JP2000114109A - Solid electrolytic capacitor and its manufacture - Google Patents

Solid electrolytic capacitor and its manufacture

Info

Publication number
JP2000114109A
JP2000114109A JP10276926A JP27692698A JP2000114109A JP 2000114109 A JP2000114109 A JP 2000114109A JP 10276926 A JP10276926 A JP 10276926A JP 27692698 A JP27692698 A JP 27692698A JP 2000114109 A JP2000114109 A JP 2000114109A
Authority
JP
Japan
Prior art keywords
foil
cathode foil
cathode
solid electrolytic
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10276926A
Other languages
Japanese (ja)
Other versions
JP4062787B2 (en
Inventor
Kazunori Naradani
一徳 奈良谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP27692698A priority Critical patent/JP4062787B2/en
Priority to EP99969832A priority patent/EP1137019B1/en
Priority to PCT/JP1999/005323 priority patent/WO2000019468A1/en
Priority to KR1020017004045A priority patent/KR100647181B1/en
Priority to DE69936537T priority patent/DE69936537T2/en
Priority to US09/806,181 priority patent/US6515847B1/en
Publication of JP2000114109A publication Critical patent/JP2000114109A/en
Application granted granted Critical
Publication of JP4062787B2 publication Critical patent/JP4062787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce ESR(equivalent series resistance) and enable improving capacity substantiality rate. SOLUTION: A foil in which an etched aluminum foil is subjected to the formation of at most 10V, by using aqueous solution of ammonium dihydrogenphosphate of 0.005-3%, and a TiN film, is formed on the surface of the aluminum foil by a cathode arc plasma vapor deposition method is used as a cathode foil. A foil in which the surface of the etched aluminum foil is subjected to forming the treatment and a dielectric coating film is formed is used as an anode foil. This anode foil is wound together with the cathode foil and a separator, and a capacitor element is formed. The capacitor element is impregnated with EDT(ethylene dioxithiophene) monomer and further with a butanol solution of ferric paratoluene sulfonic acid of 40-60% and heated to 20-180 deg.C for at least 30 minutes. After that, the surface of the capacitor element is covered with resin, and aging is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体電解コンデンサ
及びその製造方法に係り、特に、等価直列抵抗(以下、
ESRという)の低減を図り、コンデンサの小型化を可
能とするために、容量出現率の向上を図るべく改良を施
した固体電解コンデンサ及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same, and more particularly, to an equivalent series resistance (hereinafter, referred to as "equivalent series resistance").
The present invention relates to a solid electrolytic capacitor improved in order to reduce the ESR) and to reduce the size of the capacitor, and to improve the capacitance appearance rate, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】タンタルあるいはアルミニウム等のよう
な弁作用を有する金属を利用した電解コンデンサは、陽
極側対向電極としての弁作用金属を焼結体あるいはエッ
チング箔等の形状にして誘電体を拡面化することによ
り、小型で大きな容量を得ることができることから、広
く一般に用いられている。特に、電解質に固体電解質を
用いた固体電解コンデンサは、小型、大容量、低等価直
列抵抗であることに加えて、チップ化しやすく、表面実
装に適している等の特質を備えていることから、電子機
器の小型化、高機能化、低コスト化に欠かせないものと
なっている。
2. Description of the Related Art In an electrolytic capacitor using a metal having a valve action such as tantalum or aluminum, a valve action metal as an anode-side counter electrode is formed into a shape of a sintered body or an etching foil to expand a dielectric material. By using such a structure, it is possible to obtain a large capacity with a small size. In particular, a solid electrolytic capacitor using a solid electrolyte as an electrolyte has characteristics that it is small, large-capacity, low equivalent series resistance, easy to chip, and suitable for surface mounting. It is indispensable for miniaturization, high performance, and low cost of electronic devices.

【0003】この種の固体電解コンデンサにおいて、小
型、大容量用途としては、一般に、アルミニウム等の弁
作用金属からなる陽極箔と陰極箔をセパレータを介在さ
せて巻回してコンデンサ素子を形成し、このコンデンサ
素子に駆動用電解液を含浸し、アルミニウム等の金属製
ケースや合成樹脂製のケースにコンデンサ素子を収納
し、密閉した構造を有している。なお、陽極材料として
は、アルミニウムを初めとしてタンタル、ニオブ、チタ
ン等が使用され、陰極材料には、陽極材料と同種の金属
が用いられる。
In this type of solid electrolytic capacitor, for small size and large capacity applications, generally, an anode foil and a cathode foil made of valve metal such as aluminum are wound with a separator interposed therebetween to form a capacitor element. The capacitor element is impregnated with a driving electrolyte, and the capacitor element is housed in a metal case such as aluminum or a synthetic resin case, and has a sealed structure. Note that as the anode material, aluminum, tantalum, niobium, titanium, or the like is used, and as the cathode material, the same kind of metal as the anode material is used.

【0004】ところで、電解コンデンサの静電容量を増
大させるためには、陽極材料と共に陰極材料の静電容量
を向上させることが重要である。電解コンデンサにおけ
る各電極の静電容量は、電極表面に薄く形成される絶縁
膜の種類、厚さ及び電極の表面積等に左右されるもので
あり、絶縁膜の誘電率をε、絶縁膜の厚さをt、電極の
表面積をAとするとき、静電容量Cは次式で表される。
Incidentally, in order to increase the capacitance of an electrolytic capacitor, it is important to improve the capacitance of a cathode material together with the anode material. The capacitance of each electrode in an electrolytic capacitor depends on the type and thickness of the insulating film formed thin on the electrode surface, the surface area of the electrode, and the like. Assuming that t is t and the surface area of the electrode is A, the capacitance C is expressed by the following equation.

【0005】C=ε(A/t) この式から明らかなように、静電容量の増大を図るため
には、電極表面積の拡大、高誘電率を有する絶縁膜材料
の選択、絶縁膜の薄膜化が有効である。これらのうち、
電極表面積の拡大を図るべく単純に大きな電極を用いる
ことは、電解コンデンサの大型化を招くだけなので好ま
しくない。そのため、従来から、電極材料の基材である
アルミニウム箔の表面にエッチング処理を施して凹凸を
形成することにより、実質的な表面積を拡大することが
行われている。
C = ε (A / t) As is apparent from this equation, in order to increase the capacitance, it is necessary to increase the electrode surface area, select an insulating film material having a high dielectric constant, and form a thin insulating film. Is effective. Of these,
It is not preferable to simply use a large electrode in order to increase the surface area of the electrode, because this simply causes an increase in the size of the electrolytic capacitor. Therefore, conventionally, the surface area of an aluminum foil, which is a base material of an electrode material, is subjected to an etching process to form irregularities, thereby substantially increasing the surface area.

【0006】また、特開昭59−167009号には、
上記エッチング処理に変わるものとして、金属蒸着の技
術を利用することにより、基材表面に金属皮膜を形成し
てなる陰極材料が開示されている。この技術によれば、
皮膜形成条件を選択することにより、皮膜表面に微細な
凹凸を形成して表面積を拡大し、大きな静電容量を得る
ことができるとされている。また、上記金属皮膜とし
て、酸化物となった際に高い誘電率を示すTi等の金属
を用いれば、陰極材料表面に形成される絶縁膜の誘電率
を高めて、より大きな静電容量を得ることができること
が示されている。
[0006] Japanese Patent Application Laid-Open No. Sho 59-16709 discloses that
As a substitute for the above-mentioned etching treatment, a cathode material in which a metal film is formed on the surface of a base material by utilizing a metal deposition technique is disclosed. According to this technology,
It is said that by selecting the film forming conditions, fine irregularities can be formed on the film surface to increase the surface area and obtain a large capacitance. Further, if a metal such as Ti, which exhibits a high dielectric constant when converted to an oxide, is used as the metal film, the dielectric constant of the insulating film formed on the surface of the cathode material is increased to obtain a larger capacitance. It has been shown that it can.

