JP2000044883A - 熱線遮断有機膜およびその製造方法 - Google Patents

熱線遮断有機膜およびその製造方法

Info

Publication number
JP2000044883A
JP2000044883A JP11141351A JP14135199A JP2000044883A JP 2000044883 A JP2000044883 A JP 2000044883A JP 11141351 A JP11141351 A JP 11141351A JP 14135199 A JP14135199 A JP 14135199A JP 2000044883 A JP2000044883 A JP 2000044883A
Authority
JP
Japan
Prior art keywords
organic film
heat ray
film
naphthalocyanine
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11141351A
Other languages
English (en)
Inventor
Tetsuo Murayama
徹郎 村山
Kanji Shimizu
完二 清水
Tetsuo Ozawa
鉄男 尾澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP11141351A priority Critical patent/JP2000044883A/ja
Publication of JP2000044883A publication Critical patent/JP2000044883A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Optical Filters (AREA)

Abstract

(57)【要約】 【課題】 熱線遮断効果に優れ、かつ耐光性に優れる熱
線遮断有機膜を提供する。 【解決手段】 バインダー樹脂中に微粒子分散状態にあ
る1種または2種以上のナフタロシアニン化合物を含有
し、かつ、近赤外部の吸収スペクトルの半値幅が200
nm以上であることを特徴とする熱線遮断有機膜。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、特定のナフタロシ
アニン化合物を含有する熱線遮断有機膜に関する。
【0002】
【従来の技術】最近は窓を大きく取った解放的なビルな
どの建築物や自動車などが増加し、夏期の日照による温
度上昇対策としてのエアコンの電力消費量増加が二酸化
炭素対策や省エネルギーの点から問題となっている。ま
た、農業用の温室やビニールハウスでは夏期の温度上昇
が作物の生育や作業環境の悪化を招くため、その対策が
求められている。さらに、近年、半導体レーザやLED
などの近赤外光源を用いるバーコードリーダー、近赤外
光通信、リモコンの普及により、プラズマディスプレイ
等、誤動作の原因となる近赤外光の発熱体からの熱線遮
断対策強く求められるようになった。
【0003】これらの熱線遮断対策としては、従来から
あるカーテンやブラインド等による遮光の他に、温度上
昇の要因である赤外光を吸収し、可視光を透過する赤外
光吸収組成物からなる薄膜により赤外光を遮断する方法
や、ガラスやフィルム上に金属を蒸着し赤外光を反射す
る層を形成し赤外光を反射して遮光する方法が開発され
ている。地上に到達する太陽光は可視光から近赤外光領
域が強く、長波長部の赤外光は弱くなっている。また、
赤外用の半導体レーザやLEDの光は800〜1000
nmの範囲の近赤外光が多く、近赤外光を効果的に吸収
することが熱線遮断の効果が大きくなることから、近赤
外光の吸収強度の大きな種々の有機色素を用いた熱線遮
断膜が開発されている。しかし、多くの有機色素では、
吸収スペクトル幅が狭く赤外光の遮断効果が不十分であ
ったり、耐光堅牢度が劣り寿命が短いなどの問題があ
り、耐久性があり赤外光遮断効果に優れた熱線遮断膜の
改良が続けられている。
【0004】近赤外光領域に吸収のある有機化合物は光
記録用途も含め多くの化合物が開発されている(色材協
会誌、1988年、61巻、4号、215頁〜226
頁)。しかし、近赤外部に幅広い吸収を有するジインモ
ニウム塩系などの化合物では耐光性が著しく劣るものが
多く、熱線遮断用途の実用性には問題がある。また耐光
性が良いと思われているフタロシアニン化合物も吸収の
長波長化のために多くの置換基を必要とするため、樹脂
に対する相容性は向上するものの、逆に耐光堅牢度は劣
る傾向になり耐光性を必要とする用途への実用化には問
題があった。フタロシアニン化合物より吸収が長波長に
なるナフタロシアニン化合物は配位金属の種類や置換基
により吸収スペクトルに大きな差が出ることが明らかに
なり、必ずしもすべてのナフタロシアニン化合物が本発
明の課題に適合するものではないとされている。例え
