JP2000044350A - Cubic bn sintered compact - Google Patents

Cubic bn sintered compact

Info

Publication number
JP2000044350A
JP2000044350A JP10223679A JP22367998A JP2000044350A JP 2000044350 A JP2000044350 A JP 2000044350A JP 10223679 A JP10223679 A JP 10223679A JP 22367998 A JP22367998 A JP 22367998A JP 2000044350 A JP2000044350 A JP 2000044350A
Authority
JP
Japan
Prior art keywords
cbn
binder phase
powder
nitrides
borides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10223679A
Other languages
Japanese (ja)
Other versions
JP4787387B2 (en
Inventor
Tomohiro Fukaya
朋弘 深谷
Akira Kukino
暁 久木野
Junichi Shiraishi
順一 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22367998A priority Critical patent/JP4787387B2/en
Priority to ZA9904665A priority patent/ZA994665B/en
Priority to KR1019990029426A priority patent/KR100333459B1/en
Priority to US09/357,970 priority patent/US6316094B1/en
Priority to RU99116051/02A priority patent/RU2220929C2/en
Priority to EP99305813A priority patent/EP0974566B1/en
Priority to CNB991106350A priority patent/CN1300055C/en
Priority to DE69917993T priority patent/DE69917993T2/en
Publication of JP2000044350A publication Critical patent/JP2000044350A/en
Application granted granted Critical
Publication of JP4787387B2 publication Critical patent/JP4787387B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a cBN sintered compact excellent in fracture resistance by optimizing the crater resistance and strength. SOLUTION: This cBN sintered compact is a sintered compact obtained by sintering cBN grains with a bonding phase which is continuous when two- dimensionally viewed. The bonding phase contains one or more kinds selected from the group consisting of carbides, nitrides, carbonitrides and borides of groups 4a, 5a and 6a transition metals of the periodic table, nitrides, borides and oxides of Al, carbides, nitrides, carbonitrides and borides of at least one kind of Fe, Co and Ni and mutual solid solutions thereof. The average value of the thickness of the bonding phase is <=1.5 μm and the standard deviation thereof is <=0.9. The content of the cBN is 45-70% expressed in terms of vol.% and the average grain size of the cBN grains is >=2 and <=6 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は立方晶窒化硼素(c
BN)焼結体に関するものである。特に、耐摩耗性およ
び耐欠損性が改良された切削工具用のcBN焼結体に関
するものである。
The present invention relates to cubic boron nitride (c)
BN) Sintered body. In particular, it relates to a cBN sintered body for a cutting tool having improved wear resistance and fracture resistance.

【0002】[0002]

【従来の技術】cBNはダイヤモンドに次ぐ高硬度物質
であり、cBN基焼結体は種々の切削工具、耐摩耗部
品、耐衝撃部品などに使用されている。
2. Description of the Related Art cBN is a high-hardness material next to diamond, and cBN-based sintered bodies are used for various cutting tools, wear-resistant parts, impact-resistant parts and the like.

【0003】この種の焼結体では硬度と強度の両立が難
しく、この両立を目的とした技術として、例えば特公昭
62-25630号公報、特公昭62-25631号公報、特開平5-1862
72号公報に記載のものが挙げられる。
[0003] With this type of sintered body, it is difficult to achieve both hardness and strength.
No. 62-25630, Japanese Patent Publication No. 62-25631, JP-A-5-1862
No. 72 publication.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の各技術
においても、硬度と強度の両立という点で必ずしも十分
ではない。例えば、上記の焼結体をバイトに用いた場
合、逃げ面摩耗とクレーター摩耗によって刃先が鋭角に
なり、この刃先が欠損しやすく、その結果、工具寿命が
安定しないという問題があった。
However, each of the above techniques is not always sufficient in terms of both hardness and strength. For example, when the above-described sintered body is used for a cutting tool, the cutting edge becomes sharp due to flank wear and crater wear, and this cutting edge is liable to be broken, resulting in a problem that the tool life is not stable.

【0005】従って、本発明の主目的は、耐クレーター
性および強度を最適化することにより、耐欠損性に優れ
たcBN焼結体を提供することにある。
Accordingly, it is a main object of the present invention to provide a cBN sintered body having excellent fracture resistance by optimizing crater resistance and strength.

【0006】[0006]

【課題を解決するための手段】本発明焼結体はcBN粒
子を結合相で焼結した焼結体である。この結合相は二次
元的に見て連続した構成となっている。また、この結合
相は周期律表4a,5a,6a族遷移金属の炭化物,窒化物,炭
窒化物,硼化物、Alの窒化物,硼化物,酸化物、F
e,Co,Niの少なくとも1種の炭化物,窒化物,炭
窒化物,硼化物、およびこれらの相互固溶体よりなる群
から選択される1種以上を含む。さらに、結合相厚みの
平均値は1.5μm以下で、その標準偏差は0.9以下
である。ここで、結合相厚みとは焼結体中の任意の直線
上で、cBN粒子とcBN粒子の間の距離を意味する。
一方、cBNの含有率は体積%で45〜70%である。
そして、cBN粒子の平均粒度は2以上6μm以下であ
る。この平均粒度とは、累積体積%が50%となる粒径
のことをいう。
The sintered body of the present invention is a sintered body obtained by sintering cBN particles with a binder phase. This bonded phase has a continuous structure when viewed two-dimensionally. Further, this bonded phase is composed of carbides, nitrides, carbonitrides, borides, Al nitrides, borides, oxides, and transition metals of transition metals of Groups 4a, 5a, and 6a of the periodic table.
e, at least one selected from the group consisting of carbides, nitrides, carbonitrides, borides, and mutual solid solutions of Ni, Co, and Ni. Further, the average value of the binder phase thickness is 1.5 μm or less, and its standard deviation is 0.9 or less. Here, the binder phase thickness means a distance between cBN particles on an arbitrary straight line in the sintered body.
On the other hand, the content of cBN is 45 to 70% by volume.
The average particle size of the cBN particles is 2 to 6 μm. The average particle size means a particle size at which the cumulative volume% becomes 50%.

