JP2005244104A - Manufacturing method of wiring board - Google Patents

Manufacturing method of wiring board Download PDF

Info

Publication number
JP2005244104A
JP2005244104A JP2004054996A JP2004054996A JP2005244104A JP 2005244104 A JP2005244104 A JP 2005244104A JP 2004054996 A JP2004054996 A JP 2004054996A JP 2004054996 A JP2004054996 A JP 2004054996A JP 2005244104 A JP2005244104 A JP 2005244104A
Authority
JP
Japan
Prior art keywords
layer
metal
film layer
thin film
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004054996A
Other languages
Japanese (ja)
Other versions
JP4547164B2 (en
Inventor
Tatsuya Ito
達也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2004054996A priority Critical patent/JP4547164B2/en
Publication of JP2005244104A publication Critical patent/JP2005244104A/en
Application granted granted Critical
Publication of JP4547164B2 publication Critical patent/JP4547164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for efficiently obtaining a wiring board, in which a dielectric layer made of a polymer material and a conductive layer are alternately laminated, without having core materials. <P>SOLUTION: The following processes are performed, in this order, namely, a covering process for covering the first main surface MP1 of a metal plate 2 used as a support substrate for reinforcement in manufacture with a metal thin-film layer 3 having selective etching properties to the metal plate 2; a lamination process for forming a conductive pattern 11 for forming a metal terminal pad on the first main surface MP2 of the metal thin-film layer 3, and forming a wiring laminated section 10, by alternately laminating the dielectric layer made of a polymer material and the metal conductive layer, after the covering process; and an etching process for removing the metal plate 2 by selective etching, removing the metal thin-film layer 3 by selective etching, and exposing a conductive pattern 11 formed at the side of the first main surface MP2 of the metal thin-film layer 3, after the lamination process. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、コア基板を有さない配線基板の製造方法に関する。   The present invention relates to a method for manufacturing a wiring board having no core substrate.

近年、電子機器における高機能化並びに軽薄短小化の要求により、ICチップやLSI等の電子部品では高密度集積化が急速に進んでおり、これに伴い、電子部品を搭載するパッケージ基板には、従来にも増して高密度配線化及び多端子化が求められている。   In recent years, due to the demand for higher functionality and lighter, thinner and smaller electronic devices, high-density integration has rapidly progressed in electronic components such as IC chips and LSIs. There is a demand for higher-density wiring and multi-terminals than ever before.

このようなパッケージ基板としては、現状において、ビルドアップ多層配線基板が採用されている。ビルドアップ多層配線基板とは、補強繊維に樹脂を含浸させた絶縁性のコア基板(FR−4等のガラスエポキシ基板)のリジッド性を利用し、その両主表面上に、高分子材料からなる誘電体層と導体層とが交互に配されたビルドアップ層を形成したものである。このようなビルドアップ多層配線基板では、ビルドアップ層において高密度配線化が実現されており、一方、コア基板は補強の役割を果たす。そのため、コア基板は、ビルドアップ層と比べて非常に厚く構成され、またその内部にはそれぞれの主表面に配されたビルドアップ層間の導通を図るための配線(例えば、スルーホール導体と呼ばれる)が厚さ方向に貫通形成されている。ところが、使用する信号周波数が1GHzを超える高周波帯域となってきた現在では、そのような厚いコア基板を貫通する配線は、大きなインダクタンスとして寄与してしまうという問題があった。   As such a package substrate, a build-up multilayer wiring substrate is currently used. The build-up multilayer wiring board uses a rigid property of an insulating core substrate (glass epoxy substrate such as FR-4) in which a reinforcing fiber is impregnated with a resin, and is made of a polymer material on both main surfaces thereof. A build-up layer in which dielectric layers and conductor layers are alternately arranged is formed. In such a build-up multilayer wiring board, high-density wiring is realized in the build-up layer, while the core board plays a reinforcing role. For this reason, the core substrate is configured to be very thick compared to the buildup layer, and the wiring inside it (for example, referred to as a through-hole conductor) for establishing conduction between the buildup layers disposed on the respective main surfaces Are formed penetrating in the thickness direction. However, at the present time when the signal frequency to be used has become a high frequency band exceeding 1 GHz, there is a problem that the wiring penetrating such a thick core substrate contributes as a large inductance.

そこで、そのような問題を解決するため、特許文献1に示されるような、コア基板を有さず、高密度配線化が可能なビルドアップ層を主体とした配線基板が提案されている。このような配線基板では、コア基板が省略されているため、全体の配線長が短く構成され、高周波用途に供するのに好適である。このような配線基板の製造方法に関しては、特許文献1の段落0012〜0029及び図1〜4に記載があり、まず、金属板主表面上にめっきレジストを形成し、これをマスクとして、金属板に対して選択エッチング性を有するレジスト金属層と配線パターンをなす導体層とをこの順で、電解めっきにより積層する。次いで、その配線パターン上に、誘電体層及び導体層を有するビルドアップ層を形成する。積層後には、金属板及びレジスト金属層をエッチングにより除去する。これにより、コア基板を有さない薄膜のビルドアップ層を得ることが可能であるとされている。   Therefore, in order to solve such a problem, there has been proposed a wiring board mainly composed of a build-up layer that does not have a core board and can be formed with high density wiring, as shown in Patent Document 1. In such a wiring board, since the core board is omitted, the entire wiring length is short, which is suitable for high-frequency applications. Regarding the method for manufacturing such a wiring board, there are descriptions in paragraphs 0012 to 0029 and FIGS. 1 to 4 of Patent Document 1, and first, a plating resist is formed on the main surface of the metal plate, and this is used as a mask to form the metal plate. A resist metal layer having selective etching property and a conductor layer forming a wiring pattern are laminated in this order by electrolytic plating. Next, a buildup layer having a dielectric layer and a conductor layer is formed on the wiring pattern. After the lamination, the metal plate and the resist metal layer are removed by etching. Thereby, it is said that it is possible to obtain a thin build-up layer having no core substrate.

特開2002−26171号公報JP 2002-26171 A

しかしながら、上述のような製造方法によって配線基板を製造した場合に、支持基板である金属板とレジスト金属層とが、その製造過程における熱処理により、合金化して新たな合金層が形成される場合があり、形成された合金層を含む層のエッチング処理には、通常よりも時間がかかるという問題が生じた。   However, when a wiring board is manufactured by the manufacturing method as described above, a metal plate that is a support substrate and a resist metal layer may be alloyed by a heat treatment in the manufacturing process to form a new alloy layer. There is a problem that the etching process of the layer including the formed alloy layer takes more time than usual.

本発明は、上記問題に鑑みてなされたものであり、コア基板を有さず、高分子材料からなる誘電体層と導体層とが交互に積層された配線基板を効率的に得ることが可能な製造方法を提供することを課題とする。   The present invention has been made in view of the above problems, and it is possible to efficiently obtain a wiring board in which dielectric layers and conductor layers made of a polymer material are alternately laminated without having a core substrate. It is an object to provide a simple manufacturing method.

課題を解決するための手段及び作用・発明の効果Means for solving the problem, operation and effect of the invention

上記課題を解決するため、本発明の配線基板の製造方法では、
製造時における補強のための支持基板として用いる金属板の第一主表面に、該金属板に対して選択エッチング性を有する金属薄膜層を被膜する被膜工程と、
前記被膜工程後に、前記金属薄膜層の第一主表面に、金属端子パッドをなす導体パターンを形成した上で、高分子材料からなる誘電体層と金属導体層とを交互に積層して配線積層部を形成する積層工程と、
前記積層工程後に、前記金属板を選択エッチングにより除去し、次いで、前記金属薄膜層を選択エッチングにより除去することで、前記金属薄膜層の第一主表面側に形成された前記導体パターンを露出させるエッチング工程と、
をこの順で行うことを特徴とする。
In order to solve the above problems, in the method for manufacturing a wiring board of the present invention,
A coating step of coating a metal thin film layer having selective etching properties on the first main surface of a metal plate used as a support substrate for reinforcement during production;
After the coating step, a conductor pattern forming a metal terminal pad is formed on the first main surface of the metal thin film layer, and dielectric layers and metal conductor layers made of a polymer material are alternately laminated to form a wiring laminate. A laminating process for forming a portion;
After the laminating step, the metal plate is removed by selective etching, and then the metal thin film layer is removed by selective etching, thereby exposing the conductor pattern formed on the first main surface side of the metal thin film layer. Etching process;
Are performed in this order.

金属板を支持基板としてビルドアップ層を積層する従来までの配線基板の製造方法においては、上記特許文献1の段落0014及び図1(b)に示されているレジスト金属層103ような、金属板と異なるエッチング選択比を有するエッチングガードメタルを、予め所定のパターンで形成する。次いで図1(c)に示すように、このエッチングガードメタルと密着して配線パターン104のような導体パターンを形成する。これにより、金属板エッチング時に使用されるエッチング液から導体パターンは保護され、その侵食及び腐食等を防ぐことができる。ところが、本発明の配線基板の製造方法によれば、上記の役割を果たすエッチングガードメタルの形成が不要であり、代わりに金属薄膜層を金属板の第一主表面全面を覆う形で形成することができる。   In a conventional method of manufacturing a wiring board in which a buildup layer is laminated using a metal plate as a support substrate, a metal plate such as the resist metal layer 103 shown in paragraph 0014 of FIG. 1 and FIG. An etching guard metal having an etching selection ratio different from the above is previously formed in a predetermined pattern. Next, as shown in FIG. 1C, a conductive pattern such as a wiring pattern 104 is formed in close contact with the etching guard metal. Thereby, a conductor pattern is protected from the etching liquid used at the time of metal plate etching, and the erosion, corrosion, etc. can be prevented. However, according to the method for manufacturing a wiring board of the present invention, it is not necessary to form an etching guard metal that fulfills the above-described role. Instead, the metal thin film layer is formed so as to cover the entire first main surface of the metal plate. Can do.

金属板を支持基板としてビルドアップ層を積層する場合、その金属板としてCu板が使用されることが多い。この場合、Cu板は積層時の支持基板として機能する必要があるため、比較的厚みのあるものを使用する(Cu板であれば、例えば0.8mm程度)。このようなCu板をエッチングする場合は、エッチング時間の短縮のために、強い腐食性を有し、且つ通常よりも高濃度の薬液を使用する場合がある。ところが、上記特許文献1に記載のように、金属板と誘電体層とが密着して形成される場合は、金属板のエッチング液は、誘電体層と接し、このときたとえ誘電体層が腐食に対して耐性を有する材料であっても、誘電体層へのダメージを与える可能性がある。本発明によれば、厚いCu板のエッチング処理は金属薄膜層表面でストップし、その高濃度の薬液が誘電体と接することは無い。その後の金属薄膜層のエッチングは、その金属薄膜層が薄い層であるため高濃度の薬液を使用する必用は無く、誘電体層へのダメージを大幅に減じることが可能である。   When a buildup layer is laminated using a metal plate as a support substrate, a Cu plate is often used as the metal plate. In this case, since the Cu plate needs to function as a support substrate at the time of lamination, a relatively thick one is used (for example, about 0.8 mm for a Cu plate). When etching such a Cu plate, there is a case where a chemical solution having strong corrosivity and a higher concentration than usual is used for shortening the etching time. However, as described in Patent Document 1, when the metal plate and the dielectric layer are formed in close contact with each other, the etching solution for the metal plate is in contact with the dielectric layer, and at this time, even if the dielectric layer is corroded. Even a material that is resistant to damage may damage the dielectric layer. According to the present invention, the etching process of the thick Cu plate stops at the surface of the metal thin film layer, and the high concentration chemical does not come into contact with the dielectric. In the subsequent etching of the metal thin film layer, since the metal thin film layer is a thin layer, it is not necessary to use a high concentration chemical solution, and damage to the dielectric layer can be greatly reduced.

本発明の配線基板の製造方法において形成される金属薄膜層は、Ti,Cr,Al,Ag,Snのうち少なくとも1種以上からなる金属材料からなることを特徴とすることができる。上記特許文献1に記載の配線基板の製造方法にならって、例えば、金属板をCu板とし、エッチングガードメタルをNi/Auめっき処理によって形成する場合、積層時の各種熱処理工程において、CuとAuが合金化し、その界面近傍に合金化層が新たに形成される可能性がある。このような金属板とエッチングガードメタルとの金属材料からなる合金層は、金属板エッチング時に使用するエッチング液に対して高い選択比を有する場合があり、こうした場合、金属板のエッチング処理時間は増加し、エッチング工程の処理能力が大きく落ちる。また、場合によっては、その合金層をエッチングするための新たなエッチング工程が必用となり、工程数の増加を招く可能性もある。本発明によれば、上述した金属材料からなる金属薄膜層を形成することにより、該金属薄膜層は、上記エッチングガードメタルと同様の効果を有すると共に、配線基板を製造過程における各熱処理によっても合金化されることが無いため、合金化による金属板のエッチング処理時間の増加、あるいはエッチング工程の追加等を必用としない。   The metal thin film layer formed in the method for manufacturing a wiring board of the present invention can be characterized by being made of a metal material composed of at least one of Ti, Cr, Al, Ag, and Sn. According to the method for manufacturing a wiring board described in Patent Document 1, for example, when a metal plate is a Cu plate and an etching guard metal is formed by Ni / Au plating, Cu and Au are used in various heat treatment steps during lamination. May be alloyed and a new alloyed layer may be formed near the interface. An alloy layer made of a metal material of such a metal plate and an etching guard metal may have a high selection ratio with respect to an etching solution used at the time of etching the metal plate. In such a case, the etching time of the metal plate increases. However, the processing capability of the etching process is greatly reduced. In some cases, a new etching process is required to etch the alloy layer, which may increase the number of processes. According to the present invention, by forming the metal thin film layer made of the above-described metal material, the metal thin film layer has the same effect as the etching guard metal, and the alloy is also obtained by each heat treatment in the manufacturing process. Therefore, it is not necessary to increase the etching time of the metal plate by alloying or add an etching process.

また、本発明の配線基板の製造方法においては、金属薄膜層の第一主表面に、金属薄膜層に対して選択エッチング性を有し、且つ表面粗化処理の可能な薄膜層が被膜されてなるとともに、該薄膜層はその第一主表面に粗化処理が施されていることを特徴とすることができる。これによれば、金属薄膜層とその上に積層形成されるビルドアップ層との密着性が悪い場合には、金属薄膜層の第一主表面に薄膜層を形成し、その表面を粗化することで、金属薄膜層上に積層されるビルドアップ層との密着性を高めることが可能となる。   In the method for manufacturing a wiring board according to the present invention, the first main surface of the metal thin film layer is coated with a thin film layer that has selective etching properties with respect to the metal thin film layer and that can be surface roughened. In addition, the thin film layer may be characterized in that the first main surface is subjected to a roughening treatment. According to this, when the adhesion between the metal thin film layer and the build-up layer formed thereon is poor, the thin film layer is formed on the first main surface of the metal thin film layer, and the surface is roughened. Thereby, it becomes possible to improve adhesiveness with the buildup layer laminated | stacked on a metal thin film layer.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の実施の形態について述べる。図1は本発明の配線基板の製造方法によって形成された配線基板100の断面を示すものである。なお、はんだバンプFB上には、別途形成された電子部品ICが搭載されている。以下、図2〜図4を用いて図1に示す配線基板100の製造方法の一実施形態について説明する。   Hereinafter, embodiments of the present invention will be described. FIG. 1 shows a cross section of a wiring board 100 formed by the method for manufacturing a wiring board of the present invention. A separately formed electronic component IC is mounted on the solder bump FB. Hereinafter, an embodiment of a method for manufacturing the wiring substrate 100 shown in FIG. 1 will be described with reference to FIGS.

