JP2000050870A - β−グリコシダーゼ活性を有する耐熱性酵素 - Google Patents

β−グリコシダーゼ活性を有する耐熱性酵素

Info

Publication number
JP2000050870A
JP2000050870A JP10222866A JP22286698A JP2000050870A JP 2000050870 A JP2000050870 A JP 2000050870A JP 10222866 A JP10222866 A JP 10222866A JP 22286698 A JP22286698 A JP 22286698A JP 2000050870 A JP2000050870 A JP 2000050870A
Authority
JP
Japan
Prior art keywords
enzyme
leu
glu
lys
phe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10222866A
Other languages
English (en)
Other versions
JP2995292B1 (ja
Inventor
Ikuo Matsui
郁夫 松井
Kazuhiko Ishikawa
一彦 石川
Hiroyasu Ishida
紘靖 石田
Yoshiji Kosugi
佳次 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10222866A priority Critical patent/JP2995292B1/ja
Priority to US09/369,735 priority patent/US6960454B2/en
Application granted granted Critical
Publication of JP2995292B1 publication Critical patent/JP2995292B1/ja
Publication of JP2000050870A publication Critical patent/JP2000050870A/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

(57)【要約】 【課題】 β−グリコシダーゼ活性を有する耐熱性酵素
を提供する。 【解決手段】 配列番号2のアミノ酸配列において1若
しくは複数個のアミノ酸が欠失、置換若しくは付加され
てもよいアミノ酸配列からなり、かつβ−グリコシダー
ゼ活性を有する耐熱性酵素。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、β−グリコシダー
ゼ活性を有する耐熱性酵素に関し、より詳細には、パイ
ロコッカス属に属する超好熱性細菌由来のβ−グリコシ
ダーゼ活性を有する耐熱性酵素に関する。
【0002】
【従来の技術】β−グリコシダーゼは糖質の加水分解、
シークエンシング、糖タンパク質、糖脂質の構造解析、
光学純度の高いオリゴ糖、複合糖質の合成に有用な酵素
である。その反応は基質を構成する単糖の種類、グリコ
シド結合の光学異性、結合位置に特異的である。β−グ
リコシダーゼは糖鎖の修飾や立体光学異性を保持したオ
リゴ糖や多糖の合成に有用であると共に、グリコシド基
を1級アルコール、2級アルコール、3級アルコールに
転移するので、バイオサーファクタント等の複合糖質の
合成に有用である。今までに基質特異性の異なる種々の
β−グリコシダーゼが細菌や植物から発見されている
が、多くが常温生物由来のため、耐熱性に乏しく、有機
溶媒等も併用される苛酷な合成反応には不適当であっ
た。耐熱性であり、かつ有機溶媒中で活性なβ−グリコ
シダーゼが発見されれば、有機溶媒の存在下で優先され
る加水分解反応の逆反応つまり合成反応を用い、光学純
度の高い複合糖質の合成反応に生体触媒を用いる新手法
の開発が可能と考えられる。従って、極限環境下で活性
なβ−グリコシダーゼが渇望されていた。
【0003】
【発明が解決しようとする課題】本発明は、β−グリコ
シダーゼ活性を有する耐熱性酵素を提供することを目的
とする。
【0004】
【課題を解決するための手段】本発明者は、上記の課題
を解決すべく、90〜100℃で生育する超好熱性細菌
に着目し、その遺伝子配列から本酵素活性を示すタンパ
ク質をコードすると推測される遺伝子を見い出した。さ
らに、その遺伝子を大腸菌に組み込んで、この形質転換
された大腸菌を使ってその遺伝子から酵素を生産し、こ
の酵素が高温(90℃以上)で安定に存在し、かつβ−
グリコシダーゼ活性を示すことを確認して、本発明を完
成するに至った。
【0005】すなわち、本発明は、配列番号2のアミノ
酸配列において1若しくは複数個のアミノ酸が欠失、置
換若しくは付加されてもよいアミノ酸配列からなり、か
つβ−グリコシダーゼ活性を有する耐熱性酵素を提供す
る。本発明の酵素は、好ましくは、至適温度が100℃
以上である。本発明は、また、上記の酵素をコードする
DNAを提供する。一例として、このDNAは配列番号
1の塩基配列を有する。さらに、本発明は、上記のDN
Aを含む組換えベクター、この組換えベクターにより形
質転換された宿主細胞、および上記の酵素を製造する方
法であって、該酵素をコードするDNAを含む発現ベク
ターにより形質転換された宿主細胞を培養し、次いで培
養物から該酵素を採取する工程を含む前記方法を提供す
る。この方法により、本発明の酵素を多量に生産するこ
とができる。
【0006】
【発明の実施の形態】以下に、本発明を具体的に説明す
る。本発明の酵素は、配列番号2のアミノ酸配列におい
て1若しくは複数個のアミノ酸が欠失、置換若しくは付
加されてもよいアミノ酸配列からなり、かつβ−グリコ
シダーゼ活性を有する耐熱性酵素である。配列番号2の
アミノ酸配列からなり、かつβ−グリコシダーゼ活性を
有する耐熱性酵素は、硫黄代謝高熱性古細菌パイロコッ
カス・ホリコシ(登録番号JCM9974)に由来する。
その製造方法の一例を説明する。
【0007】まず、パイロコッカス・ホリコシを培養し
た後、染色体DNAを調製する。次いで、染色体DNAを制限
酵素により断片化し、ゲノムDNAライブラリーを作製
し、パイロコッカス・ホリコシの染色体をカバーするク
ローンを選択して、クローンの整列化を行う。整列化さ
れたクローンの塩基配列を決定し、β−グリコシダーゼ
をコードする遺伝子を同定する。β−グリコシダーゼを
コードする遺伝子の塩基配列を配列番号1に示す。この
遺伝子をPCR反応で増幅し抽出した後、蛋白質発現プラ
スミド(例えば、pET11a或いはpET15b)に挿入、そのプ
ラスミドを宿主細胞(例えば、大腸菌)に組み込み、本
酵素の生産をおこなうことができる。生産された酵素は
加熱処理およびカラムクロマトグラムで単離精製する。
【0008】精製された当該酵素は、分子量約45,000の
タンパク質で、β−グリコシドを加水分解する酵素であ
ることがわかった。この酵素は250 mM NaClを含む50m
Mリン酸緩衝液(pH6.0)中で95℃で1時間処理して
も、80%の活性が保持されていた。また、活性の至適pH
は6.0で、至適温度はpH6.0で100℃以上であった。上記
酵素の変異体、すなわち、配列番号2のアミノ酸配列に
おいて1若しくは複数個のアミノ酸が欠失、置換若しく
は付加されているアミノ酸配列からなり、かつβ−グリ
コシダーゼ活性を有する耐熱性酵素は、周知の技術、例
えば部位特異的突然変異誘発、PCR法などの手法を用い
て調製することができる。本発明の酵素は、糖質の加水
分解、シークエンシング、糖タンパク質、糖脂質の構造
解析、光学純度の高いオリゴ糖、複合糖質の合成などに
利用することができる。
【0009】
【実施例】以下、本発明を実施例により具体的に説明す
る。これらの実施例は説明のためのものであって、本発
明の範囲を限定するものではない。 (実施例1)(菌の培養) JCM9974(理化学研究所微生物系統保存施設より入
手)は次の方法で培養した。13.5gの食塩、4gのNa2S
O4、 0.7 g のKCl 、 0.2g のNaHCO3、0.1gのKBr、30mg
のH3BO3、10gのMgCl2・6H2O、1.5gのCaCl2 、25mgのSr
Cl2、1.0mlのレザスリン溶液(0.2g/L)、1.0g の酵母
エキス、5gのバクトペプトンを1Lに溶かし、この溶液の
pHを6.8に調整し加圧殺菌した。ついで、乾熱滅菌した
元素硫黄を0.2%となるように加え、この培地をアルゴ
ンで飽和して嫌気性とした後、JCM9974を植菌し
た。培地が嫌気性となったか否かはNa2S溶液を加えて、
培養液中でNa2Sによるレザスリン溶液のピンク色が着色
しないことにより確認した。この培養液を95℃で2〜4
日培養し、その後遠心分離し集菌した。
【0010】(実施例2)染色体DNAの調製 JCM9974の染色体DNAは以下の方法により調製した。
培養終了後5000rpm、10分間の遠心分離により菌体を集
菌した。菌体を10mM Tris(pH 7.5) 1mM EDTA溶液で2回
洗浄後InCert Agarose(FMC社製)ブロック中に封入し
た。このブロックを1%N-lauroylsarcosine、 1mg/ml
プロテアーゼK溶液中で処理することにより、染色体DNA
をAgaroseブロック中に分離調製した。
【0011】(実施例3)染色体DNAを含むライブラリー
クローンの作製 実施例2で得られた染色体DNAを制限酵素HindIIIにより
部分分解後アガロースゲル電気泳動により約40kb長の断
片を調製した。このDNA断片と制限酵素HindIIによって
完全分解したBacベクターpBAC108L及びpFOS1とをT4リガ
ーゼを用いて結合させた。前者のベクターを用いた場合
には結合終了後のDNAをただちに大腸菌内へ電気孔窄法
により導入した。後者のベクターpFOS1を用いた場合に
は結合終了後のDNAをGIGA Pack Gold(ストラタジーン
社製)により試験管内でλファージ粒子内に詰め込み、
この粒子を大腸菌に感染させることによりDNAを大腸菌
内に導入した。これらの方法により得られた抗生物質ク
ロラムフェニコール耐性の大腸菌集団をBAC及びFosmid
ライブラリーとした。ライブラリーからJCM9974の
染色体をカバーするのに適したクローンを選択して、ク
ローンの整列化を行った。
【0012】(実施例4)各BAC或いはFosmidクローンの
塩基配列決定 整列化されたBAC或いはFosmidクローンについて順次以
下の方法で塩基配列を決定していった。大腸菌より回収
した各BAC或いはFosmidクローンのDNAを超音波処理する
ことにより断片化し、アガロースゲル電気泳動により1k
b及び2kb長のDNA断片を回収した。この断片をプラスミ
ドベクターpUC118のHincII制限酵素部位に挿入したショ
ットガンクローンを各BAC或いはFosmidクローン当たり5
00クローン作製した。各ショットガンクローンの塩基配
列をパーキンエルマー、ABI社製自動塩基配列読み取り
装置373または377を用いて決定していった。各ショット
ガンクローンから得られた塩基配列を塩基配列自動連結
ソフトSequencherを用いて連結編集し、各BAC或いはFos
midクローンの全塩基配列を決定していった。
【0013】(実施例5)β−グリコシダーゼ遺伝子の
同定 上記で決定された各BAC或いはFosmidクローンの塩基配
列の大型計算機による解析を行い、β−グリコシダーゼ
をコードする遺伝子(配列番号1)を同定した。
【0014】(実施例6)発現プラスミドの構築 構造遺伝子領域の前後に制限酵素(NdeIとBamHI)サイ
トを構築する目的でDNAプライマーを合成し、PCR
でその遺伝子の前後に制限酵素サイトを導入した。 Upper primer:5’−TAAGAAGG
AGATATACATATGCCGCTGAAATTC
CCGGAAATGTTTCTCTTTGGTACC−
3’ (配列番号3) Lower primer:5'-TTTACTGCAGAGAGGATCCCTAATCCTAAAGTT
GAAGTTCTGGTAG-3'(配列番号4) PCR反応後、制限酵素(NdeIとBamHI)で完全分解(3
7℃で2時間)した後、その構造遺伝子を精製した。pET1
1a或いはpET15b(Novagen社製)を制限酵素NdeIとBamHI
で切断・精製した後、上記の構造遺伝子とT4リガーゼ
で16℃、2時間反応させ連結した。連結したDNAの
一部をE. coli-XL1-BlueMRF1のコンピテントセルに導入
し形質転換体のコロニーを得た。得られたコロニーから
発現プラスミドをアルカリ法で精製した。
【0015】(実施例7)組換え遺伝子の発現 大腸菌(E. coli BL21(DE3), Novagen社製)のコンピテ
ントセルを融解して、ファルコンチューブに0.1mL移
す。その中に発現プラスミド溶液0.005mLを加え氷中
に30分間放置した後42度でヒートショックを30秒間行
い、SOCmedium 0.9mLを加え、37度で1時間振とう培
養した。その後アンピシリンを含む2YT寒天プレート
に適量まき、37度で一晩培養し、形質転換体を得た。な
お、この形質転換体をE. coli BL21(DE3) pET15b/Gly2M
と命名して、工業技術院生命工学工業技術研究所に平成
10年7月14日に寄託した(受託番号:FERM P-1689
9) 。当形質転換体をアンピシリンを含む2YT培地
(2リットル)で600nmの吸収が1に達するまで培養し
た後、IPTG(イソプロピル-β-D-チオガラクトピラ
ノシド)を加えさらに6時間培養した。培養後遠心分離
(6,000rpm,20min)で集菌した。
【0016】(実施例8)耐熱性酵素の精製 集菌した菌体を-20℃で凍結後、室温で融解し、等量の5
0mMトリス塩酸緩衝液(pH7.5)を加え懸濁液を得
た。これに界面活性剤トライトンX-100を最終濃度2.5%
になるように加え、得られた懸濁液に超音波を20分間照
射した。そして85℃で30分間加熱した後、遠心分離(1
5,000 rpm、20分)し、上澄液を得た。これをHiTrap Q
(ファルマシア社製)カラムに吸着させ、NaCl濃度勾配
による溶出を行い活性画分を得た。さらに得られた活性
画分溶液をNi-カラム(Novagen, His・Bind metal chel
ation resin & His・Bind buffer kitを使用)による親
和性クロマトグラムを行った。ここで得られた60 mMイ
ミダゾール流出画分をセントリプレップ30(アミコン社)
で濃縮と250mM NaClを含む50mMトリス塩酸緩衝液(p
H7.5)系へ置換し、精製酵素を得た。
【0017】(実施例9)酵素反応条件 (1)加水分解反応 表1上段に示す5種の単糖のニトロフェニル誘導体と、
酵素反応をpH5.0、85℃で行い、ニトロフェニル基の遊
離による405 nm吸光度の上昇を測定した。そしてその相
対活性をパラニトロフェニル-β-グルコサイド(GlcpβN
p)に対する活性を100%として表した。さらに、表1下段
に示す12種の多糖、オリゴ糖、配糖体を用い、酵素反
応をpH6.0、90℃で行い、遊離のグルコース量をグルコ
ース定量用キット、グルコースCII-テストワコー(和光
純薬製)を用いて測定し、配糖体であるサリシンに対す
る活性を100%として表した。
【0018】(2)至適温度と至適pH GlcpβNpを基質として測定した。至適温度は、50 mMの
クエン酸ナトリウム緩衝液(pH 5.0)中で反応温度を50℃
から100℃まで変化させ、ニトロフェニル基の遊離によ
る405 nm吸光度を測定した。至適pHは上記測定条件にお
ける反応温度を90℃に固定し、酵素反応液のpHを酢酸緩
衝液とリン酸緩衝液を用い3.9から8.0まで変化させ、40
5 nm吸光度の変化量より決定した。
【0019】(3)熱安定性と有機溶媒中での反応性 熱安定性は加熱後の残存活性測定により解析した。酵素
(0.1 mg/ml)は250 mMNaClを含む50 mMリン酸緩衝液(pH
6.0)中で、95 ℃で1時間加熱され、急冷後残存活性が90
℃で至適温度測定と同じ条件で測定された。有機溶媒中
での反応性はGlcpβNpを基質としてエタノール或いはメ
タノールを10-40%含むリン酸緩衝液(pH 6.0)中で、60
℃で所定時間反応させ、GlcpβNpの減少量をTSKgel G-O
ligo-PWカラムを用いた高速液体クロマトグラムで分析
し、有機溶媒を含まない上記反応条件での活性を100%と
して相対活性で表した。
【0020】酵素の諸性質 (1)タンパク質化学的性質 当該酵素は423アミノ酸残基より構成され、その分子量
は45,000 Daである。 (2)基質特異性 当該酵素は単糖のニトロフェニル誘導体に対して広い基
質特異性を示し、特にGlcpβNpとGalpβNpを良い基質と
した(表1上段)。また、表1下段に示すように、グル
コ2糖類ではセロビオースよりラミナリビオースを良く
分解することから当該酵素がβ-1,4-グルコシド結合よ
りβ-1,3-グルコシド結合に高い活性を示すことが明ら
かになった。さらに、配糖体ではサリシンとβ-オクチ
ルグルコサイドを良く分解することから還元性末端に芳
香族環や長鎖アルキル基を含むβ-グルコシドを良い基
質とすることが明らかになった。
【0021】
【表1】
【0022】(3)至適温度と至適pH 図1に示すようにGlcpβNpを基質として用いた場合、酵
素活性は温度の上昇と共に増加し、100℃でもピークに
達しなかった。このことから至適温度は100℃以上であ
ることが明かとなった。また、酵素活性の至適pHは6.0
であった(図2)。
【0023】(4)熱安定性と有機溶媒中での反応性 加熱後の残存活性測定において、本酵素は250 mM NaCl
を含む50 mMリン酸緩衝液(pH 6.0)中で、95 ℃で1時間
加熱しても80%の活性を保持していた。また、当該酵素
は20%のエタノール或いはメタノール存在下pH6.0、60℃
の反応で溶媒非存在下の各々77%、68%の活性を保持して
おり、40%濃度でも各々13%、18%の活性を保持してい
た。以上の事実より当該酵素が極めて高い熱安定性と有
機溶媒耐性を示すことが明らかになった。
【0024】
【発明の効果】本発明により、新規なβ−グリコシダー
ゼが提供された。このβ−グリコシダーゼは、極限環境
下でも安定であることから、当該酵素を用いた光学純度
の高い複合糖質の開発が可能になる。
【0025】
【配列表】 SEQUENCE LISTING <110> Director-General of Agency of Industrial Science and Technology <120> Heat-resistant enzyme having b-glycosidase activity <130> 11900220 <140> <141> <160> 4 <170> PatentIn Ver. 2.0 <210> 1 <211> 1269 <212> DNA <213> Pyrococcus horikoshii <220> <221> CDS <222> (1)..(1269) <400> 1 atg ccg ctg aaa ttc ccg gaa atg ttt ctc ttt ggt acc gca aca tca 48 Met Pro Leu Lys Phe Pro Glu Met Phe Leu Phe Gly Thr Ala Thr Ser 1 5 10 15 tcc cat cag ata gag gga aat aat aga tgg aat gat tgg tgg tac tat 96 Ser His Gln Ile Glu Gly Asn Asn Arg Trp Asn Asp Trp Trp Tyr Tyr 20 25 30 gag cag att gga aag ctc ccc tac aga tct ggt aag gct tgc aat cac 144 Glu Gln Ile Gly Lys Leu Pro Tyr Arg Ser Gly Lys Ala Cys Asn His 35 40 45 tgg gaa ctt tac agg gat gat att cag cta atg acc agc ttg ggc tat 192 Trp Glu Leu Tyr Arg Asp Asp Ile Gln Leu Met Thr Ser Leu Gly Tyr 50 55 60 aat gct tat agg ttc tcc ata gag tgg agc agg cta ttc cca gag gaa 240 Asn Ala Tyr Arg Phe Ser Ile Glu Trp Ser Arg Leu Phe Pro Glu Glu 65 70 75 80 aat aaa ttt aat gaa gat gct ttc atg aaa tac cgg gag att ata gac 288 Asn Lys Phe Asn Glu Asp Ala Phe Met Lys Tyr Arg Glu Ile Ile Asp 85 90 95 ttg tta ttg acg aga ggt ata act ccc ctg gtg acc cta cac cac ttt 336 Leu Leu Leu Thr Arg Gly Ile Thr Pro Leu Val Thr Leu His His Phe 100 105 110 act agc cct ctc tgg ttc atg aag aaa ggt ggc ttc ctt agg gag gag 384 Thr Ser Pro Leu Trp Phe Met Lys Lys Gly Gly Phe Leu Arg Glu Glu 115 120 125 aac cta aaa cat tgg gaa aag tac ata gaa aag gtt gct gag ctt tta 432 Asn Leu Lys His Trp Glu Lys Tyr Ile Glu Lys Val Ala Glu Leu Leu 130 135 140 gaa aaa gtt aaa cta gta gct acc ttc aat gag ccg atg gta tac gta 480 Glu Lys Val Lys Leu Val Ala Thr Phe Asn Glu Pro Met Val Tyr Val 145 150 155 160 atg atg gga tat cta acg gct tat tgg ccc cca ttc att agg agt cca 528 Met Met Gly Tyr Leu Thr Ala Tyr Trp Pro Pro Phe Ile Arg Ser Pro 165 170 175 ttt aag gcc ttt aag gta gct gca aac ctg ctt aaa gct cac gca att 576 Phe Lys Ala Phe Lys Val Ala Ala Asn Leu Leu Lys Ala His Ala Ile 180 185 190 gcc tat gaa ctt ctt cat ggg aaa ttc aaa gtt gga atc gta aag aat 624 Ala Tyr Glu Leu Leu His Gly Lys Phe Lys Val Gly Ile Val Lys Asn 195 200 205 att ccc ata ata ctc cca gcg agt gac aag gag agg gat aga aaa gcc 672 Ile Pro Ile Ile Leu Pro Ala Ser Asp Lys Glu Arg Asp Arg Lys Ala 210 215 220 gct gag aaa gct gat aat tta ttt aac tgg cac ttt ttg gat gcg ata 720 Ala Glu Lys Ala Asp Asn Leu Phe Asn Trp His Phe Leu Asp Ala Ile 225 230 235 240 tgg agt ggg aaa tac aga ggg gta ttt aaa aca tat agg att ccc caa 768 Trp Ser Gly Lys Tyr Arg Gly Val Phe Lys Thr Tyr Arg Ile Pro Gln 245 250 255 agt gac gca gat ttc att ggg gtt aac tat tac acg gcc agc gaa gta 816 Ser Asp Ala Asp Phe Ile Gly Val Asn Tyr Tyr Thr Ala Ser Glu Val 260 265 270 agg cat act tgg aat cct tta aaa ttc ttc ttt gag gtg aaa tta gcg 864 Arg His Thr Trp Asn Pro Leu Lys Phe Phe Phe Glu Val Lys Leu Ala 275 280 285 gat att agc gag agg aag act caa atg gga tgg agc gtt tat cca aaa 912 Asp Ile Ser Glu Arg Lys Thr Gln Met Gly Trp Ser Val Tyr Pro Lys 290 295 300 gga ata tac atg gcc ctt aaa aaa gct tcc agg tat gga agg cct ctt 960 Gly Ile Tyr Met Ala Leu Lys Lys Ala Ser Arg Tyr Gly Arg Pro Leu 305 310 315 320 tat att acg gaa aac gga ata gcg acg ctt gat gat gaa tgg aga gtg 1008 Tyr Ile Thr Glu Asn Gly Ile Ala Thr Leu Asp Asp Glu Trp Arg Val 325 330 335 gaa ttc ata att caa cac ctc caa tac gtt cat aag gct atc gaa gac 1056 Glu Phe Ile Ile Gln His Leu Gln Tyr Val His Lys Ala Ile Glu Asp 340 345 350 ggc ctg gat gta aga ggt tac ttc tat tgg tca ttt atg gat aac tac 1104 Gly Leu Asp Val Arg Gly Tyr Phe Tyr Trp Ser Phe Met Asp Asn Tyr 355 360 365 gag tgg aaa gag ggg ttt ggg cct aga ttt ggc cta gtg gaa gtt gat 1152 Glu Trp Lys Glu Gly Phe Gly Pro Arg Phe Gly Leu Val Glu Val Asp 370 375 380 tat caa acc ttc gag aga agg ccc agg aag agt gct tac gta tac gga 1200 Tyr Gln Thr Phe Glu Arg Arg Pro Arg Lys Ser Ala Tyr Val Tyr Gly 385 390 395 400 gaa att gca aga agt aag gaa ata aag gat gag cta tta aag aga tat 1248 Glu Ile Ala Arg Ser Lys Glu Ile Lys Asp Glu Leu Leu Lys Arg Tyr 405 410 415 ggc cta cca gaa ctt caa ctt 1269 Gly Leu Pro Glu Leu Gln Leu 420 <210> 2 <211> 423 <212> PRT <213> Pyrococcus horikoshii <400> 2 Met Pro Leu Lys Phe Pro Glu Met Phe Leu Phe Gly Thr Ala Thr Ser 1 5 10 15 Ser His Gln Ile Glu Gly Asn Asn Arg Trp Asn Asp Trp Trp Tyr Tyr 20 25 30 Glu Gln Ile Gly Lys Leu Pro Tyr Arg Ser Gly Lys Ala Cys Asn His 35 40 45 Trp Glu Leu Tyr Arg Asp Asp Ile Gln Leu Met Thr Ser Leu Gly Tyr 50 55 60 Asn Ala Tyr Arg Phe Ser Ile Glu Trp Ser Arg Leu Phe Pro Glu Glu 65 70 75 80 Asn Lys Phe Asn Glu Asp Ala Phe Met Lys Tyr Arg Glu Ile Ile Asp 85 90 95 Leu Leu Leu Thr Arg Gly Ile Thr Pro Leu Val Thr Leu His His Phe 100 105 110 Thr Ser Pro Leu Trp Phe Met Lys Lys Gly Gly Phe Leu Arg Glu Glu 115 120 125 Asn Leu Lys His Trp Glu Lys Tyr Ile Glu Lys Val Ala Glu Leu Leu 130 135 140 Glu Lys Val Lys Leu Val Ala Thr Phe Asn Glu Pro Met Val Tyr Val 145 150 155 160 Met Met Gly Tyr Leu Thr Ala Tyr Trp Pro Pro Phe Ile Arg Ser Pro 165 170 175 Phe Lys Ala Phe Lys Val Ala Ala Asn Leu Leu Lys Ala His Ala Ile 180 185 190 Ala Tyr Glu Leu Leu His Gly Lys Phe Lys Val Gly Ile Val Lys Asn 195 200 205 Ile Pro Ile Ile Leu Pro Ala Ser Asp Lys Glu Arg Asp Arg Lys Ala 210 215 220 Ala Glu Lys Ala Asp Asn Leu Phe Asn Trp His Phe Leu Asp Ala Ile 225 230 235 240 Trp Ser Gly Lys Tyr Arg Gly Val Phe Lys Thr Tyr Arg Ile Pro Gln 245 250 255 Ser Asp Ala Asp Phe Ile Gly Val Asn Tyr Tyr Thr Ala Ser Glu Val 260 265 270 Arg His Thr Trp Asn Pro Leu Lys Phe Phe Phe Glu Val Lys Leu Ala 275 280 285 Asp Ile Ser Glu Arg Lys Thr Gln Met Gly Trp Ser Val Tyr Pro Lys 290 295 300 Gly Ile Tyr Met Ala Leu Lys Lys Ala Ser Arg Tyr Gly Arg Pro Leu 305 310 315 320 Tyr Ile Thr Glu Asn Gly Ile Ala Thr Leu Asp Asp Glu Trp Arg Val 325 330 335 Glu Phe Ile Ile Gln His Leu Gln Tyr Val His Lys Ala Ile Glu Asp 340 345 350 Gly Leu Asp Val Arg Gly Tyr Phe Tyr Trp Ser Phe Met Asp Asn Tyr 355 360 365 Glu Trp Lys Glu Gly Phe Gly Pro Arg Phe Gly Leu Val Glu Val Asp 370 375 380 Tyr Gln Thr Phe Glu Arg Arg Pro Arg Lys Ser Ala Tyr Val Tyr Gly 385 390 395 400 Glu Ile Ala Arg Ser Lys Glu Ile Lys Asp Glu Leu Leu Lys Arg Tyr 405 410 415 Gly Leu Pro Glu Leu Gln Leu 420 <210> 3 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:An upper primer designed to cre ate the NdeI site. <400> 3 taagaaggag atatacatat gccgctgaaa ttcccggaaa tgtttctctt tggtacc 57 <210> 4 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:A lower primer designed to crea te the BamHI site. <400> 4 tttactgcag agaggatccc taatcctaaa gttgaagttc tggtag 46
【図面の簡単な説明】
【図1】本発明の酵素の活性の温度依存性を示す。イン
セットの中は触媒活性のアレニウスプロットを示す。
【図2】本発明の酵素の活性の至適pHを示す。His-tagg
ed BGPhはベクターpET15bにより発現されたHis-tag融合
タンパク質を、Native BGPhはベクターpET11aにより発
現されたHis-tagを含まない成熟タンパク質を示す。
─────────────────────────────────────────────────────
【手続補正書】
【提出日】平成11年7月7日(1999.7.7)
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】特許請求の範囲
【補正方法】変更
【補正内容】
【特許請求の範囲】
【書類名】 受託番号変更届
【提出日】 平成11年9月21日(1999.9.
21)
【旧寄託機関の名称】 工業技術院生命工学工業技術研
究所
【旧寄託番号】 FERM P−16899号
【新寄託機関の名称】 工業技術院生命工学工業技術研
究所
【新寄託番号】 FERM BP−6800号
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) (C12N 1/21 C12R 1:19) (C12N 9/42 C12R 1:19) (72)発明者 石田 紘靖 茨城県つくば市東1丁目1番3 工業技術 院 生命工学工業技術研究所内 (72)発明者 小杉 佳次 茨城県つくば市東1丁目1番3 工業技術 院 生命工学工業技術研究所内 Fターム(参考) 4B024 AA01 AA03 AA05 BA12 CA03 DA06 EA04 HA03 4B050 CC03 DD02 FF03E LL05 4B065 AA01Y AA26X CA31 CA60

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】 配列番号2のアミノ酸配列において1若
    しくは複数個のアミノ酸が欠失、置換若しくは付加され
    てもよいアミノ酸配列からなり、かつβ−グリコシダー
    ゼ活性を有する耐熱性酵素。
  2. 【請求項2】 至適温度が100℃以上である請求項1
    記載の酵素。
  3. 【請求項3】 請求項1または2に記載の酵素をコード
    するDNA。
  4. 【請求項4】 配列番号1の塩基配列を有する請求項3
    記載のDNA。
  5. 【請求項5】 請求項3記載のDNAを含む組換えベク
    ター。
  6. 【請求項6】 請求項5記載の組換えベクターにより形
    質転換された宿主細胞。
  7. 【請求項7】 請求項1または2に記載の酵素を製造す
    る方法であって、該酵素をコードするDNAを含む発現
    ベクターにより形質転換された宿主細胞を培養し、次い
    で培養物から該酵素を採取する工程を含む前記方法。
JP10222866A 1998-08-06 1998-08-06 β−グリコシダーゼ活性を有する耐熱性酵素 Expired - Lifetime JP2995292B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10222866A JP2995292B1 (ja) 1998-08-06 1998-08-06 β−グリコシダーゼ活性を有する耐熱性酵素
US09/369,735 US6960454B2 (en) 1998-08-06 1999-08-06 Methods for making and using a thermophilic enzyme as a β-glycosidase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10222866A JP2995292B1 (ja) 1998-08-06 1998-08-06 β−グリコシダーゼ活性を有する耐熱性酵素

Publications (2)

Publication Number Publication Date
JP2995292B1 JP2995292B1 (ja) 1999-12-27
JP2000050870A true JP2000050870A (ja) 2000-02-22

Family

ID=16789126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10222866A Expired - Lifetime JP2995292B1 (ja) 1998-08-06 1998-08-06 β−グリコシダーゼ活性を有する耐熱性酵素

Country Status (2)

Country Link
US (1) US6960454B2 (ja)
JP (1) JP2995292B1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070291561A1 (en) * 2006-06-14 2007-12-20 Braceras Geordie M Sense-amplifier assist (saa) with power-reduction technique
AR091994A1 (es) 2012-03-16 2015-03-18 Keclon S A Metodo de remocion de esteril glicosidos

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997025417A1 (en) * 1996-01-11 1997-07-17 Recombinant Biocatalysis, Inc. Glycosidase enzymes

Also Published As

Publication number Publication date
US20020102635A1 (en) 2002-08-01
US6960454B2 (en) 2005-11-01
JP2995292B1 (ja) 1999-12-27

Similar Documents

Publication Publication Date Title
JP4199422B2 (ja) ポリペプチド
EP0459385B1 (de) Maltopentaose produzierende Amylasen
WO1992002614A1 (en) Novel thermostable pullulanases
EP0764720B1 (en) Transferase and amylase, process for producing the enzymes,use thereof, and gene coding for the same
CN114317498B (zh) 一种α-葡萄糖转苷酶突变体及其应用
JP2000228980A5 (ja)
JPH0286779A (ja) 改良型組換えdna、それを含む形質転換体及びそれを用いた耐熱性グルコースデヒドロゲナーゼの製造法
US5795766A (en) Protein having α-glucosidase activity, DNA having genetic information thereof, and production of α-glucosidase
JP2995292B1 (ja) β−グリコシダーゼ活性を有する耐熱性酵素
JPH09173077A (ja) 超耐熱性酸性α−アミラーゼおよび該α−アミラーゼ産生遺伝子を含むDNA断片
US20030129723A1 (en) Thermophilic endoglucanase
KR100261359B1 (ko) 절지효소 및 이의 제조방법
JPH11318441A (ja) 超耐熱耐酸性アミロプルラナーゼ
US5693519A (en) Thermostable, salt tolerant, wide pH range novel chitobiase
US5352602A (en) Isoamylase and process for producing the same
JP3709435B2 (ja) 改変デキストランスクラーゼ、その遺伝子組み換え体、グルカンの製造法
JP2001258577A (ja) ポリガラクツロナーゼ
CN116042554B (zh) 具有高酶活性与高热稳定性的葡聚糖单加氧酶及其制备方法与应用
JP3427984B2 (ja) 新規耐熱性シュクロオリゴ糖生成酵素およびその用途
KR0163829B1 (ko) 아밀라제 생산 유전자 재조합 균주 및 이를 이용한 아밀라제 제조방법
EP1172439A1 (en) Thermostable enzyme having aminotransferase activity and gene encoding the same
JP3793269B2 (ja) β−N−アセチルガラクトサミニダーゼ
JP3899374B2 (ja) ポリメチルガラクチュロナーゼ
JPH10136979A (ja) 新規酸性α−アミラーゼ及びその製造法
US5585255A (en) Bile acid sulfate sulfatase gene, plasmid containing said gene and method of producing bile acid sulfate sulfatase

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term