【0007】従来のcBN焼結体(cBN粒子が平均粒
度2〜6μm)は結合相厚みの標準偏差が0.9を越え
ている。すなわち、結合相の厚みのばらつきが大きく、
結合相だけで大きな体積を占める部分がある。この部分
は焼結体中で強度が弱い部分(欠陥)であるので亀裂の
進展がしやすく、工具の耐欠損性が十分でない。
A conventional cBN sintered body (cBN particles having an average particle size of 2 to 6 μm) has a standard deviation of binder phase thickness exceeding 0.9. That is, the thickness variation of the binder phase is large,
Some parts occupy a large volume solely by the binder phase. Since this portion is a portion (defect) of low strength in the sintered body, cracks are easily developed, and the chipping resistance of the tool is not sufficient.

【0008】高速切削では刃先が高温となるため材料強
度が低下する。また、クレーター摩耗が発達し、刃先形
状が鋭利になることも刃先の強度を低下させる。このよ
うな状態で刃先に負荷される衝撃により、クレーター摩
耗の生じた部分に切れ刃と平行に亀裂が発生し、この亀
裂が断続の衝撃により進展して欠損に至ると推定され
る。
[0008] In high-speed cutting, the strength of the material is reduced due to the high temperature of the cutting edge. In addition, crater wear develops and the shape of the cutting edge becomes sharp, which also reduces the strength of the cutting edge. It is presumed that the impact applied to the cutting edge in such a state causes a crack to be generated in a portion where the crater wear has occurred in parallel with the cutting edge, and that the crack propagates due to the intermittent impact and leads to loss.

【0009】そこで、本発明焼結体では結合相厚みのバ
ラツキを従来の焼結体より小さくすることで、欠陥とな
る部分を少なくし、耐欠損性の改善を図っている。結合
相の平均厚みとその標準偏差が上記の1.5μm、0.
9μmを越えると、結合相だけで大きな体積を占める部
分が増え、耐欠損性の改善効果が少ない。また、結合相
の平均厚みの下限は、結合相としての機能を発揮するた
め、0.2μm程度が好ましい。さらに、cBN粒子の
平均粒径が2μm未満では、粒子の耐熱性が劣りクレー
ター摩耗が発達しやすくなって耐欠損性が劣り、6μm
を越えると切削時の衝撃に対して耐欠損性が劣るため、
cBN粒子の粒度は2−6μmが適している。
Therefore, in the sintered body of the present invention, the variation in the thickness of the binder phase is made smaller than that of the conventional sintered body, thereby reducing the portion that becomes a defect and improving the fracture resistance. The average thickness of the binder phase and its standard deviation are 1.5 μm, 0.
If it exceeds 9 μm, the portion occupying a large volume by the binder phase alone increases, and the effect of improving the fracture resistance is small. The lower limit of the average thickness of the binder phase is preferably about 0.2 μm in order to exhibit the function as the binder phase. Further, when the average particle diameter of the cBN particles is less than 2 μm, the heat resistance of the particles is inferior, crater wear is likely to develop, and the fracture resistance is inferior.
If it exceeds, the chipping resistance is inferior to the impact during cutting,
The particle size of the cBN particles is suitably from 2 to 6 μm.

【0010】本発明焼結材を得るには、cBNに結合相
材料を被覆したり、特殊な方法で原料を混合する。結合
相材料の被覆は、焼結前に、化学蒸着法(CVD法)や
物理蒸着法(PVD法)、無電解めっき法、あるいは機
械的混合時の圧縮せん断力、摩擦力、衝撃力に誘起され
たメカノケミカル的な反応を利用する方法が挙げられ
る。特殊な混合方法については、超音波混合法または分
散材を用いたボールミル法が最適である。
In order to obtain the sintered material of the present invention, cBN is coated with a binder phase material or the raw materials are mixed by a special method. Before sintering, the coating of the binder phase material is induced by the compression shear force, friction force, and impact force during chemical vapor deposition (CVD), physical vapor deposition (PVD), electroless plating, or mechanical mixing. And a method utilizing a mechanochemical reaction. For a special mixing method, an ultrasonic mixing method or a ball mill method using a dispersing material is optimal.

【0011】なお、本発明焼結材の焼結工程には、プラ
ズマ焼結装置、ホットプレス装置または超高圧焼結装置
などが利用できる。
In the step of sintering the sintered material of the present invention, a plasma sintering apparatus, a hot press apparatus, an ultra-high pressure sintering apparatus or the like can be used.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0013】(実施例1)76重量%のTiの窒化物、
18重量%のAl、3重量%のCoおよび3重量%のN
iを混合し、真空中で1200℃、30分熱処理をした
化合物を粉砕し、結合相粉末を作製した。この結合相粉
末は、XRD(X‐ray diffraction)ではTiN、Ti2
AlN、TiAl3 等のピークがみられた。この結合相
粉末と平均粒径3μmのcBN粉末を、cBNの体積含
有率が60体積%になるように表1に記載の方法で混合
した。各混合法の詳細な条件は次の通りである。ここ
で、No.2において、cBNにTiNを被覆するの
は、RFスパッタリングにより行った。被覆の平均厚み
は50nmである。また、No.2の混合において分散
材は用いていない。
Example 1 76% by weight of Ti nitride
18% by weight Al, 3% by weight Co and 3% by weight N
i was mixed, and the compound that had been heat-treated in vacuum at 1200 ° C. for 30 minutes was pulverized to prepare a binder phase powder. This binder phase powder is made of TiN, Ti 2 by XRD (X-ray diffraction).
Peaks such as AlN and TiAl 3 were observed. This binder phase powder and cBN powder having an average particle size of 3 μm were mixed by the method described in Table 1 so that the volume content of cBN was 60% by volume. The detailed conditions of each mixing method are as follows. Here, No. In 2, the cBN was coated with TiN by RF sputtering. The average thickness of the coating is 50 nm. In addition, No. No dispersant was used in the mixing of the two.

【0014】超音波混合法→エチルアルコール中にcB
Nと結合材の粉末を投入し、20kHzの超音波振動を
付加して混合した。 BM法→ポットに直径10mmのボールとcBN粉末およ
び結合材粉末を入れ、250rpm 、800分、エチルア
ルコール中で湿式混合を行った。 分散材→分散材としてポリビニルアルコールを2重量%
添加した。
Ultrasonic mixing method → cB in ethyl alcohol
N and the powder of the binder were charged and mixed by applying ultrasonic vibration of 20 kHz. BM method: A ball having a diameter of 10 mm, cBN powder and binder powder were placed in a pot, and wet-mixed in ethyl alcohol at 250 rpm for 800 minutes. Dispersant → 2% by weight of polyvinyl alcohol as dispersant
Was added.