図2の工程1にて、支持基板としての役割を果たす金属板2の第一主表面MP1に、例えば片面のスパッタリング処理によって、金属薄膜層3を被膜する(被膜工程)。ここで、金属板2は、エッチング処理によって除去可能な金属材料で形成される必要があり、例えばCu、Cu合金、SUS(JIS規格)、Ni、Fe−Ni合金、Al、Al合金、インバー、インバー合金等を用いることができる。また、金属薄膜層3は、金属板2に対する選択エッチング性を有し、且つ配線基板製造時の各種熱処理によって金属板2と合金化されにくい金属材料、例えばTi,Cr,Al,Ag,Sn等のうちの少なくとも1つ以上からなるものを用いることができる。本実施形態においては、金属板として銅板(Cu)、金属薄膜層としてTiを用いるものとする。   In step 1 of FIG. 2, the metal thin film layer 3 is coated on the first main surface MP1 of the metal plate 2 serving as a support substrate by, for example, one-side sputtering treatment (coating step). Here, the metal plate 2 needs to be formed of a metal material that can be removed by etching, for example, Cu, Cu alloy, SUS (JIS standard), Ni, Fe-Ni alloy, Al, Al alloy, Invar, An Invar alloy or the like can be used. Further, the metal thin film layer 3 has a selective etching property with respect to the metal plate 2 and is difficult to be alloyed with the metal plate 2 by various heat treatments at the time of manufacturing the wiring board, such as Ti, Cr, Al, Ag, Sn, etc. A material comprising at least one of the above can be used. In the present embodiment, a copper plate (Cu) is used as the metal plate, and Ti is used as the metal thin film layer.

次に工程2に示すように、金属薄膜層3の第一主表面MP2に、紫外線感光性のドライフィルムレジスト4をラミネート(貼り合わせ)した上で、紫外線照射による露光、現像を用いてパターニング処理する。そして、パターニングされたドライフィルムレジスト4をマスクとして用い、金属端子パッドとなるべき導体パターン11(第一金属導体層M1)を形成する。このとき形成される導体パターン11は、後述する金属薄膜層3のエッチング処理におけるエッチング液に対して耐性を有する必要があり、例えば銅、ニッケル、金、錫、銀、パラジウム等を用いることができる。本実施形態においては、電解めっき処理により、Cuを主成分とする導体パターンを形成するものとする。   Next, as shown in step 2, the first main surface MP2 of the metal thin film layer 3 is laminated (bonded) with an ultraviolet-sensitive dry film resist 4, and then patterned using exposure and development by ultraviolet irradiation. To do. Then, using the patterned dry film resist 4 as a mask, a conductor pattern 11 (first metal conductor layer M1) to be a metal terminal pad is formed. The conductor pattern 11 formed at this time needs to be resistant to an etching solution in the etching process of the metal thin film layer 3 to be described later. For example, copper, nickel, gold, tin, silver, palladium, or the like can be used. . In the present embodiment, a conductor pattern mainly composed of Cu is formed by electrolytic plating.

工程3では、工程2でマスクとして用いたドライフィルムレジスト4をエッチング除去する。このとき、エッチング処理前に導体パターン11の露出表面に対し、粗化処理を行っておけば、工程4にて該導体パターン11上に積層される樹脂フィルム30と該導体パターン11との密着性の向上を図ることができる。   In step 3, the dry film resist 4 used as a mask in step 2 is removed by etching. At this time, if a roughening process is performed on the exposed surface of the conductor pattern 11 before the etching process, the adhesiveness between the resin film 30 laminated on the conductor pattern 11 and the conductor pattern 11 in step 4 is determined. Can be improved.

続いて図3に示す工程4にて、第一金属導体層M1の上層に熱硬化性を有する樹脂フィルム30をラミネートし、硬化処理を施すことで第一誘電体層B1を形成する。そして樹脂フィルム30の所定位置に、例えばレーザを用いて穿孔し、ビア用の開口部(以下、ビア孔ともいう)を形成しておく。なお、樹脂フィルム30は、例えばエポキシを主成分とする材料にて構成することができ、周知の真空ラミネーション法により形成することができる。   Subsequently, in Step 4 shown in FIG. 3, a thermosetting resin film 30 is laminated on the upper layer of the first metal conductor layer M1, and a first dielectric layer B1 is formed by performing a curing process. Then, a hole is formed in a predetermined position of the resin film 30 using a laser, for example, to form a via opening (hereinafter also referred to as a via hole). In addition, the resin film 30 can be comprised, for example with the material which has an epoxy as a main component, and can be formed by the known vacuum lamination method.

工程5では、工程4にて形成された第一誘電体層B1のビア孔に、第一金属導体層M1に属する第一ビア導体21を形成すると共に、第一誘電体層B1の第一主表面には、配線を含む導体パターン12(第二金属導体層M2)を形成する。このとき、第一ビア導体21によって、第一金属導体層M1と第一誘電体層B1の第一主表面に形成された第二金属導体層M2とが層間接続される。   In step 5, the first via conductor 21 belonging to the first metal conductor layer M1 is formed in the via hole of the first dielectric layer B1 formed in step 4, and the first main conductor of the first dielectric layer B1 is formed. A conductor pattern 12 (second metal conductor layer M2) including wiring is formed on the surface. At this time, the first via conductor 21 connects the first metal conductor layer M1 to the second metal conductor layer M2 formed on the first main surface of the first dielectric layer B1.

工程6では、上述の工程2〜工程5を繰り返し、誘電体層および金属導体層を順次積層することにより、ビルドアップ層(配線積層部)10を形成する(積層工程)。なお、該ビルドアップ層10における最表層は、本実施形態においては、ソルダーレジスト層SR(第四誘電体層B4)が形成される。ソルダーレジスト層SRには、開口部が形成されており、その直下に形成される導体パターン14(第四金属導体層M4)が露出している。このとき、該導体層パターン14は、金属端子パッドとなるべき導体パターンである。   In step 6, the above-described steps 2 to 5 are repeated, and the build-up layer (wiring laminate portion) 10 is formed by sequentially laminating the dielectric layer and the metal conductor layer (lamination step). In this embodiment, a solder resist layer SR (fourth dielectric layer B4) is formed on the outermost layer in the buildup layer 10. An opening is formed in the solder resist layer SR, and the conductor pattern 14 (fourth metal conductor layer M4) formed immediately below is exposed. At this time, the conductor layer pattern 14 is a conductor pattern to be a metal terminal pad.

なお、本実施形態では、ビルドアップ層10は、金属導体層M1〜M4及び誘電体層B1〜B4にて構成されているが、金属導体層及び誘電体層の数はこれに限られることはない。また、金属導体層M1〜M4に形成される導体パターン11〜14及びビア導体21〜23は、例えばCuを主成分とするものとする。   In the present embodiment, the buildup layer 10 is composed of the metal conductor layers M1 to M4 and the dielectric layers B1 to B4. However, the number of the metal conductor layers and the dielectric layers is not limited to this. Absent. The conductor patterns 11 to 14 and the via conductors 21 to 23 formed in the metal conductor layers M1 to M4 are mainly composed of Cu, for example.

また、ビルドアップ層10に形成されるビア導体は、上述のようなレーザ加工とは異なり、例えば、周知のフォトビアプロセスによりビア孔を形成し、該ビア孔を、例えばセミアディティブ法による無電解メッキによって充填することにより得ることもできる。この場合、各誘電体層は少なくとも感光性を有する樹脂フィルムによって形成される必要がある。   In addition, the via conductor formed in the buildup layer 10 is different from the laser processing as described above, for example, a via hole is formed by a well-known photo via process, and the via hole is electrolessly formed by, for example, a semi-additive method. It can also be obtained by filling by plating. In this case, each dielectric layer needs to be formed of at least a photosensitive resin film.