ば、ポリカーボネート樹脂に混入された亜鉛ナフタロシ
アニンの吸収極大は800nm以下で吸収幅も狭いこと
が報告されている(特公平6ー38124号公報)。ま
た、フタロシアニン化合物と同様に、バインダー樹脂に
相溶するナフタロシアニン化合物について検討したとこ
ろ、耐光性が劣る物が多いことが明らかとなった。
【0005】
【発明が解決しようとする課題】本発明の課題は近赤外
光遮断効果が優れ耐光性の良好な熱線遮断有機膜を提供
することである。
【0006】
【課題を解決するための手段】本発明者らは上記課題を
解決するために鋭意検討した結果、熱線量の多い近赤外
光の遮断効果に優れ耐光性の良好な有機化合物として特
定のナフタロシアニン化合物を用いることを見いだし、
本発明を完成するに至った。すなわち、本発明は、近赤
外光を効率よく吸収して遮断するために耐光性に優れた
ナフタロシアニン化合物を用い、近赤外光領域での吸収
スペクトル幅を広げた熱線遮断有機膜に関するものであ
る。
【0007】本発明者らは、種々のナフタロシアニン化
合物を検討したところ、バインダー樹脂中で微粒子とし
て分散した状態のナフタロシアニン化合物に近赤外光領
域に幅広い吸収を有し、耐光性にも優れる物が多く、バ
インダー樹脂中に含有した状態での吸収スペクトルの半
値幅が200nm以上となるナフタロシアニン化合物が熱
線遮断効果の指標となる日射透過率を測定したところ良
好な結果を得た。すなわち、本発明の要旨は、バインダ
ー樹脂中に微粒子分散状態にある1種または2種以上の
ナフタロシアニン化合物を含有し、かつ、近赤外部の吸
収スペクトルの半値幅が200nm以上であることを特
徴とする熱線遮断有機膜、および透明基体上に前記有機
膜を形成させた熱線遮断材、ならびに前記有機膜の製造
方法、に存する。
【0008】
【発明の実施の形態】本発明に用いるナフタロシアニン
化合物としては、下記一般式で表される金属ナフタロシ
アニンおよびその置換誘導体である。
【0009】
【化2】
【0010】式中、Mは2価の金属原子、または3価と
4価の配位金属原子を表す。Mで表される金属原子とし
ては、Cu、Ni、Co、Fe、Pd、VO、Sn、A
l、In、V、Ga、Si、Ge、Tiなどが挙げら
れ、金属の価数によりフルオル基、クロル基、ブロム
基、などのハロゲン基、オキシ基、ヒドロキシ基、アル
コキシ基、アルキル基、などが配位する。R1 〜R4
水素原子、ハロゲン原子、置換基を有していても良いア
ルキル基、アリール基、アルコキシ基、チオアルコキシ
基、アリールオキシ基、チオアリールオキシ基、アミノ
基及びこれらの混合体を表し、l、m、n、pはそれぞ
れ1から4の整数を表す。無置換のナフタロシアニン化
合物の例としては、ジクロルスズナフタロシアニン(M
=SnCl2)、ジフルオルスズナフタロシアニン(M
=SnF2)、チタニルオキシナフタロシアニン(M=
TiO)などが挙げられる。
【0011】これらのナフタロシアニン化合物は、フタ
ロシアニン化合物と同様の反応により合成される。一般
的には2,3−ジシアノナフタレンと金属塩を1ークロ
ロナフタレン、キノリン、テトラリン等の高沸点溶媒
中、200℃付近の高温で反応させるとナフタロシアニ
ン化合物が得られる。原料としては1,3−ジイミンベ
ンズ(f)イソインドリン、またはナフタレンー2,3
ージカルボン酸あるいはその無水物と尿素の組み合わせ
を用いることができる(染料と薬品、1992年、37
巻、12号、321頁〜327頁)。
【0012】これらのナフタロシアニン化合物はバイン
ダー樹脂に溶解した状態でに比べ微粒子化して分散する
方が耐光性は大幅に向上し吸収スペクトルも幅広くなる
ため、熱線遮断用には好ましい。微粒子化しても吸収ス
ペクトル幅が狭いナフタロシアニン化合物の場合は、吸
収スペクトルの異なる2種以上のナフタロシアニン化合
物の微粒子を混合し、吸収スペクトルの半値幅が200
nm以上になるようにして用いる。ナフタロシアニンの
置換誘導体では、有機溶剤やバインダー樹脂に可溶とな
り吸収の半値幅が狭くなるケースが多いが、この場合
は、難溶解性の溶剤とバインダー樹脂を選択して、微粒
子分散の状態にする。ナフタロシアニンの置換誘導体に
ついてバインダーを選択して溶解状態と分散状態での比
較を行ったところ分散状態では溶解状態に比べ耐光性は
大幅に向上することが明らかとなった。ナフタロシアニ
ン化合物の微粒子の粒径としては、通常、0.05〜1
0μm、好ましくは0.1〜5μmである。粒径が大き
すぎると、得られる熱線遮断有機膜の均一性が損なわ
れ、小さすぎると耐光性の向上が十分ではない。
【0013】本発明の熱線遮断膜を形成するには、バイ
ンダー樹脂にナフタロシアニン化合物の微粒子を混合し
分散させて種々の方法により膜を形成すれば得られる。
膜形成の方法としては、樹脂とナフタロシアニン化合物
を混合し混練機により加熱混練りを行い混合分散した
後、射出成形、押し出し成形等の成形加工法によりシー
トやフィルム等を形成する方法と、樹脂溶液中でフタロ
シアニン化合物を分散した分散液を透明基体上に塗布乾
燥して膜を形成する方法がある。前者の方法による成型
物はガラスや透明な樹脂シート、フィルム等の基体上に
積層して用いることも出来、後者の塗布膜は基体から剥
離して独立したフィルムとして用いることもできる。
【0014】熱線遮断有機膜の厚さは、独立したシート
あるいはフィルムとして用いる場合は5μm〜30m
m、好ましくは10μm〜10mmであり、透明基体上
に形成する場合は0.1 〜100μm、好ましくは1〜5
0μmである。バインダー樹脂としては、可視光に対し
透過性で微粒子が安定に分散され、膜を形成できる樹脂
が用いられる。樹脂としては種々の熱可塑性樹脂を用い
ることができる。 具体例を挙げれば、ポリエチレン、
ポリプロピレン等のポリオレフィン樹脂、ポリスチレ
ン、AS樹脂などのスチレン系樹脂、ポリアクリル樹
脂、ポリメタアクリル樹脂、塩化ビニル樹脂、ポリアミ
ド樹脂、ポリイミド樹脂、フッ素樹脂等が挙げられる
が、塗布により膜を形成する場合には、膜表面の機械的
強度の向上のためには、バインダー樹脂を硬化すること
が望ましい。熱可塑性樹脂の内、ナフタロシアニン微粒
子の分散安定性の向上及び硬化反応の点からは水酸基及
びまたはカルボキシル基を有する熱可塑性樹脂が適して
いる。具体例を挙げれば、ポリエステル樹脂、ポリカー
ボネート樹脂、ポリビニルアルコール樹脂、ポリビニル
ブチラールやポリビニルフェニルアセタールなどのポリ
ビニルアセタール樹脂、セルロースアセテートブチレー
トや酢酸セルロースあるいはエチルセルロース等のセル
ロース樹脂、あるいは側鎖に水酸基やカルボキシル基を
有するモノマー成分との共重合体としてのポリアクリル
樹脂、メタアクリル樹脂、ポリ酢酸ビニル樹脂、フッ素
樹脂、ポリエーテル樹脂、エポキシ樹脂、ポリウレタン
樹脂、アルキッド樹脂等が挙げられる。これらはモノマ
ー成分中に水酸基やカルボキシル基を有するほか、側鎖
や末端に未反応や加水分解等の反応により生成した水酸
基やカルボキシル基を有する樹脂も含まれる。これらは
種々の共重合成分の調整によりいずれも多くの要求特性
を満足した樹脂として使用できるが、ポリエステルフィ
ルムなどの透明基体との接着性の点でポリエステル樹脂
が、ナフタロシアニン化合物の微粒子分散性と透明基体
との接着性の点でポリビニールブチラール樹脂が好まし
い。
【0015】バインダー樹脂を硬化するために用いられ
る硬化剤としては、穏やかな条件で硬化が可能なイソシ
アネート化合物が好ましい。イソシアネート化合物とし
てはジイソシアネートやトリイソシアネートなどのポリ
イソシアネート類が用いられる。パラフェニレンジイソ
シアネート、トルエンジイソシアネート、トリフェニル
メタントリイソシアネートなどの芳香族ポリイソシアネ
ートを用いることができるが、長期露光下での黄変が少
ないヘキサメチレンジイソシアネート等の脂肪族ジイソ
シアネートあるいは脂環式ジイソシアネートが好まし
い。これらには種々の変性されたものが知られており、
ビュレット変性、イソシアヌレート変性、ウレタン変性
など硬化膜の要求物性に合わせて選択することができ
る。
【0016】これらの硬化剤の添加量は樹脂中の水酸基
及びまたはカルボキシル基のモル数がイソシアネート化
合物のNCO基1モル当たり0.8〜2.0モルとなる
量が適当であるが、効果の程度により、イソシアネート
化合物はより少ない添加量でも良い。イソシアネート基
による硬化反応には、反応触媒を添加することができ
る。触媒としてはトリアジレンジミンのようなアミン類
やジブチルチンラウレートの様なスズ系化合物が用いら
れる。これらの触媒の添加量は、通常、数十〜数百pp
m程度で、硬化速度から選択される。硬化は通常50〜
150℃で1分程度から数時間で完了する。場合によ
り、数日間エージングする事により硬化を完了させるこ
ともできる
【0017】組成物中のナフタロシアニン化合物の量は
可視光の透過率の大きさや近赤外光を吸収し熱線を遮断
効果の程度を判断して決められるが、使用する有機膜の
厚さによっても異なり、一般的には、0.01〜10g
/m2 である。バインダー樹脂100重量部に対して
は、ナフタロシアニン化合物は0.1 〜50重量部であ
る。塗布により膜を形成する際、樹脂を溶解する溶剤と
しては、水および有機溶剤が用いられる。有機溶剤とし
ては沸点が50℃以上200℃以下の溶剤が好ましく、
メタノール、エタノール、イソプロパノール等のアルコ
ール類、ジメトキシエタン、テトラヒドロフラン等のエ
ーテル類、酢酸エチル、酢酸ブチル等のエステル類、ト
ルエン、キシレン等の芳香族炭化水素、ヘプタン、オク
タン等の炭化水素類、メチルエチルケトン、メチルイソ
ブチルケトン、シクロヘキサノン等のケトン類、ジメチ
ルホルムアミド、アセトニトリル等の非プロトン系極性
溶剤およびこれらの混合物が代表例として挙げられる
が、これらに限定されるものではない。溶剤の使用量は
塗布の条件や塗布により形成される薄膜の厚さ等により
任意に設定されるが、通常は溶剤100重量部に対し固
形分が5〜100重量部になるように選択される。
【0018】透明基体としては、ガラスなどの無機基体
や、透明樹脂基体などが用いられる。透明樹脂として
は、バインダー樹脂に用いられる樹脂が利用でき、その
なかでも、ポリカーボネートやポリエステルなどが特に
好ましい。本発明の熱線遮断有機膜には、この他に種々
の添加物を加えることができる。ナフタロシアニン化合
物の微粒子を分散させるために分散剤を必要に応じて添
加することができる。分散剤としてはノニオン系、カチ
オン系、アニオン系の界面活性剤が用いられる。脂肪酸
のポリグリコールエステルのようなノニオン系分散剤、
ポリカルボン酸系、ポリスルホン酸系のアニオン系分散
剤、脂肪族アンモニウム塩等のカチオン系分散剤あるい
はこれらの高分子系分散剤が用いられる。分散剤の添加
量はナフタロシアニン化合物に対し0.01重量%から
10重量%以下で用いられる。さらに、ナフタロシアニ
ン化合物の耐光性を向上させるために公知の紫外線吸収
剤や酸化防止剤、種々の光安定剤を添加することができ
る。また膜としての機械物性向上のために数μm以下の
酸化チタン、シリカゲルなどの無機微粒子や樹脂微粒子
を添加することもできる。さらに、塗布により本発明の
有機膜を形成するために消泡剤やレベリング剤を添加す
ることもできる。また、着色調整のための顔料や色素を
添加することもできる。
【0019】
【実施例】以下、実施例に於いて本発明をさらに詳細に
説明する。実施例に於ける「部」は「重量部」を、
「%」は「重量%」を意味する。
【0020】[実施例1]ナフタレンー2,3ージカル
ボン酸無水物と尿素及び塩化スズを1ークロロナフタレ
ン溶媒中で反応させて得られたジクロルスズナフタロシ
アニン0.5gとトルエン49.5g、粒径0.8mm
のガラスビーズ50mlを300mlのガラス容器に添
加し、ペイントシェーカーで8時間振とうした後に、ガ
ラスビーズを濾別し、ジクロススズナフタロシアニン1
部に対しポリエステル樹脂(東洋紡績社製、バイロン2
00)100部を添加し溶解し、平均粒径1.12μm
の微粒子分散液を作製した。
【0021】この液を100μmの膜厚のポリエステル
フィルム上に乾燥後、約5μの厚さになるようにバーコ
ータにて塗布、乾燥し熱線遮断有機膜を得た。日立分光
光度計(Uー3500)にて分光特性及びJIS R-3106に
従って800〜1100nmの近赤外領域の日射透過率
を測定し、JIS L-0843に従って耐光堅牢度(キセノン2
00時間)を測定した。この結果を表ー1に示す。ま
た、この膜の透過スペクトルを図1に示す。図1から明
らかなように、本有機膜は1000nm迄の近赤外領域
に幅広い吸収を示し、半値幅は320nmであった。日
射透過率は69.7%と近赤外領域の熱線遮断膜として
良好であり、耐光堅牢度(テスト前を100とした時の
残存率で表示)も91.2%と優れている結果を得た。
【0022】[実施例2]実施例1のジクロルスズナフ
タロシアニンの代わりにジフルオロナフタロシアニンを
用いる他は実施例1と同様にして有機膜を作製し実施例
1と同様の種々の測定を行った。結果を表ー1に示し、
透過スペクトルを図2に示す。
【0023】[実施例3]実施例1のジクロルスズナフ
タロシアニンの代わりに銅ナフタロシアニンを用いる他
は、実施例1と同様にして有機膜を作製し実施例1と同
様の種々の測定を行った。結果を表ー1に示し、透過ス
ペクトルを図3に示す。
【0024】[実施例4]イソプロパノール(IPA)
49.5gとバナジル−5,14,23,32−テトラフェ
ニル−2,3−ナフタロシアニン( Aldrich社製)0.
5g、粒径0.8mmのガラスビーズ50mlを300
mlのガラス容器に添加し、ペイントシェーカーで8時
間振とうした後に、ガラスビーズを濾別し、該ナフタロ
シアニン1部に対し下記ブチラール樹脂液(積水化学社
製、エスレック BLー1)を固形分相当で100部に
なるように添加、溶解し、微粒子分散液を作製した。以
下は実施例1と同様にして有機膜を作製し実施例1と同
様の種々の測定を行った。結果を表ー1に示し、透過ス
ペクトルを図4に示す。
【0025】[実施例5]シクロヘキサノン49.5g
とジクロルスズナフタロシアニン0.5g、粒径0.8
mmのガラスビーズ50mlを300mlのガラス容器
に添加し、ペイントシェーカーで8時間振等した後に、
ガラスビーズを濾別し、ジクロススズナフタロシアニン
1部に対し下記ブチラール熱硬化性樹脂液(固形分20
%)を固形分相当で100部添加し、微粒子分散液を作
製した。 ブチラール熱硬化樹脂液(固形分20%) エスレックBLー1(積水化学社製) 16.3部 マイテックGP105A(75%酢酸エチル溶液) (三菱化学社製) 5.0部 シクロヘキサノン 63.1部 以下は実施例1と同様にして有機膜を作製し、塗布後1
30℃で1分間乾燥した後45℃で3日間エージングを
行い硬化した有機膜のサンプルを得た。このサンプルを
用いて実施例1と同様の種々の測定を行った。結果を表
−1に透過スペクトルを図5に示す。
【0026】[実施例6]シクロヘキサノン49.5g
とジクロルスズナフタロシアニン0.5g、粒径0.8
mmのガラスビーズ50mlを300mlのガラス容器
に添加し、ペイントシェーカーで8時間振とうした後
に、ガラスビーズを濾別し、ジクロススズナフタロシア
ニン1部に対し下記セフラルコート熱硬化性樹脂液(固
形分20%)を固形分相当で100部添加し、微粒子分
散液を作製した。 セフラルコート熱硬化樹脂液(固形分20%) セフラルコートA202 (50%) (セントラル硝子社製) 32.7部 マイテックGP105A(75%酢酸エチル溶液) (三菱化学社製) 5.0部 シクロヘキサノン 63.1部 以下は実施例1と同様にして有機膜を作製し、塗布後1
30℃で1分間乾燥した後45℃で3日間エージングを
行い硬化した有機膜のサンプルを得た。このサンプルを
用いて実施例1と同様の種々の測定を行った。結果を表
−1に透過スペクトルを図6に示す。
【0027】[比較例1]バナジル−5,14,23,
32−テトラフェニル−2,3−ナフタロシアニン( A
ldrich社製)0.5gをトルエン49.5gに溶解し、
該ナフタロシアニン1部に対しポリエステル樹脂(東洋
紡績社製、バイロン200)100部を添加し溶解し、
得られた溶液を用いて実施例1と同様にして有機膜を作
製し実施例1と同様の種々の測定を行った。結果を表ー
1に示し、透過スペクトルを図7に示す。
【0028】[比較例2]実施例1の有機赤外線吸収色
素を日本触媒社製赤外線吸収色素(フタロシアニン系)
のEX803Kに替えた以外は実施例1と同様にして有
機膜を作製し実施例1と同様の種々の測定を行った。結
果を表ー1に示し、透過スペクトルを図8に示す。
【0029】[比較例3]実施例1の有機赤外線吸収色
素を日本触媒社製赤外線吸収色素(フタロシアニン系)
のEX901Bに替えた以外は実施例1と同様にして有
機膜を作製し実施例1と同様の種々の測定を行った。結
果を表ー1に示し、透過スペクトルを図9に示す。
【0030】[比較例4]実施例1の有機赤外線吸収色
素を日本化薬社製、赤外線吸収色素(ジインモニウム
系)のIRGー022に替えた以外は実施例1と同様に
して有機膜を作製し実施例1と同様の種々の測定を行っ
た。結果を表ー1に示し、透過スペクトルを図10に示
す。
【0031】
【表1】
【0032】表ー1 から明らかなように今回発明の実施
例1〜6 のナフタロシアニン化合物はいずれも近赤外領
域に幅広い吸収を有し、近赤外領域での日射透過率も良
好で熱線遮断効果に優れている。実施例4と比較例1は
同じナフタロシアニンを用いた例を比較している。分散
状態の実施例4のサンプルは吸収スペクトルの幅が広く
日射透過率も優れ、耐光性も良好なのに対し、バインダ
ー樹脂中に溶解状態にある比較例1では、吸収スペクト
ルも急峻となり耐光性がきわめて弱いことが明らかとな
った。この結果は、ナフタロシアニン化合物でも性能に
優劣があり、本発明の条件を満たすナフタロシアニン化
合物を用いることにより、熱線遮断効果と耐光性に優れ
た熱線遮断有機膜を得ることができることを示してい
る。比較例2と3は溶剤可溶のフタロシアニン化合物、
比較例4はジインモニウム化合物の性能を示したが、本
発明のナフタロシアニン化合物に比べ耐光性が著しく劣
り、長期間使用する熱線遮断膜としては寿命の点で大き
い問題があることがわかる。
【0033】
【発明の効果】既存の赤外線吸収色素を用いた熱線遮断
膜では色素の耐光堅牢度が劣るため実用性に問題があっ
た。本発明による熱線遮断膜は耐光堅牢度が著しく改善
されたことにより、耐久性を要求される熱線遮断膜の用
途が大幅に拡大すると共に、性能劣化による膜の交換頻
度が減少する事による廃棄物の削減にも寄与し、環境対
策にも効果がある。
【図面の簡単な説明】
【図1】実施例1で得た熱線遮断有機膜の透過スペクト
【図2】実施例2で得た熱線遮断有機膜の透過スペクト
【図3】実施例3で得た熱線遮断有機膜の透過スペクト
【図4】実施例4で得た熱線遮断有機膜の透過スペクト
【図5】実施例5で得た熱線遮断有機膜の透過スペクト
【図6】実施例6で得た熱線遮断有機膜の透過スペクト
【図7】比較例1で得た有機膜の透過スペクトル
【図8】比較例2で得た有機膜の透過スペクトル
【図9】比較例3で得た有機膜の透過スペクトル
【図10】比較例4で得た有機膜の透過スペクトル
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09D 5/32 C09D 7/12 Z 7/12 G02B 5/22 G02B 5/22 C09B 47/00 // C09B 47/00 C08L 101/00

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 バインダー樹脂中に微粒子分散状態にあ
    る1種または2種以上のナフタロシアニン化合物を含有
    し、かつ、近赤外部の吸収スペクトルの半値幅が200
    nm以上であることを特徴とする熱線遮断有機膜。
  2. 【請求項2】 下記一般式で表される、ナフタロシアニ
    ン化合物をバインダー樹脂中に含有することを特徴とす
    る請求項1に記載の熱線遮断有機膜。 【化1】 (式中、Mは2価の金属原子、または3価と4価の配位
    金属原子を表し、R1 〜R4 は水素原子、ハロゲン原
    子、置換基を有していても良いアルキル基、アリール
    基、アルコキシ基、チオアルコキシ基、アリールオキシ
    基、チオアリールオキシ基、アミノ基及びこれらの混合
    体を表し、l、m、n、pはそれぞれ1から4の整数を
    表す)
  3. 【請求項3】 さらに硬化剤を添加し、膜を硬化させた
    ことを特徴とする請求項1または2に記載の熱線遮断有
    機膜。
  4. 【請求項4】 透明基体上に、請求項1〜3のいずれか
    1項に記載された熱線遮断有機膜が形成されていること
    を特徴とする熱線遮断材料。
  5. 【請求項5】 バインダー樹脂溶液中にナフタロシアニ
    ン化合物微粒子を分散させた塗布液を基体上に塗布する
    ことを特徴とする請求項1〜3のいずれか1項に記載の
    熱線遮断有機膜を製造する方法。
  6. 【請求項6】 ナフタロシアニン化合物微粒子をバイン
    ダー樹脂に加熱混練した後に成形することを特徴とする
    請求項1〜3のいずれか1項に記載の熱線遮断有機膜を
    製造する方法。
JP11141351A 1998-05-25 1999-05-21 熱線遮断有機膜およびその製造方法 Pending JP2000044883A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11141351A JP2000044883A (ja) 1998-05-25 1999-05-21 熱線遮断有機膜およびその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-142530 1998-05-25
JP14253098 1998-05-25
JP11141351A JP2000044883A (ja) 1998-05-25 1999-05-21 熱線遮断有機膜およびその製造方法

Publications (1)

Publication Number Publication Date
JP2000044883A true JP2000044883A (ja) 2000-02-15

Family

ID=26473601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11141351A Pending JP2000044883A (ja) 1998-05-25 1999-05-21 熱線遮断有機膜およびその製造方法

Country Status (1)

Country Link
JP (1) JP2000044883A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002524632A (ja) * 1998-09-15 2002-08-06 アイソタッグ、テクノロジー、インコーポレーテッド 近赤外蛍光物質を有するセルロースエステルおよびその製造法
JP2005255804A (ja) * 2004-03-10 2005-09-22 Toyo Ink Mfg Co Ltd コーティング剤およびそれを用いてなる近赤外線吸収積層体
JP2007262163A (ja) * 2006-03-27 2007-10-11 Fujifilm Corp 顔料微粒子、液分散物およびその製造方法
JP2008076665A (ja) * 2006-09-20 2008-04-03 Fuji Xerox Co Ltd 静電荷現像用トナー、並びに、これを用いた静電荷現像用現像剤、静電荷現像用現像剤カートリッジ、及び画像形成装置
JP2008101188A (ja) * 2006-09-21 2008-05-01 Nitto Denko Corp 光半導体封止用エポキシ樹脂組成物およびその硬化体ならびにそれを用いた光半導体装置
JP2012137648A (ja) * 2010-12-27 2012-07-19 Canon Electronics Inc 撮像光学ユニット
KR20130108186A (ko) * 2012-03-22 2013-10-02 가부시키가이샤 닛폰 쇼쿠바이 광 선택 투과 필터, 수지 시트 및 고체 촬상 소자
JP2013257532A (ja) * 2012-03-22 2013-12-26 Nippon Shokubai Co Ltd 光選択透過フィルター、樹脂シート及び固体撮像素子
WO2017217230A1 (ja) * 2016-06-15 2017-12-21 日本化薬株式会社 赤外線遮蔽シート、赤外線遮蔽合わせガラス用中間膜並びに赤外線遮蔽合わせガラス及びその製造方法
WO2018043185A1 (ja) * 2016-08-29 2018-03-08 富士フイルム株式会社 組成物、膜、近赤外線カットフィルタ、パターン形成方法、積層体、固体撮像素子、画像表示装置、カメラモジュールおよび赤外線センサ

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002524632A (ja) * 1998-09-15 2002-08-06 アイソタッグ、テクノロジー、インコーポレーテッド 近赤外蛍光物質を有するセルロースエステルおよびその製造法
JP2005255804A (ja) * 2004-03-10 2005-09-22 Toyo Ink Mfg Co Ltd コーティング剤およびそれを用いてなる近赤外線吸収積層体
JP4517686B2 (ja) * 2004-03-10 2010-08-04 凸版印刷株式会社 コーティング剤およびそれを用いてなる近赤外線吸収積層体
JP2007262163A (ja) * 2006-03-27 2007-10-11 Fujifilm Corp 顔料微粒子、液分散物およびその製造方法
JP2008076665A (ja) * 2006-09-20 2008-04-03 Fuji Xerox Co Ltd 静電荷現像用トナー、並びに、これを用いた静電荷現像用現像剤、静電荷現像用現像剤カートリッジ、及び画像形成装置
JP2008101188A (ja) * 2006-09-21 2008-05-01 Nitto Denko Corp 光半導体封止用エポキシ樹脂組成物およびその硬化体ならびにそれを用いた光半導体装置
JP2012137648A (ja) * 2010-12-27 2012-07-19 Canon Electronics Inc 撮像光学ユニット
KR20130108186A (ko) * 2012-03-22 2013-10-02 가부시키가이샤 닛폰 쇼쿠바이 광 선택 투과 필터, 수지 시트 및 고체 촬상 소자
JP2013257532A (ja) * 2012-03-22 2013-12-26 Nippon Shokubai Co Ltd 光選択透過フィルター、樹脂シート及び固体撮像素子
KR102059198B1 (ko) 2012-03-22 2019-12-24 가부시키가이샤 닛폰 쇼쿠바이 광 선택 투과 필터, 수지 시트 및 고체 촬상 소자
WO2017217230A1 (ja) * 2016-06-15 2017-12-21 日本化薬株式会社 赤外線遮蔽シート、赤外線遮蔽合わせガラス用中間膜並びに赤外線遮蔽合わせガラス及びその製造方法
JP2017223827A (ja) * 2016-06-15 2017-12-21 日本化薬株式会社 赤外線遮蔽シート、赤外線遮蔽合わせガラス用中間膜並びに赤外線遮蔽合わせガラス及びその製造方法
CN109313297A (zh) * 2016-06-15 2019-02-05 日本化药株式会社 红外线屏蔽片、红外线屏蔽夹层玻璃用中间膜以及红外线屏蔽夹层玻璃及其制造方法
WO2018043185A1 (ja) * 2016-08-29 2018-03-08 富士フイルム株式会社 組成物、膜、近赤外線カットフィルタ、パターン形成方法、積層体、固体撮像素子、画像表示装置、カメラモジュールおよび赤外線センサ

Similar Documents

Publication Publication Date Title
EP1564260B1 (en) Coloring matter absorbing near-infrared ray and filter for cutting off near-infrared ray
EP1720918B1 (en) Adhesive film functionalizing color compensation and near infrared ray (nir) blocking and plasma display panel filter using the same
CN101292005B (zh) 硬涂层形成用组合物及光学透镜
DE60016515T2 (de) Phthalocyanin-Verbindung, Verfahren zur ihrer Herstellung und im nahen Infrarot absorbierender Farbstoff, der diese Verbindung enthält
JP3226504B2 (ja) フタロシアニン化合物、その製造方法およびその用途
US6069244A (en) Phthalocyanine compound, method for production thereof, and use thereof
JP2000044883A (ja) 熱線遮断有機膜およびその製造方法
JP3987240B2 (ja) 赤外光吸収膜およびその製造方法
US6863845B2 (en) Organic metal complex, infrared-absorbing dye and infrared absorption filter containing it, and filter for plasma display panel
US6512643B1 (en) Photoselective absorbing filter and color display equipped with said filter
US20050042531A1 (en) Film for plasma display filter and plasma display filter comprising the same
JP2715859B2 (ja) 赤外線カットオフ材
JP5289813B2 (ja) フタロシアニン化合物
WO2007097368A1 (ja) ジイモニウム塩化合物、およびこれ含む近赤外線吸収組成物、並びに近赤外線吸収フィルタ、ディスプレイ用前面板
JPH10182995A (ja) 新規フタロシアニン化合物、その製造方法および近赤外吸収材料
US20050227164A1 (en) Near infrared absorbing film and plasma display filter comprising the same
JPH0770363A (ja) 赤外線カットオフ材
JPH09263717A (ja) 近赤外線吸収剤分散水性塗料およびその用途
JPH11152414A (ja) ナフタロシアニン化合物及びその用途
US20070264499A1 (en) Adhesive film functionalizing color compensation and near infrared ray (NIR) blocking and plasma display panel filter using the same
JPH09263658A (ja) 近赤外線吸収樹脂組成物およびその用途
JPH11152413A (ja) ニトロナフタロシアニン化合物及びその用途
JP3940786B2 (ja) 赤外線吸収フィルター及びプラズマディスプレイパネル用フィルター
KR20070070986A (ko) 디이모늄염 올리고머, 이의 제조방법 및 용도
JP2001158762A (ja) 近赤外線吸収化合物および近赤外線吸収フィルター

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051018