JP2000090979A - 密閉型電池 - Google Patents

密閉型電池

Info

Publication number
JP2000090979A
JP2000090979A JP10261062A JP26106298A JP2000090979A JP 2000090979 A JP2000090979 A JP 2000090979A JP 10261062 A JP10261062 A JP 10261062A JP 26106298 A JP26106298 A JP 26106298A JP 2000090979 A JP2000090979 A JP 2000090979A
Authority
JP
Japan
Prior art keywords
electrode
battery
negative electrode
positive electrode
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10261062A
Other languages
English (en)
Inventor
Hiroyuki Hasebe
裕之 長谷部
Norio Takami
則雄 高見
Takahisa Osaki
隆久 大崎
Motoi Kanda
基 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10261062A priority Critical patent/JP2000090979A/ja
Publication of JP2000090979A publication Critical patent/JP2000090979A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【課題】 本発明は、密閉型電池を薄型化・軽量化し、
かつ、エネルギー密度の高い密閉型電池を提供すること
を目的としている。 【解決手段】 本発明は薄膜に包囲された電極群を備え
た密閉型電池において、正極と負極の少なくとも一方に
孔が設けられ、薄膜の一部が孔を通じてセパレータと接
着されてなることを特徴とする密閉型電池である。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、密閉型電池に関す
るものである。
【0002】
【従来の技術】長らくポータブル機器用電源として広く
用いられてきた密閉型鉛電池やニッケルカドミウム二次
電池に代えて、近年ニッケル水素二次電池やリチウムイ
オン二次電池という新型の高容量二次電池が開発され、
ポータブル機器用電源として広く用いられるようになっ
た。これらの電池により、ポータブル機器の稼動時間が
長くなり利便性が増したとともに、ポータブル機器の小
型化、軽量化が進んだ。
【0003】しかし、ニッケル水素二次電池においては
充電末期に発生する酸素ガスにより電池内圧が上昇し、
電池が膨張する。そのため、この防止策として強固な金
属製の容器に収納されて使用されている。またリチウム
イオン二次電池では、通常の充放電ではガスの発生はな
いため電池膨張は生じないが、初充電時にガスが発生し
電池が膨張する。この膨張量は少ないものの、リチウム
イオン二次電池では電解液が非水溶媒であるため液抵抗
が大きく、正極と負極の間隔が若干でも広がると電池特
性が極端に低下するため、ニッケル水素二次電池同様強
固な金属製容器に収納されて実用に供されている。
【0004】従来の使用用途では金属製の容器であって
もその厚さが問題となることはなかったが、近年の電子
機器の実装技術の進歩と、部品の小型化により、電池に
従来以上に薄型の要求が強くなっている。この要求に答
えるため、厚さが5mm以下の金属容器が開発されてい
るが、金属板を絞り込んで作成する容器ではそろそろ限
界が見え始めていた。
【0005】このような金属容器に収納された電池の薄
型化の限界を打破するために、リチウムイオン二次電池
においては、従来と全く異なる方法で作成する事により
解決しようとする試みが行われ始めている。この方法は
2通りあり、一つは活物質をゲル化材とともに集電体へ
塗布し、これを同じくゲル化材を塗布したセパレータを
介して積層したのち、ゲル化材へ電解液を含浸させて電
極群を作成し、さらに、該電極群を融着層を有する薄膜
で覆って密封したゲルポリマー電池と呼ばれる電池であ
り、もう一つは、有機固体電解質を介して、両極を積層
した電極を同様に薄膜で覆って密封したポリマー電池で
ある。しかし、両者ともエネルギー密度が缶に収納した
従来型の電池よりも低くなってしまうという問題があ
り、実用に至っているとは言えない状況である。
【0006】
【発明が解決しようとする課題】本発明は、密閉型電池
を薄型化・軽量化し、かつ、エネルギー密度の高い 密
閉型電池を提供することを目的としている。
【0007】
【課題を解決するための手段】本発明者らは、鋭意研究
した結果、電極に設けられた孔を通して、セパレータと
電極群を包囲する薄膜とを固定する構造が非常に効果的
であることを見出し、本発明を成すに至った。
【0008】すなわち、本発明の第1発明は正極と、負
極と、正極及び負極間に配置されるセパレータとをそな
えるセルを具備する電極群と;電解液と;電極群を包囲
する薄膜とを備えた密閉型電池において;正極と負極の
少なくとも一方に孔が設けられ、薄膜の一部が孔を通じ
てセパレータと接着されてなることを特徴とする密閉型
電池である。
【0009】本発明の第2発明は、正極と、負極と、正
極及び負極間に配置されるセパレータとが積層されたセ
ルを具備する電極群と;電解液と;電極群を包囲する薄
膜とを備えた密閉型電池において;正極と負極の少なく
とも一方に孔が設けられ、孔に薄膜の一部が嵌合されて