次に、図4の工程7に示すように、積層時の支持基板の役割を果たしていた金属板2を、例えばエッチング液を用いるウエットエッチングにて、選択的にエッチング除去する(エッチング工程)。この際、金属薄膜層3は、エッチストップ層として機能する。ここで使用されるエッチング液は、金属板2と金属薄膜層3とのそれぞれ材料間にてエッチング選択比が異なるもの、特には大きいものを適宜用いるとともに、エッチング時間が短縮されるように高濃度の薬液が使用されると良い。   Next, as shown in step 7 of FIG. 4, the metal plate 2 that has played the role of the support substrate at the time of stacking is selectively removed by wet etching using, for example, an etching solution (etching step). At this time, the metal thin film layer 3 functions as an etch stop layer. The etching solution used here has a high concentration so that the etching selectivity is different between the materials of the metal plate 2 and the metal thin film layer 3, particularly a large one is appropriately used, and the etching time is shortened. It is better to use the chemical solution.

また、工程8では、金属薄膜層3を、例えば工程7と同様にウエットエッチングにて、選択的にエッチング除去する(エッチング工程)。ここで使用されるエッチング液は、金属薄膜層3と第一金属導体層M1の導体パターン11とのそれぞれの材料間におけるエッチング選択比の異なるもの、特には大きいものを適宜用いると良い。これにより、第一金属導体層の第二主表面に、導体パターン11が露出する。本実施形態では、Cuを主成分としてなる導体パターン11が露出し、その露出面はそのまま金属端子用パッドとして利用することができる。   In step 8, the metal thin film layer 3 is selectively removed by wet etching, for example, as in step 7 (etching step). As the etching solution used here, one having a different etching selectivity ratio between the respective materials of the metal thin film layer 3 and the conductor pattern 11 of the first metal conductor layer M1, and particularly a large one may be appropriately used. As a result, the conductor pattern 11 is exposed on the second main surface of the first metal conductor layer. In this embodiment, the conductor pattern 11 mainly composed of Cu is exposed, and the exposed surface can be used as it is as a metal terminal pad.

工程9では、導体パターン14の露出面に対して、例えばNi−Auメッキ又はSn(ハンダ)メッキ等からなるメッキ表面層7を、電解めっき処理又は無電解めっき処理により形成する。形成されたメッキ表面層7にははんだバンプFBが形成され、これにより図1に示された電子部品ICと接続する接続端子が形成される。工程9の処理が終了することにより、支持基板を有さず、両主表面が誘電体層にて構成され、高分子材料からなる誘電体層B1〜B4と導体層M1〜M4とが交互に積層形成された薄い配線基板を得ることが可能である。   In step 9, a plated surface layer 7 made of, for example, Ni—Au plating or Sn (solder) plating is formed on the exposed surface of the conductor pattern 14 by electrolytic plating or electroless plating. Solder bumps FB are formed on the plated surface layer 7 thus formed, thereby forming connection terminals that connect to the electronic component IC shown in FIG. When the process in step 9 is completed, the main surface is not formed of a dielectric layer, and the dielectric layers B1 to B4 and the conductor layers M1 to M4 made of a polymer material are alternately formed. It is possible to obtain a thin wiring substrate formed by lamination.

なお、図1に示す配線基板100は、上述の工程1〜工程9を経て得られる配線基板に対して、電子部品ICがはんだバンプFBと接続する形で搭載されている。電子部品IC下の隙間にはアンダーフィル材UFが充填されており、また、第四誘電体層B4の第一主表面上に、電子部品ICの搭載部分を囲うように、補強枠(スティフナー)STが設置されている。なお、補強枠STの金属材料としては、Cu、Cu合金、SUS(JIS規格)、Ni、Fe−Ni合金、Al、Al合金、インバー、インバー合金等を用いることができる。   The wiring board 100 shown in FIG. 1 is mounted on the wiring board obtained through the above steps 1 to 9 so that the electronic component IC is connected to the solder bumps FB. The gap under the electronic component IC is filled with an underfill material UF, and a reinforcing frame (stiffener) is formed on the first main surface of the fourth dielectric layer B4 so as to surround the mounting portion of the electronic component IC. ST is installed. As the metal material of the reinforcing frame ST, Cu, Cu alloy, SUS (JIS standard), Ni, Fe—Ni alloy, Al, Al alloy, Invar, Invar alloy, or the like can be used.

本実施形態においては、金属薄膜層3とビルドアップ層10との密着力が弱い場合がある。このような場合には、金属板2は配線基板製造時の支持基板として機能を果たし得ない可能性がある。この層間の密着力を強化する手段としては、層表面の粗化処理がある。ただし、金属薄膜層3がTi等からなる場合は、その性質上、その表面の粗化処理は困難である。このような場合は、工程1において、金属薄膜層3の被膜形成後、その直上に薄膜層3´を粗化処理の容易な材質、例えばCuなどで形成し、その第一主表面を粗化処理しておけばよい。これにより、薄膜層3´とビルドアップ層10との密着面は、良好な密着強度を得ることができる。なお、この薄膜層3´は、工程7における金属薄膜層3のエッチング除去後に、エッチング除去される必要がある。ただし、薄膜層3´が導体パターン11の主成分と同じCuよりなる場合は、薄膜層3´のエッチング処理により、導体パターン11の一部もエッチングされる可能性がある。しかし、薄膜層3´は薄く形成されるため、エッチング液の選択次第で、導体パターン11の過度のエッチングを抑えることは容易である。また、逆に、導体パターン11の露出面が多少エッチングされていた方が、金属端子パッドを形成する際に、パッド導体形成位置の特定が行い易いという点で、かえって有効である。   In the present embodiment, the adhesion between the metal thin film layer 3 and the buildup layer 10 may be weak. In such a case, there is a possibility that the metal plate 2 cannot function as a support substrate when manufacturing the wiring board. As a means for enhancing the adhesion between the layers, there is a roughening treatment of the layer surface. However, when the metal thin film layer 3 is made of Ti or the like, it is difficult to roughen the surface due to its properties. In such a case, in Step 1, after forming the film of the metal thin film layer 3, the thin film layer 3 'is formed immediately above it with a material that is easy to roughen, such as Cu, and the first main surface is roughened. It should be processed. Thereby, the contact | adherence surface of thin film layer 3 'and the buildup layer 10 can obtain favorable contact | adhesion intensity | strength. The thin film layer 3 ′ needs to be removed by etching after the metal thin film layer 3 is removed by etching in Step 7. However, when the thin film layer 3 ′ is made of the same Cu as the main component of the conductor pattern 11, a part of the conductor pattern 11 may be etched by the etching process of the thin film layer 3 ′. However, since the thin film layer 3 'is formed thin, it is easy to suppress excessive etching of the conductor pattern 11 depending on the selection of the etching solution. On the other hand, it is more effective that the exposed surface of the conductor pattern 11 is slightly etched because it is easy to specify the pad conductor formation position when forming the metal terminal pad.

また、金属薄膜層3とビルドアップ層10との密着力の強化に関しては、上述のような薄膜層3´ではなく、金属薄膜層3上にカップリング剤膜を形成することでも可能である。例えばシランカップリング剤膜であれば、絶縁層を構成する有機材料に対して結合可能な官能基(ビニル基、アミノ基、エポキシ基、イミダゾール基など)、および、導体または配線パターンなどを構成する無機材料と結合可能な官能基(水酸基、メトキシ基、エトキシ基など)を有するため、密着力の強化としては好適である。ただし、選択された金属薄膜層3の金属材料等によっては、好適なカップリング剤膜が選択できない可能性がある。   Further, regarding the strengthening of the adhesion between the metal thin film layer 3 and the buildup layer 10, it is possible to form a coupling agent film on the metal thin film layer 3 instead of the thin film layer 3 ′ as described above. For example, in the case of a silane coupling agent film, a functional group (vinyl group, amino group, epoxy group, imidazole group, etc.) that can be bonded to the organic material constituting the insulating layer, and a conductor or wiring pattern are configured. Since it has a functional group (a hydroxyl group, a methoxy group, an ethoxy group, or the like) that can be bonded to an inorganic material, it is suitable for enhancing adhesion. However, there is a possibility that a suitable coupling agent film cannot be selected depending on the metal material or the like of the selected metal thin film layer 3.

なお、本発明は、上記実施形態における、工程1、工程7及び工程8を必須とすれば、少なくとも本発明の目的は達成される。また、本発明は、図2〜図4を用いて説明した上記製造方法に限定されるものではなく、請求項の記載に基づく技術的範囲を逸脱しない限り、種々の変形ないし改良を付加することができる。そこで、上記実施形態を第一実施形態とした上で、本発明に係わる他の実施形態の代表的なものを以下に説明する。   In addition, if this invention makes the process 1, the process 7, and the process 8 in the said embodiment essential, at least the objective of this invention will be achieved. The present invention is not limited to the above-described manufacturing method described with reference to FIGS. 2 to 4, and various modifications or improvements can be added without departing from the technical scope based on the description of the claims. Can do. Then, after making the said embodiment into 1st embodiment, the typical thing of other embodiment concerning this invention is demonstrated below.

図5は、本発明の第二実施形態を示すものであり、第一誘電体層は、支持基板側の下部第一誘電体層と、その上に形成された上部第一誘電体層とにてなるものであり、コア基板を有さず、かつ両主表面が誘電体層にて構成されるよう、導体層と誘電体層とが積層されるとともに、少なくとも一方の主表面をなす前記誘電体層の開口内に形成された金属端子パッドを有する配線基板の製造方法であって、製造時における補強のために支持体(金属板)を用いて、該支持体の主表面に下部第一誘電体層を形成し、該下部第一誘電体層の所定位置に開口を貫通形成し、該開口の壁部および底部を含む領域を覆うように前記金属端子パッドとなるべき被覆導体部を形成する金属端子パッド形成工程と、前記下部第一誘電体層上に形成された上部第一誘電体層に、前記被覆導体部のうち、前記開口の底部を覆う部位と接続するビア導体を形成するビア導体形成工程と、前記配線基板を構成すべき残部の導体層および誘電体層を積層させる積層工程と、前記積層工程後に、前記支持体を除去する支持体除去工程とが、この順で行われることを特徴とする配線基板の製造方法に基づいて形成された配線基板である。図5の配線基板は、上記第一実施形態とは導体パターン11が異なる構造を有しており、両主表面が誘電体層にて構成されるよう、導体層と誘電体層とが積層されるとともに、少なくとも一方の主表面をなす前記誘電体層の開口に形成された金属端子パッドを有する配線基板であって、前記金属端子パッド(被覆導体部)は、前記開口に露出面を有し、かつ該露出面の裏面で前記配線基板内部の前記導体層とビア接続されるパッド本体と、該パッド本体の外縁から前記配線基板の内層方向に、前記開口の壁部に沿って形成される壁面導体部と、にて構成されることを特徴としている。以下、図6〜図8を用いて図5に示す配線基板200の製造方法について説明する。   FIG. 5 shows a second embodiment of the present invention. The first dielectric layer is composed of a lower first dielectric layer on the support substrate side and an upper first dielectric layer formed thereon. The conductor layer and the dielectric layer are laminated so that the main surface does not have a core substrate and both main surfaces are composed of dielectric layers, and the dielectric that forms at least one main surface. A method of manufacturing a wiring board having a metal terminal pad formed in an opening of a body layer, wherein a support (metal plate) is used for reinforcement at the time of manufacture, and a lower first is formed on the main surface of the support. A dielectric layer is formed, an opening is formed at a predetermined position of the lower first dielectric layer, and a covered conductor portion to be the metal terminal pad is formed so as to cover a region including a wall portion and a bottom portion of the opening. Forming a metal terminal pad and an upper first dielectric layer formed on the lower first dielectric layer. A body layer is formed by laminating a via conductor forming step of forming a via conductor connected to a portion of the covered conductor portion that covers the bottom of the opening, and a remaining conductor layer and a dielectric layer that constitute the wiring board. A wiring board formed on the basis of a method for manufacturing a wiring board, wherein a laminating process and a support removing process for removing the support after the laminating process are performed in this order. The wiring board of FIG. 5 has a structure in which the conductor pattern 11 is different from that of the first embodiment, and the conductor layer and the dielectric layer are laminated so that both main surfaces are composed of the dielectric layers. And a wiring board having a metal terminal pad formed in an opening of the dielectric layer forming at least one main surface, wherein the metal terminal pad (covered conductor portion) has an exposed surface in the opening. And a pad body that is via-connected to the conductor layer inside the wiring board on the back surface of the exposed surface, and is formed along the wall of the opening from the outer edge of the pad body toward the inner layer of the wiring board. And a wall surface conductor portion. Hereinafter, a method for manufacturing the wiring substrate 200 shown in FIG. 5 will be described with reference to FIGS.

図6に示す工程1は、上記第一実施形態の工程1と同様である。工程2にて、支持基板をなす金属板2に被膜された金属薄膜層3の主表面に、樹脂フィルム30をラミネートするとともに、ビア用開口部を形成して、下部第一誘電体層B1aとする。なお、樹脂フィルム30は、例えばプロビコートフィルム等の感光性を有する樹脂フィルムであっても良く、この場合、ラミネート後に、周知のフォトビアプロセスに基づいてパターニング処理し、下部第一誘電体層B1aを形成する。次いで、工程3では、図6の工程3のようなパターンを有する導体パターン11a(第一金属導体層M1)を形成する。この導体パターン11aを形成するためには、まず、工程2でパターニングされた樹脂フィルム30とその開口部とからなる最表層を覆うように、無電解めっき処理を行う。さらにその無電解めっき層(図示なし)上にめっきレジスト(図示なし)を形成し、これをパターニング処理する。パターニングされためっきレジストをマスクとして電解めっき処理を行った後、上記めっきレジストを除去し、次いで形成された電解めっき層11aを改めてめっきレジスト(図示なし)によりマスクして、マスクされていない領域の上記無電解めっき層を除去し、めっきレジスト層(図示なし)を除去する。これにより、導体パターン11aを形成することができる。このように形成された導体パターン11aは、樹脂フィルム30の開口(図6の工程2)の壁部の側面側と上面側とを覆うように形成され、この壁部を覆っている壁面導体部は鉤型形状をなしている。図7の工程4では、この導体パターン11aを覆うように樹脂フィルム30をラミネートし、上部第一誘電体層B1bを形成する。該上部第一誘電体層B1bには、ビア用開口部を形成する。このビア用開口部は、図7の工程4に示されるように導体パターン11aの底面部の中央と接続するように形成される。   Step 1 shown in FIG. 6 is the same as step 1 in the first embodiment. In step 2, the resin film 30 is laminated on the main surface of the metal thin film layer 3 coated on the metal plate 2 forming the support substrate, and a via opening is formed to form the lower first dielectric layer B1a and To do. The resin film 30 may be a photosensitive resin film such as a provi coat film. In this case, after lamination, the resin film 30 is subjected to patterning processing based on a well-known photo via process, and the lower first dielectric layer B1a. Form. Next, in Step 3, a conductor pattern 11a (first metal conductor layer M1) having a pattern as in Step 3 of FIG. 6 is formed. In order to form the conductor pattern 11a, first, an electroless plating process is performed so as to cover the outermost layer composed of the resin film 30 patterned in Step 2 and its opening. Further, a plating resist (not shown) is formed on the electroless plating layer (not shown), and this is patterned. After the electrolytic plating process is performed using the patterned plating resist as a mask, the plating resist is removed, and then the formed electrolytic plating layer 11a is masked again with a plating resist (not shown) to form an unmasked region. The electroless plating layer is removed, and a plating resist layer (not shown) is removed. Thereby, the conductor pattern 11a can be formed. The conductor pattern 11a formed in this way is formed so as to cover the side surface side and the upper surface side of the wall portion of the opening (step 2 in FIG. 6) of the resin film 30, and the wall surface conductor portion covering this wall portion. Has a bowl shape. In step 4 of FIG. 7, the resin film 30 is laminated so as to cover the conductor pattern 11a, and the upper first dielectric layer B1b is formed. A via opening is formed in the upper first dielectric layer B1b. The via opening is formed so as to be connected to the center of the bottom surface of the conductor pattern 11a as shown in step 4 of FIG.