【0015】[0015]

【表1】 [Table 1]

【0016】そして、その混合粉末を5GPa、1300
℃の超高圧、高温下で焼結した。得られた焼結体のXR
DはどれもcBN、TiN、TiB2、AlB2、Al
N、Al23、WCが観測された。
Then, the mixed powder was prepared at 5 GPa, 1300
Sintered under ultra high pressure of ℃ and high temperature. XR of the obtained sintered body
D is cBN, TiN, TiB 2 , AlB 2 , Al
N, Al 2 O 3 and WC were observed.

【0017】これら焼結体の組織を金属組織顕微鏡で15
00倍にて撮影したところ、黒く見えるcBN粒子と白く
見える結合相が観察された。この写真で任意の直線を引
き、結合相厚みを測定した。この測定は、上記任意の直
線状における結合相の厚み、つまりcBN粒子間の距離
を20点以上測定し、測定値の平均を求めることで行
う。そして、各測定値から表1に記載の平均値と標準偏
差を求めた。
The structures of these sintered bodies were examined with a metallographic microscope.
When photographed at × 00, cBN particles appearing black and a bonded phase appearing white were observed. An arbitrary straight line was drawn on this photograph, and the thickness of the binder phase was measured. This measurement is performed by measuring the thickness of the binder phase in the arbitrary linear shape, that is, the distance between cBN particles at 20 points or more, and calculating the average of the measured values. Then, the average value and the standard deviation shown in Table 1 were obtained from each measured value.

【0018】さらに、これら焼結体を切削工具に加工
し、下記の条件で切削試験を実施し、欠損に至る工具寿
命を測定したところ、表1に記載の結果が得られた。
Further, these sintered bodies were processed into cutting tools, and cutting tests were performed under the following conditions to measure the tool life leading to chipping. The results shown in Table 1 were obtained.

【0019】切削試験条件: 被削材:SCM415、HRC58−62、φ100mm
×L300mmで長手方向にV形状の溝が6本付けられた
形状。 工具形状:SNG432 NL−25*0.15−0.
2 ホルダー:FN11R 切削条件:V=180m/min、d=0.3mm、f=0.
15mm/rev、dry
Cutting test conditions: Work material: SCM415, HRC58-62, φ100 mm
× L300 mm, with six V-shaped grooves in the longitudinal direction. Tool shape: SNG432 NL-25 * 0.15-0.
2 Holder: FN11R Cutting conditions: V = 180 m / min, d = 0.3 mm, f = 0.
15mm / rev, dry

【0020】この結果から明らかなように、結合相厚さ
の平均値が1.5μm以下、その標準偏差が0.9以下
の場合に工具寿命が倍程度に向上していることがわか
る。また、このような結合相厚さを有する焼結体を作製
するには、結合相材料を混合する際に、超音波混合法ま
たは分散材を用いたボールミル法が好ましいことがわか
る。また、cBN粒子に結合相を被覆する方法も有効で
ある。
As is apparent from the results, when the average value of the binder phase thickness is 1.5 μm or less and the standard deviation is 0.9 or less, the tool life is doubled. Further, in order to produce a sintered body having such a binder phase thickness, it can be seen that when mixing the binder phase material, an ultrasonic mixing method or a ball mill method using a dispersing material is preferable. A method of coating the cBN particles with a binder phase is also effective.

【0021】(実施例2)75重量%のTiの窒化物、
22重量%のAl、2重量%のCoおよび1重量%のN
iを混合し、真空中で1240℃、32分熱処理をした
化合物を粉砕し、結合相粉末を作製した。XRDではT
iN、Ti2AlN、TiAl3等のピークがみられた。
この結合相粉末と平均粒径4.8μmのcBN粉末を、
cBNの体積含有率が65%になるように超音波混合法
と分散材を用いないボールミル(BM)法で混合した。
各混合法の詳細な条件は次の通りである。
(Example 2) 75% by weight of Ti nitride,
22% by weight Al, 2% by weight Co and 1% by weight N
i was mixed and heat-treated in vacuum at 1240 ° C. for 32 minutes to pulverize the compound to prepare a binder phase powder. T in XRD
Peaks such as iN, Ti 2 AlN, and TiAl 3 were observed.
This binder phase powder and cBN powder having an average particle size of 4.8 μm were
The mixture was mixed by an ultrasonic mixing method and a ball mill (BM) method without using a dispersing agent so that the volume content of cBN was 65%.
The detailed conditions of each mixing method are as follows.

【0022】超音波混合法→アセトン中にcBNと結合
材の粉末を投入し、25kHzの超音波振動を付加して
混合した。 BM法→ポットに直径10mmのボールとcBN粉末およ
び結合材粉末を入れ、200rpm 、600分、エチルア
ルコール中で湿式混合を行った。
Ultrasonic mixing method: The powder of cBN and the binder was put into acetone and mixed by applying ultrasonic vibration of 25 kHz. BM method: A ball having a diameter of 10 mm, cBN powder and binder powder were put in a pot, and wet-mixed in ethyl alcohol at 200 rpm for 600 minutes.

【0023】そして、この粉末を4.85GPa、131
0℃の超高圧、高温下で焼結した。得られた焼結体のX
RDはどれもcBN、TiN、TiB2、AlB2、Al
N、Al23、WCが観察された。これら焼結体の組織
を下記の方法で観察した。なお、下記の各方法におい
て、結合相厚みの測定方法は実施例1と同様である。 1)金属組織顕微鏡にて1500倍で写真撮影したところ、
黒く見えるcBN粒子と白く見える結合相が観察され
た。この写真で任意の直線を引き、結合相厚みを測定し
た。
Then, this powder was added to 4.85 GPa, 131
The sintering was performed under an ultra-high pressure of 0 ° C. and a high temperature. X of the obtained sintered body
RD is cBN, TiN, TiB 2 , AlB 2 , Al
N, Al 2 O 3 and WC were observed. The structures of these sintered bodies were observed by the following method. In each of the following methods, the method for measuring the thickness of the binder phase is the same as in Example 1. 1) When taken with a metallographic microscope at 1500x magnification,
CBN particles appearing black and a bonded phase appearing white were observed. An arbitrary straight line was drawn on this photograph, and the thickness of the binder phase was measured.

【0024】2)SEM(Scanning Electron Microscope)
にて3000倍で写真撮影したところ、cBN粒子と結合相
が観察された。この写真で任意の直線を引き、結合相厚
みを測定した。
2) SEM (Scanning Electron Microscope)
When photographed at 3,000 times at, cBN particles and a binding phase were observed. An arbitrary straight line was drawn on this photograph, and the thickness of the binder phase was measured.

【0025】3)TEM(Transmission Electron Microsc
ope)にて10000倍で写真撮影したところ、cBN粒子と
結合相が観察された。この写真で任意の直線を引き、結
合相厚みを測定した。
3) TEM (Transmission Electron Microsc)
When the photograph was taken at 10000 magnification in (ope), cBN particles and a binding phase were observed. An arbitrary straight line was drawn on this photograph, and the thickness of the binder phase was measured.

【0026】4)オージェ(Auger Electron Spectrosc
opy) にて10000倍で写真撮影したところ、cBN粒子
と結合相が観察された。この写真で任意の直線を引き、
結合相厚みを測定した。
4) Auger (Auger Electron Spectrosc)
opy) at 10,000 ×, cBN particles and a bonded phase were observed. Draw any straight line in this photo,
The binder phase thickness was measured.

【0027】5)金属組織顕微鏡にて1500倍で撮影した
ところ、黒く見えるcBN粒子と白く見える結合相が観
察された。これを画像解析し、cBN粒子にあたる黒く
みえる粒子の面積比率がcBNの体積含有率と等しくな
るように二値化し、結合相に相当する部分を特定し、結
合相厚みを測定した。
5) When photographed with a metallographic microscope at 1500 ×, cBN particles appearing black and a bonded phase appearing white were observed. This was image-analyzed, binarized so that the area ratio of the particles that looked black as the cBN particles was equal to the volume content of cBN, the portion corresponding to the binder phase was specified, and the binder phase thickness was measured.

【0028】6)金属組織顕微鏡にて1000倍で撮影した
ところ、黒く見えるcBN粒子と白く見える結合相が観
察された。これを画像解析し、任意の直線上の輝度を測
定したところ周期性が見られた。ある輝度で暗い部分
(cBN粒子に当たるところ)と明るい部分(結合相に
当たるところ)にわけた場合、その比率がcBNの体積
含有率と等しくなるように輝度を決定し、明るい部分の
長さを結合相厚みとした。
6) When photographed with a metallographic microscope at a magnification of 1000, cBN particles appearing black and a bonded phase appearing white were observed. This was image-analyzed, and the luminance on an arbitrary straight line was measured. As a result, periodicity was observed. When a certain luminance is divided into a dark part (a part corresponding to a cBN particle) and a bright part (a part corresponding to a binder phase), the luminance is determined so that the ratio becomes equal to the volume content of the cBN, and the length of the bright part is combined. The phase thickness was used.

【0029】このようにして測定した結合相厚みの平均
値と標準偏差を計算したところ表2のようになった。
The average value and the standard deviation of the binder phase thickness measured in this way were calculated, and the results are as shown in Table 2.

【0030】[0030]

【表2】 [Table 2]

【0031】これら焼結体を切削工具に加工し、下記の
条件で切削試験を実施し、欠損に至る工具寿命を測定し
たところ、超音波混合法の焼結体は約20分、ボールミ
ル法の焼結体は約5分で欠損した。従って、分散材を用
いないボールミル法よりも超音波混合法により結合相材
料を混合することが好ましいことがわかる。
These sintered bodies were processed into cutting tools, and a cutting test was carried out under the following conditions to measure the tool life leading to chipping. The sintered body was broken in about 5 minutes. Therefore, it is understood that it is more preferable to mix the binder phase material by the ultrasonic mixing method than by the ball mill method using no dispersant.

【0032】切削試験条件: 被削材:SCM420、HRC59−61、φ100mm ×
L300mm で長手方向にV形状の溝が8本付けられた形
状。 工具形状:SNG432 NL−25*0.15−0.
2 ホルダー:FN11R 切削条件:V=150m/min、d=0.25mm、f=
0.11mm/rev、dry
Cutting test conditions: Work material: SCM420, HRC59-61, φ100 mm ×
L300mm with eight V-shaped grooves in the longitudinal direction. Tool shape: SNG432 NL-25 * 0.15-0.
2 Holder: FN11R Cutting conditions: V = 150 m / min, d = 0.25 mm, f =
0.11mm / rev, dry

【0033】(実施例3)80重量%のTiの窒化物と
20重量%のAlを混合し、真空中で1200℃、30
分熱処理をした化合物を粉砕し、結合相粉末を作製し
た。この粉末はXRDではTiN、Ti2 AlN、Ti
Al3等のピークがみられた。この結合相粉末を平均粒
径3.5μmのcBN粉末にcBNの体積含有率が表3
に記載の割合となるように被覆した。被覆はRFスパッ
タリングPVD装置を用いて行った。この被覆粉末をT
EMで観察したところ、cBN粉末にTiNが平均層厚
50nmでほぼ均質に被覆されていることがわかった。
このTiN被覆cBN粒子および前記結合相粉末をボー
ルミルで分散材を用いずに混合した。BM法による混合
は、ポットに直径10mmのボールとcBN粉末および結
合材粉末を入れ、260rpm、650分、アセトン中で
湿式混合により行った。そして、この混合粉末を4.8
GPa、1350℃の超高圧、高温下で焼結した。得られ
た焼結体のXRDはどれもcBN、TiN、TiB2
AlB2、AlN、Al23、WCが観測された。
Example 3 A mixture of 80% by weight of Ti nitride and 20% by weight of Al was mixed at 1200.degree.
The compound subjected to the heat treatment was pulverized to prepare a binder phase powder. This powder is TiN, Ti 2 AlN, Ti by XRD.
Peaks such as Al 3 were observed. This binder phase powder was added to a cBN powder having an average particle size of 3.5 μm to have a volume content of cBN of Table 3
The coating was carried out so as to have the proportions described in Table 1. Coating was performed using an RF sputtering PVD apparatus. This coated powder is
Observation by EM showed that the cBN powder was almost uniformly coated with TiN with an average layer thickness of 50 nm.
The TiN-coated cBN particles and the binder phase powder were mixed in a ball mill without using a dispersant. Mixing by the BM method was carried out by putting a ball having a diameter of 10 mm, cBN powder and binder powder into a pot and performing wet mixing in acetone at 260 rpm for 650 minutes. Then, the mixed powder was 4.8.
GPa was sintered at a high pressure of 1350 ° C. under a high temperature. The XRDs of the obtained sintered bodies were all cBN, TiN, TiB 2 ,
AlB 2 , AlN, Al 2 O 3 and WC were observed.

【0034】[0034]

【表3】 [Table 3]

【0035】これら焼結体の組織を金属組織顕微鏡にて
1500倍で撮影したところ、黒く見えるcBN粒子と白く
見える結合相が観察された。また、この写真で任意の直
線を引き、結合相厚みを測定したところ、表3に示す平
均値と標準偏差が得られた。
The structures of these sintered bodies were examined with a metallographic microscope.
When photographed at a magnification of 1500 times, cBN particles appearing black and a bonded phase appearing white were observed. Further, when an arbitrary straight line was drawn on this photograph and the thickness of the binder phase was measured, the average value and the standard deviation shown in Table 3 were obtained.

【0036】さらに、これら焼結体を切削工具に加工
し、下記の条件で切削試験を実施し、欠損に至る工具寿
命を測定した。その結果も表3に示す。
Further, these sintered bodies were processed into cutting tools, and cutting tests were carried out under the following conditions to measure tool life leading to chipping. Table 3 also shows the results.

【0037】切削試験条件: 被削材:SCM415、HRC58−62、φ100mm×
L300mmで長手方向にV形状の溝が6本付けられた形
状。 工具形状:SNG432 NL−25*0.15−0.
2 ホルダー:FN11R 切削条件:V=160m/min、d=0.2mm、f=0.
13mm/rev、dry
Cutting test conditions: Work material: SCM415, HRC58-62, φ100 mm ×
L300mm shape with 6 V-shaped grooves in the longitudinal direction. Tool shape: SNG432 NL-25 * 0.15-0.
2 Holder: FN11R Cutting conditions: V = 160 m / min, d = 0.2 mm, f = 0.
13mm / rev, dry

【0038】これらの結果からcBNの含有率は45か
ら70体積%が好ましいことがわかる。特に、60から
70体積%において好結果となっている。
These results show that the content of cBN is preferably 45 to 70% by volume. In particular, good results were obtained at 60 to 70% by volume.

【0039】(実施例4)種々の組成の結合相原料粉末
を混合し、真空中で1230℃、32分熱処理をした化
合物を粉砕し、結合相粉末を作製した。この結合相粉末
と平均粒径4.1μmのcBN粉末をcBNの体積含有
率が62%になるように分散材を用いたボールミル法で
混合した。BM法による混合は、ポットに直径10mmの
ボールとcBN粉末および結合材粉末を入れ、190rp
m、700分、アセトン中で湿式混合により行った。分
散材はポリビニルアルコールである。そして、混合粉末
を5.1GPa、1310℃の超高圧、高温下で焼結し
た。得られた焼結体のXRDには表4に記載の化合物の
ピークが観測された。
(Example 4) Binder phase powders having various compositions were mixed, and a compound heat-treated at 1230 ° C for 32 minutes in a vacuum was pulverized to prepare a binder phase powder. This binder phase powder and a cBN powder having an average particle size of 4.1 μm were mixed by a ball mill method using a dispersing agent such that the volume content of cBN was 62%. For mixing by the BM method, a ball having a diameter of 10 mm, cBN powder and binder powder were put in a pot, and the mixture was heated to 190 rp.
m, 700 minutes by wet mixing in acetone. The dispersant is polyvinyl alcohol. Then, the mixed powder was sintered under a high pressure of 5.1 GPa, a high pressure of 1310 ° C. and a high temperature. The peaks of the compounds listed in Table 4 were observed in the XRD of the obtained sintered body.

【0040】[0040]

【表4】 [Table 4]

【0041】これら焼結体の組織を金属組織顕微鏡にて
1000倍で観察したところ黒く見えるcBN粒子と白く見
える結合相が観察された。この写真で任意の直線を引
き、結合相厚みを測定したところ、表4に記載の平均値
と標準偏差が得られた。
The structures of these sintered bodies were examined with a metallographic microscope.
When observed at a magnification of 1000 times, cBN particles appearing black and a bonded phase appearing white were observed. When an arbitrary straight line was drawn on this photograph and the thickness of the binder phase was measured, the average value and standard deviation shown in Table 4 were obtained.

【0042】さらに、これら焼結体を切削工具に加工
し、下記の条件で切削試験を実施し、欠損に至る工具寿
命を測定したところ表4に記載の結果が得られた。
Further, these sintered bodies were processed into cutting tools, and cutting tests were performed under the following conditions, and the tool life leading to chipping was measured. The results shown in Table 4 were obtained.

【0043】切削試験条件: 被削材:SCM415、HRC58−62、φ100mm×
L300mmで長手方向にV形状の溝が6本付けられた形
状。 工具形状:SNG432 NL−25*0.15−0.
2 ホルダー:FN11R 切削条件:V=190m/min、d=0.15mm、f=
0.11mm/rev、dry
Cutting test conditions: Work material: SCM415, HRC58-62, φ100 mm ×
L300mm shape with 6 V-shaped grooves in the longitudinal direction. Tool shape: SNG432 NL-25 * 0.15-0.
2 Holder: FN11R Cutting conditions: V = 190 m / min, d = 0.15 mm, f =
0.11mm / rev, dry

【0044】これからわかるように、結合相として周期
律表4a,5a,6a族遷移金属の炭化物,窒化物,炭窒化物,
硼化物、Alの窒化物,硼化物,酸化物、Fe,Co,
Niの少なくとも1種の炭化物,窒化物,炭窒化物,硼
化物、およびこれらの相互固溶体よりなる群から選択さ
れる1 種以上のものが良いことがわかる。
As can be seen, as the binder phase, carbides, nitrides, carbonitrides, and the like of transition metals of Groups 4a, 5a and 6a of the periodic table are used.
Boride, nitride of aluminum, boride, oxide, Fe, Co,
It can be seen that at least one selected from the group consisting of at least one of carbides, nitrides, carbonitrides, borides, and mutual solid solutions of Ni is preferable.

【0045】(実施例5)70重量%のTiの窒化物、
25重量%のAl、3重量%のCoおよび2重量%のN
iを混合し、真空中で1250℃、25分熱処理をした
化合物を粉砕し、結合相粉末を作製した。この粉末はX
RDではTiN、Ti2AlN、TiAl3等のピークが
みられた。この結合相粉末と表5に記載の平均粒径のc
BN粉末をcBNの体積含有率が57%になるように超
音波混合した粉末を4.9GPa、1320℃の超高圧、
高温下で焼結した。超音波混合は、エチルアルコール中
にcBNと結合材の粉末を投入し、23kHzの超音波
振動を付加して行った。得られた焼結体のXRDはどれ
もcBN、TiN、TiB2、AlB2、AlN、Al2
3、WCが観察された。
Example 5 70% by weight of Ti nitride,
25% by weight Al, 3% by weight Co and 2% by weight N
i was mixed and heat-treated in vacuum at 1250 ° C. for 25 minutes to pulverize the compound to prepare a binder phase powder. This powder is X
In RD, peaks of TiN, Ti 2 AlN, TiAl 3 and the like were observed. This binder phase powder and c having the average particle size shown in Table 5
The powder obtained by ultrasonically mixing the BN powder so that the volume content of cBN becomes 57% is 4.9 GPa, an ultra-high pressure of 1320 ° C.,
Sintered under high temperature. The ultrasonic mixing was performed by charging cBN and a binder powder into ethyl alcohol and applying ultrasonic vibration of 23 kHz. The XRDs of the obtained sintered bodies were all cBN, TiN, TiB 2 , AlB 2 , AlN, Al 2
O 3 and WC were observed.

【0046】[0046]

【表5】 [Table 5]

【0047】これら焼結体の組織を金属組織顕微鏡にて
1500倍で撮影したところ黒く見えるcBN粒子と白く見
える結合相が観察された。この写真で任意の直線を引
き、結合相厚みを測定したところ、表5に記載の平均値
と標準偏差が得られた。
The structures of these sintered bodies were examined with a metallographic microscope.
When photographed at a magnification of 1500 times, cBN particles appearing black and a bonded phase appearing white were observed. An arbitrary straight line was drawn on this photograph and the thickness of the binder phase was measured. As a result, the average value and standard deviation shown in Table 5 were obtained.

【0048】さらに、これら焼結体を切削工具に加工
し、下記の条件で切削試験を実施し、欠損に至る工具寿
命を測定したところ表5に記載の結果が得られた。
Further, these sintered bodies were processed into cutting tools, and cutting tests were carried out under the following conditions, and the tool life leading to chipping was measured. The results shown in Table 5 were obtained.

【0049】切削試験条件: 被削材:SCM415、HRC58−62、φ100mm×
L300mmで長手方向にV形状の溝が6本付けられた形
状。 工具形状:SNG432 NL−25*0.15−0.
2 ホルダー:FN11R 切削条件:V=170m/min、d=0.25mm、f=
0.14mm/rev、dry
Cutting test conditions: Work material: SCM415, HRC58-62, φ100 mm ×
L300mm shape with 6 V-shaped grooves in the longitudinal direction. Tool shape: SNG432 NL-25 * 0.15-0.
2 Holder: FN11R Cutting conditions: V = 170 m / min, d = 0.25 mm, f =
0.14mm / rev, dry

【0050】この結果から明らかなように、cBNの平
均粒径が2.0から6.0μmの場合に欠損を抑制でき
ていることがわかる。
As is evident from the results, it can be seen that the loss can be suppressed when the average particle size of cBN is 2.0 to 6.0 μm.

【0051】[0051]

【発明の効果】以上説明したように、本発明によれば、
焼結体における結合相の厚みのばらつきを小さくするこ
とで、耐摩耗性および耐欠損性に優れたcBN焼結体を
得ることができる。
As described above, according to the present invention,
By reducing the variation in the thickness of the binder phase in the sintered body, it is possible to obtain a cBN sintered body having excellent wear resistance and fracture resistance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白石 順一 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 Fターム(参考) 3C046 FF25 FF27 FF35 FF41 FF55 FF57 4G001 BA34 BA38 BA39 BA61 BA63 BB03 BB21 BB24 BB25 BB26 BB31 BB34 BB36 BB37 BB38 BB39 BB41 BB43 BB44 BB56 BB57 BB61 BC01 BC02 BC13 BC21 BC46 BD12 BD13 BD18 BE15 BE22  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Junichi Shiraishi 1-1-1, Kunyokita, Itami-shi, Hyogo F-term in Sumitomo Electric Industries, Ltd. Itami Works (reference) 3C046 FF25 FF27 FF35 FF41 FF55 FF57 4G001 BA34 BA38 BA39 BA61 BA63 BB03 BB21 BB24 BB25 BB26 BB31 BB34 BB36 BB37 BB38 BB39 BB41 BB43 BB44 BB56 BB57 BB61 BC01 BC02 BC13 BC21 BC46 BD12 BD13 BD18 BE15 BE22

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 cBN粒子を結合相で焼結した焼結体で
あって、 前記結合相が二次元的に見て連続しており、 この結合相は、 周期律表4a,5a,6a族遷移金属の炭化物,窒化物,炭窒化
物,硼化物、 Alの窒化物,硼化物,酸化物、 Fe,Co,Niの少なくとも1種の炭化物,窒化物,
炭窒化物,硼化物、 およびこれらの相互固溶体よりなる群から選択される1
種以上を含み、 cBNの含有率が体積%で45−70%で、 cBN粒子の平均粒度が2以上6μm以下であり、 結合相厚みの平均値が1.5μm以下で、その標準偏差
が0.9以下であることを特徴とするcBN焼結体。
1. A sintered body obtained by sintering cBN particles with a binder phase, wherein the binder phase is continuous in a two-dimensional manner, and the binder phase belongs to a group 4a, 5a, or 6a of the periodic table. Transition metal carbides, nitrides, carbonitrides, borides, Al nitrides, borides, oxides, at least one of Fe, Co, Ni carbides, nitrides,
Selected from the group consisting of carbonitrides, borides, and their mutual solid solutions1
The cBN content is 45-70% by volume, the average particle size of the cBN particles is 2 to 6 μm, the average value of the binder phase thickness is 1.5 μm or less, and the standard deviation is 0. The cBN sintered body is not more than 0.9.
JP22367998A 1998-07-22 1998-07-22 Cutting tool with excellent crater resistance and strength and method for producing the same Expired - Lifetime JP4787387B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP22367998A JP4787387B2 (en) 1998-07-22 1998-07-22 Cutting tool with excellent crater resistance and strength and method for producing the same
ZA9904665A ZA994665B (en) 1998-07-22 1999-07-20 Cubic boron nitride sintered body.
US09/357,970 US6316094B1 (en) 1998-07-22 1999-07-21 Cubic boron nitride sintered body
RU99116051/02A RU2220929C2 (en) 1998-07-22 1999-07-21 Sintered blanc from boron nitride with cubic lattice (options)
KR1019990029426A KR100333459B1 (en) 1998-07-22 1999-07-21 cBN Sintered Body
EP99305813A EP0974566B1 (en) 1998-07-22 1999-07-22 Cubic boron nitride sintered body
CNB991106350A CN1300055C (en) 1998-07-22 1999-07-22 Cubic boron nitride sintered body
DE69917993T DE69917993T2 (en) 1998-07-22 1999-07-22 Cube boron nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22367998A JP4787387B2 (en) 1998-07-22 1998-07-22 Cutting tool with excellent crater resistance and strength and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008133579A Division JP2008208028A (en) 2008-05-21 2008-05-21 cBN SINTERED COMPACT

Publications (2)

Publication Number Publication Date
JP2000044350A true JP2000044350A (en) 2000-02-15
JP4787387B2 JP4787387B2 (en) 2011-10-05

Family

ID=16801959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22367998A Expired - Lifetime JP4787387B2 (en) 1998-07-22 1998-07-22 Cutting tool with excellent crater resistance and strength and method for producing the same

Country Status (3)

Country Link
JP (1) JP4787387B2 (en)
CN (1) CN1300055C (en)
ZA (1) ZA994665B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226273A (en) * 2001-01-30 2002-08-14 Showa Denko Kk Sintered compact
JP2006315898A (en) * 2005-05-12 2006-11-24 Tungaloy Corp Cubic boron nitride sintered compact
JP2007084382A (en) * 2005-09-22 2007-04-05 Tungaloy Corp Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, and cutting tool for quench-hardened steel comprising the same
JP2008094670A (en) * 2006-10-13 2008-04-24 Sumitomo Electric Ind Ltd Cubic boron nitride sintered compact
JP2008517869A (en) * 2004-10-29 2008-05-29 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Cubic boron nitride compact
JP2009504869A (en) * 2005-08-16 2009-02-05 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Fine polycrystalline abrasive
JP2009513471A (en) * 2005-10-28 2009-04-02 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Cubic boron nitride compact
JP2010522776A (en) * 2006-03-29 2010-07-08 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Polycrystalline abrasive molding
WO2012029440A1 (en) 2010-09-01 2012-03-08 住友電工ハードメタル株式会社 Cubic boron nitride sintered compact tool
WO2012053375A1 (en) 2010-10-19 2012-04-26 住友電工ハードメタル株式会社 Tool comprising sintered cubic boron nitride
JP2013146799A (en) * 2012-01-17 2013-08-01 Mitsubishi Materials Corp cBN SINTERED BODY CUTTING TOOL AND METHOD FOR MANUFACTURING THE SAME
JP2013234335A (en) * 2013-08-12 2013-11-21 Element Six Abrasives Sa Polycrystalline abrasive compacts
US8962505B2 (en) 2010-10-27 2015-02-24 Sumitomo Electric Hardmetal Corp. Sintered cubic boron nitride compact and sintered cubic boron nitride compact tool
KR20160145474A (en) 2014-04-25 2016-12-20 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Surface-coated boron nitride sintered compact tool
WO2021124403A1 (en) 2019-12-16 2021-06-24 住友電工ハードメタル株式会社 Cubic boron nitride sintered compact
WO2021124402A1 (en) 2019-12-16 2021-06-24 住友電工ハードメタル株式会社 Cubic boron nitride sintered compact
JP6900590B1 (en) * 2020-03-24 2021-07-07 昭和電工株式会社 Cubic boron nitride sintered body, its manufacturing method, and tools
WO2021192509A1 (en) * 2020-03-24 2021-09-30 昭和電工株式会社 Cubic boron nitride sintered body, method for producing same, and tool

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100390314C (en) * 2003-04-22 2008-05-28 上海大学 Superfine carbide alloy and mfg method thereof
CN100383272C (en) * 2003-04-22 2008-04-23 上海大学 Superfine carbide alloy and mfg method thereof
CN100425721C (en) * 2004-01-08 2008-10-15 住友电工硬质合金株式会社 Cubic boron nitride sintered compact
ATE393760T1 (en) * 2004-02-20 2008-05-15 Diamond Innovations Inc SINTERED BODY
CN101102863B (en) * 2005-04-14 2011-03-30 住友电工硬质合金株式会社 CBN sintered compact and cutting tool using the same
WO2008072180A2 (en) * 2006-12-11 2008-06-19 Element Six (Production) (Pty) Ltd Cubic boron nitride compacts
WO2008093577A1 (en) * 2007-01-30 2008-08-07 Sumitomo Electric Hardmetal Corp. Sintered composite material
CN101560624B (en) * 2009-05-18 2010-12-29 河南富耐克超硬材料有限公司 Method for preparing polycrystalline cubic boron nitride
CN103097058B (en) * 2010-03-12 2015-05-13 住友电工硬质合金株式会社 Sintered cubic boron nitride tool
KR101363178B1 (en) 2010-10-18 2014-02-13 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Cubic boron nitride sintered body and cubic boron nitride sintered body tool
JP5613970B2 (en) * 2011-03-30 2014-10-29 三菱マテリアル株式会社 Method for synthesizing cubic boron nitride and method for producing sintered cubic boron nitride
CN104053517A (en) * 2012-01-10 2014-09-17 住友电工硬质合金株式会社 Diamond-coated tool
JP5804380B2 (en) * 2012-03-06 2015-11-04 三菱マテリアル株式会社 Cutting tool made of ultra high pressure sintered body
JP5305056B1 (en) 2012-05-16 2013-10-02 三菱マテリアル株式会社 Cutting tool made of cubic boron nitride based sintered body
JP6032409B2 (en) * 2012-10-26 2016-11-30 三菱マテリアル株式会社 Cutting tools and surface-coated cutting tools using a cubic boron nitride-based ultra-high pressure sintered body as a tool base
JP7167914B2 (en) * 2017-05-26 2022-11-09 住友電気工業株式会社 Sintered compact and its manufacturing method
CN114349517A (en) * 2021-12-17 2022-04-15 燕山大学 cBN-B4C composite material and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860679A (en) * 1981-10-02 1983-04-11 三菱マテリアル株式会社 High tenacity boron nitride base super high pressure sintering material for cutting and abrasion-resistant tool
JPS5860678A (en) * 1981-10-02 1983-04-11 三菱マテリアル株式会社 High tenacity boron nitride base super high pressure sintering material for cutting and abrasion-resistant tool
JPH05183272A (en) * 1991-12-26 1993-07-23 Ibiden Co Ltd Manufacture of multilayer board for mounting electronic parts
DE69433791T2 (en) * 1994-11-18 2005-06-09 National Institute Of Advanced Industrial Science And Technology Diamond sintered body, high-pressure phase boron nitride sintered body and method for producing these sintered bodies
CA2242891C (en) * 1996-12-03 2004-02-10 Sumitomo Electric Industries, Ltd. High-pressure phase boron nitride-based sintered body
JPH10182234A (en) * 1996-12-25 1998-07-07 Agency Of Ind Science & Technol Cubic boron nitride-base sintered material and its production

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226273A (en) * 2001-01-30 2002-08-14 Showa Denko Kk Sintered compact
JP2008517869A (en) * 2004-10-29 2008-05-29 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Cubic boron nitride compact
US8318082B2 (en) 2004-10-29 2012-11-27 Element Six Abrasives S.A. Cubic boron nitride compact
JP2006315898A (en) * 2005-05-12 2006-11-24 Tungaloy Corp Cubic boron nitride sintered compact
JP4739417B2 (en) * 2005-08-16 2011-08-03 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Fine polycrystalline abrasive
US8435317B2 (en) 2005-08-16 2013-05-07 Anthony Roy Burgess Fine grained polycrystalline abrasive material
JP2009504869A (en) * 2005-08-16 2009-02-05 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Fine polycrystalline abrasive
JP2007084382A (en) * 2005-09-22 2007-04-05 Tungaloy Corp Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, and cutting tool for quench-hardened steel comprising the same
JP2009513471A (en) * 2005-10-28 2009-04-02 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Cubic boron nitride compact
US8419814B2 (en) 2006-03-29 2013-04-16 Antionette Can Polycrystalline abrasive compacts
JP2010522776A (en) * 2006-03-29 2010-07-08 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Polycrystalline abrasive molding
US9808911B2 (en) 2006-03-29 2017-11-07 Element Six Abrasives S.A. Polycrystalline abrasive compacts
JP2008094670A (en) * 2006-10-13 2008-04-24 Sumitomo Electric Ind Ltd Cubic boron nitride sintered compact
WO2012029440A1 (en) 2010-09-01 2012-03-08 住友電工ハードメタル株式会社 Cubic boron nitride sintered compact tool
US8993132B2 (en) 2010-09-01 2015-03-31 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered body tool
WO2012053375A1 (en) 2010-10-19 2012-04-26 住友電工ハードメタル株式会社 Tool comprising sintered cubic boron nitride
US8822361B2 (en) 2010-10-19 2014-09-02 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered body tool
US8962505B2 (en) 2010-10-27 2015-02-24 Sumitomo Electric Hardmetal Corp. Sintered cubic boron nitride compact and sintered cubic boron nitride compact tool
JP2013146799A (en) * 2012-01-17 2013-08-01 Mitsubishi Materials Corp cBN SINTERED BODY CUTTING TOOL AND METHOD FOR MANUFACTURING THE SAME
JP2013234335A (en) * 2013-08-12 2013-11-21 Element Six Abrasives Sa Polycrystalline abrasive compacts
KR20160145474A (en) 2014-04-25 2016-12-20 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Surface-coated boron nitride sintered compact tool
US9943911B2 (en) 2014-04-25 2018-04-17 Sumitomo Electric Hardmetal Corp. Surface-coated boron nitride sintered body tool
WO2021124403A1 (en) 2019-12-16 2021-06-24 住友電工ハードメタル株式会社 Cubic boron nitride sintered compact
WO2021124402A1 (en) 2019-12-16 2021-06-24 住友電工ハードメタル株式会社 Cubic boron nitride sintered compact
US11161790B2 (en) 2019-12-16 2021-11-02 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered material
KR20220074930A (en) 2019-12-16 2022-06-03 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Cubic boron nitride sintered body
KR20220095243A (en) 2019-12-16 2022-07-06 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Cubic boron nitride sintered compact
JP6900590B1 (en) * 2020-03-24 2021-07-07 昭和電工株式会社 Cubic boron nitride sintered body, its manufacturing method, and tools
WO2021192509A1 (en) * 2020-03-24 2021-09-30 昭和電工株式会社 Cubic boron nitride sintered body, method for producing same, and tool
US11427512B2 (en) 2020-03-24 2022-08-30 Showa Denko K.K. Cubic boron nitride sintered body and manufacturing method thereof, and tool

Also Published As

Publication number Publication date
ZA994665B (en) 2000-01-27
JP4787387B2 (en) 2011-10-05
CN1300055C (en) 2007-02-14
CN1242350A (en) 2000-01-26

Similar Documents

Publication Publication Date Title
JP2000044350A (en) Cubic bn sintered compact
KR100333459B1 (en) cBN Sintered Body
JP6082650B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
EP0879806B1 (en) High-pressure phase boron nitride base sinter
JP6032375B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
WO2011129422A1 (en) Coated sintered cbn
JP2000044347A (en) Cbn sintered compact
JPH0621313B2 (en) Sintered body for high hardness tool and manufacturing method thereof
JP2005187260A (en) High-strength high-thermal conductivity cubic boron nitride sintered compact
JP5499718B2 (en) Sintered body and cutting tool using the sintered body
JP4065666B2 (en) High crater resistance High strength sintered body
JP2008208027A (en) cBN SINTERED COMPACT
JP2017014084A (en) Cubic crystal boron nitride sintered body, method of producing cubic crystal boron nitride sintered body, tool and cutting tool
JP2008208027A5 (en)
WO2016136531A1 (en) Sintered body and cutting tool
JP2004026555A (en) Cubic boron nitride-containing sintered compact and method for producing the same
JP2008208028A (en) cBN SINTERED COMPACT
JP2008208028A5 (en)
JPH0816028B2 (en) Highly tough ceramic sintered body, ceramic tool and method for manufacturing sintered body
JPH10182242A (en) High hardness and high toughness sintered compact
WO2016084738A1 (en) cBN SINTERED COMPACT AND CUTTING TOOL
JP4887588B2 (en) Dispersion strengthened CBN-based sintered body and method for producing the same
JP2000226262A (en) High-hardness and high-strength sintered compact
JP3411593B2 (en) Cubic boron nitride sintered body for cutting tools
JP2932738B2 (en) Method for producing cubic boron nitride based ultra-high pressure sintered material having high toughness

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080521

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080709

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term