【0007】さらに、本出願人が先に出願した特開平3
−150825号には、電解コンデンサの静電容量が、
陽極側の静電容量と陰極側の静電容量とが直列に接続さ
れた合成容量となることに鑑み、陰極側の静電容量値を
高くするために、陰極用電極に用いられる高純度アルミ
ニウム表面にチタンの窒化物からなる蒸着層を陰極アー
ク蒸着法によって形成する技術が示されている。
Further, Japanese Patent Application Laid-Open No.
In -150825, the capacitance of the electrolytic capacitor is
Considering that the capacitance on the anode side and the capacitance on the cathode side are a combined capacitance connected in series, high-purity aluminum used for the cathode electrode was used to increase the capacitance value on the cathode side. A technique is disclosed in which a vapor deposition layer made of titanium nitride is formed on the surface by a cathodic arc vapor deposition method.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述し
たような従来の技術によって形成した陰極箔を用いた固
体電解コンデンサには、以下に述べるような問題点があ
った。すなわち、従来の固体電解コンデンサにおいて
は、電解コンデンサの静電容量を高めるために、電極材
料の基材であるアルミニウム箔の表面にエッチング処理
を施しているが、エッチングが過大になるとアルミニウ
ム箔表面の溶解が同時に進行し、却って拡面率の増大を
妨げることなどの理由から、エッチング技術による電極
材料の静電容量の増大化には限界があった。
However, the solid electrolytic capacitor using the cathode foil formed by the above-described conventional technique has the following problems. That is, in the conventional solid electrolytic capacitor, in order to increase the capacitance of the electrolytic capacitor, the surface of the aluminum foil, which is the base material of the electrode material, is subjected to an etching treatment. There is a limit to the increase in the capacitance of the electrode material by the etching technique, for example, because the melting proceeds at the same time and the increase in the area coverage is rather hindered.

【0009】また、従来、固体電解コンデンサの固体電
解質には、主に硝酸マンガンの熱分解により形成される
二酸化マンガンが用いられていたが、この二酸化マンガ
ンは導電率が比較的高いため、コンデンサとしてのES
Rの低減には限度があった。さらに、二酸化マンガンの
形成工程で、200〜300℃の熱処理を数回行わなけ
ればならないため、陰極箔の表面に形成された金属窒化
物からなる皮膜の表面に酸化皮膜が形成され、そのため
陰極箔の静電容量が低下し、ひいては電解コンデンサの
静電容量を低下させる原因となっていた。
Conventionally, manganese dioxide formed mainly by thermal decomposition of manganese nitrate has been used as a solid electrolyte for a solid electrolytic capacitor. However, since manganese dioxide has a relatively high conductivity, it is used as a capacitor. ES
There was a limit to the reduction of R. Further, in the step of forming manganese dioxide, heat treatment at 200 to 300 ° C. must be performed several times, so that an oxide film is formed on the surface of the metal nitride film formed on the surface of the cathode foil. Of the electrolytic capacitor, and eventually the capacitance of the electrolytic capacitor.

【0010】本発明は、上述したような従来技術の問題
点を解決するために提案されたものであり、その目的
は、ESRの低減を図り、容量出現率の向上を可能とし
た固体電解コンデンサ及びその製造方法を提供すること
にある。
The present invention has been proposed to solve the above-mentioned problems of the prior art, and an object of the present invention is to reduce the ESR and improve the capacitance appearance rate of a solid electrolytic capacitor. And a method for manufacturing the same.

【0011】[0011]

【課題を解決するための手段】本発明者は、上記課題を
解決すべく、ESRの低減を図り、容量出現率を向上さ
せることができる固体電解コンデンサ及びその製造方法
について鋭意検討を重ねた結果、本発明を完成するに至
ったものである。すなわち、電解質層として導電性ポリ
マーあるいは二酸化鉛を用いた巻回型の固体電解コンデ
ンサにおいて、陰極箔の表面に化成皮膜を形成し、さら
にその上に蒸着法によって金属窒化物からなる皮膜を形
成することによって、ESRの低減と容量出現率の向上
が可能となることが判明したものである。
Means for Solving the Problems To solve the above-mentioned problems, the present inventors have made intensive studies on a solid electrolytic capacitor capable of reducing the ESR and improving the capacitance appearance rate and a method of manufacturing the same. Thus, the present invention has been completed. That is, in a wound solid electrolytic capacitor using a conductive polymer or lead dioxide as an electrolyte layer, a chemical conversion film is formed on the surface of the cathode foil, and a film made of metal nitride is formed thereon by vapor deposition. It has been found that this makes it possible to reduce the ESR and improve the capacity appearance rate.

【0012】まず、本発明者は、電解質層として、近年
着目されるようになった電導度が高く、誘電体皮膜との
付着性の良い導電性ポリマーを用いた巻回型の固体電解
コンデンサについて、種々の検討を行った。なお、この
導電性ポリマーの代表例としては、ポリエチレンジオキ
シチオフェン(以下、PEDTと記す)、ポリピロー
ル、ポリアニリン、TCNQ(7,7,8,8−テトラ
シアノキノジメタン)もしくはこれらの誘電体等が知ら
れている。さらに、無機系の導電性化合物として知られ
ている二酸化鉛を用いた巻回型の固体電解コンデンサに
ついても、種々の検討を行った。
First, the present inventor has proposed a wound type solid electrolytic capacitor using a conductive polymer having high conductivity and good adhesion to a dielectric film, which has recently attracted attention as an electrolyte layer. Various studies were conducted. Representative examples of the conductive polymer include polyethylene dioxythiophene (hereinafter referred to as PEDT), polypyrrole, polyaniline, TCNQ (7,7,8,8-tetracyanoquinodimethane), and dielectrics thereof. It has been known. Further, various studies were also conducted on a wound solid electrolytic capacitor using lead dioxide, which is known as an inorganic conductive compound.

【0013】また、本発明者は、種々の化成電圧の下、
陰極箔に化成皮膜を形成し、さらにその上にTiNを蒸
着形成し、この陰極箔を用いて後述する条件下でコンデ
ンサを作成し、陰極箔のみの容量を測定したところ、そ
の容量は無限大となった。すなわち、化成皮膜の上に形
成されたTiNが、陰極箔の表面に形成された化成皮膜
の一部を除去し、TiNと陰極箔金属が導通しているこ
とが判明した。ところで、電解コンデンサの静電容量C
が、陽極側の静電容量Ca と陰極側の静電容量Cc とが
直列に接続された合成容量となることは、次式により表
される。
Further, the present inventor has proposed that under various formation voltages,
A chemical conversion film was formed on the cathode foil, and TiN was further vapor-deposited thereon. A capacitor was formed using the cathode foil under the conditions described below, and the capacity of the cathode foil alone was measured. It became. That is, it was found that TiN formed on the chemical conversion film removed a part of the chemical conversion film formed on the surface of the cathode foil, and the TiN and the cathode foil metal were conducting. By the way, the capacitance C of the electrolytic capacitor
Is a combined capacitance in which the anode-side capacitance Ca and the cathode-side capacitance Cc are connected in series, as expressed by the following equation.

【数1】 上式より明らかなように、Cc が値を持つ(陰極箔が容
量を持つ)限り、コンデンサの容量Cは陽極側の静電容
量Ca より小さくなる。言い換えれば、本発明のように
陰極箔表面に蒸着したTiNと陰極箔金属とが導通して
陰極箔の容量Ccが無限大となった場合には、陰極箔の
容量成分がなくなり、陽極箔と陰極箔の直列接続の合成
容量であるコンデンサの容量Cは陽極側の静電容量Ca
と等しくなって、最大となる。
(Equation 1) As is clear from the above equation, as long as Cc has a value (the cathode foil has a capacitance), the capacitance C of the capacitor is smaller than the capacitance Ca on the anode side. In other words, when TiN deposited on the surface of the cathode foil and the cathode foil metal become conductive and the capacitance Cc of the cathode foil becomes infinite as in the present invention, the capacitance component of the cathode foil disappears and the anode foil loses its capacity. The capacitance C of the capacitor, which is the combined capacitance of the cathode foils connected in series, is the capacitance Ca of the anode.
Is equal to the maximum.

【0014】なお、金属窒化物としては、表面に酸化皮
膜が形成されにくい、TiN、ZrN、TaN、NbN
等を用いることができる。また、陰極の表面に形成する
皮膜は金属窒化物に限らず、皮膜を形成することがで
き、且つ酸化することの少ない導電性材料であれば、他
の材質でも良い。例えば、Ti、Zr、Ta、Nb等を
用いることができる。
[0014] As the metal nitride, TiN, ZrN, TaN, NbN, on which an oxide film is hardly formed on the surface, can be used.
Etc. can be used. Further, the film formed on the surface of the cathode is not limited to the metal nitride, but may be another material as long as it is a conductive material that can form the film and is less likely to be oxidized. For example, Ti, Zr, Ta, Nb, etc. can be used.

【0015】また、弁金属からなる陰極に金属窒化物か
らなる皮膜を形成する方法としては、形成される皮膜の
強度、陰極との密着性、成膜条件の制御等を考慮する
と、蒸着法が好ましく、なかでも、陰極アークプラズマ
蒸着法がより好ましい。この陰極アークプラズマ蒸着法
の適用条件は以下の通りである。すなわち、電流値は8
0〜300A、電圧値は15〜20Vである。なお、金
属窒化物の場合は、弁金属からなる陰極を200〜45
0℃に加熱し、窒素を含む全圧が1×10-1〜1×10
-4Torrの雰囲気で行う。
As a method of forming a film made of metal nitride on a cathode made of a valve metal, a vapor deposition method is used in consideration of the strength of the film to be formed, adhesion to the cathode, control of film formation conditions, and the like. Of these, the cathodic arc plasma deposition method is more preferred. The application conditions of this cathodic arc plasma deposition method are as follows. That is, the current value is 8
0 to 300 A, and the voltage value is 15 to 20 V. In the case of metal nitride, a cathode made of a valve metal is used in a range of 200 to 45.
Heated to 0 ° C. and the total pressure including nitrogen is 1 × 10 −1 to 1 × 10
Performed in an atmosphere of -4 Torr.

【0016】また、陰極箔の表面に化成皮膜を形成する
ために印加する化成電圧は、10V以下であることが望
ましい。その理由は、化成電圧が10V以上であると、
陰極箔の表面に形成される化成皮膜の厚みが増して陰極
箔の静電容量が減少し、陽極箔と陰極箔の合成容量であ
るコンデンサの容量が減少するからである。
The formation voltage applied to form a chemical conversion film on the surface of the cathode foil is desirably 10 V or less. The reason is that if the formation voltage is 10V or more,
This is because the thickness of the chemical conversion film formed on the surface of the cathode foil increases, the capacitance of the cathode foil decreases, and the capacitance of the capacitor, which is the combined capacitance of the anode foil and the cathode foil, decreases.

【0017】さらに、陰極箔の化成液としては、リン酸
二水素アンモニウム、リン酸水素二アンモニウム等のリ
ン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化
成液、アジピン酸アンモニウム等のアジピン酸系の化成
液等を用いることができるが、なかでもリン酸二水素ア
ンモニウムを用いることが望ましい。なお、リン酸二水
素アンモニウムの水溶液の濃度は、0.005〜3%が
適している。
Further, as a chemical solution for forming the cathode foil, a phosphoric acid-based chemical solution such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate, a boric acid-based chemical solution such as ammonium borate, an ammonium adipate and the like can be used. An adipic acid-based chemical solution or the like can be used, and among them, ammonium dihydrogen phosphate is preferably used. The concentration of the aqueous solution of ammonium dihydrogen phosphate is suitably 0.005 to 3%.

【0018】また、上述したように、導電性ポリマーと
しては、コンデンサの作成過程において高温処理を必要
としないPEDT、ポリピロール、ポリアニリン、TC
NQもしくはこれらの誘電体等を用いることができる
が、なかでも、小型大容量の巻回型のコンデンサにおい
ては、100℃前後で重合を行うことができ、コンデン
サの製造過程において温度管理等が容易で、耐熱性に優
れ、単位容積当たりの静電容量が最も大きいPEDTを
用いることが望ましい。
As described above, as the conductive polymer, PEDT, polypyrrole, polyaniline, TC
NQ or their dielectrics can be used. Among them, in the case of a small-sized and large-capacity wound type capacitor, polymerization can be performed at about 100 ° C., and temperature control and the like can be easily performed during the manufacturing process of the capacitor. Therefore, it is desirable to use PEDT which is excellent in heat resistance and has the largest capacitance per unit volume.

【0019】続いて、電解質層として導電性ポリマーを
用いた巻回型の固体電解コンデンサの製造方法について
説明する。すなわち、陰極箔としては、エッチングした
アルミニウム箔を、10V以下で、0.005〜3%の
リン酸二水素アンモニウムの水溶液で化成し、さらにそ
の表面にTiN膜を陰極アークプラズマ蒸着法により形
成したものを用いる。なお、陰極アークプラズマ蒸着法
の条件は、窒素雰囲気中でTiターゲットを用い、弁金
属からなる陰極を200〜450℃に加熱し、窒素を含
む全圧が1×10-1〜1×10-4Torr、80〜30
0A、15〜20Vで行う。また、陽極箔としては、エ
ッチングしたアルミニウム箔の表面に、従来から用いら
れている方法で化成処理を施して誘電体皮膜を形成した
ものを用いる。この陽極箔を陰極箔及びセパレータと共
に巻回してコンデンサ素子を形成し、エチレンジオキシ
チオフェン(以下、EDTと記す)をコンデンサ素子に
含浸し、さらに40〜60%のパラトルエンスルホン酸
第二鉄のブタノール溶液を含浸して、20〜180℃、
30分以上加熱する。その後、コンデンサ素子の表面を
樹脂で被覆し、エージングを行う。
Next, a method of manufacturing a wound solid electrolytic capacitor using a conductive polymer as the electrolyte layer will be described. That is, as the cathode foil, an etched aluminum foil was converted into an aqueous solution of 0.005 to 3% ammonium dihydrogen phosphate at 10 V or less, and a TiN film was formed on the surface thereof by a cathode arc plasma deposition method. Use something. The conditions of the cathodic arc plasma deposition method are as follows: a cathode made of a valve metal is heated to 200 to 450 ° C. using a Ti target in a nitrogen atmosphere, and the total pressure including nitrogen is 1 × 10 −1 to 1 × 10 −. 4 Torr, 80-30
The operation is performed at 0 A and 15 to 20 V. Further, as the anode foil, a foil obtained by subjecting a surface of an etched aluminum foil to a chemical conversion treatment by a conventionally used method to form a dielectric film is used. The anode foil is wound together with the cathode foil and the separator to form a capacitor element, ethylenedioxythiophene (hereinafter, referred to as EDT) is impregnated into the capacitor element, and 40 to 60% of ferric paratoluenesulfonate is added. Impregnated with a butanol solution, 20-180 ° C.,
Heat for at least 30 minutes. Thereafter, the surface of the capacitor element is covered with a resin, and aging is performed.

【0020】ここで、コンデンサ素子に含浸するEDT
としてはEDTモノマーを用いることができるが、ED
Tと揮発性溶媒とを1:1〜1:3の体積比で混合した
モノマー溶液を用いることもできる。また、揮発性溶媒
としては、ペンタン等の炭化水素類、テトラヒドロフラ
ン等のエーテル類、ギ酸エチル等のエステル類、アセト
ン等のケトン類、メタノール等のアルコール類、アセト
ニトリル等の窒素化合物等を用いることができるが、な
かでも、メタノール、エタノール、アセトン等が好まし
い。酸化剤としては、ブタノールに溶解したパラトルエ
ンスルホン酸第二鉄を用いる。この場合、ブタノールと
パラトルエンスルホン酸第二鉄の比率は任意で良いが、
本発明においては40〜60%溶液を用いている。な
お、EDTと酸化剤の配合比は1:3〜1:6の範囲が
好適である。
Here, EDT impregnated in the capacitor element
Can be used as an EDT monomer,
A monomer solution in which T and a volatile solvent are mixed at a volume ratio of 1: 1 to 1: 3 can also be used. As the volatile solvent, hydrocarbons such as pentane, ethers such as tetrahydrofuran, esters such as ethyl formate, ketones such as acetone, alcohols such as methanol, and nitrogen compounds such as acetonitrile can be used. Among them, methanol, ethanol, acetone and the like are preferable. As the oxidizing agent, ferric paratoluenesulfonate dissolved in butanol is used. In this case, the ratio between butanol and ferric paratoluenesulfonate may be arbitrary,
In the present invention, a 40 to 60% solution is used. The mixing ratio between EDT and oxidizing agent is preferably in the range of 1: 3 to 1: 6.

【0021】また、上述した導電性ポリマーと同様に、
低温で半導体層を形成することができる二酸化鉛を用い
た巻回型の固体電解コンデンサについても種々の検討を
行ったところ、導電性ポリマーからなる電解質層を備え
た固体電解コンデンサと同様に、耐電圧特性、漏れ電流
特性等が良好で、ESRの低減が可能で、高い容量出現
率が得られることが判明した。この二酸化鉛は、高電導
性の半導体層を形成するので、低ESR特性を有する固
体電解コンデンサを形成することができる。また、二酸
化鉛を用いた半導体層は、酢酸鉛を過硫酸アンモニウム
等の酸化剤で常温で酸化して形成することができるの
で、高温で形成する二酸化マンガンに比べて陽極酸化皮
膜の損傷が少ないため、耐電圧特性、漏れ電流特性等が
良好で、導電性ポリマーと同等の特性を得ることができ
ると考えられる。
Further, similarly to the above-mentioned conductive polymer,
Various studies were also conducted on a wound solid electrolytic capacitor using lead dioxide, which can form a semiconductor layer at a low temperature, and as with solid electrolytic capacitors with an electrolyte layer made of a conductive polymer, resistance was as high. It has been found that voltage characteristics, leakage current characteristics, and the like are good, ESR can be reduced, and a high capacitance appearance rate can be obtained. Since this lead dioxide forms a highly conductive semiconductor layer, a solid electrolytic capacitor having low ESR characteristics can be formed. In addition, a semiconductor layer using lead dioxide can be formed by oxidizing lead acetate at room temperature with an oxidizing agent such as ammonium persulfate, so that the anodic oxide film is less damaged than manganese dioxide formed at a high temperature. It is considered that the film has good properties, withstand voltage characteristics, leakage current characteristics, and the like, and can obtain characteristics equivalent to those of the conductive polymer.

【0022】ただし、二酸化鉛は、上記PEDTに比較
すると、陽極箔の化成電圧に対して定格電圧が低いとい
う欠点がある。したがって、PEDTと同じ定格電圧に
するためには、陽極箔の化成電圧を高くしなければなら
ず、その分、陽極箔の化成皮膜の厚みが大きくなり、陽
極箔の静電容量が小さくなるため、陽極箔の静電容量と
陰極箔の静電容量の合成容量であるコンデンサの静電容
量は小さくなる。
However, lead dioxide has a drawback that the rated voltage is lower than the formation voltage of the anode foil as compared with the above-mentioned PEDT. Therefore, in order to obtain the same rated voltage as that of PEDT, the formation voltage of the anode foil must be increased, and accordingly, the thickness of the chemical conversion film of the anode foil increases, and the capacitance of the anode foil decreases. The capacitance of the capacitor, which is a combined capacitance of the capacitance of the anode foil and the capacitance of the cathode foil, is reduced.

【0023】続いて、電解質層として二酸化鉛を用いた
巻回型の固体電解コンデンサの製造方法について説明す
る。すなわち、陰極箔としては、エッチングしたアルミ
ニウム箔を、10V以下で、0.005〜3%のリン酸
二水素アンモニウムの水溶液で化成し、さらにその表面
にTiN膜を陰極アークプラズマ蒸着法により形成した
ものを用いる。なお、陰極アークプラズマ蒸着法の条件
は、窒素雰囲気中でTiターゲットを用い、弁金属から
なる陰極を200〜450℃に加熱し、窒素を含む全圧
が1×10-1〜1×10-4Torr、80〜300A、
15〜20Vで行う。また、陽極箔としては、エッチン
グしたアルミニウム箔の表面に、従来から用いられてい
る方法で化成処理を施して誘電体皮膜を形成したものを
用いる。この陽極箔を陰極箔及びセパレータと共に巻回
してコンデンサ素子を形成し、このコンデンサ素子を、
0.05モル/リットル〜飽和溶解度を与える濃度まで
の範囲の酢酸鉛水溶液に浸漬し、ここに、酢酸鉛1モル
に対して0.1〜5モルまでの範囲の過硫酸アンモニウ
ム水溶液を加え、室温で30分〜2時間放置して、誘電
体層上に二酸化鉛層を形成する。次いで、コンデンサ素
子を水洗、乾燥した後、樹脂封止して、固体電解コンデ
ンサを形成する。
Next, a method of manufacturing a wound solid electrolytic capacitor using lead dioxide as the electrolyte layer will be described. That is, as the cathode foil, an etched aluminum foil was converted into an aqueous solution of 0.005 to 3% ammonium dihydrogen phosphate at 10 V or less, and a TiN film was formed on the surface thereof by a cathode arc plasma deposition method. Use something. The conditions of the cathodic arc plasma deposition method are as follows: a cathode made of a valve metal is heated to 200 to 450 ° C. using a Ti target in a nitrogen atmosphere, and the total pressure including nitrogen is 1 × 10 −1 to 1 × 10 −. 4 Torr, 80-300A,
Perform at 15-20V. Further, as the anode foil, a foil obtained by subjecting a surface of an etched aluminum foil to a chemical conversion treatment by a conventionally used method to form a dielectric film is used. This anode foil is wound together with the cathode foil and the separator to form a capacitor element.
It is immersed in an aqueous solution of lead acetate in the range of 0.05 mol / liter to a concentration that gives a saturated solubility, and an aqueous solution of ammonium persulfate in the range of 0.1 to 5 mol per mol of lead acetate is added thereto. For 30 minutes to 2 hours to form a lead dioxide layer on the dielectric layer. Next, the capacitor element is washed with water and dried, and then sealed with a resin to form a solid electrolytic capacitor.

【0024】なお、通常の電解液を用いる電解コンデン
サに本発明に係る陰極箔を用いても、電解液と陰極箔の
界面に電気二重層コンデンサが形成されて容量成分とな
るので、陰極箔の容量がゼロになることはなく、本発明
のような最大の容量を得ることはできない。
Even when the cathode foil according to the present invention is used for an electrolytic capacitor using a normal electrolytic solution, an electric double layer capacitor is formed at the interface between the electrolytic solution and the cathode foil and becomes a capacitance component. The capacity does not become zero and the maximum capacity as in the present invention cannot be obtained.

【0025】[0025]

【実施例】以下、実施例に基づいて本発明をさらに詳細
に説明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0026】[1.第1実施形態]本実施形態は、電解
質層として導電性ポリマーを用いた巻回型の固体電解コ
ンデンサに関するものである。なお、本発明に係る表面
に化成皮膜を形成し、さらにその上に金属窒化物からな
る皮膜を形成した陰極箔は、以下の実施例1のように作
成した。また、比較例1として、陰極表面に実施例1と
同じ化成電圧で化成皮膜のみを形成した陰極箔を用い、
従来例1として通常の陰極箔を用いた。
[1. First Embodiment] The present embodiment relates to a wound solid electrolytic capacitor using a conductive polymer as an electrolyte layer. In addition, the cathode foil which formed the chemical conversion film on the surface which concerns on this invention, and also formed the film which consists of metal nitride on it was produced like Example 1 below. As Comparative Example 1, a cathode foil having only a chemical conversion film formed on the cathode surface at the same chemical conversion voltage as in Example 1 was used.
As a conventional example 1, a normal cathode foil was used.

【0027】(実施例1)高純度のアルミニウム箔(純
度99%、厚さ50μm)を4mm×30mmに切断し
たものを被処理材として使用し、エッチング処理後、化
成電圧2Vで0.15%のリン酸二水素アンモニウムの
水溶液で化成し、さらにその表面にTiN膜を陰極アー
クプラズマ蒸着法により形成した。なお、陰極アークプ
ラズマ蒸着法の条件は、窒素雰囲気中でTiターゲット
を用い、高純度のアルミニウム箔を200℃に加熱し、
5×10-3Torr、300A、20Vで行った。そし
て、この陰極箔を陽極箔及びセパレータと共に巻回し
て、素子形状が4φ×7Lのコンデンサ素子を形成し、
このコンデンサ素子にEDTモノマーを含浸し、さらに
酸化剤溶液として45%のパラトルエンスルホン酸第二
鉄のブタノール溶液を含浸して、100℃、1時間加熱
した。その後、コンデンサ素子の表面を樹脂で被覆し、
エージングを行って、固体電解コンデンサを形成した。
なお、この固体電解コンデンサの定格電圧は6.3W
V、定格容量は33μFである。
Example 1 A high-purity aluminum foil (purity: 99%, thickness: 50 μm) cut into a size of 4 mm × 30 mm was used as a material to be processed, and after etching, 0.15% at a formation voltage of 2 V. And a TiN film was formed on the surface thereof by a cathodic arc plasma deposition method. The conditions of the cathodic arc plasma deposition method were as follows: using a Ti target in a nitrogen atmosphere, heating a high-purity aluminum foil to 200 ° C.
The test was performed at 5 × 10 −3 Torr, 300 A, and 20 V. Then, this cathode foil is wound together with the anode foil and the separator to form a capacitor element having an element shape of 4φ × 7L,
This capacitor element was impregnated with an EDT monomer, further impregnated with a 45% ferric paratoluenesulfonate butanol solution as an oxidizing agent solution, and heated at 100 ° C. for 1 hour. After that, cover the surface of the capacitor element with resin,
Aging was performed to form a solid electrolytic capacitor.
The rated voltage of this solid electrolytic capacitor is 6.3 W
V, the rated capacity is 33 μF.

【0028】(比較例1)被処理材には実施例1と同じ
ものを用い、エッチング処理後、化成電圧2Vで0.1
5%のリン酸二水素アンモニウムの水溶液で化成して陰
極箔を作成した。そして、この陰極箔を用い、実施例1
と同様にして固体電解コンデンサを形成した。
Comparative Example 1 The same material as in Example 1 was used as the material to be treated.
A cathode foil was prepared by chemical conversion with a 5% aqueous solution of ammonium dihydrogen phosphate. Then, using this cathode foil,
A solid electrolytic capacitor was formed in the same manner as described above.

【0029】(従来例1)被処理材には実施例1と同じ
ものを用い、表面に化成皮膜及び金属窒化物からなる皮
膜を形成していないものを陰極箔として用いた。そし
て、この陰極箔を用い、実施例1と同様にして固体電解
コンデンサを形成した。
(Conventional Example 1) The same material as in Example 1 was used as a material to be treated, and a material having no surface formed of a chemical conversion film and a metal nitride film was used as a cathode foil. Using this cathode foil, a solid electrolytic capacitor was formed in the same manner as in Example 1.

【0030】[比較結果]上記の方法により得られた実
施例1、比較例1及び従来例1の固体電解コンデンサの
電気的特性を表1に示す。
[Comparative Results] Table 1 shows the electrical characteristics of the solid electrolytic capacitors of Example 1, Comparative Example 1 and Conventional Example 1 obtained by the above method.

【0031】[0031]

【表1】 [Table 1]

【0032】表1から明らかなように、陰極箔の表面に
化成皮膜及び金属窒化物からなる皮膜のいずれも形成し
ていない陰極箔を用いた従来例1においては、静電容量
(Cap)は“30.2”と低く、等価直列抵抗(ES
R)は“49”、tanδは“0.120”と高かっ
た。これに対して、実施例1においては、Capは“4
6.8”と従来例1の約1.55倍に上昇し、tanδ
は“0.020”と従来例1の約16.7%に低下し
た。また、ESRは“35”と従来例1の約71.4%
に低下した。
As is apparent from Table 1, in the conventional example 1 in which neither a chemical conversion film nor a film made of metal nitride is formed on the surface of the cathode foil, the capacitance (Cap) is "30.2" and the equivalent series resistance (ES
R) was as high as "49" and tan δ was as high as "0.120". On the other hand, in Example 1, Cap is “4”.
6.8 ″, which is about 1.55 times that of the conventional example 1, and tan δ
Was "0.020", which was about 16.7% of that of Conventional Example 1. The ESR is "35", which is about 71.4% of the conventional example 1.
Has dropped.

【0033】一方、陰極箔の表面に化成皮膜のみを形成
した比較例1においては、Capは“32.1”と従来
例1の約1.06倍に上昇し、tanδは“0.08
8”と従来例1の約73.3%に低下した。また、ES
Rは“35”と従来例1の約71.4%に低下した。
On the other hand, in Comparative Example 1 in which only the chemical conversion film was formed on the surface of the cathode foil, Cap was "32.1", which was about 1.06 times that of Conventional Example 1, and tan δ was "0.08".
8 ", which is about 73.3% of that of Conventional Example 1. In addition, ES
R was "35", which was about 71.4% of that of Conventional Example 1.

【0034】このような結果が得られたのは、以下の理
由によると考えられる。すなわち、実施例1において
は、陰極箔表面に形成された化成皮膜の上に、蒸着法に
よって金属窒化物からなる皮膜が形成されており、この
金属窒化物が陰極箔の表面に形成された化成皮膜の一部
を除去して、金属窒化物と陰極箔金属とが導通する。さ
らに、本実施形態においては、電解質として導電性ポリ
マーを用いているため、コンデンサの作成過程で高温処
理をする必要がないので、金属窒化物の表面に酸化皮膜
が形成されることはない。
It is considered that such a result was obtained for the following reason. That is, in Example 1, a film made of metal nitride was formed on the chemical conversion film formed on the surface of the cathode foil by a vapor deposition method, and this metal nitride was formed on the surface of the cathode foil. By removing a part of the coating, the metal nitride and the cathode foil metal are conducted. Further, in the present embodiment, since a conductive polymer is used as the electrolyte, it is not necessary to perform a high-temperature treatment in the process of forming the capacitor, and thus no oxide film is formed on the surface of the metal nitride.

【0035】このように実施例1によれば、陰極箔表面
に蒸着した金属窒化物と陰極箔金属とが導通して陰極箔
の容量が無限大となり、陰極箔表面の容量成分がなくな
り、結果として、陽極箔と陰極箔の合成容量であるコン
デンサの静電容量が、陽極箔のみの静電容量と等しくな
って増大する。また、陰極箔の容量成分がなくなること
によって、その誘電損失分もなくなるので、tanδも
低減する。
As described above, according to the first embodiment, the metal nitride deposited on the surface of the cathode foil and the metal of the cathode foil are conducted, and the capacity of the cathode foil becomes infinite, and the capacitance component on the surface of the cathode foil disappears. As a result, the capacitance of the capacitor, which is the combined capacitance of the anode foil and the cathode foil, becomes equal to the capacitance of only the anode foil and increases. Further, since the capacitance component of the cathode foil is eliminated, the dielectric loss is also eliminated, so that tan δ is also reduced.

【0036】さらに、陰極箔の表面に形成される金属窒
化物は蒸着法によって形成されているので、エッチング
を施した陰極箔表面の凹部の側面などには金属窒化物が
形成されることない。そのため、この部分では導電性ポ
リマーと陰極箔が直接接触することになるが、陰極箔の
表面には予め化成皮膜が形成されているので、陰極箔と
導電性ポリマーとの密着性が向上して、ESR及びta
nδが低減したと考えられる。
Further, since the metal nitride formed on the surface of the cathode foil is formed by a vapor deposition method, the metal nitride is not formed on the side surfaces of the concave portions of the etched cathode foil surface. Therefore, the conductive polymer and the cathode foil come into direct contact with each other in this portion, but since a chemical conversion film is formed on the surface of the cathode foil in advance, the adhesion between the cathode foil and the conductive polymer is improved. , ESR and ta
It is considered that nδ was reduced.

【0037】一方、陰極箔の表面に化成皮膜のみを形成
した比較例1においては、実施例1に比べてCapの上
昇率は大きくないが、tanδは従来例1の約73.3
%に、また、ESRは従来例1の約71.4%に低下し
た。これは、陰極箔の表面に所定の化成電圧で化成皮膜
を形成したことにより、陰極箔と導電性ポリマーとの密
着性が向上して、ESR及びtanδが低減したと考え
られる。
On the other hand, in Comparative Example 1 in which only the chemical conversion film was formed on the surface of the cathode foil, the increase rate of Cap was not large as compared with Example 1, but tan δ was about 73.3 of Conventional Example 1.
%, And the ESR was reduced to about 71.4% of the conventional example 1. This is presumably because the formation of a chemical conversion film on the surface of the cathode foil at a predetermined chemical conversion voltage improved the adhesion between the cathode foil and the conductive polymer, and reduced ESR and tan δ.

【0038】このように、表面に化成皮膜を形成し、さ
らにその上に金属窒化物からなる皮膜を形成した陰極箔
を用いた固体電解コンデンサにおいては、ESR及びt
anδを低減し、さらに容量出現率を大幅に向上するこ
とができることが明らかとなった。
As described above, in a solid electrolytic capacitor using a cathode foil in which a chemical conversion film is formed on the surface and a film made of metal nitride is further formed thereon, the ESR and t
It has been clarified that an δ can be reduced and the capacity appearance rate can be significantly improved.

【0039】[2.第2実施形態]本実施形態は、電解
質層として二酸化鉛を用いた巻回型の固体電解コンデン
サに関するものである。なお、本発明に係る表面に化成
皮膜を形成し、さらにその上に金属窒化物からなる皮膜
を形成した陰極箔は、以下の実施例2のように作成し
た。また、比較例2として、陰極表面に実施例2と同じ
化成電圧で化成皮膜のみを形成した陰極箔を用い、従来
例2として通常の陰極箔を用いた。
[2. Second Embodiment] The present embodiment relates to a wound solid electrolytic capacitor using lead dioxide as an electrolyte layer. The cathode foil having a chemical conversion film formed on the surface according to the present invention and further having a metal nitride film formed thereon was prepared as in Example 2 below. As Comparative Example 2, a cathode foil having only a chemical conversion film formed on the surface of the cathode at the same formation voltage as in Example 2 was used, and as Conventional Example 2, a normal cathode foil was used.

【0040】(実施例2)高純度のアルミニウム箔(純
度99%、厚さ50μm)を4mm×30mmに切断し
たものを被処理材として使用し、エッチング処理後、化
成電圧2Vで0.15%のリン酸二水素アンモニウムの
水溶液で化成し、さらにその表面にTiN膜を陰極アー
クプラズマ蒸着法により形成した。なお、陰極アークプ
ラズマ蒸着法の条件は、窒素雰囲気中でTiターゲット
を用い、高純度のアルミニウム箔を200℃に加熱し、
5×10-3Torr、300A、20Vで行った。そし
て、この陰極箔を陽極箔及びセパレータと共に巻回し
て、素子形状が4φ×7Lのコンデンサ素子を形成し
た。このコンデンサ素子を、3モル/リットルの酢酸鉛
水溶液に浸漬し、ここに、同量の3モル/リットルの過
硫酸アンモニウム水溶液を加え、室温で1時間放置し
た。次いで、このコンデンサ素子を水洗、乾燥した後、
実施例1と同様にして、定格電圧6.3WV、定格容量
22μFの固体電解コンデンサを形成した。
Example 2 A high-purity aluminum foil (purity: 99%, thickness: 50 μm) cut into a size of 4 mm × 30 mm was used as a material to be processed, and after etching, 0.15% at a formation voltage of 2 V. And a TiN film was formed on the surface thereof by a cathodic arc plasma deposition method. The conditions of the cathodic arc plasma deposition method were as follows: using a Ti target in a nitrogen atmosphere, heating a high-purity aluminum foil to 200 ° C.
The test was performed at 5 × 10 −3 Torr, 300 A, and 20 V. Then, the cathode foil was wound together with the anode foil and the separator to form a capacitor element having an element shape of 4φ × 7L. This capacitor element was immersed in a 3 mol / l aqueous lead acetate solution, and the same amount of a 3 mol / l aqueous ammonium persulfate solution was added thereto, and left at room temperature for 1 hour. Next, after washing and drying this capacitor element,
In the same manner as in Example 1, a solid electrolytic capacitor having a rated voltage of 6.3 WV and a rated capacity of 22 μF was formed.

【0041】なお、実施例2では、PEDTを用いた実
施例1に比べて、定格容量が22μFと小さくなってい
るが、その理由は以下の通りである。すなわち、二酸化
鉛はPEDTに比べて、陽極箔の化成電圧に対してコン
デンサの定格電圧が低くなる。したがって、同じ定格電
圧であると、二酸化鉛の場合は陽極箔の化成電圧を高く
しなければならない。そのため、陽極箔の厚みが大きく
なって、陽極箔の静電容量が小さくなり、陽極箔の静電
容量と陰極箔の静電容量の合成容量であるコンデンサの
静電容量は小さくなる。
In the second embodiment, the rated capacity is as small as 22 μF as compared with the first embodiment using PEDT, for the following reason. That is, lead dioxide has a lower rated voltage of the capacitor with respect to the formation voltage of the anode foil than PEDT. Therefore, for the same rated voltage, in the case of lead dioxide, the formation voltage of the anode foil must be increased. Therefore, the thickness of the anode foil increases, the capacitance of the anode foil decreases, and the capacitance of the capacitor, which is the combined capacitance of the capacitance of the anode foil and the capacitance of the cathode foil, decreases.

【0042】(比較例2)被処理材には実施例2と同じ
ものを用い、エッチング処理後、化成電圧2Vで0.1
5%のリン酸二水素アンモニウムの水溶液で化成して陰
極箔を作成した。そして、この陰極箔を用い、実施例2
と同様にして固体電解コンデンサを形成した。
Comparative Example 2 The same material as in Example 2 was used as the material to be treated.
A cathode foil was prepared by chemical conversion with a 5% aqueous solution of ammonium dihydrogen phosphate. Using the cathode foil, Example 2
A solid electrolytic capacitor was formed in the same manner as described above.

【0043】(従来例2)被処理材には実施例2と同じ
ものを用い、表面に化成皮膜及び金属窒化物からなる皮
膜を形成していないものを陰極箔として用いた。そし
て、この陰極箔を用い、実施例2と同様にして固体電解
コンデンサを形成した。
(Conventional Example 2) The same material as in Example 2 was used as the material to be treated, and a material having no surface formed of a chemical conversion film and a metal nitride film was used as a cathode foil. Then, using this cathode foil, a solid electrolytic capacitor was formed in the same manner as in Example 2.

【0044】[比較結果]上記の方法により得られた実
施例2、比較例2及び従来例2の固体電解コンデンサの
電気的特性を表2に示す。
[Comparative Results] Table 2 shows the electrical characteristics of the solid electrolytic capacitors of Example 2, Comparative Example 2 and Conventional Example 2 obtained by the above method.

【0045】[0045]

【表2】 [Table 2]

【0046】表2から明らかなように、陰極箔の表面に
化成皮膜及び金属窒化物からなる皮膜のいずれも形成し
ていない陰極箔を用いた従来例2においては、静電容量
(Cap)は“22.0”と低く、等価直列抵抗(ES
R)は“157”、tanδは“0.129”と高かっ
た。これに対して、実施例2においては、Capは“2
4.9”と従来例2より約13%上昇し、tanδは
“0.033”と従来例2の約26%に低下した。ま
た、ESRは“136”と従来例2の約87%に低下し
た。
As is apparent from Table 2, in the conventional example 2 in which neither a chemical conversion film nor a film made of metal nitride is formed on the surface of the cathode foil, the capacitance (Cap) is "22.0" and the equivalent series resistance (ES
R) was as high as "157" and tan δ was as high as "0.129". On the other hand, in Example 2, Cap is “2”.
4.9 ", which is about 13% higher than that of Conventional Example 2, and tan δ is" 0.033 ", which is about 26% that of Conventional Example 2. ESR is" 136 ", which is about 87% of that of Conventional Example 2. Dropped.

【0047】一方、陰極箔の表面に化成皮膜のみを形成
した比較例2においては、Capは“23.1”と従来
例2より約5%上昇し、tanδは“0.092”と従
来例2の約71%に低下した。また、ESRは“13
8”と従来例2の約88%に低下した。
On the other hand, in Comparative Example 2 in which only a chemical conversion film was formed on the surface of the cathode foil, Cap was "23.1", which was about 5% higher than in Conventional Example 2, and tan δ was "0.092". 2 to about 71%. The ESR is “13
8 ", which is about 88% of Conventional Example 2.

【0048】このような結果が得られたのは、以下の理
由によると考えられる。すなわち、実施例2において
は、陰極箔表面に形成された化成皮膜の上に、蒸着法に
よって金属窒化物からなる皮膜が形成されており、この
金属窒化物が陰極箔の表面に形成された化成皮膜の一部
を除去して、金属窒化物と陰極箔金属とが導通する。さ
らに、本実施形態においては、電解質として二酸化鉛を
用いているため、コンデンサの作成過程で高温処理をす
る必要がないので、金属窒化物の表面に酸化皮膜が形成
されることはない。
It is considered that such a result was obtained for the following reason. That is, in Example 2, a film made of a metal nitride was formed on the chemical conversion film formed on the surface of the cathode foil by a vapor deposition method, and this metal nitride was formed on the surface of the cathode foil. By removing a part of the coating, the metal nitride and the cathode foil metal are conducted. Further, in the present embodiment, since lead dioxide is used as the electrolyte, it is not necessary to perform high-temperature treatment in the process of forming the capacitor, so that no oxide film is formed on the surface of the metal nitride.

【0049】このように実施例2によれば、陰極箔表面
に蒸着した金属窒化物と陰極箔金属とが導通して陰極箔
の容量が無限大となり、陰極箔表面の容量成分がなくな
り、結果として、陽極箔と陰極箔の合成容量であるコン
デンサの静電容量が、陽極箔のみの静電容量と等しくな
って増大する。また、陰極箔の容量成分がなくなること
によって、その誘電損失分もなくなるので、tanδも
低減する。
As described above, according to Example 2, the metal nitride deposited on the surface of the cathode foil and the metal of the cathode foil conduct, the capacity of the cathode foil becomes infinite, and the capacitance component on the surface of the cathode foil disappears. As a result, the capacitance of the capacitor, which is the combined capacitance of the anode foil and the cathode foil, becomes equal to the capacitance of only the anode foil and increases. Further, since the capacitance component of the cathode foil is eliminated, the dielectric loss is also eliminated, so that tan δ is also reduced.

【0050】さらに、陰極箔の表面に形成される金属窒
化物は蒸着法によって形成されているので、エッチング
を施した陰極箔表面の凹部の側面などには金属窒化物が
形成されることない。そのため、この部分では二酸化鉛
と陰極箔が直接接触することになるが、陰極箔の表面に
は予め化成皮膜が形成されているので、陰極箔と二酸化
鉛との密着性が向上して、ESR及びtanδが低減し
たと考えられる。
Further, since the metal nitride formed on the surface of the cathode foil is formed by a vapor deposition method, the metal nitride is not formed on the side surfaces of the recesses on the etched cathode foil surface. For this reason, lead dioxide and the cathode foil come into direct contact with each other in this portion. However, since a chemical conversion film is formed in advance on the surface of the cathode foil, the adhesion between the cathode foil and the lead dioxide is improved, and the ESR is reduced. And tan δ are considered to have been reduced.

【0051】なお、実施例2において、静電容量の上昇
率(約13%)が、PEDTを用いた実施例1における
上昇率(約55%)に比べて小さいものとなっているの
は、以下の理由によると考えられる。すなわち、上述し
たように、実施例2においては、実施例1と同じ定格電
圧にすると、陽極箔の化成電圧を高くしなければならな
いため、陽極箔の厚みが大きくなって陽極箔の静電容量
が小さくなる。そのため、TiNを蒸着することによっ
て陰極箔の静電容量が無限大になっても、陽極箔の静電
容量と陰極箔の静電容量の合成容量であるコンデンサの
静電容量に対する寄与が、PEDTを用いた実施例1よ
り小さくなるためであると考えられる。
In the second embodiment, the rate of increase in capacitance (about 13%) is smaller than the rate of increase (about 55%) in Example 1 using PEDT. It is considered as follows. That is, as described above, in Example 2, when the same rated voltage as in Example 1 was used, the formation voltage of the anode foil had to be increased, so that the thickness of the anode foil was increased and the capacitance of the anode foil was increased. Becomes smaller. Therefore, even if the capacitance of the cathode foil becomes infinite due to the deposition of TiN, the contribution to the capacitance of the capacitor, which is a combined capacitance of the capacitance of the anode foil and the capacitance of the cathode foil, is expressed by PEDT. This is considered to be because the size is smaller than that in the first embodiment using.

【0052】一方、陰極箔の表面に化成皮膜のみを形成
した比較例2においては、実施例2に比べてCapの上
昇率は大きくないが、tanδは従来例2の約71.3
%に、また、ESRは従来例2の約87.9%に低下し
た。これは、陰極箔の表面に所定の化成電圧で化成皮膜
を形成したことにより、陰極箔と二酸化鉛との密着性が
向上して、ESR及びtanδが低減したと考えられ
る。
On the other hand, in Comparative Example 2 in which only a chemical conversion film was formed on the surface of the cathode foil, the increase rate of Cap was not large as compared with Example 2, but tan δ was about 71.3 of Conventional Example 2.
%, And the ESR was reduced to about 87.9% of that of Conventional Example 2. This is presumably because the conversion film was formed on the surface of the cathode foil at a predetermined formation voltage, whereby the adhesion between the cathode foil and lead dioxide was improved, and the ESR and tan δ were reduced.

【0053】このように、表面に化成皮膜を形成し、さ
らにその上に金属窒化物からなる皮膜を形成した陰極箔
を用いた固体電解コンデンサにおいては、電解質として
二酸化鉛を用いた場合にも、導電性ポリマーからなる電
解質層を備えた固体電解コンデンサと同様に、ESR及
びtanδを低減し、さらに容量出現率を大幅に向上す
ることができることが明らかとなった。
As described above, in a solid electrolytic capacitor using a cathode foil in which a chemical conversion film is formed on the surface and a film made of a metal nitride is further formed thereon, even when lead dioxide is used as an electrolyte, As in the case of a solid electrolytic capacitor provided with an electrolyte layer made of a conductive polymer, it has been found that ESR and tan δ can be reduced, and the capacitance appearance rate can be significantly improved.

【0054】[0054]

【発明の効果】以上説明したように、本発明によれば、
陰極箔の表面に化成皮膜を形成し、さらにその上に金属
窒化物からなる皮膜を形成することにより、この金属窒
化物が陰極箔の表面に形成された化成皮膜の一部を除去
して、金属窒化物と陰極箔金属とが導通する。その結
果、陰極箔の容量が無限大となり、陰極箔表面の容量成
分がなくなり、結果として、陽極箔と陰極箔の合成容量
であるコンデンサの静電容量が、陽極箔のみの静電容量
と等しくなって最大となる。また、陰極箔の容量成分が
なくなることによって、その誘電損失分もなくなるの
で、tanδも低減する。従って、本発明によれば、E
SRの低減を図り、容量出現率の向上を可能とした固体
電解コンデンサ及びその製造方法を提供することができ
る。
As described above, according to the present invention,
By forming a chemical conversion film on the surface of the cathode foil and further forming a film made of metal nitride thereon, this metal nitride removes a part of the chemical conversion film formed on the surface of the cathode foil, The metal nitride and the cathode foil metal conduct. As a result, the capacitance of the cathode foil becomes infinite and the capacitance component on the surface of the cathode foil disappears, and as a result, the capacitance of the capacitor, which is the combined capacitance of the anode foil and the cathode foil, is equal to the capacitance of only the anode foil. Become the largest. Further, since the capacitance component of the cathode foil is eliminated, the dielectric loss is also eliminated, so that tan δ is also reduced. Therefore, according to the present invention, E
It is possible to provide a solid electrolytic capacitor and a method of manufacturing the same, which can reduce the SR and improve the capacitance appearance rate.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 弁金属からなる陰極箔と表面に酸化皮膜
を形成した弁金属からなる陽極箔とを、セパレータを介
して巻回してコンデンサ素子を形成し、前記陰極箔と陽
極箔の間に導電性ポリマーからなる電解質層を形成した
固体電解コンデンサにおいて、 前記陰極箔の表面に化成皮膜を形成し、さらにその上に
金属窒化物からなる皮膜を形成したことを特徴とする固
体電解コンデンサ。
1. A capacitor element is formed by winding a cathode foil made of a valve metal and an anode foil made of a valve metal having an oxide film formed on a surface thereof through a separator, and forming a capacitor element between the cathode foil and the anode foil. A solid electrolytic capacitor having an electrolyte layer formed of a conductive polymer, wherein a conversion film is formed on the surface of the cathode foil, and a film made of a metal nitride is further formed thereon.
【請求項2】 弁金属からなる陰極箔と表面に酸化皮膜
を形成した弁金属からなる陽極箔とを、セパレータを介
して巻回してコンデンサ素子を形成し、前記陰極箔と陽
極箔の間に二酸化鉛からなる電解質層を形成した固体電
解コンデンサにおいて、 前記陰極箔の表面に化成皮膜を形成し、さらにその上に
金属窒化物からなる皮膜を形成したことを特徴とする固
体電解コンデンサ。
2. A capacitor element is formed by winding a cathode foil made of a valve metal and an anode foil made of a valve metal having an oxide film formed on a surface thereof through a separator, and forming a capacitor element between the cathode foil and the anode foil. A solid electrolytic capacitor having an electrolyte layer made of lead dioxide, wherein a conversion film is formed on the surface of the cathode foil, and a film made of metal nitride is further formed thereon.
【請求項3】 前記導電性ポリマーが、ポリエチレンジ
オキシチオフェンであることを特徴とする請求項1に記
載の固体電解コンデンサ。
3. The solid electrolytic capacitor according to claim 1, wherein the conductive polymer is polyethylene dioxythiophene.
【請求項4】 前記弁金属がアルミニウムであることを
特徴とする請求項1乃至請求項3のいずれか一に記載の
固体電解コンデンサ。
4. The solid electrolytic capacitor according to claim 1, wherein the valve metal is aluminum.
【請求項5】 前記金属窒化物が、TiN、ZrN、T
aN、NbNのいずれかであることを特徴とする請求項
1乃至請求項4のいずれか一に記載の固体電解コンデン
サ。
5. The method according to claim 1, wherein the metal nitride is TiN, ZrN, T
The solid electrolytic capacitor according to any one of claims 1 to 4, wherein the capacitor is one of aN and NbN.
【請求項6】 前記金属窒化物が、蒸着法によって形成
されていることを特徴とする請求項1乃至請求項5のい
ずれか一に記載の固体電解コンデンサ。
6. The solid electrolytic capacitor according to claim 1, wherein the metal nitride is formed by a vapor deposition method.
【請求項7】 前記蒸着法が、陰極アークプラズマ蒸着
法であることを特徴とする請求項6に記載の固体電解コ
ンデンサ。
7. The solid electrolytic capacitor according to claim 6, wherein the vapor deposition method is a cathodic arc plasma vapor deposition method.
【請求項8】 弁金属からなる陰極箔と表面に酸化皮膜
を形成した弁金属からなる陽極箔を、セパレータを介し
て巻回してコンデンサ素子を形成し、前記陰極箔と陽極
箔の間に導電性ポリマーからなる電解質層を形成する固
体電解コンデンサの製造方法において、 前記陰極箔の表面に化成皮膜を形成し、さらにその上に
金属窒化物からなる皮膜を形成することを特徴とする固
体電解コンデンサの製造方法。
8. A capacitor element is formed by winding a cathode foil made of a valve metal and an anode foil made of a valve metal having an oxide film formed on the surface thereof through a separator to form a capacitor element. A method for producing a solid electrolytic capacitor for forming an electrolyte layer made of a conductive polymer, comprising: forming a chemical conversion film on the surface of the cathode foil; and forming a metal nitride film thereon. Manufacturing method.
【請求項9】 弁金属からなる陰極箔と表面に酸化皮膜
を形成した弁金属からなる陽極箔を、セパレータを介し
て巻回してコンデンサ素子を形成し、前記陰極箔と陽極
箔の間に二酸化鉛からなる電解質層を形成する固体電解
コンデンサの製造方法において、 前記陰極箔の表面に化成皮膜を形成し、さらにその上に
金属窒化物からなる皮膜を形成することを特徴とする固
体電解コンデンサの製造方法。
9. A capacitor element is formed by winding a cathode foil made of a valve metal and an anode foil made of a valve metal having an oxide film formed on a surface thereof through a separator, thereby forming a capacitor element between the cathode foil and the anode foil. In a method for manufacturing a solid electrolytic capacitor for forming an electrolyte layer made of lead, a conversion film is formed on the surface of the cathode foil, and a film made of a metal nitride is further formed thereon. Production method.
JP27692698A 1998-09-30 1998-09-30 Solid electrolytic capacitor and manufacturing method thereof Expired - Fee Related JP4062787B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP27692698A JP4062787B2 (en) 1998-09-30 1998-09-30 Solid electrolytic capacitor and manufacturing method thereof
EP99969832A EP1137019B1 (en) 1998-09-30 1999-09-29 Solid electrolyte capacitor and its manufacturing method
PCT/JP1999/005323 WO2000019468A1 (en) 1998-09-30 1999-09-29 Solid electrolyte capacitor and its manufacturing method
KR1020017004045A KR100647181B1 (en) 1998-09-30 1999-09-29 Solid electrolyte capacitor and its manufacturing method
DE69936537T DE69936537T2 (en) 1998-09-30 1999-09-29 SOLID-BODY ELECTROLYTE CONDENSER AND ITS MANUFACTURING METHOD
US09/806,181 US6515847B1 (en) 1998-09-30 1999-09-29 Solid electrolyte capacitor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27692698A JP4062787B2 (en) 1998-09-30 1998-09-30 Solid electrolytic capacitor and manufacturing method thereof

Related Child Applications (6)

Application Number Title Priority Date Filing Date
JP2001090927A Division JP4114325B2 (en) 2001-03-27 2001-03-27 Solid electrolytic capacitor and manufacturing method thereof
JP2001132706A Division JP4042345B2 (en) 2001-04-27 2001-04-27 Solid electrolytic capacitor
JP2006268536A Division JP4114700B2 (en) 2006-09-29 2006-09-29 Solid electrolytic capacitor and manufacturing method thereof
JP2006268538A Division JP4285523B2 (en) 2006-09-29 2006-09-29 Electrode foil for solid electrolytic capacitor and manufacturing method thereof
JP2006268537A Division JP4329800B2 (en) 2006-09-29 2006-09-29 Solid electrolytic capacitor and manufacturing method thereof
JP2006268535A Division JP2007036280A (en) 2006-09-29 2006-09-29 Element for solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000114109A true JP2000114109A (en) 2000-04-21
JP4062787B2 JP4062787B2 (en) 2008-03-19

Family

ID=17576334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27692698A Expired - Fee Related JP4062787B2 (en) 1998-09-30 1998-09-30 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4062787B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083738A (en) * 2000-06-23 2002-03-22 Matsushita Electric Ind Co Ltd Lead wire for capacitor, solid electrolytic capacitor, and manufacturing method therefor
JP2002299181A (en) * 2001-03-29 2002-10-11 Nippon Chemicon Corp Solid electrolyte capacitor
US6579808B2 (en) 2001-10-15 2003-06-17 Hynix Semiconductor Inc. Method of fabricating a semiconductor device
JP2005109078A (en) * 2003-09-30 2005-04-21 Nippon Chemicon Corp Method of manufacturing solid electrolytic capacitor
US7006348B1 (en) 2004-09-22 2006-02-28 Fujitsu Media Devices Limited Solid electrolytic capacitor and manufacturing method of the same
JP2006108132A (en) * 2004-09-30 2006-04-20 Nippon Chemicon Corp Solid-state electrolytic capacitor and its manufacturing method
WO2021125183A1 (en) 2019-12-17 2021-06-24 日本ケミコン株式会社 Solid electrolytic capacitor and method for manufacturing same
CN114242460A (en) * 2021-12-21 2022-03-25 西安交通大学 All-solid-state aluminum electrolytic capacitor device and ALD (atomic layer deposition) preparation method thereof
US11929214B2 (en) 2019-12-17 2024-03-12 Nippon Chemi-Con Corporation Hybrid electrolytic capacitor and method for manufacturing same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083738A (en) * 2000-06-23 2002-03-22 Matsushita Electric Ind Co Ltd Lead wire for capacitor, solid electrolytic capacitor, and manufacturing method therefor
JP4501270B2 (en) * 2000-06-23 2010-07-14 パナソニック株式会社 Capacitor lead wire and solid electrolytic capacitor using the same
JP2002299181A (en) * 2001-03-29 2002-10-11 Nippon Chemicon Corp Solid electrolyte capacitor
US6579808B2 (en) 2001-10-15 2003-06-17 Hynix Semiconductor Inc. Method of fabricating a semiconductor device
JP2005109078A (en) * 2003-09-30 2005-04-21 Nippon Chemicon Corp Method of manufacturing solid electrolytic capacitor
JP4529404B2 (en) * 2003-09-30 2010-08-25 日本ケミコン株式会社 Manufacturing method of solid electrolytic capacitor
KR100716086B1 (en) * 2004-09-22 2007-05-09 후지쓰 메디아 데바이스 가부시키가이샤 Solid electrolytic capacitor and manufacturing method of the same
US7006348B1 (en) 2004-09-22 2006-02-28 Fujitsu Media Devices Limited Solid electrolytic capacitor and manufacturing method of the same
JP2006108132A (en) * 2004-09-30 2006-04-20 Nippon Chemicon Corp Solid-state electrolytic capacitor and its manufacturing method
WO2021125183A1 (en) 2019-12-17 2021-06-24 日本ケミコン株式会社 Solid electrolytic capacitor and method for manufacturing same
KR20220110507A (en) 2019-12-17 2022-08-08 니폰 케미콘 가부시키가이샤 Solid electrolytic capacitor and manufacturing method thereof
US11929214B2 (en) 2019-12-17 2024-03-12 Nippon Chemi-Con Corporation Hybrid electrolytic capacitor and method for manufacturing same
CN114242460A (en) * 2021-12-21 2022-03-25 西安交通大学 All-solid-state aluminum electrolytic capacitor device and ALD (atomic layer deposition) preparation method thereof

Also Published As

Publication number Publication date
JP4062787B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
KR100647181B1 (en) Solid electrolyte capacitor and its manufacturing method
KR100279098B1 (en) Manufacturing method of solid electrolytic capacitor
JP4285523B2 (en) Electrode foil for solid electrolytic capacitor and manufacturing method thereof
JP3296727B2 (en) Method for manufacturing solid electrolytic capacitor
JP4062787B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2000114108A (en) Solid electrolytic capacitor and its manufacture
KR100403936B1 (en) Fabrication method of solid electrolytic capacitor
JP2000195758A (en) Solid electrolytic capacitor and its manufacture
JP4329800B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2002299181A (en) Solid electrolyte capacitor
JP4114700B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4114325B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3505370B2 (en) Organic solid electrolytic capacitor and method of manufacturing the same
JP4042345B2 (en) Solid electrolytic capacitor
JP4164911B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3568382B2 (en) Organic solid electrolytic capacitor and method of manufacturing the same
JP2001307961A (en) Solid electrolytic capacitor and manufacturing method
JP4442361B2 (en) Manufacturing method of solid electrolytic capacitor
JP4363022B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007036280A (en) Element for solid electrolytic capacitor and manufacturing method thereof
JP5015382B2 (en) Manufacturing method of solid electrolytic capacitor
JP4442286B2 (en) Manufacturing method of solid electrolytic capacitor
JP2004319646A (en) Electrolytic capacitor and method of manufacturing thereof
JP3454733B2 (en) Method for manufacturing solid electrolytic capacitor
JP2022144218A (en) Electrolytic capacitor and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees