JP5804380B2 - Cutting tool made of ultra high pressure sintered body - Google Patents

Cutting tool made of ultra high pressure sintered body Download PDF

Info

Publication number
JP5804380B2
JP5804380B2 JP2012048881A JP2012048881A JP5804380B2 JP 5804380 B2 JP5804380 B2 JP 5804380B2 JP 2012048881 A JP2012048881 A JP 2012048881A JP 2012048881 A JP2012048881 A JP 2012048881A JP 5804380 B2 JP5804380 B2 JP 5804380B2
Authority
JP
Japan
Prior art keywords
layer
sintered body
cemented carbide
alloy
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012048881A
Other languages
Japanese (ja)
Other versions
JP2013184229A (en
Inventor
大橋 忠一
忠一 大橋
エコ ワルドヨ アフマディ
エコ ワルドヨ アフマディ
松尾 俊彦
俊彦 松尾
一利 平野
一利 平野
松本 元基
元基 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012048881A priority Critical patent/JP5804380B2/en
Priority to CN201310068873.1A priority patent/CN103302345B/en
Publication of JP2013184229A publication Critical patent/JP2013184229A/en
Application granted granted Critical
Publication of JP5804380B2 publication Critical patent/JP5804380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、立方晶窒化硼素(以下、cBNと称す)焼結体や多結晶ダイヤモンド(以下、PCDと称す)焼結体などの超高圧焼結材料を刃先に有する切削工具の刃先接合強度の改善に関する。 The present invention relates to the cutting edge bonding strength of a cutting tool having an ultrahigh pressure sintered material such as a cubic boron nitride (hereinafter referred to as cBN) sintered body or a polycrystalline diamond (hereinafter referred to as PCD) sintered body. Regarding improvement.

近年、携帯電話やスマートフォン等の筐体の製造に使用される金型を加工する工具として、高生産性や高寿命を発揮し、ダイヤモンドと同等の硬度を有するPCD焼結体や、ダイヤモンドに次ぐ硬度を有するcBN焼結体を切れ刃部に使用したインサートやエンドミルといった切削工具が提供されている。
しかしながら、cBN焼結体やPCD焼結体自体は、加工が困難で高価なうえ、焼結体形状が円板状に限られ自由に工具形状が形成できないためにその用途が制約されていた。ところが、近年、難削材の使用量の増加に伴い工具加工が困難であるにも関わらずcBN焼結体やPCD焼結体の用途が高まっている。価格、加工性を克服するための方法として、安価で加工性にすぐれたWC基超硬製工具本体とcBN焼結体またはPCD焼結体を素材とする切れ刃部とをろう付けしたり、あるいは、WC基超硬製工具本体とcBN焼結体またはPCD焼結体を素材とする切れ刃部とを拡散接合で接合したりすることにより、WC基超硬製工具本体とcBN焼結体またはPCD焼結体を素材とする切れ刃部とを接合した切削工具が提供されている。
In recent years, as a tool for processing molds used in the manufacture of casings for mobile phones, smartphones, etc., it exhibits high productivity and long life and is second only to PCD sintered bodies having the same hardness as diamond. Cutting tools such as inserts and end mills using cBN sintered bodies having hardness for cutting edges are provided.
However, the cBN sintered body and the PCD sintered body themselves are difficult and expensive to process, and the sintered body shape is limited to a disk shape, so that the tool shape cannot be freely formed, and its use is restricted. However, in recent years, the use of cBN sintered bodies and PCD sintered bodies has increased with the increase in the amount of difficult-to-cut materials used, despite the difficulty in tool processing. As a method for overcoming the price and workability, brazing the WC-based cemented carbide tool body, which is inexpensive and excellent in workability, and a cutting edge portion made of a cBN sintered body or PCD sintered body, Alternatively, the WC-based cemented carbide tool body and the cBN sintered body may be joined by diffusion bonding the WC-based cemented carbide tool body and the cBN sintered body or the PCD sintered body as a raw material. Or the cutting tool which joined the cutting-blade part which uses a PCD sintered compact as a raw material is provided.

例えば、特許文献1には、cBN焼結体層と超硬合金層とが一体成形された略円柱形のチップと、チップと軸線を同じくしてチップの後端側の超硬合金層に連接する工具本体とを備え、チップの先端部分に切刃が形成されたエンドミルであって、工具本体の少なくとも先端側には取り付け軸部が形成されており、取り付け軸部の先端面の外径がチップの後端面の外径と同一径とされ、チップの後端面と取り付け軸部の先端面との間に接合部が配置され、接合部は、例えば、Ni等の金属元素がチップおよび工具本体のうち少なくとも一方へ拡散した拡散層を含む接合層とされていることによって、チップが工具本体から外れることなく寿命が長く安定しているとともに首部の長さを容易に調整して加工深さを調整できるエンドミルが開示されている。   For example, in Patent Document 1, a substantially cylindrical chip in which a cBN sintered body layer and a cemented carbide layer are integrally formed, and a cemented carbide layer on the rear end side of the chip with the same axis as the chip are connected. An end mill having a cutting edge formed at the tip end portion of the tip, and an attachment shaft portion is formed at least on the tip end side of the tool body, and the outer diameter of the tip surface of the attachment shaft portion is The outer diameter of the rear end surface of the chip is the same as the outer diameter, and a joint portion is disposed between the rear end surface of the chip and the front end surface of the mounting shaft portion. With the bonding layer including the diffusion layer diffused to at least one of them, the life is long and stable without detaching the tip from the tool body, and the length of the neck is easily adjusted to adjust the processing depth. An adjustable end mill is disclosed There.

