JP2006108132A - Solid-state electrolytic capacitor and its manufacturing method - Google Patents

Solid-state electrolytic capacitor and its manufacturing method Download PDF

Info

Publication number
JP2006108132A
JP2006108132A JP2004288490A JP2004288490A JP2006108132A JP 2006108132 A JP2006108132 A JP 2006108132A JP 2004288490 A JP2004288490 A JP 2004288490A JP 2004288490 A JP2004288490 A JP 2004288490A JP 2006108132 A JP2006108132 A JP 2006108132A
Authority
JP
Japan
Prior art keywords
side electrode
electrode foil
cathode
chemical conversion
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004288490A
Other languages
Japanese (ja)
Other versions
JP5093978B2 (en
Inventor
Kazuhiro Higuchi
和浩 樋口
Hisaki Wakabayashi
寿樹 若林
Kazuhiro Hatanaka
一裕 畑中
Norihito Fukui
典仁 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2004288490A priority Critical patent/JP5093978B2/en
Publication of JP2006108132A publication Critical patent/JP2006108132A/en
Application granted granted Critical
Publication of JP5093978B2 publication Critical patent/JP5093978B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the resistance of a solid-state electrolytic capacitor and to prevent a decline in electrostatic capacitance in a high-frequency region by reducing the potential occurring in a cathode during a manufacturing process. <P>SOLUTION: The solid-state electrolytic capacitor comprises a cathode-side electrode foil (4) which has been etched, a chemical conversion film (6) formed on the etched surface of the cathode-side electrode foil, a conductor film (coating layer 8) which is formed on the front surface of the chemical conversion film with part of it extended through the chemical conversion film to establish the conductivity path to the cathode-side electrode foil, and an anode-side electrode foil (14) which is formed with a solid-state electrolyte layer (10) interposed between the conductor layer and the anode-side electrode foil (14). The resistance value of the conductor layer including a contact resistance with respect to the solid-state electrolyte layer (10) is set to 0.01 Ω or less. The manufacture of the solid-state electrolytic capacitor includes a process of forming the conductor layer of titanium carbide, and then applying a potential of ≤2 V to the conductor layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、エッチング箔に化成皮膜を形成したものを陰極部に用いた固体電解コンデンサ及びその製造方法に関する。
The present invention relates to a solid electrolytic capacitor using a cathode formed with a chemical conversion film formed on an etching foil, and a method for manufacturing the same.

スイッチング電源用コンデンサでは平滑やデカップリング等の用途により数アンペアを超える大電流が流れ、過渡応答を有する用途例えば、VRM(Voltage Regulate Module)電源では、電流変化が数百A/μs以上の急峻な値を呈する。このような用途に適合する電解コンデンサでは、放電直後、数μsの短時間での大電流放電が求められる。   In a capacitor for switching power supply, a large current exceeding several amperes flows due to applications such as smoothing and decoupling. For example, in a VRM (Voltage Regulate Module) power supply, the current change is steep with a few hundred A / μs or more. Presents a value. An electrolytic capacitor suitable for such an application requires a large current discharge in a short time of several μs immediately after the discharge.

このような用途に適した固体電解コンデンサでは低抵抗化が要請され、その製造方法はエッチング箔に化成皮膜を形成して陰極部とし、その表面に窒化チタン、炭化チタン等からなる導体層を設置している(例えば、特許文献1参照)。   Solid electrolytic capacitors suitable for such applications are required to have low resistance, and the manufacturing method is to form a cathode film by forming a chemical conversion film on the etching foil, and a conductor layer made of titanium nitride, titanium carbide, etc. is provided on the surface. (For example, refer to Patent Document 1).

また、化成皮膜の一部を除去することにより導体層と陰極部とを導通させると、陰極部の静電容量が無限大となり、固体電解コンデンサとしての静電容量が増大し、また、固体電解質と化成皮膜との密着性が高められると、ESR(等価直列抵抗)が低減する(特許文献1参照)。
特開2000−114109
Further, if the conductor layer and the cathode portion are made conductive by removing a part of the chemical conversion film, the capacitance of the cathode portion becomes infinite, the capacitance as a solid electrolytic capacitor increases, and the solid electrolyte ESR (equivalent series resistance) is reduced when the adhesion between the film and the chemical conversion film is increased (see Patent Document 1).
JP2000-114109A

しかしながら、前述のスイッチング電源には、静電容量1000〔μF〕以下の固体電解コンデンサが使われることが多いが、このような数十〜数百〔kHz〕の高周波領域で用いられると、高周波領域で静電容量が低下することが判明した。   However, a solid electrolytic capacitor having a capacitance of 1000 [μF] or less is often used for the switching power supply described above, but when used in such a high frequency region of several tens to several hundreds [kHz], the high frequency region is used. It was found that the capacitance decreased.

ところで、このような固体電解コンデンサは、素子の巻回、積層等の工程で陽極箔に生じた損傷部分を修復するための処理として、化成液中にコンデンサ素子を浸して化成処理(修復化成、再化成) を行う。この際、陰極には電位が生じる。この電位が高いと、高周波域での静電容量の低下が大きくなることが本発明者により実験で確認された。   By the way, such a solid electrolytic capacitor is formed by immersing a capacitor element in a chemical conversion solution as a process for repairing a damaged portion generated in the anode foil in a process such as element winding or lamination (repair formation, Re-forming). At this time, a potential is generated at the cathode. It has been experimentally confirmed by the present inventor that when this potential is high, the decrease in capacitance in the high frequency region becomes large.

そこで、本発明は、固体電解コンデンサに関し、その低抵抗化を図ることを第1の目的とし、製造工程で陰極に生じる電位を低減させて高周波領域の静電容量の低下の防止を図ることを第2の目的とする。
Accordingly, the present invention relates to a solid electrolytic capacitor with a first object of reducing its resistance and reducing the potential generated at the cathode in the manufacturing process to prevent a decrease in capacitance in the high frequency region. Second purpose.

上記第1の目的を達成するため、本発明の固体電解コンデンサは、エッチングが施された陰極側電極箔と、この陰極側電極箔のエッチング面に形成された化成皮膜と、この化成皮膜の表面に形成されるとともに、前記化成皮膜を貫通して前記陰極側電極箔に導通させた導体層と、この導体層との間に固体電解質層を介在させて設置された陽極側電極箔とを備え、前記導体層の前記固体電解質層との接触抵抗を含めた抵抗値が0.01〔Ω〕以下、好ましくは0.005〔Ω〕以下に設定された構成としている。   In order to achieve the first object, a solid electrolytic capacitor of the present invention includes an etched cathode side electrode foil, a conversion film formed on the etched surface of the cathode side electrode foil, and a surface of the conversion film. A conductive layer that penetrates the chemical conversion film and is conducted to the cathode-side electrode foil, and an anode-side electrode foil that is disposed with a solid electrolyte layer interposed between the conductive layer and the conductive layer. The resistance value including the contact resistance of the conductor layer with the solid electrolyte layer is set to 0.01 [Ω] or less, preferably 0.005 [Ω] or less.

上記第2の目的を達成するため、本発明の固体電解コンデンサの製造方法は、エッチングが施された陰極側電極箔と、この陰極側電極箔のエッチング面に形成された化成皮膜と、この化成皮膜の表面に形成されるとともに、前記化成皮膜を貫通して前記陰極側電極箔に導通させた導体層と、この導体層との間に固体電解質層を介在させて設置された陽極側電極箔とを備える固体電解コンデンサの製造方法であって、前記導体層が炭化チタンで形成され、2〔V〕以下、好ましくは1〔V〕以下の電位を加える工程を含む構成としている。
In order to achieve the second object, a method for producing a solid electrolytic capacitor of the present invention comprises an etched cathode side electrode foil, a chemical conversion film formed on the etched surface of the cathode side electrode foil, and the chemical conversion film. A conductor layer formed on the surface of the film and passing through the chemical conversion film and conducted to the cathode side electrode foil, and an anode side electrode foil disposed with a solid electrolyte layer interposed between the conductor layer The conductor layer is made of titanium carbide, and includes a step of applying a potential of 2 [V] or less, preferably 1 [V] or less.

本発明は、上記構成により、次のような効果が得られる。   According to the present invention, the following effects can be obtained from the present invention.

(1) 本発明の固体電解コンデンサによれば、ESRを低減させることができる。   (1) According to the solid electrolytic capacitor of the present invention, ESR can be reduced.

(2) 本発明の固体電解コンデンサの製造方法によれば、陰極部に発生する電位を抑えたので、製造に起因する静電容量の低下を防止できる。
(2) According to the method for manufacturing a solid electrolytic capacitor of the present invention, since the potential generated in the cathode portion is suppressed, it is possible to prevent a decrease in capacitance caused by the manufacturing.

本発明の固体電解コンデンサ及びその製造方法について、図1を参照して説明する。図1は、固体電解コンデンサの概要を示す断面図である。   The solid electrolytic capacitor and the manufacturing method thereof according to the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view showing an outline of a solid electrolytic capacitor.

この固体電解コンデンサはコンデンサ素子2を備えており、このコンデンサ素子2は陰極側電極部として陰極側電極箔4、第1の化成皮膜6、導体層としての被覆層8、固体電解質層10、第2の化成皮膜12及び陽極側電極部として陽極側電極箔14等を備えている。陰極側電極箔4は弁金属、皮膜形成金属である例えば、アルミニウム等の金属材料で形成され、その形態は箔で構成されている。この陰極側電極箔4は、その表面にエッチング処理等の処理により、表面積の拡大化が図られ、そのエッチング面16にはピット部18が形成されている。   The solid electrolytic capacitor includes a capacitor element 2. The capacitor element 2 has a cathode side electrode foil 4 as a cathode side electrode portion, a first chemical conversion film 6, a coating layer 8 as a conductor layer, a solid electrolyte layer 10, a first electrode. 2 and the anode side electrode foil 14 etc. are provided as the anode side electrode part. The cathode-side electrode foil 4 is formed of a metal material such as aluminum, which is a valve metal or a film-forming metal, and the form thereof is made of a foil. The surface of the cathode-side electrode foil 4 is enlarged by an etching process or the like on its surface, and a pit portion 18 is formed on the etching surface 16.

この陰極側電極箔4のエッチング面16には、陰極側電極箔4の化成液への浸漬等により、既述の化成皮膜6が形成されている。この化成皮膜6は、エッチング面16のピット部18の内壁部にも侵入させてある。   The above-described chemical conversion film 6 is formed on the etching surface 16 of the cathode side electrode foil 4 by immersing the cathode side electrode foil 4 in a chemical conversion solution or the like. This chemical conversion film 6 is also penetrated into the inner wall portion of the pit portion 18 of the etching surface 16.

このような化成皮膜6が形成された陰極側電極箔4には、導体の蒸着処理により、被覆層8が形成されている。この被覆層8を形成する導体材料には例えば、炭化チタン(TiC)が用いられる。   A coating layer 8 is formed on the cathode-side electrode foil 4 on which such a chemical conversion film 6 is formed by a conductor vapor deposition process. For example, titanium carbide (TiC) is used as the conductive material for forming the coating layer 8.

また、導体の蒸着処理により、化成皮膜6には部分的に化成皮膜6の除去により透孔部20が形成され、被覆層8は透孔部20に侵入させ、陰極側電極箔4との電気的な導通が図られている。   Further, through the vapor deposition process of the conductor, a through-hole portion 20 is formed in the chemical conversion film 6 by partially removing the chemical conversion film 6, and the coating layer 8 enters the through-hole portion 20, so Continuity is achieved.

そして、被覆層8の表面部と陽極側電極箔14側の化成皮膜12との間には固体電解質層10として例えば、導電性ポリマー(PEDT)が設置され、この固体電解質層10は、ピット部18の内壁に沿って形成された化成皮膜6にも接触している。即ち、陰極側電極箔4、化成皮膜6、被覆層8及び固体電解質層10を以て陰極部22が構成されている。   And between the surface part of the coating layer 8 and the chemical conversion film 12 by the side of the anode side electrode foil 14, for example, a conductive polymer (PEDT) is installed as the solid electrolyte layer 10, and this solid electrolyte layer 10 has a pit part. The chemical conversion film 6 formed along the inner wall 18 is also in contact. That is, the cathode portion 22 is configured by the cathode side electrode foil 4, the chemical conversion film 6, the coating layer 8, and the solid electrolyte layer 10.

また、陽極側電極箔14は、陰極側電極箔4と同様に弁金属、皮膜形成金属である例えば、アルミニウム等の金属材料で形成され、その形態は箔で構成されている。この陽極側電極箔14の表面には、陽極側電極箔14の化成液への浸漬等により、既述の化成皮膜12が形成されている。即ち、この化成皮膜12及び陽極側電極箔14を以て陽極部24が構成されている。   Further, the anode side electrode foil 14 is formed of a metal material such as aluminum, which is a valve metal and a film forming metal like the cathode side electrode foil 4, and the form thereof is made of foil. On the surface of the anode side electrode foil 14, the above-described chemical conversion film 12 is formed by immersing the anode side electrode foil 14 in a chemical conversion solution or the like. That is, the anode portion 24 is constituted by the chemical conversion film 12 and the anode-side electrode foil 14.

この固体電解コンデンサを構成するコンデンサ素子2は、例えば、陰極部22及び陽極部24を巻回することにより、巻回型素子として構成することができる。   The capacitor element 2 constituting the solid electrolytic capacitor can be configured as a wound element by winding the cathode portion 22 and the anode portion 24, for example.

そして、このコンデンサ素子2の等価回路について、図2を参照して説明する。図2は既述のコンデンサ素子2に重ねて表示した等価回路を示している。   An equivalent circuit of the capacitor element 2 will be described with reference to FIG. FIG. 2 shows an equivalent circuit displayed so as to overlap the capacitor element 2 described above.

このコンデンサ素子2の陰極端子26と陽極端子28との間には、化成皮膜6で静電容量Cc、被覆層8及び固体電解質層10との接触抵抗を含む抵抗Rc、固体電解質層10で抵抗Rp、化成皮膜12で静電容量Ca及びインダクタンスLが形成されている。インダクタンスLは、陰極側電極箔4、陽極側電極箔14、陰極端子26、陽極端子28等に電流が流れることにより生じる。   Between the cathode terminal 26 and the anode terminal 28 of the capacitor element 2, the chemical conversion film 6 has a capacitance Cc, a resistance Rc including contact resistance with the coating layer 8 and the solid electrolyte layer 10, and a resistance with the solid electrolyte layer 10. The capacitance Ca and the inductance L are formed by Rp and the chemical conversion film 12. The inductance L is generated when a current flows through the cathode side electrode foil 4, the anode side electrode foil 14, the cathode terminal 26, the anode terminal 28, and the like.

そこで、低周波領域では、1/ωCc≫Rcとなり、抵抗Rc、Rp、静電容量Ca及びインダクタンスLの直列回路を通して電流ルート30が形成されるのに対し、高周波領域では、1/ωCc≪Rcとなり、静電容量Cc、抵抗Rp、静電容量Ca及びインダクタンスLの直列回路を通して電流ルート32が形成される。この結果、高周波領域では、化成皮膜6、12の静電容量Cc、Caが発生してコンデンサ素子2の静電容量Cが低下する。即ち、この静電容量Cは、   Therefore, in the low frequency region, 1 / ωCc >> Rc, and the current route 30 is formed through the series circuit of the resistors Rc, Rp, capacitance Ca and inductance L, whereas in the high frequency region, 1 / ωCc << Rc. Thus, the current route 32 is formed through a series circuit of the capacitance Cc, the resistance Rp, the capacitance Ca, and the inductance L. As a result, in the high frequency region, the capacitances Cc and Ca of the chemical conversion films 6 and 12 are generated, and the capacitance C of the capacitor element 2 is reduced. That is, this capacitance C is

C=Ca・Cc/(Ca+Cc) ・・・(1)
で与えられる。例えば、Ca=Ccと仮定すれば、式(1)の静電容量Cは、C=Ca/2又はCc/2となるから、静電容量Cの低下することが理解できる。
C = Ca · Cc / (Ca + Cc) (1)
Given in. For example, if it is assumed that Ca = Cc, the capacitance C in the formula (1) becomes C = Ca / 2 or Cc / 2, and therefore it can be understood that the capacitance C decreases.

このように、高周波領域で静電容量が低下するのは、製造工程で修復化成中に発生する電位が高いことに起因するものであり、その電位が陰極側電極箔4に化成皮膜6を形成することによる被覆層8の抵抗の上昇、被覆層8と固体電解質層10との間の接触抵抗の上昇等を生じさせるものと推測される。この部分の抵抗即ち、既述の抵抗Rcが上昇して、高周波領域では、電流ルート32の形成により、静電容量が低下する。従って、抵抗Rcを一定の値以下に抑えれば、高周波領域でも電流ルート30により静電容量の低下を抑えることができる。
As described above, the decrease in the capacitance in the high frequency region is caused by the high potential generated during the repair formation in the manufacturing process, and the potential forms the chemical conversion film 6 on the cathode-side electrode foil 4. It is presumed that the resistance of the coating layer 8 increases due to this, the contact resistance between the coating layer 8 and the solid electrolyte layer 10 increases, and the like. The resistance of this portion, that is, the resistance Rc described above increases, and the capacitance decreases in the high frequency region due to the formation of the current route 32. Therefore, if the resistance Rc is suppressed to a certain value or less, a decrease in capacitance can be suppressed by the current route 30 even in a high frequency region.

次に、本発明の固体電解コンデンサ及びその製造方法の実施例について説明する。   Next, examples of the solid electrolytic capacitor and the manufacturing method thereof according to the present invention will be described.

陰極側電極箔4及び陽極側電極箔14には、弁金属として例えば、アルミニウム、タンタルからなる箔が用いられ、陰極側電極箔4の表面はエッチング処理が施されて表面積の拡大化が図られている。陽極側電極箔14には例えば、エッチング箔が用いられている。   For the cathode side electrode foil 4 and the anode side electrode foil 14, for example, a foil made of aluminum or tantalum is used as a valve metal, and the surface of the cathode side electrode foil 4 is subjected to an etching process to increase the surface area. ing. For the anode side electrode foil 14, for example, an etching foil is used.

陰極側電極箔4のエッチング面16には化成処理が施されて化成皮膜6が形成され、また、この化成皮膜6側に対向する陽極側電極箔14の対向面部にも化成処理が施されて化成皮膜12が形成される。また、陰極側電極箔4の化成皮膜6の表面には炭化チタン又は窒化チタンを蒸着し、被覆層8が形成される。化成皮膜6には複数の透孔部20を形成し、表面に形成された被覆層8が透孔部20を貫通して陰極側電極箔4に到達するように処理しておく。そして、これらの処理を経た陰極側電極箔4及び陽極側電極箔14はセパレータを介して巻回することにより、コンデンサ素子2として構成される。   The etching surface 16 of the cathode side electrode foil 4 is subjected to a chemical conversion treatment to form a chemical conversion film 6, and the chemical conversion treatment is also applied to the opposing surface portion of the anode side electrode foil 14 that faces the chemical conversion coating 6 side. A chemical conversion film 12 is formed. Further, titanium carbide or titanium nitride is vapor-deposited on the surface of the chemical conversion film 6 of the cathode side electrode foil 4 to form a coating layer 8. A plurality of through holes 20 are formed in the chemical conversion film 6, and the coating layer 8 formed on the surface is processed so as to penetrate the through holes 20 and reach the cathode side electrode foil 4. And the cathode side electrode foil 4 and the anode side electrode foil 14 which passed through these processes are comprised as the capacitor | condenser element 2 by winding through a separator.

このコンデンサ素子2にEDT(エチレンジオキシチオフェン)及び酸化剤を含浸させる。酸化剤には例えば、p−トルエンスルホン酸第二鉄のブタノール溶液が使用され、処理温度を例えば、150℃に設定し、1時間加熱重合して導電性ポリマーであるPEDT(ポリエチレンジオキシチオフェン)を生成させ、固体電解質層10が形成される。そして、コンデンサ素子2をケースに収容し、そのケースを封止することにより製品としての固体電解コンデンサが得られる。この固体電解コンデンサの定格は、2.5〔WV〕−680〔μF〕である。   The capacitor element 2 is impregnated with EDT (ethylene dioxythiophene) and an oxidizing agent. For example, a butanol solution of ferric p-toluenesulfonate is used as the oxidizing agent, the processing temperature is set to 150 ° C., for example, and heat polymerization is performed for 1 hour, and PEDT (polyethylenedioxythiophene) which is a conductive polymer. And the solid electrolyte layer 10 is formed. The capacitor element 2 is accommodated in a case, and the case is sealed to obtain a solid electrolytic capacitor as a product. The rating of this solid electrolytic capacitor is 2.5 [WV] -680 [μF].

そして、この固体電解コンデンサにおいて、コンデンサ素子2の被覆層8に炭化チタン又は窒化チタンを使用し、実施例1では、被覆層8に炭化チタンを使用し、製造工程中にかかる電位を0.8〔V〕、実施例2では、被覆層8に炭化チタンを使用し、製造工程中にかかる電位を2〔V〕、実施例3では、被覆層8に窒化チタンを使用し、製造工程中にかかる電位を、0.8〔V〕に設定し、周波数30〔kHz〕、50〔kHz〕、100〔kHz〕について静電容量を測定するとともに、周波数120〔kHz〕を基準とした静電容量の変化率〔%〕を求めた。その結果を表1に示す。   In this solid electrolytic capacitor, titanium carbide or titanium nitride is used for the coating layer 8 of the capacitor element 2. In Example 1, titanium carbide is used for the coating layer 8, and the potential applied during the manufacturing process is 0.8. [V] In Example 2, titanium carbide is used for the coating layer 8, and the potential applied during the manufacturing process is 2 [V]. In Example 3, titanium nitride is used for the coating layer 8, and during the manufacturing process, This potential is set to 0.8 [V], the capacitance is measured at frequencies of 30 [kHz], 50 [kHz] and 100 [kHz], and the capacitance is based on the frequency of 120 [kHz]. The rate of change [%] of The results are shown in Table 1.

Figure 2006108132
Figure 2006108132

これらの実施例1〜3から明らかなように、製造工程中に被覆層8にかかる電位を2〔V〕以下、好ましくは1〔V〕以下に設定することにより、静電容量の変化率を低くすることができる。   As is clear from these Examples 1 to 3, by setting the potential applied to the coating layer 8 during the manufacturing process to 2 [V] or less, preferably 1 [V] or less, the rate of change in capacitance can be increased. Can be lowered.

表1から明らかなように、静電容量Cの低下率を15%以下に抑えられるのは、Rc<0.01Ω、20%以下に抑えられるのは、Rc<0.005Ωであることが判る。   As is apparent from Table 1, it can be seen that the decrease rate of the capacitance C can be suppressed to 15% or less, and that Rc <0.01Ω, and that 20% or less can be suppressed is Rc <0.005Ω. .

そして、この固体電解コンデンサについて、被覆層8を炭化チタンで形成し、製品Aでは製造工程中に電位を0.8〔V〕に設定し、製品Bでは製造工程中に電位を2.0〔V〕に設定した場合の静電容量Cの変化を測定した。その結果を図3に示す。   And about this solid electrolytic capacitor, the coating layer 8 is formed with titanium carbide, and in the product A, the potential is set to 0.8 [V] during the manufacturing process, and in the product B, the potential is set to 2.0 [V during the manufacturing process. V], the change in the capacitance C was measured. The result is shown in FIG.

このような実施例から明らかなように、高周波領域での静電容量Cの低下を抑制できるとともに、被覆層8に炭化チタンを使用し、製造工程中に掛かる電位を1〔V〕以下に抑えれば、静電容量Cの低下を抑制できることが判明した。   As is clear from these examples, the decrease in the capacitance C in the high frequency region can be suppressed, and titanium carbide is used for the coating layer 8 to suppress the potential applied during the manufacturing process to 1 [V] or less. It has been found that the decrease in the capacitance C can be suppressed.

さらに詳述すれば、コンデンサ素子2の液中化成時に陽極側電極箔14に流れる電流が大きいほど、また、その化成液の抵抗が高いほど、間接給電の影響で化成バスに対して陰極側電極箔4の電位が高くなることが判明している。そこで、通常の素子化成後に陰極側電極箔4に化成を施し、特性の影響を精査したところ、その結果より陰極側電極箔4の化成時間を延ばすほど、高周波領域の静電容量Cの変化容量ΔCapの落ち込み量が増加し、tanδの上昇や低周波領域でのESRの上昇が観測された。   More specifically, the larger the current flowing through the anode side electrode foil 14 during the formation of the capacitor element 2 in the solution, and the higher the resistance of the formation solution, the more the cathode side electrode with respect to the formation bus due to the influence of indirect power feeding. It has been found that the potential of the foil 4 is increased. Thus, after the formation of the normal element, the cathode side electrode foil 4 was formed and the influence of the characteristics was examined. As a result, as the formation time of the cathode side electrode foil 4 was extended, the change capacity of the capacitance C in the high frequency region was increased. The amount of drop in ΔCap increased, and an increase in tan δ and an increase in ESR in the low frequency region were observed.

既述したように、陰極側電極箔4側に形成された被覆層8に炭化チタン(TiC)を用いたTiC仕様の等価回路(図2)では、低周波領域では陰極側電極箔4の表面側の被覆層(TiC層)8の抵抗、その表面とポリマー(PEDT) の接触抵抗とからなる抵抗Rcより陰極側電極箔4のインピーダンス(1/ωCc)が大きいため、電流はその被覆層(TiC層)8に流れ、陰極側電極箔4の容量の影響を受けず、製品容量はほぼ陽極側電極箔14で形成される静電容量となる。高周波領域では抵抗Rcよりインピーダンス(1/ωCc)が小さくなり、逆に被覆層(TiC層)8に流れ難くなるため、陰極側電極箔4の容量の影響が出る。そこで、その等価回路に、固体電解コンデンサの量産品の特性値を当てはめ、周波数特性のシミュレーションを行ったところ、抵抗Rcを大きくしていくと、静電容量Cの変化容量ΔCapが増大することが判明した。そして、被覆層8をTiN又はTiCで構成した場合、TiCを用いた製品では、TiNを用いた製品に比較し、固体電解質層10を構成するポリマーとの接触抵抗を含む抵抗Rcが小さく、高周波領域での変化容量ΔCapが小さくなる。   As described above, in the equivalent circuit of the TiC specification (FIG. 2) in which titanium carbide (TiC) is used for the coating layer 8 formed on the cathode side electrode foil 4 side, the surface of the cathode side electrode foil 4 in the low frequency region. Since the impedance (1 / ωCc) of the cathode-side electrode foil 4 is larger than the resistance Rc consisting of the resistance of the side coating layer (TiC layer) 8 and the contact resistance between the surface and the polymer (PEDT), the current is applied to the coating layer ( The product capacity is substantially the same as the capacitance formed by the anode side electrode foil 14 without being affected by the capacity of the cathode side electrode foil 4. In the high frequency region, the impedance (1 / ωCc) becomes smaller than the resistance Rc, and conversely, it becomes difficult to flow to the coating layer (TiC layer) 8, so that the capacity of the cathode electrode foil 4 is affected. Therefore, the characteristic value of the mass production product of the solid electrolytic capacitor is applied to the equivalent circuit, and the frequency characteristic is simulated. As the resistance Rc increases, the change capacitance ΔCap of the capacitance C increases. found. When the coating layer 8 is made of TiN or TiC, the product using TiC has a smaller resistance Rc including the contact resistance with the polymer constituting the solid electrolyte layer 10 than the product using TiN, and the high frequency The change capacity ΔCap in the region is reduced.