工程5以降は、図7に示すように、工程5及び工程6でビルドアップ層10aを積層形成し、図8に示す工程7及び工程8では金属板2及び金属薄膜層3をエッチング除去し、工程9では接続用端子等を形成する。これらは上記第一実施形態の工程5〜工程9と同様であるため、説明は省略する。工程9まで終了し、さらに電子部品ICの搭載や補強枠(スティフナー)STの設置等が完了することで、図5の配線基板200が得られる。   In step 5 and subsequent steps, as shown in FIG. 7, the build-up layer 10a is laminated in steps 5 and 6, and in steps 7 and 8 shown in FIG. 8, the metal plate 2 and the metal thin film layer 3 are removed by etching. In step 9, connection terminals and the like are formed. Since these are the same as Step 5 to Step 9 of the first embodiment, description thereof will be omitted. When the process up to step 9 is completed and the mounting of the electronic component IC and the installation of the reinforcing frame (stiffener) ST are completed, the wiring board 200 of FIG. 5 is obtained.

本発明に限らず、このような薄いビルドアップ層の製造においては、ビルドアップ層の積層工程、支持基板(金属板)除去工程、及び支持基板除去後の製造工程において発生する内部応力が、支持基板(例えば金属板等)と密着する導体パターンと、その直上に形成される誘電体層との界面に集中しやすくなる。そのため、そうした界面から、クラック等の欠陥が誘起されやすい。従って、薄いビルドアップ層を有する配線基板の製造方法においては、このようなクラック発生の問題に対して、何らかの対策が必要とされる場合がある。本発明では、支持基板の第一主表面に金属薄膜層が形成されてなる支持体と、該支持体と密着する誘電体層との界面から、クラック等の欠陥が生じる可能性があり、本発明においてもこうした問題に対する対策が必要となる場合がある。第二実施形態はそうした問題を解決する一つの実施形態を示すものであり、これによれば、第一金属導体層M1の導体パターンと第一誘電体層B1の樹脂フィルム30との接着面積が、図1に示す第一実施形態よりも大きく確保され、内部応力の集中を緩和することができる。   In the production of such a thin buildup layer, not only in the present invention, the internal stress generated in the buildup layer laminating step, the supporting substrate (metal plate) removing step, and the manufacturing step after removing the supporting substrate is supported. It tends to concentrate on the interface between the conductor pattern in close contact with the substrate (for example, a metal plate) and the dielectric layer formed immediately above. Therefore, defects such as cracks are easily induced from such an interface. Therefore, in a method for manufacturing a wiring board having a thin build-up layer, some measures may be required for such a problem of crack generation. In the present invention, defects such as cracks may occur from the interface between the support in which the metal thin film layer is formed on the first main surface of the support substrate and the dielectric layer in close contact with the support. The invention may also require measures against such problems. The second embodiment shows one embodiment that solves such a problem, and according to this, the adhesion area between the conductor pattern of the first metal conductor layer M1 and the resin film 30 of the first dielectric layer B1 is reduced. 1 is ensured larger than the first embodiment shown in FIG. 1, and the concentration of internal stress can be reduced.

図9は、本発明の第三実施形態を表す配線基板300を示すものであり、上記第一実施形態の配線基板100(図1)とはビルドアップ層が積層方向を逆にして形成されていることを特徴とする。本発明は、図2〜4、図6〜8のように、必ずしもマザーボードや他の配線基板との接続面側から積層形成する必要は無く、電子部品IC搭載側から積層形成されても良い。ビルドアップ層積層後の接続端子の形成や補強枠(スティフナー)STの設置位置などのみ考慮されてなされれば、どちら側から形成されていても何等問題は無い。図9においては、導体パターン14に第一実施形態及び第二実施形態とは異なりハンダボールSBが形成されている。また、導体パターン11の露出面には、ハンダバンプFBが形成されると共に、電子部品ICが搭載されている。補強枠(スティフナー)STの設置位置も第一誘電体層側に形成される。その他の構造に関しては、上記第一実施形態と同様であるため、ハンダバンプFB、ハンダボールSBの形成、及び補強枠(スティフナー)STの設置を行う工程を除けば、上記第一実施形態と同様の製造工程を経て形成することが可能である。従って、第三実施形態の製造方法についての説明は省略する。   FIG. 9 shows a wiring board 300 representing the third embodiment of the present invention. The wiring board 100 (FIG. 1) of the first embodiment has a build-up layer formed with the stacking direction reversed. It is characterized by being. As shown in FIGS. 2 to 4 and FIGS. 6 to 8, the present invention does not necessarily need to be laminated from the connection surface side with the mother board or another wiring board, and may be laminated from the electronic component IC mounting side. If only the formation of the connection terminals after the build-up layer lamination and the installation position of the reinforcing frame (stiffener) ST are taken into consideration, there is no problem regardless of which side is formed. In FIG. 9, unlike the first and second embodiments, solder balls SB are formed on the conductor pattern 14. A solder bump FB is formed on the exposed surface of the conductor pattern 11 and an electronic component IC is mounted. The installation position of the reinforcing frame (stiffener) ST is also formed on the first dielectric layer side. Since the other structure is the same as that of the first embodiment, except for the steps of forming the solder bumps FB and the solder balls SB and installing the reinforcing frame (stiffener) ST, the same as the first embodiment. It can be formed through a manufacturing process. Therefore, the description about the manufacturing method of 3rd embodiment is abbreviate | omitted.

図10は、本発明の第四実施形態をなす配線基板400を示すものである。第四実施形態は、上記第三実施形態と同様に、上記第一実施形態とビルドアップ層が積層方向を逆にして形成されるが、その積層過程において、上記第一実施形態との違いを有する。以下、図11,図12を用いて図10に示す配線基板400の製造方法について説明する。   FIG. 10 shows a wiring board 400 according to the fourth embodiment of the present invention. In the fourth embodiment, as in the third embodiment, the build-up layer and the first embodiment are formed with the stacking direction reversed. In the stacking process, the difference from the first embodiment is described. Have. A method for manufacturing the wiring substrate 400 shown in FIG. 10 will be described below with reference to FIGS.

この場合、図11の工程1は上記第一及び第二実施形態の図1の工程1と共通である。工程2にて、金属板2に被膜された金属薄膜層3の直上に樹脂フィルム30をラミネートし、硬化処理を施すことで図10の第一誘電体層B1を形成する。そして樹脂フィルム30の所定位置には、例えばレーザを用いて穿孔し、電子部品とフリップチップ接続するため導体領域が形成されるための開口部(以下、FC開口部ともいう)を形成しておく。工程3では、例えば周知のフィルドビア法により金属材料をFC開口部に埋め込む。ここでは、Cuを主成分する金属材料を埋め込むものとする。埋め込み後は、第一誘電体層の第一主表面を含む露出面全面に、紫外線感光性のドライフィルムレジスト4をラミネート(貼り合わせ)した上で、紫外線照射による露光、現像を用いてパターニング処理する。そして、パターニングされたドライフィルムレジスト4をマスクとして用い、導体パターン12(第一金属導体層M2)を形成する。なお、工程4以降に関しては、図12に示されているが、第一実施形態の工程5〜工程9と同様の処理が成されるため、説明は省略する。これにより、ビルドアップ層10bを形成することができる。このビルドアップ層10bに形成された導体パターン14の露出面上に、メッキ表面層7を介してハンダボールSBを形成し、補強枠(スティフナー)STを設置することで、図10に示された配線基板400を形成することができる。   In this case, step 1 in FIG. 11 is the same as step 1 in FIG. 1 of the first and second embodiments. In step 2, the resin film 30 is laminated directly on the metal thin film layer 3 coated on the metal plate 2, and the first dielectric layer B1 of FIG. 10 is formed by performing a curing process. In a predetermined position of the resin film 30, for example, a hole is formed by using a laser, and an opening for forming a conductor region for flip chip connection with an electronic component (hereinafter also referred to as an FC opening) is formed. . In step 3, a metal material is embedded in the FC opening by a well-known filled via method, for example. Here, a metal material containing Cu as a main component is embedded. After embedding, an ultraviolet-sensitive dry film resist 4 is laminated (bonded) to the entire exposed surface including the first main surface of the first dielectric layer, followed by patterning using exposure and development by ultraviolet irradiation. To do. Then, using the patterned dry film resist 4 as a mask, the conductor pattern 12 (first metal conductor layer M2) is formed. In addition, although it has shown by FIG. 12 about the process after 4th, since the process similar to the process 5-the process 9 of 1st embodiment is performed, description is abbreviate | omitted. Thereby, the buildup layer 10b can be formed. As shown in FIG. 10, solder balls SB are formed on the exposed surface of the conductor pattern 14 formed on the build-up layer 10b via the plated surface layer 7 and a reinforcing frame (stiffener) ST is installed. The wiring board 400 can be formed.

また、第四実施形態において、導体パターン14の露出表面にのみメッキ表面層7を形成したい場合には、図12に示す工程5の金属板2のエッチング処理直前に、電解Ni−Auメッキ処理を行うことも可能である。ただし、この場合、図13のように、Cu板2及び金属薄膜層3の露出表面全面をめっきレジスト6によって覆った上で電解めっき処理を行う必要がある。これにより、例えば、ここで形成したメッキ表面層7を介してはんだボールを形成することができ、導体パターン11の露出面には、メッキ表面層7は形成されない。これは、第三実施形態においても同様であり、金属板2のエッチング処理直前に上記した方法で電解Ni−Auメッキ処理を行い、導体パターン14の露出表面にのみメッキ表面層7を形成することができる。なお、この電解めっき処理で行う場合は、例えば図13に示すように、金属板2を介して互いに電気的に連結された導体パターン14のうち、その複数の露出面のうちのいずれかもしくは金属板2から電流を供給することで行うことができる(図13では、メッキバー70から導体パターン14のうちの一つの露出面へ電流を供給している)。なお、めっきレジスト6は、電解Ni−Auメッキ処理後にエッチング除去される。   In the fourth embodiment, when it is desired to form the plating surface layer 7 only on the exposed surface of the conductor pattern 14, an electrolytic Ni—Au plating process is performed immediately before the etching process of the metal plate 2 in step 5 shown in FIG. It is also possible to do this. However, in this case, as shown in FIG. 13, it is necessary to perform electrolytic plating after covering the entire exposed surfaces of the Cu plate 2 and the metal thin film layer 3 with the plating resist 6. Thereby, for example, a solder ball can be formed through the plated surface layer 7 formed here, and the plated surface layer 7 is not formed on the exposed surface of the conductor pattern 11. The same applies to the third embodiment, and the electrolytic Ni—Au plating process is performed by the method described above immediately before the etching process of the metal plate 2 to form the plated surface layer 7 only on the exposed surface of the conductor pattern 14. Can do. In the case of performing this electrolytic plating process, for example, as shown in FIG. 13, any one of the plurality of exposed surfaces or a metal of the conductor pattern 14 electrically connected to each other through the metal plate 2 is used. This can be done by supplying a current from the plate 2 (in FIG. 13, the current is supplied from the plating bar 70 to one exposed surface of the conductor pattern 14). The plating resist 6 is removed by etching after the electrolytic Ni—Au plating process.

本発明の第一実施形態である配線基板の製造方法によって製造された配線基板の断面構造の概略を示す図。The figure which shows the outline of the cross-sectional structure of the wiring board manufactured by the manufacturing method of the wiring board which is 1st embodiment of this invention. 本発明の第一実施形態である配線基板の製造方法の工程を表す図。The figure showing the process of the manufacturing method of the wiring board which is 1st embodiment of this invention. 図2に続く図。The figure following FIG. 図3に続く図。The figure following FIG. 本発明の第二実施形態である配線基板の製造方法によって製造された配線基板の断面構造の概略を示す図。The figure which shows the outline of the cross-sectional structure of the wiring board manufactured by the manufacturing method of the wiring board which is 2nd embodiment of this invention. 本発明の第二実施形態である配線基板の製造方法の工程を表す図。The figure showing the process of the manufacturing method of the wiring board which is 2nd embodiment of this invention. 図6に続く図。The figure following FIG. 図7に続く図。The figure following FIG. 本発明の第三実施形態である配線基板の製造方法によって製造された配線基板の断面構造の概略を示す図。The figure which shows the outline of the cross-section of the wiring board manufactured by the manufacturing method of the wiring board which is 3rd embodiment of this invention. 本発明の第四実施形態である配線基板の製造方法によって製造された配線基板の断面構造の概略を示す図。The figure which shows the outline of the cross-section of the wiring board manufactured by the manufacturing method of the wiring board which is 4th embodiment of this invention. 本発明の第四実施形態である配線基板の製造方法の工程を表す図The figure showing the process of the manufacturing method of the wiring board which is 4th embodiment of this invention. 図11に続く図。The figure following FIG. 電解メッキ処理による金属端子パッド上のメッキ表面層の形成を表す図。The figure showing formation of the plating surface layer on the metal terminal pad by an electrolytic plating process.

符号の説明Explanation of symbols

100,200,300,400 配線基板
2 金属板(Cu板)
3 金属薄膜層
10,10a,10b 配線積層部(ビルドアップ層)
11,11a,12,13,14 導体パターン
21,22,23 ビア導体
30 樹脂フィルム
SR ソルダーレジスト
FB ハンダバンプ
SB ハンダボール
ST 補強枠(スティフナー)
100, 200, 300, 400 Wiring board 2 Metal plate (Cu plate)
3 Metal thin film layer 10, 10a, 10b Wiring laminate (build-up layer)
11, 11a, 12, 13, 14 Conductor pattern 21, 22, 23 Via conductor 30 Resin film SR Solder resist FB Solder bump SB Solder ball ST Reinforcement frame (stiffener)

Claims (1)