なることを特徴とする密閉型電池である。
【0010】第1発明及び第2発明によれば、電極に設
けられた孔に電極群を包囲する薄膜の一部が嵌合され
る、あるいは薄膜の一部が孔を通じてセパレータと接着
されているため電解液が含浸されたセパレータ、電極及
び薄膜が一体化されて固定され、薄膜により電極を背面
から圧迫する力が働き、常に電極がセパレータに密接す
るようになる。そのため、充電末期や初充電時の発生ガ
スによる電池内圧の上昇により電極間隔が広がること
や、電池形状が膨張することを抑制することが可能とな
る。
【0011】本発明によらず、孔を介しての固定を行わ
ず、薄膜を電極周辺部でのみ融着した場合には、電極中
央部が発生ガスにより膨張し、電極間隔が広がり電池形
状が変形したり、特に非水電解液系電池の場合には電極
間隔の広がりにより電池特性が低下する。
【0012】つまり、本発明により電極に設けられた孔
を通じて薄膜をセパレータに融着させるという簡便な手
法により、薄型で軽量なエネルギー密度の高い電池を提
供する可能となる。また、金属缶のような缶成形上の限
界もないため、厚さ1mm以下の電池の作成も容易可能
であるという特徴を有している。
【0013】
【発明の実施の形態】以下に本発明に係わる密閉型電池
を図1を参照して説明する。図1は本発明の密閉型電池
の構成例を示す断面図である。図1において薄膜1内に
はセル2からなる電極群が収納されている。電極群は単
セルから構成されていても良いし、複数のセルを積層し
たものであっても良い。薄膜1は外装材の作用をするも
のである。セル2は例えば多孔質導電性基板からなる集
電体3に正極材料層4が担持された構造を有する正極5
と例えば多孔質導電性基板からなる集電体6に負極材料
層7が担持された構造を有する負極8と、正極5と負極
8の間に配置されるセパレータ9とから構成される。
【0014】正極5及び負極8には孔10が設けられて
いる。孔は正極及び負極の少なくとも一方に設けられて
いれば良いが、両方に設けられていても良い。第1発明
においては、薄膜1は電極の孔10に相対する位置にお
いて薄膜1とセパレータ9とが接着されて固定されてい
る。第2発明においては、薄膜1には電極の孔10に相
対する位置において、電極方向に対する凸部を設けるこ
とにより電極の孔に嵌め合わされて固定されている。こ
の時薄膜1には電極方向に向う凸部が設けられていても
良い。
【0015】正極5と負極8の両方に孔を設け薄膜1を
正負両極側から固定する場合、両極を積層したときに両
者に設けた孔がセパレータを介して重なる位置にあるよ
う構成されていることが望ましい。それにより孔を設け
ることによる電池容量の損失を最小にできる他、負極に
面していない正極がなくなり、充放電サイクルに伴う容
量劣化も抑えられるという効果がある。
【0016】セパレータと電極の間に結着材が配されて
いてもよい。それにより電極間の微小な広がりが抑制さ
れ、大電流放電特性が改善される。結着剤としては電解
液や正極電位に耐えうるものであれば特に限定されない
が、バイトン、PVDF(ポリフッ化ビニリデン)のよ
うなフッ素系材料BRやSBRなどのゴム材料が挙げら
れ、特に非水電解液系電池においては、耐電解液性の点
でPVDFがより好ましい。
【0017】更に、電池面積が大きい場合や電池内圧の
上昇が大きいと予想される場合には、電池内に、少なく
とも1枚の剛性を有する補強板を電極の背面に配置して
も良い。
【0018】電解液は前記薄膜1内に収容されている。
正極端子11は、一端が正極5に接続され、かつ他端が
前記薄膜1から延出されている。一方、負極端子12は
一端が前記負極8に接続され、かつ他端が前記薄膜1か
ら延出されている。
【0019】本発明の電池構成を適用する電池の種類と
しては、リチウム二次電池、リチウムイオン二次電池、
ニッケル水素電池、ニッケルカドミウム二次電池、ポリ
マー電池等の二次電池、やリチウム一次電池、マンガン
電池等の各種一次電池に対しても適用可能である。
【0020】以下、正極、負極、電解液、セパレータの
構造・材料や製法について説明する。 1)正極 正極は、例えば正極材料を含む正極材料層が集電体に担
持された構造を有する。
【0021】正極は例えば、正極材料に導電剤及び結着
剤を適当な溶媒に懸濁し、この懸濁物を集電体に塗布、
乾燥して薄板状にして所望の大きさに切断後、さらに打
ち抜き等の手段で孔を設けることにより作成される。
【0022】正極材料は適用する電池の種類に応じて適
宜適当な材料を使用することができる。リチウム二次電
池、あるいはリチウムイオン二次電池の場合、正極材料
としては種々酸化物、例えば二酸化マンガン、リチウム
マンガン複合酸化物、リチウム含有ニッケル酸化物、リ
チウム含有コバルト酸化物、リチウム含有鉄酸化物、リ
チウム含有コバルト化合物、リチウム含有ニッケルコバ
ルト酸化物、リチウム含有鉄酸化物、リチウムを含むバ
ナジウム酸化物や、二硫化チタン、二硫化モリブデンな
どのカルコゲン化合物を挙げることができる。中でもリ
チウム含有コバルト酸化物、リチウム含有ニッケルコバ
ルト酸化物、リチウムマンガン複合酸化物が高電圧が得
られ望ましい。特に、リチウムマンガン酸化物(例えば
LiMn24 、LiMnO4 )を用いると電池の安全
性が向上し、電池の安全素子が簡略化できるため、電池
をより薄型化・軽量化できる。
【0023】ニッケル水素二次電池の場合であれば、正
極に焼結式やペースト式の水酸化ニッケルを用いること
が望ましい。その他の電池の場合も、公知の様々な材料
を適宜適用することができる。
【0024】2)負極 負極は、負極材料を含む負極材料層が集電体に担持され
た構造を有する。負極は例えば、負極材料と結着剤とを
溶媒の存在下で混練し、選られた懸濁物を集電体に塗布
し乾燥した後、プレスし所望の大きさに切断後、さらに
打ち抜き等の手段で孔を設けることにより作成すること
ができる。
【0025】負極材料は適用した電池の種類に応じて適
宜適当な材料を選択することができる。リチウムイオン
二次電池の場合、負極材料としては、黒鉛、コークス、
炭素繊維、球状炭素などの黒鉛質材料もしくは炭素質材
料、熱硬化性樹脂、等方性ピッチ、メソフェーズピッ
チ、メソフェーズピッチ系炭素繊維、メソフェーズ小球
体などに500℃〜3000℃で熱処理を施すことによ
りことにより得られる黒鉛質材料または炭素質材料等を
挙げることができる。特にコークスは充放電に伴う形態
変化が少ないため、本発明にかかる電池構造においては
サイクル特性を改善し得る。
【0026】リチウム電池の場合、負極材料としてはリ
チウム金属、リチウム合金等を挙げることができる。ニ
ッケル水素二次電池の場合であれば、負極にLaNi5
系やラーベス層の水素吸蔵合金であることが特に望まし
い。
【0027】その他の電池の場合も、公知の様々な材料
を適宜適用することができる。 3)電解液 電解液は、適用電池に適合した電解液を適宜選択して使
用することが可能である。
【0028】リチウム電池、リチウムイオン二次電池で
あれば例えばEC,PC,MEC,DMC,DEC等の
炭酸エステルにLiPF6 やLIBF4 等の支持塩を適
当量加えたものを使用することができる。
【0029】ニッケル水素二次電池であればKOH、N
aOH、LiOH等のアルカリ水溶液を使用することが
できる。勿論、正極、負極、電解液についてはここに記
した以外の組み合わせでも、電池系として成り立つもの
であれば使用可能である。 4)セパレータ セパレータ材料も適用した電池に応じて適当な材料を適
宜選択して使用することが可能である。但し第1発明の
場合、薄膜との接着が可能となる材料を選択する必要が
ある。特に接着方法としては熱融着が望ましいためそれ
に適した材料を選択する必要がある。
【0030】セパレータとしては、具体的には例えばポ
リエチレン、ポリプロピレンの多孔質フィルムやまたは
合成樹脂製不織布等を用いることができる。中でも熱融
着が可能な材料としてはポリエチレン、ポリプロピレン
製のもの等が挙げられる。
【0031】リチウムイオン二次電池であれば、中でも
ポリエチレンかポリプロピレン、あるいは両者からなる
多孔質フィルムは二次電池の安全性を向上できるため好
ましい。ニッケル水素二次電池あればナイロンやポリプ
ロピレンの不織布を使用すればよい。
【0032】次に本発明に係る正極または負極の形状に
ついて説明する。リチウム電池、又はリチウムイオン二
次電池の場合においては正極又は負極の少なくとも一方
に設けられる孔は円または長円であることが望ましい。
孔の形状が円や長円以外の、例えば四角や三角等の角を
有する形状であっても良いが、電池内圧上昇時に角の部
分に応力が発生し、電極を変形させたり、最悪の場合外
装薄膜を破損する可能性がある。
【0033】正極及び負極の両方に孔を設け、その際両
者を積層した場合にセパレータを介して重なる位置にあ
るそれぞれの孔の面積は、正極に設けた孔の面積より、
相対して負極に設ける孔の面積よりも大きくなるように
することが好ましい。それにより特に大電流で充電した
場合の電極上への針状リチウムの析出が抑制され、サイ
クル進行に伴う容量劣化が抑制できる。
【0034】正極又は負極の少なくとも一方に設けられ
る孔の面積は電極面積の30%以下であることが望まし
い。また、孔の面積が電極面積の30%以上では特性の
改善が認められない他、孔を穿孔したことによる電極面
積の減少が大きくなりすぎ、本発明の電池の特徴である
金属製缶に収納したる従来型電池に比べてエネルギー密
度を大きくすることが困難となる。好ましくは20%以
下である。
【0035】電極に設けられた孔は隣接する孔の中心を
結ぶ距離が2mm以上30mm以下であることが電池特
性上からは好ましい。近接したる孔の中心を結ぶ距離が
2mm以下では孔の近傍の電極の歪みの影響が大きくな
り電池特性が低下する。また、30mm以上では電池内
圧上昇時の電池膨張を十分には抑制できなくなり、電池
特性の低下を招く。更に好ましくは、3mm以上、20
mm以下である。
【0036】次に本発明に係る電極群を包囲する薄膜に
ついて説明する。本発明に係る薄膜は可撓性を有する合
成樹脂や金属からなる薄膜が挙げられる。特に非水電解
液系電池の場合には合成樹脂からなる層にアルミニウム
等のバリア層を挿入した多層膜が好ましい。薄膜の一部
にアルミの層を含ませることにより、特に非水電解質電
池の場合、電解質への水分の混入を防止できるため電池
寿命を長くすることが可能となることから好ましい。ニ
ッケル水素二次電池のような水系電解液の場合にはポリ
プロピレンのような、ポリオレフィンやアイオノマーの
膜で十分である。
【0037】第1発明の場合は、さらに片面に接着剤
層、融着する場合には融着剤層を具えている必要があ
る。特にアルミニウム薄膜と融着剤層を備える積層材で
あることが好ましい。また融着剤層のポリエチレンやポ
リプロピレンのようなポリオレフィンが使用可能であ
る。
【0038】第1の発明において薄膜とセパレータの接
着方法としては、接着剤を介して接着する方法、超音波
融着する方法、熱融着する方法等が挙げられるが、特に
熱融着する方法であることが望ましい。薄膜の融着方法
を熱融着とすることにより、他の超音波融着や機械的な
融着手法より電極に与える衝撃を減少させることが可能
となり、電池製造プロセスに起因する電池特性の低下を
抑制することが可能となる。
【0039】第2発明において、薄膜を電極の孔に嵌合
する手段としては、薄膜を電池両面よりスナップ状の治
具で挟み込んで固定する手段や、薄膜を片面より電極に
設けた孔を通して対向面へ押し出し、その押し出された
薄膜をクリップ状の治具で挟み込んで固定する手段等が
ある。このような機械的な固定手段は接着等に比較する
と作成方法が比較的大掛かりになるが、その反面固定強
度を大きくすることが可能であることから、大面積の電
池を構成するときに好適である。
【0040】本発明の密閉型電池の作成方法の一例を示
す概念図を図2に示す。まず、予め打ち抜き等の手法に
より穿孔した正極5及び/又は負極8準備し、孔10が
相対するように位置合わせを行いながら、セパレータ9
を介して積層してセル2を作成し、電極群を構成する。
ついでこの電極群を薄膜1にて包み、圧迫しながら熱を
加えることにより薄膜内面の融着層とセパレータ9を熱
融着させる。または、孔に対応する位置を圧迫し嵌合す
る。ついで、電解液を注入した後、薄膜1を完全密閉さ
せて電池を完成させる。
【0041】
【実施例】(実施例1〜3、比較例1)下記の方法によ
りニッケル水素二次電池用の正極と負極を作成した。 正極:水酸化ニッケル90gと一酸化コバルト10gに
練り剤としてポリアクリル酸ナトリウム0.175gと
CMC(カルボキシメチルセルロース)0.15g、更
にPTFE(ポリテトラフルオロエチレン)を3.5g
を加え、十分混合した後、水を加えて更に混練しニッケ
ル活物質ペーストを調製する。次いで、これらのペース
トを三次元構造を有するニッケル発泡基板(住友電工製
セルメット)へ擦り込んだ後、温風乾燥器中に放置す
ることで乾燥を行う。十分乾燥の後、二段式圧延機を用
いて、所定の厚みまでプレスを行ない、最後に打ち抜き
プレスにより、40mm×60mmに打ち抜いた。この
電極の重量から求めた水酸化ニッケル含有量を基にして
算出された理論容量は約1000mAhである。
【0042】負極:まずLmNi4.0 Co0.4 Mn0.3
Al0.3 (Lmはランタン富化ミッシュメタル)100
gにケッチェンブラック1g、更に練り剤としてCMC
0.1g、ポリアクリル酸ナトリウム0.3g及びPT
FE2gを加え十分混合した後、水を加えて水素吸蔵合
金活物質ペーストを作成する。ついで、このペーストを
パンチドメタルの両面へ塗工した後、温風乾燥器中で放
置することで乾燥を行う。十分乾燥の後、二段式圧延機
を用いて、所定の厚みまでプレスを行い、最後に打ち抜
きプレスにより、42mm×62mmに打ち抜いた。
【0043】次に図3、図4、図5に示す配置で孔を穿
孔した3種類の正極及び負極をそれぞれ作成した。これ
らの正極及び負極をポリプロピレン製の不織布セパレー
タを介して積層し、ポリプロピレン製の薄膜により外部
を覆った。その後、ポリプロピレン製フィルムの薄膜外
周部を注液用の場所を残して電極周辺部にあわせて熱融
着した。その後、各電極の孔に対応する個所を両電極側
から圧迫、加熱しセパレータと薄膜を熱融着させた。つ
いで、外周部の注液用の個所からシリンジにより8規定
の水酸化カリウム水溶液を注液し、注液孔を熱融着し塞
ぎ3種類の電池を作成した。
【0044】これらをそれぞれ実施例1、実施例2、実
施例3とする。これらとまったく同じ電極を用い、電極
への穿孔を行わず薄膜周辺部のみを熱融着させた電池
を、比較例1とする。実施例1乃至実施例3、比較例1
の電池の電極の孔の形状を表1に示す。
【0045】
【表1】
【0046】これらの電池を1Aの電流で1時間30分
充電した後、1Aの電流で0.8Vまで放電する充放電
を繰り返し行い、初期の放電容量に対する、サイクル進
行に伴う放電容量の変化を測定した。その結果を図6に
示す。
【0047】図6より明らかなとおり、実施例の電池で
はサイクル進行に伴う容量低下が少ないのに対し、比較
例の電池では、急激に容量が低下している。この原因を
探るため、電池の外形検査を行なった。その結果を表2
に示す。
【0048】
【表2】
【0049】表2に示すように、実施例の電池ではその
厚さの変化が少ないのに対し、比較例1の電池では大き
く膨らんでいることがわかった。このことと、透過X線
撮影の結果から、比較例1の電池で容量低下が大きかっ
たのは、充電末期に正極で発生する酸素ガスにより電池
内圧が上昇し、周辺部でのみ固定して有る比較例1の電
池では電池の膨れを抑制する事ができず、電極間隔が広
がってしまい放電容量が低下しているものと考えられ
る。これに対し、実施例の各電池では電極に穿孔したる
孔を通して薄膜がセパレータに融着されているため、電
池の膨張が抑制され、容量低下が少なかったものと考え
られる。
【0050】厚み測定時に、実施例3の電池において孔
の角で応力集中によると思われる薄膜のしわが観察され
た。問題となる状況ではなかったが、信頼性を考慮する
と、大幅な電池内圧の上昇が不可避であるニッケル水素
二次電池やニッケルカドミウム電池では、角の無い孔形
状を選択する事が好ましい。
【0051】(実施例4〜実施例8)下記の方法により
リチウムイオン二次電池用の正極と負極を作製した。 正極:LiCoO2 100gへ導電材としてアセチレン
ブラックを6g添加し、PVdF3g(固形分)ととも
に十分混連しペースト化したものを、アルミ箔へ塗布
し、乾燥・プレスを行って作成した。この電極を200
mm×50mmに切り出し使用した。
【0052】負極:繊維状グラファイトであるMCF
(メソフェーズカーボンファイバー)100gへPVd
F(ポリフッ化ビニリデン)を6g(固形分)添加し、
十分混練し、ペーストとしたものを銅箔へ塗布し、乾燥
・プレスをおこなって作製した。この電極を212mm
×52mmに切り出して使用した。
【0053】これらの電極に直径2mmの孔をポンチを
用いて図3と同じ配置で穿孔した。孔の間隔を図示した
10mm以外に、1mm、3mm、20mm、40mm
のものも作製した。これらの電極をポリエチレン製の多
孔性膜セパレータを介して積層し、ポリプロピレンとア
ルミ箔のラミネート材にて外部を覆った。その後、ラミ
ネートフィルムの薄膜外周部を注液用の場所を残して電
極周辺部にあわせて熱融着する。その後、各電極の孔に
対応する個所を両電極側から圧迫、加熱しセパレータと
薄膜を熱融着させた。ついで、外周部の注液用の個所か
らシリンジによりエチレンカーボネートとメチルエチル
カーボネートを等量混合したものへ1モルのLiPF6
を溶解させたものを電解液として注液し、注液孔を熱融
着し塞ぎ、密閉型電池を得た。電極に設けた孔の間隔が
1mmの物を使用したものを実施例4、3mmの物を使
用したものを実施例5、10mmの物を使用したものを
実施例6、20mmの物を使用したものを実施例7、4
0mmのものを使用したものを実施例8とした。
【0054】これらを250mAの電流で4.2Vまで
定電流で、4.2Vになってからは定電圧で充電を計3
時間行なった後、250mAで3Vまで放電するサイク
ルを繰り返し、初期の放電容量に対する、サイクル進行
に伴う放電容量の変化を測定した。その結果を図7に示
す。
【0055】図7より、電極に穿孔して薄膜をセパレー
タに融着させた効果から、極端な劣化はないものの、実
施例4と実施例8の劣化が若干大きい。この原因を調査
するため、サイクル後の電池を解体し、観察したところ
実施例4の電池では孔の周辺に、実施例8の電池では孔
と孔の間に放電し残りの部分が認められた。このことか
ら、孔間隔が狭い実施例4では薄膜を熱融着する際に応
力が集中し孔周辺で電極間隔が広がってしまった事が、
孔間隔が広い実施例8で薄膜の押さえが緩いために、サ
イクル進行に伴い容量低下が起こったものと考えられ
る。
【0056】このことより、孔間隔は2mmから30m
mの範囲が好ましい事がわかった。 (実施例9)実施例6と同じ手順にて作成、穿孔した電
極をポリエチレン製の多孔性膜セパレータを介して積層
し、ポリプロピレンとアルミ箔のラミネート材にて外部
を覆った。その後、ラミネートフィルムの外装材外周部
を注液用の場所を残して電極周辺部にあわせて熱融着す
る。その後、各電極の孔に対応する個所に片面から直径
1mmの鉄球を圧入し、ついで対向面から断面が凹型を
した鋼鉄性のクリップを圧入して、この鉄球をラミネー
トフィルムを介して固定する。実施例9の密閉型電池の
一部を示す断面図を図8に示す。図8において1は電極
群を包囲する薄膜(ラミネートフィルム)、5は正極、
8は負極、9はセパレータ、20は鉄球、21はクリッ
プである。このようにしてラミネートフィルムを固定し
た後、先にあけておいた注液用の個所からシリンジによ
り実施例6と同じ電解液を注入し、注液個所を熱融着し
塞ぎ密閉型電池を作成した。
【0057】これらを実施例6と同じ条件で充放電を行
った結果を図9に示す。図9、図7より、穿孔部のラミ
ネートフィルムを機械的に固定しても熱融着法により固
定した電池と同じ特性を示し、本願の電池がラミネート
フィルムの固定方法に依存しないことが確認された。ま
た、ここでは結果を示さないが、超音波によりラミネー
トフィルムを固定してもまったく同様の結果が得られた
ことを記しておく。
【0058】(実施例10〜実施例12)下記の方法に
よりリチウムイオン二次電池用の正極と負極を作製し
た。 正極:LiNi0.8 Co0.22 100gへ導電材とし
てアセチレンブラックを3g、鱗片状グラファイトを4
g添加し、PVdF4g(固形分)とともにNMP(n
−メチルピロリドン)を溶媒として十分混連しペースト
化したものを、アルミ箔へ塗布し、乾燥・プレスを行っ
て作成した。この電極を100mm×100mmに切り
出し使用した。
【0059】負極:繊維状グラファイトであるMCF8
0gへ、鱗片状グラファイト20gを添加し、PVdF
を6g(固形分)とともにNMPを溶媒として十分混練
しペーストとしたものを銅箔へ塗布し、乾燥・プレスを
行って作製した。この電極を102mm×102mmに
切り出して使用した。
【0060】このように作成した正極に直径2mmの穴
をポンチを用いて図3と同じ配置で穿孔した。負極にも
図3と同じ配置で穿孔するが、穴の大きさを正極と同じ
2mm以外に、1.5mm、2.5mmとした電極も作
成し、1.5mmの物を実施例10、2mmの物を実施
例11、2.5mmの物を実施例12の密閉型電池に使
用した。これらの電極をポリエチレン製の多孔性膜セパ
レータを介して積層し、ポリプロピレンとアルミ箔のラ
ミネート材にて外部を覆った。その後、ラミネートフィ
ルムの外装材外周部を注液用の場所を残して電極周辺部
にあわせて熱融着する。その後、各電極の穴に対応する
個所を両電極側から圧迫、加熱しセパレータと外装材を
超音波融着させた。ついで、外周部の注液用の個所から
シリンジによりエチレンカーボネートとメチルエチルカ
ーボネートを体積比で1対3の割合で混合したものへ
1.5モルのLiPF6 を溶解させたものを電解液とし
て注液し、注液穴を熱融着し塞いだ。
【0061】これらを200mAの電流で4.2Vまで
定電流で、4.2Vになってからは定電圧で充電を計3
時間行なった後、200mAで2.7Vまで放電するサ
イクルを繰り返し、初期の放電容量に対する、サイクル
進行に伴う放電容量の変化を測定した。その結果を図1
0に示す。
【0062】図10より、負極に穿孔した穴の直径が正
極に穿孔した穴の直径より小さい方が劣化が少ないこと
がわかる。このように穴の大きさによってサイクル進行
に伴う放電容量の劣化が異なる原因を調査するため、サ
イクル後の電池を解体し、観察した。その結果、実施例
12の電池では負極の孔の周辺に金属状態のLiが少量
析出していることが、実施例11の電池でも若干のLi
析出がそれぞれ観察された。このことから、負極の穴が
正極の穴より大きいか等しい場合には穴周辺での電流線
の乱れや穴位置の微妙なずれにより、充電時に正極より
移動してくるLiの負極へのインターカーレーション能
力が不足し電極上に析出し、これがサイクル進行ととも
に電解液と反応し不活性となることにより劣化がおきた
ものと考えられる。
【0063】このことより、正極の穴よりも負極の穴が
大きいことが好ましいことがわかった。 (実施例13、比較例2)下記の方法によりポリマーリ
チウムイオン二次電池を作成した。 正極:LiCoO2 100gへ導電材としてアセチレン
ブラックを6g添加し、PVdFを可塑材とともにNM
Pを溶媒として十分混連しペースト化したものを、アル
ミ箔へ塗布し、乾燥・プレスを行って作成した。この電
極を50mm×50mmに切り出し使用した。 負極:コークス100gをPVdFとともにNMPを可
塑材とともに溶媒として十分混練しペーストとしたもの
を銅箔へ塗布し、乾燥・プレスを行って作製した。この
電極を52mm×52mmに切り出して使用した。
【0064】これらの電極を2組用意し、一方には正
極、負極に直径3mmの穴をポンチを用いて図3と同じ
配置で穿孔した。 セパレータ:ポリプロピレン不織布をPVdFと可塑材
をNMPを溶媒として十分混連した溶液へ浸漬した後、
乾燥させて前準備を行なった。この時、一部のセパレー
タには浸漬前に図3と同じ配置で直径2mmのマスキン
グを行い、浸漬後にマスキング材を除去する事によりP
VdFが付着しない個所を設けた。
【0065】これらの電極をセパレータを介して積層
し、電極群を作製した。この際、前記穿孔電極とマスキ
ング処理セパレータを組み合わせたものを実施例13と
し、穿孔を行なわなかった電極とマスキング処理を行な
わなかったセパレータを組み合わせたものを比較例2と
した。このようにして作製した2種類の電極群をそれぞ
れポリプロピレンとアルミ箔のラミネート材にて外部を
覆い、ラミネートフィルムの外装材外周部を注液用の場
所を残して電極周辺部にあわせて熱融着する。その後、
実施例の電極群を使用した電池に於いては各電極の穴に
対応する個所を両電極側から圧迫、加熱しセパレータと
外装材を熱融着させた。ついで、外周部の注液用の個所
からシリンジによりプロピレンカーボネートとジエチル
カーボネートを体積比で1対2の割合で混合したものへ
1モルのLiBF4 を溶解させたものを電解液として注
液し、注液穴を熱融着し塞いだ。その後、含浸処理によ
り電極、セパレータ中の可塑材と電解液を置換した。
【0066】これらの電池を45℃の恒温槽中で50m
Aの電流で4.2Vまで定電流で、4.2Vになってか
らは定電圧で充電を計3時間行なった後、50mAで
2.7Vまで放電するサイクルを繰り返し、初期の放電
容量に対する、サイクル進行に伴う放電容量の変化を測
定した。その結果を図11に示す。
【0067】図11より、電極穿孔して外装材を固定し
た実施例の電池の劣化が、固定処理をしなかった比較例
に比較して少ない事がわかる。また、その劣化がサイク
ルの初期に起きている事も分かる。サイクル後の電池を
観察したところ、どちらの電池の電解液の分解に起因す
ると考えられるガスによる、膨張が観察された他、電池
を解体したところ、集電体と活物質層の剥離が観察さ
れ、特に比較例の電池に於いては集電体に活物質がなん
ら付着しない状態であった。この事より、集電体と活物
質層の剥離が発生し、さらにガス発生により電池内圧が
上昇したため、電極間隔が広がったが、実施例に於いて
は外装材により電極同士が圧迫されているため集電の低
下が少なくて済み、比較例では支えが無いため電池内圧
により膨張が進み、それに従い活物質層が剥離し急激な
容量低下を招いたと考えられる。
【0068】
【発明の効果】電極に設けられた孔を通して薄膜をセパ
レータに固定するするという簡便にして効果的な電池構
成手法を見出すことにより、薄型でエネルギー密度の高
いリチウムイオン二次電池を提供することが可能となる
ほか、従来金属缶以外では実現が実質的に不可能であっ
たニッケル水素二次電池や、ニッケルカドミウム二次電
池の薄型化が可能となった。また、金属缶のような缶成
形上の限界もないため、厚さ1mm以下の電池の作成も
容易という特徴を有しており、その工業的寄与は大なる
物がある。
【図面の簡単な説明】
【図1】 本発明の構成例を示す断面図。
【図2】 本発明の密閉型電池の作成方法の一例を示す
概念図。
【図3】 実施例の電極に穿孔したる孔の配置図。
【図4】 実施例の電極に穿孔したる孔の配置図。
【図5】 実施例の電極に穿孔したる孔の配置図。
【図6】 実施例1〜3、比較例1の電池の充放電サイ
クル特性。
【図7】 実施例4〜8の電池の充放電サイクル特性。
【図8】 実施例9の密閉型電池の一部を示す断面図。
【図9】 実施例9の電池の充放電サイクル特性。
【図10】 実施例11〜12の電池の充放電サイクル
特性。
【図11】 実施例13、比較例2の電池の充放電サイ
クル特性。
【符号の説明】
1・・・ 薄膜 2・・・ セル 3・・・ 集電体 4・・・ 正極材料層 5・・・ 正極 6・・・ 集電体 7・・・ 負極材料層 8・・・ 負極 9・・・ セパレータ 10・・・ 孔 11・・・ 正極端子 12・・・ 負極端子 20・・・ 鉄球 21・・・ クリップ
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大崎 隆久 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内 (72)発明者 神田 基 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内 Fターム(参考) 5H028 AA01 AA05 BB00 BB01 BB04 BB05 CC02 EE01 EE06 HH05 5H029 AJ03 AJ11 AJ14 AK02 AK03 AK05 AL06 AL07 AL11 AL12 AM03 AM05 AM07 BJ04 BJ12 CJ02 CJ04 CJ05 CJ06 DJ02 DJ04 EJ12 HJ04

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 正極と、負極と、正極及び負極間に配置
    されるセパレータとが積層されたセルを具備する電極群
    と;電解液と;電極群を包囲する薄膜とを備えた密閉型
    電池において;正極と負極の少なくとも一方に孔が設け
    られ、薄膜の一部が孔を通じてセパレータと接着されて
    なることを特徴とする密閉型電池。
  2. 【請求項2】 正極と、負極と、正極及び負極間に配置
    されるセパレータとが積層されたセルを具備する電極群
    と;電解液と;電極群を包囲する薄膜とを備えた密閉型
    電池において;正極と負極の少なくとも一方に孔が設け
    られ、孔に薄膜の一部が嵌合されてなることを特徴とす
    る密閉型電池。
  3. 【請求項3】 負極がリチウムまたはリチウムを吸蔵・
    放出する炭素質物であり、かつ電解液がリチウムイオン
    伝導性非水電解液であることを特徴とする請求項1また
    は請求項2記載の密閉型電池。
  4. 【請求項4】 孔が複数設けられ、かつ隣接した孔の中
    心を結ぶ距離が2mm以上30mm以下であることを特
    徴とする請求項1または請求項2に記載の密閉型電池。
  5. 【請求項5】 正極に設けられた孔の直径が負極に設け
    られた孔の直径より大きいことを特徴とする請求項1又
    は請求項2に記載の密閉型電池
  6. 【請求項6】 セパレータと薄膜とが熱融着されている
    ことを特徴とする請求項1記載の密閉型電池。
JP10261062A 1998-09-16 1998-09-16 密閉型電池 Pending JP2000090979A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10261062A JP2000090979A (ja) 1998-09-16 1998-09-16 密閉型電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10261062A JP2000090979A (ja) 1998-09-16 1998-09-16 密閉型電池

Publications (1)

Publication Number Publication Date
JP2000090979A true JP2000090979A (ja) 2000-03-31

Family

ID=17356557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10261062A Pending JP2000090979A (ja) 1998-09-16 1998-09-16 密閉型電池

Country Status (1)

Country Link
JP (1) JP2000090979A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357891A (ja) * 2000-05-12 2001-12-26 Samsung Sdi Co Ltd リチウム2次電池の製造方法
WO2002103835A1 (en) * 2001-06-20 2002-12-27 Koninklijke Philips Electronics N.V. Method of manufacturing a lithium battery as well as a lithium battery
JP2007018917A (ja) * 2005-07-08 2007-01-25 Nissan Motor Co Ltd 積層型電池および組電池
JP2010027368A (ja) * 2008-07-18 2010-02-04 Nec Tokin Corp リチウム二次電池
JP2011129378A (ja) * 2009-12-17 2011-06-30 Nec Energy Devices Ltd 積層密閉型電池
JP2015082421A (ja) * 2013-10-23 2015-04-27 日産自動車株式会社 電極、電池、電極の製造方法及び製造装置
US20150140400A1 (en) * 2013-11-15 2015-05-21 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and electronic device including the same
JP2017504933A (ja) * 2014-01-06 2017-02-09 エルジー・ケム・リミテッド フレキシブル電池セル
US9899708B2 (en) 2011-09-20 2018-02-20 Lg Chem, Ltd. Electrode assembly with porous structure and secondary battery including the same
CN107925123A (zh) * 2015-08-28 2018-04-17 Jenax股份有限公司 二次电池及其制备方法
KR20180104943A (ko) * 2017-03-14 2018-09-27 에스케이이노베이션 주식회사 이차전지용 전극조립체 및 이의 제조 방법
CN114597486A (zh) * 2020-12-07 2022-06-07 通用汽车环球科技运作有限责任公司 具有均匀分布的电解质的固态电池组及与之相关的制造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4629902B2 (ja) * 2000-05-12 2011-02-09 三星エスディアイ株式会社 リチウム2次電池の製造方法
JP2001357891A (ja) * 2000-05-12 2001-12-26 Samsung Sdi Co Ltd リチウム2次電池の製造方法
WO2002103835A1 (en) * 2001-06-20 2002-12-27 Koninklijke Philips Electronics N.V. Method of manufacturing a lithium battery as well as a lithium battery
JP2007018917A (ja) * 2005-07-08 2007-01-25 Nissan Motor Co Ltd 積層型電池および組電池
JP2010027368A (ja) * 2008-07-18 2010-02-04 Nec Tokin Corp リチウム二次電池
JP2011129378A (ja) * 2009-12-17 2011-06-30 Nec Energy Devices Ltd 積層密閉型電池
US9899708B2 (en) 2011-09-20 2018-02-20 Lg Chem, Ltd. Electrode assembly with porous structure and secondary battery including the same
JP2015082421A (ja) * 2013-10-23 2015-04-27 日産自動車株式会社 電極、電池、電極の製造方法及び製造装置
US20150140400A1 (en) * 2013-11-15 2015-05-21 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and electronic device including the same
JP2017504933A (ja) * 2014-01-06 2017-02-09 エルジー・ケム・リミテッド フレキシブル電池セル
CN107925123A (zh) * 2015-08-28 2018-04-17 Jenax股份有限公司 二次电池及其制备方法
JP2018529193A (ja) * 2015-08-28 2018-10-04 ジェナックス インコーポレイテッド 二次電池及びその製造方法
KR20180104943A (ko) * 2017-03-14 2018-09-27 에스케이이노베이션 주식회사 이차전지용 전극조립체 및 이의 제조 방법
KR101956224B1 (ko) * 2017-03-14 2019-03-08 에스케이이노베이션 주식회사 이차전지용 전극조립체 및 이의 제조 방법
CN114597486A (zh) * 2020-12-07 2022-06-07 通用汽车环球科技运作有限责任公司 具有均匀分布的电解质的固态电池组及与之相关的制造方法
US11942620B2 (en) 2020-12-07 2024-03-26 GM Global Technology Operations LLC Solid state battery with uniformly distributed electrolyte, and methods of fabrication relating thereto

Similar Documents

Publication Publication Date Title
US6521373B1 (en) Flat non-aqueous electrolyte secondary cell
JP4752574B2 (ja) 負極及び二次電池
JP3563646B2 (ja) 電気化学デバイス
US6338920B1 (en) Electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JPWO2011074098A1 (ja) リチウム二次電池
CN107534129B (zh) 电极、电极组及非水电解质电池
JP2003157888A (ja) 平板状二次電池及びその製造方法
JP4042613B2 (ja) バイポーラ電池
JP2000090979A (ja) 密閉型電池
JP4551539B2 (ja) 非水電解質二次電池
JP3583592B2 (ja) 薄形二次電池
JP4802217B2 (ja) 非水電解質二次電池
JP2001068160A (ja) 扁平形非水電解質二次電池
JP3544889B2 (ja) 密閉型電池
JP3579227B2 (ja) 薄形二次電池
JP2001143759A (ja) 円筒形リチウムイオン電池
JP2017130320A (ja) 二次電池
JP3511966B2 (ja) 円筒形リチウムイオン電池
JP2002231196A (ja) 薄形電池の製造方法
JP2003346768A (ja) 非水電解質二次電池
JP2000323173A (ja) 非水電解液二次電池
JP2005032688A (ja) 非水電解質二次電池
JPH11260417A (ja) 高分子電解質リチウム二次電池
JP7490920B2 (ja) 電極組立体およびこれを含む二次電池
JP4208311B2 (ja) 非水電解液電池

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606