このような検証の結果、TiC仕様の量産品で高周波領域での変化容量ΔCapの落ち込みが大きいものがあるが、その要因は、コンデンサ素子2の化成時に陰極側電極箔4が化成バスに対して電位を持つために電気化学的な酸化が発生するものと推定され、その検証の結果、その特性が再現された。コンデンサ素子2を巻回素子とした場合、そのばらつきで擬似的にショート状態のものが存在するので、コンデンサ素子2の化成時に陰極側電極箔4がその影響を受けることがある。このような状態のコンデンサ素子2の等価回路を作成し、Ti系蒸着箔の表面と固体電解質層10を構成するポリマーとの抵抗が増加した場合のシミュレーションを行ったところ、実際の周波数特性に近い値が得られた。   As a result of such verification, there is a TiC specification mass-produced product that has a large drop in the change capacity ΔCap in the high-frequency region. The cause is that the cathode-side electrode foil 4 is in contact with the formation bus when the capacitor element 2 is formed. It was estimated that electrochemical oxidation occurred due to the potential, and as a result of the verification, the characteristics were reproduced. When the capacitor element 2 is a wound element, there is a pseudo short-circuited state due to the variation, and therefore the cathode side electrode foil 4 may be affected when the capacitor element 2 is formed. An equivalent circuit of the capacitor element 2 in such a state was created, and a simulation was performed when the resistance between the surface of the Ti-based vapor-deposited foil and the polymer constituting the solid electrolyte layer 10 was increased. A value was obtained.

次に、上記実施形態の変形例について列挙する。   Next, modifications of the above embodiment will be listed.

(1) 電極箔4、14について、上記実施例ではアルミニウムを使用した例を説明したが、電極箔にはアルミニウム以外の弁金属を用いてもよい。   (1) For the electrode foils 4 and 14, an example in which aluminum is used has been described in the above embodiment, but a valve metal other than aluminum may be used for the electrode foil.

(2) コンデンサ素子2について、上記実施形態では巻回型素子を例示したが、巻回型素子以外の素子構成としてもよい。   (2) Regarding the capacitor element 2, the winding type element is exemplified in the above embodiment, but an element configuration other than the winding type element may be employed.

以上述べたように、本発明の最も好ましい実施形態等について説明したが、本発明は上記記載に限定されるものではなく、特許請求の範囲に記載され、又は、発明を実施するための最良の形態に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能であり、斯かる変形や変更が本発明の範囲に含まれることはいうまでもない。
As described above, the most preferred embodiment of the present invention has been described. However, the present invention is not limited to the above description, and is described in the claims or the best for carrying out the invention. Various modifications and changes can be made by those skilled in the art based on the gist of the invention disclosed in the embodiments, and it goes without saying that such modifications and changes are included in the scope of the present invention.

本発明によれば、固体電解コンデンサに関し、ESRの低減とともに、静電容量の低下を抑制でき、品質を向上させた固体電解コンデンサを提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the solid electrolytic capacitor can provide the solid electrolytic capacitor which can suppress the fall of an electrostatic capacitance with the reduction of ESR, and improved the quality regarding a solid electrolytic capacitor.

本発明の実施形態に係る固体電解コンデンサの概要を示す断面図である。It is sectional drawing which shows the outline | summary of the solid electrolytic capacitor which concerns on embodiment of this invention. 固体電解コンデンサの等価回路を示す図である。It is a figure which shows the equivalent circuit of a solid electrolytic capacitor. 被覆層を炭化チタンで形成し、製造工程で被覆層に係る電位をパラメータとした静電容量の変化を示す図である。It is a figure which shows the change of the electrostatic capacitance which formed the coating layer with titanium carbide and made the electric potential which concerns on a coating layer a parameter in a manufacturing process.

符号の説明Explanation of symbols

2 コンデンサ素子
4 陰極側電極箔
6、12 化成皮膜
8 被覆層(導体層)
10 固体電解質層
14 陽極側電極箔
16 エッチング面
2 Capacitor element 4 Cathode side electrode foil 6, 12 Chemical conversion film 8 Coating layer (conductor layer)
DESCRIPTION OF SYMBOLS 10 Solid electrolyte layer 14 Anode side electrode foil 16 Etching surface

Claims (2)

エッチングが施された陰極側電極箔と、
この陰極側電極箔のエッチング面に形成された化成皮膜と、
この化成皮膜の表面に形成されるとともに、前記化成皮膜を貫通して前記陰極側電極箔に導通させた導体層と、
この導体層との間に固体電解質層を介在させて設置された陽極側電極箔と、
を備え、前記導体層の前記固体電解質層との接触抵抗を含めた抵抗値が0.01〔Ω〕以下に設定された固体電解コンデンサ。
Etched cathode side electrode foil,
A chemical conversion film formed on the etched surface of the cathode-side electrode foil;
A conductor layer formed on the surface of the chemical film and conducted through the chemical film and conducted to the cathode-side electrode foil;
An anode-side electrode foil installed with a solid electrolyte layer interposed between the conductor layer,
A solid electrolytic capacitor in which a resistance value including a contact resistance of the conductor layer with the solid electrolyte layer is set to 0.01 [Ω] or less.
エッチングが施された陰極側電極箔と、この陰極側電極箔のエッチング面に形成された化成皮膜と、この化成皮膜の表面に形成されるとともに、前記化成皮膜を貫通して前記陰極側電極箔に導通させた導体層と、この導体層との間に固体電解質層を介在させて設置された陽極側電極箔とを備える固体電解コンデンサの製造方法であって、
前記導体層が炭化チタンで形成され、2〔V〕以下の電位を加える工程を含む固体電解コンデンサの製造方法。
Etched cathode side electrode foil, chemical conversion film formed on the etched surface of the cathode side electrode foil, and formed on the surface of the chemical conversion film and penetrates the chemical conversion film to form the cathode side electrode foil A method for producing a solid electrolytic capacitor comprising: a conductive layer conducted to a conductive layer; and an anode-side electrode foil placed with a solid electrolyte layer interposed between the conductive layer,
A method for producing a solid electrolytic capacitor, comprising the step of forming the conductor layer of titanium carbide and applying a potential of 2 [V] or less.
JP2004288490A 2004-09-30 2004-09-30 Solid electrolytic capacitor and manufacturing method thereof Active JP5093978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004288490A JP5093978B2 (en) 2004-09-30 2004-09-30 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004288490A JP5093978B2 (en) 2004-09-30 2004-09-30 Solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006108132A true JP2006108132A (en) 2006-04-20
JP5093978B2 JP5093978B2 (en) 2012-12-12

Family

ID=36377541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004288490A Active JP5093978B2 (en) 2004-09-30 2004-09-30 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5093978B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018117123A (en) * 2017-01-13 2018-07-26 日本ケミコン株式会社 Electrolytic capacitor polymerization solution, electrolytic capacitor cathode using the same and method for manufacturing electrolytic capacitor
CN109791843A (en) * 2016-09-30 2019-05-21 日本贵弥功株式会社 Electrode foil and electrolytic capacitor
US11348739B2 (en) 2015-04-28 2022-05-31 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471213A (en) * 1990-07-12 1992-03-05 Nippon Chemicon Corp Aluminum electrode for electrolytic capacitor and its manufacture
JP2000012401A (en) * 1998-06-19 2000-01-14 Nichicon Corp Electrode foil for aluminum electrolytic capacitor
JP2000114109A (en) * 1998-09-30 2000-04-21 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacture
JP2004119830A (en) * 2002-09-27 2004-04-15 Nippon Chemicon Corp Manufacturing method of solid electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471213A (en) * 1990-07-12 1992-03-05 Nippon Chemicon Corp Aluminum electrode for electrolytic capacitor and its manufacture
JP2000012401A (en) * 1998-06-19 2000-01-14 Nichicon Corp Electrode foil for aluminum electrolytic capacitor
JP2000114109A (en) * 1998-09-30 2000-04-21 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacture
JP2004119830A (en) * 2002-09-27 2004-04-15 Nippon Chemicon Corp Manufacturing method of solid electrolytic capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11348739B2 (en) 2015-04-28 2022-05-31 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor
CN109791843A (en) * 2016-09-30 2019-05-21 日本贵弥功株式会社 Electrode foil and electrolytic capacitor
JP2018117123A (en) * 2017-01-13 2018-07-26 日本ケミコン株式会社 Electrolytic capacitor polymerization solution, electrolytic capacitor cathode using the same and method for manufacturing electrolytic capacitor
JP7081161B2 (en) 2017-01-13 2022-06-07 日本ケミコン株式会社 Polymerization solution for electrolytic capacitors, cathode for electrolytic capacitors using this polymerization solution, and method for manufacturing electrolytic capacitors

Also Published As

Publication number Publication date
JP5093978B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP4836887B2 (en) Electrolytic capacitor manufacturing method and electrolytic capacitor
Both The modern era of aluminum electrolytic capacitors
JP4947150B2 (en) Manufacturing method of solid electrolytic capacitor
JP4285523B2 (en) Electrode foil for solid electrolytic capacitor and manufacturing method thereof
JP2009054925A (en) Manufacturing method of conductive polymer capacitor
KR101140012B1 (en) Solid electrolytic capacitor and method of manufacturing the same
JP5321964B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5093978B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2005093741A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2008198681A (en) Solid electrolytic capacitor and its manufacturing method
JP4926131B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP4329800B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4114700B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same
JP4442361B2 (en) Manufacturing method of solid electrolytic capacitor
JP2008159941A (en) Method for manufacturing solid electrolytic capacitor
JP2007305684A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2007103468A (en) Electrolytic capacitor and manufacturing method thereof
JP4795331B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH11186105A (en) Solid electrolytic capacitor and its manufacture
JP2015177088A (en) Solid electrolytic capacitor device, method for manufacturing the same, and solid electrolytic capacitor
JP2010287632A (en) Method of manufacturing electrolytic capacitor, and electrolytic capacitor
JP2006253638A (en) Solid electrolytic capacitor and its manufacturing method
JP2004119830A (en) Manufacturing method of solid electrolytic capacitor
JP2005109264A (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110325

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5093978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3