製造時における補強のための支持基板として用いる金属板の第一主表面に、該金属板に対して選択エッチング性を有する金属薄膜層を被膜する被膜工程と、
前記被膜工程後に、前記金属薄膜層の第一主表面に、金属端子パッドをなす導体パターンを形成した上で、高分子材料からなる誘電体層と金属導体層とを交互に積層して配線積層部を形成する積層工程と、
前記積層工程後に、前記金属板を選択エッチングにより除去し、次いで、前記金属薄膜層を選択エッチングにより除去することで、前記金属薄膜層の第一主表面側に形成された前記導体パターンを露出させるエッチング工程と、
をこの順で行うことを特徴とする配線基板の製造方法。
A coating step of coating a metal thin film layer having selective etching properties on the first main surface of a metal plate used as a support substrate for reinforcement during production;
After the coating step, a conductor pattern forming a metal terminal pad is formed on the first main surface of the metal thin film layer, and dielectric layers and metal conductor layers made of a polymer material are alternately laminated to form a wiring laminate. A laminating process for forming a portion;
After the stacking step, the metal plate is removed by selective etching, and then the metal thin film layer is removed by selective etching, thereby exposing the conductor pattern formed on the first main surface side of the metal thin film layer. Etching process;
A method of manufacturing a wiring board, wherein the steps are performed in this order.
JP2004054996A 2004-02-27 2004-02-27 Wiring board manufacturing method Expired - Fee Related JP4547164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004054996A JP4547164B2 (en) 2004-02-27 2004-02-27 Wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004054996A JP4547164B2 (en) 2004-02-27 2004-02-27 Wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JP2005244104A true JP2005244104A (en) 2005-09-08
JP4547164B2 JP4547164B2 (en) 2010-09-22

Family

ID=35025485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004054996A Expired - Fee Related JP4547164B2 (en) 2004-02-27 2004-02-27 Wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP4547164B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180529A (en) * 2005-12-02 2007-07-12 Nec Electronics Corp Semiconductor device and method of manufacturing the same
JP2008042118A (en) * 2006-08-10 2008-02-21 Shinko Electric Ind Co Ltd Substrate with built-in capacitor, its manufacturing method, and electronic component device
JP2009038134A (en) * 2007-07-31 2009-02-19 Kyocer Slc Technologies Corp Manufacturing method for wiring board
JP2009518873A (en) * 2005-12-12 2009-05-07 インテル コーポレイション Package using array capacitor core
JP2009105393A (en) * 2007-10-05 2009-05-14 Shinko Electric Ind Co Ltd Wiring board, semiconductor apparatus, and method of manufacturing them
JP2012146990A (en) * 2012-02-22 2012-08-02 Sumitomo Bakelite Co Ltd Multilayer circuit board, method of manufacturing the same, and semiconductor device
US8395269B2 (en) 2005-12-02 2013-03-12 Renesas Electronics Corporation Method of stacking semiconductor chips including forming an interconnect member and a through electrode
US8797757B2 (en) 2011-01-11 2014-08-05 Shinko Electric Industries Co., Ltd. Wiring substrate and manufacturing method thereof
JP2015015285A (en) * 2013-07-03 2015-01-22 新光電気工業株式会社 Wiring board and method for manufacturing wiring board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204333A (en) * 1995-01-31 1996-08-09 Toshiba Corp Manufacture of printed wiring board
JP2000208936A (en) * 1999-01-13 2000-07-28 Ngk Spark Plug Co Ltd Manufacture of printed wiring board
JP2002076578A (en) * 2000-08-25 2002-03-15 Ibiden Co Ltd Printed wiring board and manufacturing method therefor
JP2002111205A (en) * 2000-07-27 2002-04-12 Sumitomo Bakelite Co Ltd Multilayered wiring board and method of manufacturing the same
JP2004006829A (en) * 2002-04-25 2004-01-08 Matsushita Electric Ind Co Ltd Wiring transfer sheet and its manufacturing method, and wiring board and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204333A (en) * 1995-01-31 1996-08-09 Toshiba Corp Manufacture of printed wiring board
JP2000208936A (en) * 1999-01-13 2000-07-28 Ngk Spark Plug Co Ltd Manufacture of printed wiring board
JP2002111205A (en) * 2000-07-27 2002-04-12 Sumitomo Bakelite Co Ltd Multilayered wiring board and method of manufacturing the same
JP2002076578A (en) * 2000-08-25 2002-03-15 Ibiden Co Ltd Printed wiring board and manufacturing method therefor
JP2004006829A (en) * 2002-04-25 2004-01-08 Matsushita Electric Ind Co Ltd Wiring transfer sheet and its manufacturing method, and wiring board and its manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180529A (en) * 2005-12-02 2007-07-12 Nec Electronics Corp Semiconductor device and method of manufacturing the same
US8395269B2 (en) 2005-12-02 2013-03-12 Renesas Electronics Corporation Method of stacking semiconductor chips including forming an interconnect member and a through electrode
JP2009518873A (en) * 2005-12-12 2009-05-07 インテル コーポレイション Package using array capacitor core
JP2008042118A (en) * 2006-08-10 2008-02-21 Shinko Electric Ind Co Ltd Substrate with built-in capacitor, its manufacturing method, and electronic component device
JP2009038134A (en) * 2007-07-31 2009-02-19 Kyocer Slc Technologies Corp Manufacturing method for wiring board
JP2012209580A (en) * 2007-10-05 2012-10-25 Shinko Electric Ind Co Ltd Wiring board and semiconductor device manufacturing method
JP2012231167A (en) * 2007-10-05 2012-11-22 Shinko Electric Ind Co Ltd Wiring board and semiconductor device
JP2009105393A (en) * 2007-10-05 2009-05-14 Shinko Electric Ind Co Ltd Wiring board, semiconductor apparatus, and method of manufacturing them
US8502398B2 (en) 2007-10-05 2013-08-06 Shinko Electric Industries Co., Ltd. Wiring board, semiconductor apparatus and method of manufacturing them
US8779602B2 (en) 2007-10-05 2014-07-15 Shinko Electric Industries Co., Ltd. Wiring board, semiconductor apparatus and method of manufacturing them
KR101551898B1 (en) * 2007-10-05 2015-09-09 신꼬오덴기 고교 가부시키가이샤 Wiring board semiconductor apparatus and method of manufacturing them
US8797757B2 (en) 2011-01-11 2014-08-05 Shinko Electric Industries Co., Ltd. Wiring substrate and manufacturing method thereof
JP2012146990A (en) * 2012-02-22 2012-08-02 Sumitomo Bakelite Co Ltd Multilayer circuit board, method of manufacturing the same, and semiconductor device
JP2015015285A (en) * 2013-07-03 2015-01-22 新光電気工業株式会社 Wiring board and method for manufacturing wiring board

Also Published As

Publication number Publication date
JP4547164B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
KR100890534B1 (en) Multilayer printed wiring board and method for producing multilayer printed wiring board
US9024207B2 (en) Method of manufacturing a wiring board having pads highly resistant to peeling
US8436252B2 (en) Printed wiring board and method for manufacturing the same
US8236690B2 (en) Method for fabricating semiconductor package substrate having different thicknesses between wire bonding pad and ball pad
TWI500361B (en) Multilayer wiring board
US20060191709A1 (en) Printed circuit board, flip chip ball grid array board and method of fabricating the same
US9907164B2 (en) Printed circuit board and method for manufacturing the same
JP5505433B2 (en) Printed wiring board
TWI617225B (en) Printed circuit board and method for manufacturing the same
JP2017157666A (en) Wiring board, semiconductor device, wiring board manufacturing method and semiconductor device manufacturing method
JP2002100875A (en) Printed wiring board and capacitor
TW201247072A (en) Method of manufacturing multilayer wiring substrate
JP5221887B2 (en) Wiring board manufacturing method
JP4170266B2 (en) Wiring board manufacturing method
US9497853B2 (en) Printed circuit board and method for manufacturing the same
JP4547164B2 (en) Wiring board manufacturing method
US9661750B2 (en) Printed circuit board and method of manufacturing the same
JP4445777B2 (en) Wiring board and method for manufacturing wiring board
JP2009076928A (en) Method for manufacturing circuit board
JP6457881B2 (en) Wiring board and manufacturing method thereof
JP4445778B2 (en) Wiring board manufacturing method
JP2005093979A (en) Wiring board and its manufacturing method
TW201244561A (en) Multilayer wiring board
JP2007273896A (en) Wiring board
JP2004095913A (en) Printed wiring board and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100429

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees