子材料(1992年vol.31,No.10,P
119〜)、信頼度学会論文集C−11(1989年vol.J72-C
-11,No.4,P243〜)、プリント回路学会誌(1989年vol.
4,No.3,P165〜)、特開平8−293510号に紹介さ
れているそれ等の製造法であるTLC(Transfer Lami
nate Circuit)に使用する三層複合材に関するもので
あり、転写法用複合材を構成する配線形成材、バリア材
およびキャリア材に従来にない特性を付与することで、
より高密度配線化が容易となる転写法用複合材およびそ
の製造方法ならびにそれを用いたプリント基板および半
導体装置を提供することである。
As described above, since conventionally used composite materials having a three-layer structure are manufactured using a plating method, they cannot be applied to mass production due to plating restrictions. No studies have been made on various issues such as the etching characteristics of the wiring forming material constituting the legal composite material, the optimum thickness of the barrier material, and the improvement of the handling and etching properties of the carrier material. Was. An object of the present invention is to provide an electronic material (1992, vol. 31, No. 10,
119-), Reliability Society Transactions C-11 (1989 vol.J72-C)
-11, No.4, P243 ~), Journal of the Printed Circuit Society of Japan (1989 vol.
4, No. 3, p. 165), and TLC (Transfer Lami), which is a production method thereof, introduced in JP-A-8-293510.
nate Circuit), which relates to a three-layer composite material, and provides unprecedented characteristics to the wiring forming material, barrier material, and carrier material that compose the transfer method composite material.
An object of the present invention is to provide a composite material for a transfer method which facilitates higher density wiring, a method for manufacturing the same, and a printed circuit board and a semiconductor device using the same.

【0006】[0006]

【課題を解決するための手段】本発明者は、前述の問題
を検討し、転写法用複合材を構成する配線形成材、バリ
ア材およびキャリア材に最適な特性を付与することで、
より高密度配線に適した転写法用複合材とすることがで
き、更に前記転写法用複合材の製造方法について、従来
検討されることのなかった新規な製造方法を見いだし本
発明に到達した。
SUMMARY OF THE INVENTION The present inventor has studied the above-mentioned problems and has given optimum characteristics to a wiring forming material, a barrier material, and a carrier material which constitute a composite material for a transfer method.
A composite material for a transfer method suitable for higher-density wiring can be obtained, and a novel production method which has not been studied in the past for a method for producing the composite material for a transfer method has been found, and the present invention has been achieved.

【0007】すなわち本発明は、キャリア材とバリア材
と配線形成材とが、積層接合された複合材であって、前
記配線形成材の表面の配向性は、(200)/((20
0)+(220)+(311)+(111)+(22
2))>35%の関係を満足する転写法用複合材であ
り、好ましくは、前記バリア材は実質的に欠陥のない連
続面を形成している転写法用複合材である。更に好まし
くは、幅寸法が300mm以上で、板厚が50μm以下
であり、配線形成材はCu系の電解箔である転写法用複
合材若しくは、複合材の幅寸法が300mm以上で、板
厚が50μm以下であり、配線形成材はCu系の圧延箔
である転写法用複合材である。
That is, the present invention is a composite material in which a carrier material, a barrier material, and a wiring forming material are laminated and joined, and the orientation of the surface of the wiring forming material is (200) / ((20)
0) + (220) + (311) + (111) + (22
2)) A composite material for a transfer method satisfying a relationship of> 35%, preferably, the barrier material is a composite material for a transfer method having a substantially defect-free continuous surface. More preferably, the width is 300 mm or more and the plate thickness is 50 μm or less, and the wiring forming material is a composite material for a transfer method, which is a Cu-based electrolytic foil, or the width of the composite material is 300 mm or more and the plate thickness is The wiring forming material is a composite material for a transfer method, which is a rolled Cu-based foil.

【0008】また好ましくは、本発明においてキャリア
材は引張り強さ300MPa以上である転写法用複合材で
ある。また本発明において、バリア材は3μm以下のニ
ッケルめっきで形成されるか、バリア材は3μm以下の
ニッケル蒸着で形成される転写法用複合材である。また
本発明で、更に好ましくは、複合材の圧延方向の引張り
強さが、250MPa以上である転写法用複合材である。
そして本発明は、配線形成材にエッチングにより配線が
形成された転写法用複合材である。
Preferably, in the present invention, the carrier material is a composite material for a transfer method having a tensile strength of 300 MPa or more. In the present invention, the barrier material is formed by nickel plating of 3 μm or less, or the barrier material is a composite material for a transfer method formed by vapor deposition of nickel of 3 μm or less. In the present invention, more preferably, the composite material for a transfer method, wherein the tensile strength in the rolling direction of the composite material is 250 MPa or more.
The present invention is a composite material for a transfer method in which wiring is formed on a wiring forming material by etching.

【0009】更に本発明では、上述の転写法用複合材を
用いて、樹脂に配線が転写されてなるプリント基板であ
り、また、本発明の転写法用複合材を用いて、樹脂に配
線が転写されてなる半導体装置である。
Further, according to the present invention, there is provided a printed circuit board in which wiring is transferred to a resin using the above-described composite material for a transfer method. In addition, the wiring is transferred to a resin using the composite material for a transfer method of the present invention. This is a transferred semiconductor device.

【0010】本発明の転写法用複合材の製造方法として
は、キャリア材とバリア材を積層した帯材と、配線形成
材の接合面のいずれか一方または両方を活性化処理した
後、圧延により積層接合する転写法用複合材の製造方法
である。また、配線形成材とバリア材を積層した帯材
と、キャリア材の接合面のいずれか一方または両方を活
性化処理した後、圧延により積層接合する転写法用複合
材の製造方法である。また更に、配線形成材とキャリア
材の一方もしくは両方にバリア材を蒸着した後、バリア
材を中間層とするように圧延により積層接合する転写法
用複合材の製造方法である。また本発明は、バリア材を
中間層とするように配線形成材とキャリア材とを圧延に
より積層接合した後、得られた転写法用複合材を加熱す
る転写法用複合材の製造方法である。
In the method for producing a composite material for a transfer method according to the present invention, one or both of a bonding material of a band material formed by laminating a carrier material and a barrier material and a bonding material of a wiring material are rolled by rolling. This is a method for producing a composite material for a transfer method to be laminated and joined. Also, the present invention relates to a method of manufacturing a composite material for a transfer method, in which one or both of a bonding surface of a carrier material and a band material in which a wiring forming material and a barrier material are laminated are activated and then laminated and bonded by rolling. Still further, the present invention relates to a method for producing a composite material for a transfer method, wherein a barrier material is vapor-deposited on one or both of a wiring forming material and a carrier material, and the laminate is joined by rolling so that the barrier material serves as an intermediate layer. The present invention is also a method for producing a composite material for a transfer method, in which a wiring material and a carrier material are laminated and joined by rolling so that a barrier material is used as an intermediate layer, and then the obtained composite material for a transfer method is heated. .

【0011】[0011]

【発明の実施の形態】本発明の最大の特徴は、キャリア
材とバリア材と配線系形成材とが積層接合された複合材
を構成する配線形成材の表面の配向性が、(200)/
((200)+(220)+(311)+(111)+
(222))>35%の関係を満足することにある。配
線形成材に対して、より狭ピッチに対応できるだけのエ
ッチング特性を付与するには、上記の関係で求められる
表面の結晶配向性を(200)/((200)+(22
0)+(311)+(111)+(222))>35
%、より好ましくは(200)/((200)+(22
0)+(311)+(111)+(222))>70%
に調整すると良い。これは、表面の結晶の配向性をX線
回折装置を用いて測定すると、(200)、(22
0)、(311)、(111)、(222)の主方位が
測定される。このうち(200)方位は、表面に対して
垂直な結晶格子が得られる面であるため、サイドエッチ
の抑制に対して特に有効となるばかりか、配線の欠け等
の配線の幅不良を排除できるため、できるだけこの方位
に集積させるのが必要である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The most significant feature of the present invention is that the orientation of the surface of a wiring forming material constituting a composite material in which a carrier material, a barrier material, and a wiring forming material are laminated and joined is (200) /
((200) + (220) + (311) + (111) +
(222))> 35%. In order to provide the wiring forming material with etching characteristics capable of coping with a narrower pitch, the crystal orientation of the surface required by the above relationship is set to (200) / ((200) + (22)
0) + (311) + (111) + (222))> 35
%, More preferably (200) / ((200) + (22)
0) + (311) + (111) + (222))> 70%
It is good to adjust to. This is because when the orientation of the crystal on the surface is measured using an X-ray diffractometer, (200), (22)
The main directions of (0), (311), (111), and (222) are measured. Of these, the (200) orientation is a surface on which a crystal lattice perpendicular to the surface can be obtained, so that it is particularly effective for suppressing side etching and can also eliminate wiring width defects such as chipping of wiring. Therefore, it is necessary to accumulate in this direction as much as possible.

【0012】また、本発明の複合材において、配線形成
材とキャリア材に挟み込まれ、中間層となる、バリア材
は実質的に欠陥のない連続面を形成するのが好ましい。
実質的に欠陥のない連続面とは、複合材の断面を顕微鏡
で観察した時に、例えば図1に示されるように、バリア
材に破れ(破断)がなく、エッチング液が浸透しない状
態にあることを言う。具体的には、配線形成材をエッチ
ングする際にはキャリア材が、キャリア材をエッチング
する際には配線形成材が、エッチングされることが無い
状態を言う。
In the composite material of the present invention, the barrier material sandwiched between the wiring forming material and the carrier material and serving as an intermediate layer preferably forms a substantially defect-free continuous surface.
A substantially defect-free continuous surface means that when a cross section of a composite material is observed with a microscope, for example, as shown in FIG. Say Specifically, it refers to a state in which the carrier material is not etched when the wiring material is etched, and the wiring material is not etched when the carrier material is etched.

【0013】また、本発明の配線形成材は、別ラインで
製造された幅寸法300mm以上のCu系の電解箔や、
若しくはCu系の圧延箔を用いることで、プリント基板
メーカのエッチングによる配線形成を量産的に且つ低コ
ストで行うことが可能となる。この時、上記電解箔では
幅寸法が1000mm以上、上記圧延箔では幅寸法が6
00mm以上のものを選ぶと、更に生産性を向上できる
ため、特に好適である。この場合の配線形成材の厚み
は、エッチングによる配線のピッチによって、厚さの比
較的厚いものから薄いものを適宜選べば良いが、50μ
mを超えて厚いものを選べば、配線のエッチングに要す
る時間が長くなり、生産性が低下するため、厚みの上限
は50μm以下である。より好ましくは、18μm以下
であり、更に好ましくは10μm以下である。
[0013] The wiring forming material of the present invention can be obtained by using a Cu-based electrolytic foil having a width of 300 mm or more manufactured on a separate line,
Alternatively, by using a Cu-based rolled foil, it is possible to mass-produce wiring at low cost by a printed circuit board maker. At this time, the width of the electrolytic foil is 1000 mm or more, and the width of the rolled foil is 6 mm or more.
It is particularly preferable to select the one having a thickness of 00 mm or more because the productivity can be further improved. In this case, the thickness of the wiring forming material may be appropriately selected from a relatively large one and a thin one depending on the wiring pitch by etching.
If the thickness is larger than m, the time required for etching the wiring becomes longer and the productivity is reduced. Therefore, the upper limit of the thickness is 50 μm or less. More preferably, it is 18 μm or less, even more preferably 10 μm or less.

【0014】また、配線形成材はCu系の電解箔を用い
る時には、その用途によって好適な電解箔を選ぶ必要が
ある。例えば、超高密度配線の形成を目的とするのであ
れば、厚み5μm、9μmと言った極薄銅箔であり、ま
た高多層するのであれば、クラック防止用箔等を選ぶと
良い。また本発明で、Cu系の電解箔を配線形成材とし
て用いる時は、配線の微細化を阻害するサイドエッチを
抑制するために、エッチングが開始される側は微細金属
組織を有するシャイニー面とすると良い。更に好ましく
は、電解箔の結晶粒径の変化の要因として、最も大きい
ものとしては、電解液中のClと添加剤のにかわ等で
ため、例えば電解箔の柱状組織を成長させる電解液中の
Clを、電解液の濃度により、添加するにかわの濃度
で柱状組織の成長を抑制したものは、平均結晶粒径が微
細なため、エッチング特性にとって特に好ましい。
When a Cu-based electrolytic foil is used as a wiring forming material, it is necessary to select a suitable electrolytic foil depending on the use. For example, an ultra-thin copper foil having a thickness of 5 μm or 9 μm is used for the purpose of forming an ultra-high-density wiring. In the present invention, when a Cu-based electrolytic foil is used as a wiring forming material, in order to suppress side etching that hinders finer wiring, the side where etching is started has a shiny surface having a fine metal structure. good. More preferably, as a factor of the change in the crystal grain size of the electrolytic foil, the largest one is due to the glue of Cl and the additive in the electrolytic solution, for example, in the electrolytic solution for growing the columnar structure of the electrolytic foil. The one in which the growth of the columnar structure is suppressed at a concentration of glue by adding Cl to the concentration of the electrolytic solution is particularly preferable for the etching characteristics because the average crystal grain size is fine.

【0015】また本発明で、配線形成材として圧延箔を
用いる時は、圧延箔自体に、ピンホール等の欠陥が実質
的に存在しないため、欠陥の極めて少ない配線が得られ
る利点や、また機械的特性に優れているため、例えば配
線の一部を曲げ加工を施す際に、クラックの発生等と言
った、配線の欠陥も無くすことができる。この時、入手
のし易さから、無酸素銅、タフピッチ銅を用いれば良
く、更に、金属組織中に非金属介在物が少なくなる製法
で得られたものを選ぶと良い。
Further, in the present invention, when a rolled foil is used as a wiring forming material, since the rolled foil itself has substantially no defects such as pinholes, it is possible to obtain wiring having extremely few defects, For example, when a part of a wiring is subjected to a bending process, a defect of the wiring such as generation of a crack can be eliminated. At this time, oxygen-free copper and tough pitch copper may be used from the viewpoint of availability, and it is preferable to select a material obtained by a manufacturing method in which nonmetallic inclusions are reduced in the metal structure.

【0016】次に、本発明の転写法用複合材のキャリア
材は引張り強さ300MPaの圧延箔や電解箔を用いるこ
とが望ましい。これは、キャリア材に求められている剛
性を満足し得るものであり、高い剛性を付与されたキャ
リア材を用いれば、ハンドリング性が向上するからであ
る。この時、上述の引張り強さを300MPa以上の箔を
用いれば、キャリア材自身の厚みも薄くできることか
ら、キャリア材をエッチングで除去する時に、エッチン
グに要する時間が極めて短時間となり、特に量産性に優
れたものとなる。更にこの場合に、圧延箔は電解箔と比
較して、薄い厚みで300MPa以上の引張り強さに、調
整可能であるため特に好適である。また、この場合のキ
ャリア材もバリア材とエッチング条件が異なるもので良
く、好ましくは、配線形成材と同質のCu系の箔を用い
ると良い。好適な厚みはエッチング性とハンドリング性
とを考慮して、15〜200μmとするのがよい。
Next, as the carrier material of the composite material for a transfer method of the present invention, it is desirable to use a rolled foil or an electrolytic foil having a tensile strength of 300 MPa. This is because the rigidity required of the carrier material can be satisfied, and the use of the carrier material with high rigidity improves the handleability. At this time, if a foil having the above-mentioned tensile strength of 300 MPa or more is used, the thickness of the carrier material itself can be reduced, so that when the carrier material is removed by etching, the time required for etching becomes extremely short, and especially in mass production. It will be excellent. Furthermore, in this case, the rolled foil is particularly suitable because it can be adjusted to a tensile strength of 300 MPa or more at a thinner thickness as compared with the electrolytic foil. In this case, the carrier material may be different from the barrier material in etching conditions. Preferably, a Cu-based foil having the same quality as the wiring forming material is used. The preferable thickness is 15 to 200 μm in consideration of etching properties and handling properties.

【0017】上述するように、引張り強さが300MPa
以上のキャリア材を用いれば、後術する三層構造の転写
法用複合材にした時、圧延方向の引張り強さは250MP
a以上に容易に調整できる。この転写法用複合材は樹脂
基板に転写されるため、その要求される形状に応じて、
曲げ加工や絞り加工等も加えられることがあり、圧延方
向の引張り強さは250MPa以上であることが好まし
く、より好ましくは、幅方向の引張り強さも250MPa
以上あればよい。
As described above, the tensile strength is 300 MPa
When the above carrier material is used, when the composite material for a transfer method having a three-layer structure to be described later is used, the tensile strength in the rolling direction is 250MP.
It can be adjusted more easily than a. Since the composite material for transfer method is transferred to a resin substrate, depending on the required shape,
Bending or drawing may also be added, and the tensile strength in the rolling direction is preferably 250 MPa or more, more preferably the tensile strength in the width direction is also 250 MPa.
I just need more.

【0018】次に、バリア材は、キャリア材をエッチン
グで除去する時と、配線形成材をエッチング溶液で配線
パターニングを行う時に、エッチング溶液を反対面側ま
で到達させないために用いられるものであるため、上述
したように実質的に欠陥のない連続面を形成させること
が好ましく、また、キャリア材および配線形成材とエッ
チング条件の異なる金属である必要がある。また、バリ
ア材は最終的にはエッチングにより除去されるため、厚
さが薄い方が良く、3μm以下、より好ましくは1μm
以下のニッケルめっきまたはニッケル蒸着がよい。
Next, the barrier material is used to prevent the etching solution from reaching the opposite side when the carrier material is removed by etching and when the wiring forming material is subjected to wiring patterning with the etching solution. As described above, it is preferable to form a continuous surface that is substantially free from defects, and it is necessary that the metal be different in etching conditions from the carrier material and the wiring forming material. Further, since the barrier material is finally removed by etching, the thinner the better, the better, 3 μm or less, more preferably 1 μm
The following nickel plating or nickel deposition is preferred.

【0019】具体的には、例えば配線形成材とキャリア
材が無酸素銅である場合、バリア材は、ニッケル、金、
ハンダ、錫、銀等の金属層を湿式や乾式のめっき法で形
成するのが良く、中でも量産性に優れたニッケルめっき
を選ぶと良く、例えば帯状のキャリア材の片面にフープ
ニッケルめっきを施すことで、連続的にバリア層を形成
できる。
Specifically, for example, when the wiring forming material and the carrier material are oxygen-free copper, the barrier material is nickel, gold,
It is preferable to form a metal layer of solder, tin, silver, etc. by a wet or dry plating method.In particular, it is preferable to select nickel plating which is excellent in mass productivity. Thus, a barrier layer can be formed continuously.

【0020】上述のフープニッケルめっきによるバリア
層の形成には、例えば図7に示すように、巻き出しコイ
ル(17)から巻き出された金属箔(18)を脱脂漕(19)で脱脂
し、水洗漕(20)で水洗し、ニッケルめっき漕(21)でめっ
きを繰返し、水洗漕で水洗し、乾燥器(22)で乾燥させ、
巻き取りコイル(23)でバリア層を形成した二層複合材を
巻き取る。この時、図8に示すようなニッケルめっき漕
中にはニッケル電極(24)が設けられ、金属箔の側面から
のめっきの廻り込みを防ぐ遮蔽板(25)を用いるようなニ
ッケルめっき形成装置でニッケルめっきのバリア層を形
成すれば、安定的に5μm以下のバリア層を形成した二
層構造の帯材を得ることができる。上述のバリア層形成
は、配線形成材用箔材に形成しても、キャリア材用箔材
の何れでも良いが、比較的厚さの厚いキャリア材用箔材
に形成することが好ましい。
In forming the barrier layer by the above-mentioned hoop nickel plating, for example, as shown in FIG. 7, a metal foil (18) unwound from an unwinding coil (17) is degreased in a degreasing tank (19). Rinse with water (20), repeat plating with nickel plating tank (21), rinse with water, dry with dryer (22),
The two-layer composite material on which the barrier layer is formed is wound by the winding coil (23). At this time, a nickel electrode (24) is provided in the nickel plating tank as shown in FIG. 8 and a nickel plating forming apparatus using a shielding plate (25) for preventing the plating from wrapping around from the side of the metal foil. If a nickel-plated barrier layer is formed, a strip having a two-layer structure in which a barrier layer of 5 μm or less is formed stably can be obtained. The above-described barrier layer may be formed on a foil material for a wiring forming material or a foil material for a carrier material, but is preferably formed on a foil material for a carrier material having a relatively large thickness.

【0021】本発明では、上述のようにして、配線形成
材若しくはキャリア材の片面にバリア層を形成した後、
クラッドすることで三層構造の転写法用複合材とする。
この時、図9に示すような真空クラッド装置を用いて上
述の二層構造の帯材と、配線形成材若しくはキャリア材
の圧着表面側を活性化処理し、圧延ロール等で圧下率数
%〜60%以下の圧下を加えて圧着させ、積層接合する
ことが好ましく、活性化処理後、真空中で低圧下率で冷
間圧延接合させたものは圧着も良好で、接合界面の平坦
度も良い。
In the present invention, after forming a barrier layer on one surface of a wiring forming material or a carrier material as described above,
By cladding, a composite material for a transfer method having a three-layer structure is obtained.
At this time, the above-mentioned band material having the two-layer structure and the press-bonded surface side of the wiring forming material or the carrier material are activated using a vacuum cladding apparatus as shown in FIG. It is preferable to apply pressure reduction of 60% or less and press-bond and laminate-join. After activation treatment, those subjected to cold-roll bonding at a low reduction rate in vacuum have good pressure-bonding and good flatness of the bonding interface. .

【0022】本発明では、接合面を活性化処理する方法
として、イオンエッチング等があり、例えば安定したグ
ロー放電で、連続的にエッチングできるものとして、1
〜50MHZの高周波電源を用いたマグネトロンスパッタ
法を採用できる。具体的には、例えばエッチング室と圧
延室とを有し、更に前記エッチング室と圧延室にはそれ
ぞれ真空ポンプを設けた構造の金属箔の真空圧着装置に
おいて、エッチングを施す際には、エッチング室内を1
×10−2Pa以下に減圧し、例えばアルゴンガスを導
入し10〜10−2Pa台のアルゴンガス雰囲気とすれ
ば、圧延室との間に高周波を通電すれば、エッチング室
内にプラズマが発生し、接合面を活性化できる。また、
導入するガスとして、上記のアルゴンガスの他、ネオ
ン、ヘリウム、クリプトン、キセノン、ラドン、窒素お
よび水素や水素と不活性ガスとの混合ガス等のガスを用
いることができる。
In the present invention, as a method of activating the bonding surface, there is ion etching or the like.
A magnetron sputtering method using a high-frequency power supply of about 50 MHz can be employed. Specifically, for example, when the etching chamber and the rolling chamber are provided with a vacuum pressure bonding apparatus for metal foil having a structure in which a vacuum pump is provided in each of the etching chamber and the rolling chamber, when the etching is performed, the etching chamber is used. 1
When the pressure is reduced to × 10 −2 Pa or less and, for example, an argon gas is introduced and an argon gas atmosphere of the order of 10 −10 −2 Pa is applied, a high frequency is applied between the rolling chamber and plasma is generated in the etching chamber. Activate the bonding surface. Also,
As the gas to be introduced, in addition to the above-described argon gas, a gas such as neon, helium, krypton, xenon, radon, nitrogen, hydrogen, or a mixed gas of hydrogen and an inert gas can be used.

【0023】また本発明では、例えば物理/化学的手法
でエッチングできる、反応性イオンエッチング等も採用
できる。本発明において、反応性イオンエッチングで接
合面の活性化を行う場合、例えば反応性イオンエッチン
グで接合面表面に形成され、圧着の時に有害となる酸化
層除去等の特定の物質の除去には、通常のアルゴンガス
を用いた物理的エッチングと比較して、エッチング速度
が速く、効果的に除去することが可能であるため、エッ
チングの高速化において著しい効果を生ずるため有効で
ある。本発明で反応性イオンエッチングを採用する場
合、用いるガスとしては、例えばCF+H、C
等のガスを用いれば良い。
In the present invention, reactive ion etching or the like, which can be etched by a physical / chemical method, can also be employed. In the present invention, when activating the bonding surface by reactive ion etching, for example, to remove a specific substance such as an oxide layer removal formed on the bonding surface surface by reactive ion etching and harmful at the time of pressure bonding, Compared to physical etching using ordinary argon gas, the etching rate is high and the removal can be performed effectively, so that a significant effect is brought about in increasing the etching speed, which is effective. When reactive ion etching is employed in the present invention, the gas to be used is, for example, CF 4 + H 2 , C 2 F
A gas such as 6 may be used.

【0024】また、本発明のイオンエッチングで、更に
高速化をおこなうためには、例えば、接合面表面に形成
された物質のうち、例えばマグネトロンスパッタ法で除
去するには時間のかかる物質を、反応性イオンエッチン
グで高速で除去した後、マグネトロンスパッタ法を組合
せることで、接合面の清浄化が極めて良好で、かつ高速
で活性化することができるため、特に有効である。
Further, in order to further increase the speed in the ion etching of the present invention, for example, of the substances formed on the surface of the bonding surface, those substances which take a long time to remove by, for example, magnetron sputtering, are reacted. Combination with magnetron sputtering after high-speed removal by ionic ion etching is particularly effective because the bonding surface can be cleaned very well and activated at high speed.

【0025】また、本発明では、接合面が上述の方法等
を用いて活性化処理した後、圧延により積層接合され
る。本発明の圧延としては、活性化処理後、冷間で圧延
を行うのが好ましい。本発明で言う冷間とは、常温〜変
態点以下までの温度を言うが、変態点の無い材料を用い
る場合は、再結晶温度以下とし、更に、バリア材とキャ
リア材や配線形成材の熱膨張係数に大きな差異がある場
合は、常温〜100℃の範囲内で圧延を施すことがよ
く、また接合強度が弱い場合は、加熱処理を行なう。ま
た、圧下率としては、圧延で厚みの調整を行う場合は、
最大でも60%までとする必要がある。これは60%を
超えると、バリア材が破断し、実質的に欠陥のない連続
面が得られないためである。好ましくは40%以下であ
り、更に好ましくは10%以下である。また、キャリア
材や配線形成材の厚さが、それぞれ求められる程度の厚
みに予め加工が施されている場合は、0.1〜1%程度
の低圧下率で十分な接合強度を付与することができ、か
つ界面の平坦度も良好となる。
Further, in the present invention, after the joint surface is activated by the above-mentioned method or the like, the laminate surface is joined by rolling. As the rolling of the present invention, it is preferable to perform cold rolling after the activation treatment. In the present invention, the term “cold” refers to a temperature from room temperature to the transformation point or lower. When a material having no transformation point is used, the temperature is set to a recrystallization temperature or lower. When there is a large difference in the expansion coefficient, it is preferable to perform rolling at a temperature in the range of room temperature to 100 ° C., and when the bonding strength is weak, heat treatment is performed. Also, as the reduction rate, when adjusting the thickness by rolling,
It must be up to 60%. This is because if it exceeds 60%, the barrier material breaks and a continuous surface substantially free of defects cannot be obtained. It is preferably at most 40%, more preferably at most 10%. When the thickness of the carrier material or the wiring forming material is previously processed to the required thickness, sufficient bonding strength should be provided at a low reduction ratio of about 0.1 to 1%. And the flatness of the interface is improved.

【0026】また本発明の転写法用複合材製造方法とし
てキャリア材もしくは配線形成材の一方もしくは両方に
バリア材として、蒸着によりバリア層を形成し、該バリ
ア層が中間層となるように圧延により接合させるてもよ
い。バリア材をキャリア材もしくは配線形成材の一方の
みに形成する場合、生産設備が簡素となる利点がある
が、両方に蒸着させるほうが、接合が強固になるため生
産条件は安定する。そしてさらに、接合強さを向上させ
るため、加熱処理してもよい。具体的には図12に示す
ような蒸着装置と圧延装置とを備えた真空槽で連続的に
製造できる。この方法では、蒸着したバリア材の被接合
面が活性化しているので、数%程度の圧延で圧着すれば
三層構造の複合材が容易に製造できる。
According to the method for producing a composite material for a transfer method of the present invention, a barrier layer is formed by vapor deposition as a barrier material on one or both of a carrier material and a wiring forming material, and is rolled so that the barrier layer becomes an intermediate layer. They may be joined. When the barrier material is formed only on one of the carrier material and the wiring forming material, there is an advantage that the production equipment is simplified. However, when vapor deposition is performed on both of them, the bonding becomes stronger, so that the production conditions are stabilized. Further, heat treatment may be performed to further improve the bonding strength. Specifically, it can be continuously manufactured in a vacuum tank provided with a vapor deposition device and a rolling device as shown in FIG. In this method, since the bonded surface of the vapor-deposited barrier material is activated, a three-layer composite material can be easily manufactured by pressure bonding by rolling of about several percent.

【0027】本発明で言う蒸着としては、化学蒸着法
や、真空蒸着法、スパッタリング法、イオンプレーティ
ング法、分子線蒸着法、反応性PVD法等の物理蒸着法
を採用できるが、このうち本発明のバリア材や配線形成
材の付着形成には、近年の成膜技術の高速化が著しい、
真空蒸着法、スパッタリング法、イオンプレーティング
法の物理蒸着法が好適であり、最も好ましくは生産性に
優れ、かつ装置の構造が簡便な真空蒸着法、もしくは緻
密な成膜が可能なスパッタリング法を用いることであ
る。スパッタリング法では、上述のニッケル、金、錫、
銀、亜鉛、アルミの他にチタン、クロム、モリブデン、
白金等の高融点金属の場合も対応可能であり、また、バ
リア材と配線形成材やキャリア材との境界層に拡散層が
形成されにくいため、素材の選択範囲が広い。これらの
物理蒸着法を用いれば、付着形成される金属層の厚みを
均一に制御し易く、得られた金属層も均質なものとな
る。
As the vapor deposition referred to in the present invention, a physical vapor deposition method such as a chemical vapor deposition method, a vacuum vapor deposition method, a sputtering method, an ion plating method, a molecular beam vapor deposition method, and a reactive PVD method can be employed. In the formation of the adhesion of the barrier material and the wiring forming material of the present invention, the speeding up of recent film forming techniques is remarkable.
A vacuum evaporation method, a sputtering method, and a physical evaporation method such as an ion plating method are preferable, and most preferably, a vacuum evaporation method which is excellent in productivity and has a simple apparatus structure, or a sputtering method capable of dense film formation. It is to use. In the sputtering method, nickel, gold, tin,
In addition to silver, zinc and aluminum, titanium, chromium, molybdenum,
A high melting point metal such as platinum can be used, and a diffusion layer is not easily formed in a boundary layer between a barrier material and a wiring forming material or a carrier material. When these physical vapor deposition methods are used, the thickness of the metal layer to be formed is easily controlled to be uniform, and the obtained metal layer is also uniform.

【0028】そして、本発明では上述のように圧延で積
層接合した後に、接合強さ向上を目的に三層複合材を加
熱することができる。圧着後の加熱温度は、素材の膨張
や軟化によるハンドリング性の悪化、素材の再結晶によ
る配向性のランダム化を低減するため、なるべく低い温
度で行うのが好ましいが、圧着後、素材厚さが厚くなっ
た状態で加熱するため、比較的高い温度に加熱すること
が可能である。例えば配線形成材およびキャリア材にC
uを、バリア材にニッケルを用いる場合、加熱温度は3
00℃とすることができる。加熱は搬送中の帯材に対し
て連続的に行なうことが好ましいが、昇温速度が十分で
ない場合は、巻き取り後のコイルに対して加熱してもよ
い。搬送中の帯材を加熱する方法としては、搬送経路上
に加熱装置を取り付けても良い。
In the present invention, the three-layer composite material can be heated for the purpose of improving the bonding strength after the lamination bonding by rolling as described above. The heating temperature after crimping is preferably set as low as possible in order to reduce deterioration in handling properties due to expansion and softening of the material and randomization of orientation due to recrystallization of the material. Since heating is performed in a thickened state, it is possible to heat to a relatively high temperature. For example, C is used for wiring forming material and carrier material.
u and nickel as the barrier material, the heating temperature is 3
It can be set to 00 ° C. Heating is preferably performed continuously on the strip being conveyed. However, if the heating rate is not sufficient, the coil after winding may be heated. As a method of heating the strip being transported, a heating device may be attached on the transport path.

【0029】上述の方法を用いて得られた転写法用複合
材の配線形成材上に、レジストフィルムをラミネート
し、露光、現像を施し、次いで、不要なレジストフィル
ムを除去し所望の配線(回路)を形成した後、露出した
配線形成材を選択的にエッチングすることで、配線が形
成された複合材とすることができる。また、所望の配線
形状にエッチングした後、樹脂基板に転写法を用いて配
線を形成しプリント基板とすることもできる。この時、
樹脂基板としては、ガラスエポキシ、ポリイミド、BT
レジンを用いることがきる。
A resist film is laminated on the wiring forming material of the composite material for a transfer method obtained by the above-described method, exposed and developed, and then the unnecessary resist film is removed to obtain a desired wiring (circuit). ) Is formed, and the exposed wiring forming material is selectively etched to obtain a composite material having wiring formed thereon. Alternatively, after etching into a desired wiring shape, wiring may be formed on a resin substrate by using a transfer method to form a printed circuit board. At this time,
As a resin substrate, glass epoxy, polyimide, BT
Resin can be used.

【0030】また、本発明は、狭ピッチの高密度配線に
好適であることから、従来のビルドアップの積層枚数を
少なくできる。そのため、本発明のプリント基板を用い
れば、プリント基板そのものの配線密度を高めることが
でき、本発明のプリント基板を積層したビルドアップ基
板や、例えばフリップチップ実装、Wafer Level CSP
等に特に有効である。
Further, since the present invention is suitable for high-density wiring with a narrow pitch, the number of stacked layers in the conventional build-up can be reduced. Therefore, if the printed circuit board of the present invention is used, the wiring density of the printed circuit board itself can be increased, and a build-up board in which the printed circuit boards of the present invention are stacked, for example, flip-chip mounting, Wafer Level CSP
It is particularly effective for such applications.

【0031】また本発明は、前述のプリント基板やビル
ドアップ基板を用いて半導体装置とすることができる。
本発明の半導体装置としては、特に限定されるものでは
ないが、その好適な一例としては、図4に示すように半
導体チップ(10)からの信号を外部に導くソルダーボール
(8)を介し、フリップチップ実装とし、更にプリント基
板(13)が複数枚積層されたビルドアップ基板(14)に信号
が伝達される半導体装置とすることができ、狭ピッチに
好適なエッチング性に優れた導体板を用いることから、
ビルドアップ基板に直接実装する半導体装置(Flip Ch
ip,Wafer Level Package)に特に好適である。なお、
図4で示すソリッドビアの形成には、円錐状に形成され
たAgのペーストをプリプレグに貫通させる方法で形成
できるが、めっき法を採用しても良い。
Further, according to the present invention, a semiconductor device can be formed by using the above-mentioned printed board or build-up board.
Although the semiconductor device of the present invention is not particularly limited, a preferred example thereof is a solder ball for guiding a signal from a semiconductor chip (10) to the outside as shown in FIG.
Through (8), the semiconductor device can be a flip-chip mounted semiconductor device in which a signal is transmitted to a build-up board (14) in which a plurality of printed boards (13) are stacked. The use of an excellent conductor plate
Semiconductor device (Flip Ch) directly mounted on build-up board
It is particularly suitable for ip, Wafer Level Package). In addition,
The solid via shown in FIG. 4 can be formed by a method in which a conical Ag paste is passed through a prepreg, but a plating method may be employed.

【0032】また、一例として示した図4では、ビルド
アップ基板の両面にめっき法で表面実装を施している
が、めっき法で配線を形成すると、複数枚の配線形成に
は、形成に時間が多く必要であり、更に、狭ピッチの配
線形成が困難となる。従って、この表面実装にも、本発
明のエッチング性に優れた導体板を用いて転写法で配線
を形成すれば、両面に一層〜二層ずつ程度の形成で、十
分な高密度配線の形成が可能なため、配線形成時間の短
縮や、より薄型化したビルドアップ基板を得ることがで
きる。なお、ここでビルドアップ基板とは、例えばベー
ス部分をガラスエポキシ積層板とし、ベースの表面を接
続するスルーホールはエポキシ樹脂により埋められてい
るものや、表面実装をビルドアップしたもの、あるいは
前記のビルドアップ基板と表面実装とを組合せたものを
言う。
Further, in FIG. 4 shown as an example, both surfaces of the build-up substrate are surface-mounted by plating. However, when wiring is formed by plating, it takes time to form a plurality of wirings. Many are required, and it is difficult to form wiring with a narrow pitch. Therefore, also in this surface mounting, if wiring is formed by a transfer method using the conductive plate having excellent etching properties of the present invention, sufficient high-density wiring can be formed by forming one to two layers on both surfaces. As a result, it is possible to shorten the wiring formation time and obtain a thinner build-up substrate. Note that the build-up board here is, for example, a base part made of a glass epoxy laminated board, and a through hole connecting the surface of the base is filled with epoxy resin, a built-up surface mount, or the above-described one. This refers to a combination of a build-up board and surface mounting.

【0033】また、本発明は例えば図5に示すように半
導体エポキシ樹脂(12)に封入され、ダイボンド材(9)で
接着された半導体チップ(10)から、ボンディングワイヤ
(11)を通してガラスエポキシ樹脂基板(6)上に形成され
た銅配線(15)に信号が伝達され、その銅線板がソルダー
ボール(8)等で外部に信号を導く構造のBGAとするこ
ともできる。また、本発明は例えば図6に示すようにヒ
ートスプレッダー(16)を仮基板として用いても良く、C
SPや、マルチレイヤーBGA等にも好適である。
The present invention also relates to a method for forming a bonding wire from a semiconductor chip (10) sealed in a semiconductor epoxy resin (12) and bonded with a die bonding material (9) as shown in FIG.
Signals are transmitted to the copper wiring (15) formed on the glass epoxy resin substrate (6) through (11), and the copper wire plate is a BGA with a structure to guide signals to the outside with solder balls (8) etc. Can also. In the present invention, for example, a heat spreader (16) may be used as a temporary substrate as shown in FIG.
It is also suitable for SP, multi-layer BGA, and the like.

【0034】[0034]

【実施例】以下に、実施例として本発明を更に詳しく説
明する。配線形成材として、幅寸法350mm、厚さ1
0μmの無酸素銅圧延箔の帯材を用意した。次にキャリ
ア材として幅寸法350mm、厚さ18μmの電解銅箔
の帯材と幅寸法350mm、厚さ25μmの無酸素銅圧
延箔の帯材とを用意した。なお、キャリア材の電解銅箔
の引張り強さはJIS C 6515号に従って測定し、300
MPaであることを確認した。同様に無酸素銅圧延箔の引
張り強さは350MPaであることを確認した。
The present invention will be described below in more detail by way of examples. 350mm width, 1 thickness as wiring forming material
A strip of 0 μm oxygen-free copper rolled foil was prepared. Next, a strip of electrolytic copper foil having a width of 350 mm and a thickness of 18 μm and a strip of rolled oxygen-free copper foil having a width of 350 mm and a thickness of 25 μm were prepared as carrier materials. In addition, the tensile strength of the electrolytic copper foil of the carrier material was measured according to JIS C 6515,
MPa. Similarly, it was confirmed that the tensile strength of the oxygen-free copper rolled foil was 350 MPa.

【0035】図7に示すニッケルフープめっき形成装置
を用いて、電解銅箔のキャリア材のシャイニー面に厚さ
0.5μmのバリア層を形成し、二層複合材No.1を
得た。また同様に、キャリア材無酸素銅圧延箔の片面に
も厚さ0.5μmのバリア層を形成し、二層複合材N
o.2を得た。更に、無酸素銅圧延箔の配線形成材の片
面表面に厚さ0.5μmのバリア層を形成し、二層複合
材No.3を得た。なお、図8に示す遮蔽板によって、
バリア層形成時のニッケルめっきの廻り込みを確認する
ことはできなかった。
Using a nickel hoop plating forming apparatus shown in FIG. 7, a 0.5 μm thick barrier layer was formed on the shiny surface of the carrier material of the electrolytic copper foil. 1 was obtained. Similarly, a barrier layer having a thickness of 0.5 μm is formed on one side of the oxygen-free copper rolled copper foil as a carrier material.
o. 2 was obtained. Further, a barrier layer having a thickness of 0.5 μm was formed on one surface of the wiring forming material of the oxygen-free copper rolled foil. 3 was obtained. In addition, with the shielding plate shown in FIG.
No wraparound of nickel plating during formation of the barrier layer could be confirmed.

【0036】次に、上記の二層複合材No.1を図9に
示す真空クラッド装置の圧延室(32)内の金属箔巻き出し
コイル(26)としてセットし、配線形成材用無酸素銅圧延
箔を金属箔巻き出しコイル(26)としてセットし、真空ポ
ンプ(27)によって真空とした。次に、巻き出しコイルか
ら巻き出されたそれぞれの金属箔(18)は、エッチング室
(28)内に設置された接合面活性装置(29)で、接合面の活
性化処理を施され、圧延ロール(30)によって圧着され、
積層接合された複合材(31)は、複合材巻き取りコイル(3
3)により巻き取られる帯状の転写法用複合材をNo.4
とした。また、上述した同様の方法にてNo.3の二層
構造の複合材にはキャリア材として電解銅箔を積層接合
し、帯状の転写法用複合材No.5とし、No.3の二
層複合材にはキャリア材として無酸素銅圧延箔を積層接
合し、帯状の転写法用複合材No.6とし、No.2の
二層構造の複合材には無酸素銅圧延箔の配線形成材を積
層接合し、帯状の転写法用複合材No.7とした。
Next, the above two-layer composite material no. 1 is set as a metal foil unwinding coil (26) in the rolling chamber (32) of the vacuum cladding apparatus shown in FIG. 9, and an oxygen-free copper rolled foil for wiring forming material is set as a metal foil unwinding coil (26). And a vacuum pump (27). Next, each metal foil (18) unwound from the unwinding coil is placed in an etching chamber.
(28) The bonding surface activation device (29) installed in the, subjected to the activation treatment of the bonding surface, and pressed by a rolling roll (30),
The laminated composite material (31) is used for the composite material winding coil (3
The band-shaped composite material for the transfer method wound up by 3) is No. 4
And In the same manner as described above, No. Electrolytic copper foil as a carrier material was laminated and joined to the composite material having a two-layer structure of No. 3 to form a band-shaped composite material for transfer method No. 3. 5 and No. 5 The oxygen-free copper rolled foil as a carrier material was laminated and joined to the two-layer composite material of No. 3 to obtain a belt-shaped composite material for transfer method No. 3. No. 6, and no. In the composite material having a two-layer structure, a wiring forming material of an oxygen-free copper rolled foil was laminated and joined. 7 was set.

【0037】また、別の方法として、前記の厚さ10μ
mの無酸素銅圧延箔を配線形成材として、厚さ18μm
のCu電解箔をキャリア材として図12に示す装置にセ
ットし、真空ポンプ(27)によって真空とした。次に巻き
出されたそれぞれの金属箔はニッケルの蒸発源(34)に相
対し、いづれもニッケルが0.3μm蒸着され、蒸着面
を接合面として圧延ロール(30)により積層接合される転
写法用複合材をNo.8とした。更に、上述した同様な
方法にて厚さ10μmの無酸素銅圧延箔を配線形成材、
厚さ25μmの無酸素銅圧延箔をキャリア材として接合
した転写法用複合材をNo.9とした。
As another method, the thickness 10 μm is used.
m oxygen-free copper rolled foil as wiring forming material, thickness 18 μm
Was set in the apparatus shown in FIG. 12 as a carrier material, and a vacuum was drawn by a vacuum pump (27). Next, each of the unwound metal foils is opposed to a nickel evaporation source (34), and in each case nickel is vapor-deposited at a thickness of 0.3 μm, and the rolled roll (30) is used for a transfer method in which the vapor-deposited surface is a bonding surface. The composite material for No. And 8. Further, a rolled oxygen-free copper foil having a thickness of 10 μm is formed by the same method as described above,
A composite material for a transfer method in which a 25 μm-thick oxygen-free copper rolled foil was joined as a carrier material was No. 2; It was set to 9.

【0038】また、前記の厚さ10μmの無酸素銅圧延
箔を配線形成材として、厚さ18μmの電解銅箔をキャ
リア材として図12に示す装置にセットし、真空ポンプ
(27)によって真空とした。次に巻き出されたそれぞれの
金属箔はニッケルの蒸発源(34)に相対し、ニッケルが
0.2μm蒸着され、蒸着面を接合面として圧延ロール
(30)により積層接合された後、加熱装置(35)により26
0℃に加熱された転写法用複合材をNo.10とした。
更に、上述した同様な方法にて厚さ10μmの無酸素銅
圧延箔を配線形成材、厚さ25μmの無酸素銅圧延箔を
キャリア材として接合した転写法用複合材をNo.11
とした。
Further, the above-described 10 μm thick oxygen-free copper rolled foil was set as a wiring forming material, and the 18 μm thick electrolytic copper foil was set as a carrier material in the apparatus shown in FIG.
Vacuum was applied by (27). Next, each of the unwound metal foils is opposed to a nickel evaporation source (34), nickel is vapor-deposited at a thickness of 0.2 μm, and a roll is used as a bonding surface.
After being laminated and joined by (30), 26
The transfer method composite material heated to 0 ° C. It was set to 10.
Further, a composite material for a transfer method in which a rolled oxygen-free copper foil having a thickness of 10 μm was bonded as a wiring material and a rolled oxygen-free copper foil having a thickness of 25 μm was bonded as a carrier material in the same manner as described above was used as a No. 2 composite material. 11
And

【0039】また、比較のため加熱処理を高温でおこな
い、配線形成材の表面の配向性を(200)/((20
0)+(220)+(311)+(111))<35%
とした複合材を用いた。つまり、前記の厚さ10μmの
無酸素圧延銅を配線形成材として、厚さ18μmの電解
銅箔をキャリア材として、図12に示す装置にセット
し、真空ポンプ(27)によって真空とした。次に巻き出さ
れたそれぞれの金属箔はニッケルの蒸発源(34)に相対
し、ニッケルが0.2μm蒸着され、蒸着面を接合面と
して圧延ロール(30)により積層接合された後、加熱装置
(35)により600℃に加熱された転写法用複合材をN
o.12とした。これらNo.4〜No.12の構成をま
とめて下表1に示す。
For comparison, heat treatment was performed at a high temperature, and the orientation of the surface of the wiring forming material was changed to (200) / ((20)
0) + (220) + (311) + (111)) <35%
Was used. That is, the above-mentioned 10 μm-thick oxygen-free rolled copper was used as a wiring forming material, and an 18 μm-thick electrolytic copper foil was used as a carrier material, set in the apparatus shown in FIG. 12, and evacuated by a vacuum pump (27). Next, each unwound metal foil is opposed to a nickel evaporation source (34), nickel is vapor-deposited at a thickness of 0.2 μm, and the vapor-deposited surface is bonded to the rolled roll (30).
Transfer the composite material for transfer method heated to 600 ° C by (35) with N
o. It was set to 12. The configurations of Nos. 4 to 12 are shown in Table 1 below.

【0040】[0040]

【表1】 [Table 1]

【0041】上述した転写法用複合材の断面を顕微鏡で
観察し、No.4の断面形態を図1に示す。他のNo.
5〜No.12の複合材の断面形態もほぼ同様であり、
バリア材が実質的に欠陥のない連続面となっていること
を確認した。また、これらの複合材の圧延方向の引張り
強さJISC 6515号に従って測定すると、全て3
80MPa以上であった。更に配線形成材表面の配向性を
(株)リガク製X線回折装置(RINT2000)にて
測定した。このとき、X線出力は8kW、スキャンスピ
ードは2°/min、スキャンステップは0.020
°、走査範囲(2θ)は40°〜140°とした。この
測定結果の積分強度の比(%)を下表に示す。
The cross section of the above-mentioned composite material for transfer method was observed with a microscope. FIG. 1 shows a cross-sectional view of No. 4. Other Nos.
5-No. The cross-sectional form of the composite material of No. 12 is almost the same,
It was confirmed that the barrier material was a continuous surface substantially free of defects. In addition, when the tensile strength of these composites in the rolling direction was measured according to JISC 6515, all were 3
It was 80 MPa or more. Further, the orientation of the surface of the wiring forming material was measured with an X-ray diffractometer (RINT2000) manufactured by Rigaku Corporation. At this time, the X-ray output was 8 kW, the scan speed was 2 ° / min, and the scan step was 0.020.
° and the scanning range (2θ) were 40 ° to 140 °. The ratio (%) of the integrated intensity of the measurement result is shown in the table below.

【0042】[0042]

【表2】 [Table 2]

【0043】これらのNo.5〜No.12の複合材に
ついて、キャリア材表面をレジストで覆った後、50℃
のアルカリエッチャント液に10分間浸漬し、配線形成
材をエッチングした。その結果、No.12についての
み、配線形成材にとけ残りを生じ、十分にエッチングさ
れなかった。
These Nos. 5-No. For the composite material of No. 12, after covering the surface of the carrier material with a resist,
Was immersed in an alkaline etchant solution for 10 minutes to etch the wiring forming material. As a result, no. Only the sample No. 12 was left unmelted in the wiring forming material and was not sufficiently etched.

【0044】次に上記のNo.5〜No.11の転写法
用複合材を用いて配線のパターンエッチングを行なっ
た。図2に示すように、転写法用複合材(4)の配線形成
材(1)上に、ドライフィルムレジスト(5)をラミネート
し、露光、現像によって所望のレジストパターンを形成
した後、配線形成材を選択エッチして、転写法用複合材
を製作した。(図2(b)) 続いて、配線形成材上に残留するドライフィルムレジス
トを除去し、約180℃に加熱された凹みのあるガラス
エポキシ基板(6)に配線形成材側を圧着する。(図2
(c)) 次に、キャリア材(3)を選択エッチで除去後、バリア材
(2)を選択エッチで除去(図2(d))し、配線の転写が完
了させ、その後ニッケルめっきとAuめっきを施してソ
ルダーボール(8)を溶着させて、ダイボンド材(9)を用い
て半導体チップ(10)を搭載し、半導体チップ端子と配線
とをボンディングワイヤ(11)で接続し、半導体用エポキ
シ樹脂(12)で封止し、図2(e)に示す半導体装置を製作
した。
Next, the above No. 5-No. Using the composite material for transfer method No. 11, pattern etching of wiring was performed. As shown in FIG. 2, a dry film resist (5) is laminated on the wiring forming material (1) of the composite material for transfer method (4), and a desired resist pattern is formed by exposure and development. The material was selectively etched to produce a composite material for a transfer method. (FIG. 2 (b)) Subsequently, the dry film resist remaining on the wiring forming material is removed, and the wiring forming material side is pressure-bonded to a concave glass epoxy substrate (6) heated to about 180 ° C. (Figure 2
(c)) Next, after removing the carrier material (3) by selective etching, the barrier material is removed.
(2) is removed by selective etching (FIG. 2 (d)), and the transfer of the wiring is completed. Then, nickel plating and Au plating are applied, solder balls (8) are welded, and a die bonding material (9) is used. Then, a semiconductor chip (10) was mounted, a semiconductor chip terminal and a wiring were connected by a bonding wire (11), and the semiconductor chip was sealed with an epoxy resin for semiconductor (12) to produce a semiconductor device shown in FIG. 2 (e). .

【0045】また、特に高密度配線が要求されるプリン
ト基板(13)として、小形、高密度実装部品が搭載される
上下面に図3(a)で示す配線を形成した転写法用複合材
を用いて(配線を形成するまでの工程は図示せず)、上
述の転写法を用いて図3(b)に示すようにビルドアップ
基板(14)上に、プリント基板を製作した。
Further, as a printed circuit board (13) requiring particularly high-density wiring, a composite material for a transfer method in which wiring shown in FIG. 3A is formed on upper and lower surfaces on which small and high-density components are mounted is used. (Steps up to the formation of the wiring are not shown), and a printed board was manufactured on the build-up board (14) as shown in FIG.

【0046】[0046]

【発明の効果】本発明の複合材と転写法の組合せによれ
ば、急速に進展するCSP、BGAのワイヤーボンディ
ングやTAB技術に十分に対応でき、W/Bで70〜8
0μmピッチ、TABで50μmピッチが可能となる。
また、ビルトアップ基板技術にも本発明の手段は有効と
なり、ビルトアップ技術は、設備投資がかかるが、本発
明は従来設備が使えるメリットがある。
According to the combination of the composite material and the transfer method of the present invention, it can sufficiently cope with rapidly developing CSP and BGA wire bonding and TAB technology, and has a W / B of 70 to 8.
A pitch of 0 μm and a pitch of 50 μm with TAB are possible.
The means of the present invention is also effective for a built-up substrate technology, and the built-up technology requires capital investment, but the present invention has an advantage that conventional equipment can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の転写法用複合材の断面形態を示す顕微
鏡写真および模式図である。
FIG. 1 is a micrograph and a schematic view showing a cross-sectional form of a composite material for a transfer method of the present invention.

【図2】本発明の転写法用複合材を用いた半導体装置の
製造方法を示す図である。
FIG. 2 is a diagram illustrating a method for manufacturing a semiconductor device using the composite material for a transfer method of the present invention.

【図3】本発明の転写法用複合材を用いたプリント基板
の製造方法を示す図である。
FIG. 3 is a view showing a method for manufacturing a printed circuit board using the composite material for a transfer method of the present invention.

【図4】本発明の一例を示す半導体装置の構成図であ
る。
FIG. 4 is a configuration diagram of a semiconductor device illustrating an example of the present invention.

【図5】本発明の一例を示す半導体装置の構成図であ
る。
FIG. 5 is a configuration diagram of a semiconductor device illustrating an example of the present invention.

【図6】本発明の一例を示す半導体装置の構成図であ
る。
FIG. 6 is a configuration diagram of a semiconductor device illustrating an example of the present invention.

【図7】ニッケルめっき形成装置の一例を示す構成図で
ある。
FIG. 7 is a configuration diagram illustrating an example of a nickel plating forming apparatus.

【図8】ニッケルめっき形成装置の一例を示す構成図で
ある。
FIG. 8 is a configuration diagram illustrating an example of a nickel plating forming apparatus.

【図9】本発明の転写法用複合材の製造装置の一例を示
す構成図である。
FIG. 9 is a configuration diagram illustrating an example of an apparatus for manufacturing a composite material for a transfer method according to the present invention.

【図10】転写法の一例を示す図である。FIG. 10 is a diagram illustrating an example of a transfer method.

【図11】転写法の一例を示す図である。FIG. 11 is a diagram illustrating an example of a transfer method.

【図12】本発明の転写法用複合材の製造装置の一例を
示す構成図である。
FIG. 12 is a configuration diagram illustrating an example of an apparatus for manufacturing a composite material for a transfer method according to the present invention.

【符号の説明】[Explanation of symbols]

1 配線形成材、2 バリア材、3 キャリア材、4
転写法用複合材、5ドライフィルムレジスト、6 ガラ
スエポキシ基板、7 配線層、8 ソルダーボール、9
ダイボンド材、10 半導体チップ、11ボンディン
グワイヤ、12 半導体用エポキシ樹脂、13 プリン
ト基板、14 ビルドアップ基板、15 銅配線、16
ヒートスプレッダ、17 金属箔巻き出しコイル、1
8 金属箔、19 脱脂漕、20 水洗漕、21 ニッ
ケルめっき漕、22 乾燥器、23 巻き取りコイル、
24 ニッケル電極、25 遮蔽板、26 金属箔巻き
出しコイル、27 真空ポンプ、28 エッチング室、
29 接合面活性化装置、30 圧延ロール、31 複
合材、 32 圧延室、33 複合材巻き取りコイル、
34 蒸発源、35 加熱装置。
1 wiring forming material, 2 barrier material, 3 carrier material, 4
Composite material for transfer method, 5 dry film resist, 6 glass epoxy board, 7 wiring layer, 8 solder ball, 9
Die bond material, 10 semiconductor chip, 11 bonding wire, 12 epoxy resin for semiconductor, 13 printed board, 14 build-up board, 15 copper wiring, 16
Heat spreader, 17 Metal foil unwinding coil, 1
8 metal foil, 19 degreasing tank, 20 washing tank, 21 nickel plating tank, 22 dryer, 23 winding coil,
24 nickel electrode, 25 shielding plate, 26 metal foil unwinding coil, 27 vacuum pump, 28 etching chamber,
29 bonding surface activation device, 30 rolling roll, 31 composite material, 32 rolling room, 33 composite material winding coil,
34 evaporation source, 35 heating device.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B23K 101:42 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) // B23K 101: 42

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 キャリア材とバリア材と配線形成材と
が、積層接合された複合材であって、前記配線形成材の
表面の配向性は、(200)/((200)+(22
0)+(311)+(111)+(222))>35%
の関係を満足することを特徴とする転写法用複合材。
1. A composite material in which a carrier material, a barrier material, and a wiring forming material are laminated and joined, and the orientation of the surface of the wiring forming material is (200) / ((200) + (22)
0) + (311) + (111) + (222))> 35%
A composite material for a transfer method, characterized by satisfying the following relationship:
【請求項2】 バリア材が実質的に欠陥のない連続面を
形成していることを特徴とする請求項1に記載の転写法
用複合材。
2. The composite material for a transfer method according to claim 1, wherein the barrier material forms a continuous surface having substantially no defects.
【請求項3】 配線形成材の幅寸法が300mm以上
で、板厚が50μm以下であり、Cu系の電解箔である
ことを特徴とする請求項1または2に記載の転写法用複
合材。
3. The composite material for a transfer method according to claim 1, wherein the wiring forming material has a width of 300 mm or more, a plate thickness of 50 μm or less, and is a Cu-based electrolytic foil.
【請求項4】 配線形成材の幅寸法が300mm以上
で、板厚が50μm以下であり、Cu系の圧延箔である
ことを特徴とする請求項1または2に記載の転写法用複
合材。
4. The composite material for a transfer method according to claim 1, wherein the wiring forming material has a width of 300 mm or more, a plate thickness of 50 μm or less, and is a Cu-based rolled foil.
【請求項5】 キャリア材は引張り強さ300MPa以上
であることを特徴とする請求項1乃至5の何れかに記載
の転写法用複合材。
5. The composite material for a transfer method according to claim 1, wherein the carrier material has a tensile strength of 300 MPa or more.
【請求項6】 バリア材は厚さ3μm以下のニッケルめ
っきで形成されることを特徴とする請求項1乃至6の何
れかに記載の転写法用複合材。
6. The composite material for a transfer method according to claim 1, wherein the barrier material is formed by nickel plating having a thickness of 3 μm or less.
【請求項7】 バリア材は厚さ3μm以下のニッケル蒸
着で形成されることを特徴とする請求1乃至6の何れか
に記載の転写法用複合材。
7. The composite material for a transfer method according to claim 1, wherein the barrier material is formed by vapor deposition of nickel having a thickness of 3 μm or less.
【請求項8】 複合材の圧延方向の引張り強さが、25
0MPa以上であることを特徴とする請求項1乃至8の何
れかに記載の転写法用複合材。
8. The tensile strength of the composite material in the rolling direction is 25%.
The composite material for a transfer method according to any one of claims 1 to 8, wherein the composite material has a pressure of 0 MPa or more.
【請求項9】 配線形成材にエッチングにより配線が形
成されたことを特徴とする請求項1乃至9の何れかに記
載の転写法用複合材。
9. The composite material for a transfer method according to claim 1, wherein a wiring is formed on the wiring forming material by etching.
【請求項10】 請求項10に記載の転写法用複合材を
用いて、樹脂に配線が転写されてなることを特徴とする
プリント基板。
10. A printed circuit board, wherein a wiring is transferred to a resin using the composite material for a transfer method according to claim 10.
【請求項11】 請求項10に記載の転写法用複合材を
用いて、樹脂に配線が転写されてなることを特徴とする
半導体装置。
11. A semiconductor device, wherein a wiring is transferred to a resin using the composite material for a transfer method according to claim 10.
【請求項12】 キャリア材とバリア材を積層した帯材
と、配線形成材の接合面のいずれか一方または両方を活
性化処理した後、圧延により積層接合することを特徴と
する転写法用複合材の製造方法。
12. A composite for a transfer method, comprising activating one or both of a bonding material of a strip material formed by laminating a carrier material and a barrier material, and a bonding surface of a wiring forming material, and then laminating and bonding by rolling. The method of manufacturing the material.
【請求項13】 配線形成材とバリア材を積層した帯材
と、キャリア材の接合面のいずれか一方または両方を活
性化処理した後、圧延により積層接合することを特徴と
する転写法用複合材の製造方法。
13. A composite for a transfer method, comprising activating one or both of a bonding surface of a carrier material and a band material in which a wiring material and a barrier material are laminated, and then laminating and bonding by rolling. The method of manufacturing the material.
【請求項14】 配線形成材とキャリア材の一方もしく
は両方にバリア材を蒸着した後、バリア材を中間層とす
るように圧延で積層接合することを特徴とする転写法用
複合材の製造方法。
14. A method for producing a composite material for a transfer method, comprising: depositing a barrier material on one or both of a wiring forming material and a carrier material; and laminating and joining the barrier material to an intermediate layer by rolling. .
【請求項15】 請求項13乃至15の何れかに記載の
転写法用複合材の製造方法により積層接合した後、該転
写法用複合材を加熱することを特徴とする転写法用複合
材の製造方法。
15. The method of manufacturing a composite material for a transfer method according to claim 13, wherein the composite material for a transfer method is heated after being laminated and joined by the method for producing a composite material for a transfer method according to claim 13. Production method.
JP11281974A 1998-10-16 1999-10-01 Composite material for transfer method, its manufacture, and printed-circuit board and semiconductor device using the same Pending JP2000188455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11281974A JP2000188455A (en) 1998-10-16 1999-10-01 Composite material for transfer method, its manufacture, and printed-circuit board and semiconductor device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-294783 1998-10-16
JP29478398 1998-10-16
JP11281974A JP2000188455A (en) 1998-10-16 1999-10-01 Composite material for transfer method, its manufacture, and printed-circuit board and semiconductor device using the same

Publications (1)

Publication Number Publication Date
JP2000188455A true JP2000188455A (en) 2000-07-04

Family

ID=26554405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11281974A Pending JP2000188455A (en) 1998-10-16 1999-10-01 Composite material for transfer method, its manufacture, and printed-circuit board and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP2000188455A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077850A1 (en) * 1999-06-10 2000-12-21 Toyo Kohan Co., Ltd. Clad plate for forming interposer for semiconductor device, interposer for semiconductor device, and method of manufacturing them
JP2009220151A (en) * 2008-03-17 2009-10-01 Bondtech Inc Joining method and device made by this method, joining apparatus, and substrate joined by this method
JP2010232407A (en) * 2009-03-27 2010-10-14 Toppan Printing Co Ltd Printed wiring board, and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077850A1 (en) * 1999-06-10 2000-12-21 Toyo Kohan Co., Ltd. Clad plate for forming interposer for semiconductor device, interposer for semiconductor device, and method of manufacturing them
KR100711539B1 (en) * 1999-06-10 2007-04-27 도요 고한 가부시키가이샤 Clad plate for forming interposer for semiconductor device, interposer for semiconductor device, and method of manufacturing them
JP4408009B2 (en) * 1999-06-10 2010-02-03 東洋鋼鈑株式会社 Manufacturing method of interposer for semiconductor device
JP2009220151A (en) * 2008-03-17 2009-10-01 Bondtech Inc Joining method and device made by this method, joining apparatus, and substrate joined by this method
JP2010232407A (en) * 2009-03-27 2010-10-14 Toppan Printing Co Ltd Printed wiring board, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP4501427B2 (en) Manufacturing method of multilayer circuit wiring board
US8065798B2 (en) Method of manufacturing printed circuit board
US20060191709A1 (en) Printed circuit board, flip chip ball grid array board and method of fabricating the same
JP2006297942A (en) Printed wiring board having polyimidebenzoxazole dielectric layer and manufacturing thereof
WO2006070807A1 (en) Wiring board and wiring board manufacturing method
JP4062907B2 (en) Circuit board and manufacturing method thereof
JP2009295850A (en) Method of manufacturing multi-layer circuit board, multi-layer circuit board obtained by the same, semiconductor chip-mounted substrate, and semiconductor package using this substrate
JP2001130986A (en) Copper plated ceramic board, peltier element using the same and method for producing copper plated ceramic board
CN104902696A (en) Method of manufacturing copper column on printed circuit board based on wire embedding structure
US20210127503A1 (en) Ultra-thin copper foil, ultra-thin copper foil with carrier, and method for manufacturing printed wiring board
JPH08148828A (en) Thin film multilayered circuit board and its manufacture
JP2000188455A (en) Composite material for transfer method, its manufacture, and printed-circuit board and semiconductor device using the same
JP2005244108A (en) Wiring board, and manufacturing method thereof
JP2002252436A (en) Double-sided laminate and its manufacturing method
JPH05315731A (en) Manufacture of connection pad of wiring board
JP2005244104A (en) Manufacturing method of wiring board
JP2005159330A (en) Method of manufacturing multilayer circuit board and multilayer circuit board manufactured by the same, and board with semiconductor chip mounted thereon and semiconductor package using the same
JP3935456B2 (en) Wiring board manufacturing method
JP4520665B2 (en) Printed wiring board, manufacturing method thereof, and component mounting structure
JP4445778B2 (en) Wiring board manufacturing method
JP2005045187A (en) Circuit board, method for manufacturing the same, and multi-layered circuit board
JP5691527B2 (en) Wiring board surface treatment method and wiring board treated by this surface treatment method
WO2022138681A1 (en) Metal member
JP4090151B2 (en) Package substrate
JPH05144973A (en) Polyimide multilayer circuit board and manufacture thereof