また、特許文献2には、工具先端の刃部が実質的に超高硬度焼結体から成り、該超高硬度焼結体に一体焼結された超硬合金材の1部がシャンク孔部に差し込まれて、ろう材としてNi−Cr系ろう材、Ag−Cu−Ti系ろう材、Ag−Cu−Zn系ろう材を用いてろう付け固定されている小径エンドミルであり、該シャンク孔部内に差し込まれている超硬合金材部分の外接円直径Dhと刃部の最大直径Dcとの比Dh/Dcが2以上であることによって、超高硬度焼結体チップから成る工具先端部、特に刃部から首部にかけた部分の横方向への剛性が高く、しかも首部の取り付け強度が高い、高精度・高効率加工が可能な、すぐれた切削特性を有する小径エンドミルが開示されている。   Further, in Patent Document 2, the blade portion at the tip of the tool is substantially made of an ultra-high hardness sintered body, and a part of the cemented carbide material integrally sintered with the ultra-high hardness sintered body is a shank hole portion. Is a small-diameter end mill that is brazed and fixed using a Ni—Cr brazing material, an Ag—Cu—Ti brazing material, or an Ag—Cu—Zn brazing material as a brazing material, and the inside of the shank hole The tip end portion of the tool made of a super-hard sintered body tip, particularly when the ratio Dh / Dc of the circumscribed circle diameter Dh of the cemented carbide material portion inserted into the maximum diameter Dc of the blade portion is 2 or more, A small-diameter end mill having excellent cutting characteristics capable of high-precision and high-efficiency machining with high rigidity in the lateral direction of a portion from the blade portion to the neck portion and high attachment strength of the neck portion is disclosed.

特開2007−268647号公報JP 2007-268647 A 特開2004−268202号公報JP 2004-268202 A

ところが、前記特許文献1および特許文献2に開示されたエンドミルは、Ni系の金属を用いることで強固な接合強度が得られるとしているが、Niが拡散し過ぎると超硬シャンクおよび刃先側の超硬基材の機械特性が低下し、折損の原因になるという課題があった。
また、前記特許文献2に開示されたAg系ろう材では、Agの機械的強度が低いため十分な接合強度が得られなかった。
また、従前のろう材を用いた接合では、融点が高いため接合時にcBN焼結体やPCD焼結体を劣化させるという課題があった。
そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、接合合金を介して接合されたcBN焼結体またはPCD焼結体を素材とする切れ刃部とWC基超硬製工具本体とを有する超高圧焼結体製切削工具において、接合部からの折損が少ないすぐれた接合強度を有するとともに、接合時の熱によってcBN焼結体やPCD焼結体が劣化することがない超高圧焼結体製切削工具を提供することである。
However, the end mills disclosed in Patent Document 1 and Patent Document 2 are said to provide a strong joint strength by using a Ni-based metal, but if Ni diffuses too much, the carbide shank and the cutting edge side super There existed a subject that the mechanical characteristic of a hard base material fell and it became a cause of breakage.
Moreover, in the Ag type brazing material disclosed in Patent Document 2, sufficient mechanical strength was not obtained due to the low mechanical strength of Ag.
Moreover, in the joining using the conventional brazing material, since the melting point is high, there is a problem that the cBN sintered body and the PCD sintered body are deteriorated at the time of joining.
Therefore, the technical problem to be solved by the present invention, that is, the object of the present invention, is to provide a cutting edge portion made of a cBN sintered body or a PCD sintered body joined via a joining alloy and a WC-based carbide. In a cutting tool made of an ultra-high pressure sintered body having a tool body, the cBN sintered body and the PCD sintered body may be deteriorated by heat at the time of joining as well as having excellent joining strength with little breakage from the joint. There is no need to provide a cutting tool made of ultra high pressure sintered body.

そこで、本発明者らは、接合合金を介して接合されたcBN焼結体またはPCD焼結体(以下、単に焼結体と称す)製切れ刃部とWC基超硬製工具本体とを有する超高圧焼結体製切削工具において、その接合部の接合強度改善について鋭意研究した結果、以下の知見を得た。   Therefore, the present inventors have a cBN sintered body or a PCD sintered body (hereinafter simply referred to as a sintered body) made of a cutting blade and a WC-based cemented carbide tool body joined via a joining alloy. As a result of diligent research on improving the joint strength of the ultra high-pressure sintered body cutting tool, the following knowledge was obtained.

(1)焼結体製切れ刃部とWC基超硬製工具本体のシャンク先端とを接合するに当たり、切れ刃部を構成する焼結体は、予めWC基超硬製支持片で裏打ちしておく。そして、WC基超硬製支持片およびWC基超硬製工具本体の接合面表面に、それぞれ、あらかじめCrをコーティングした後、両者間にNi系の接合合金を挿入し、所定条件で接合する。これにより、Cr層がNi拡散のバリアとなり、過剰なNiの拡散を防止することが可能になる。さらにCrは、WC基超硬中に含まれるWと合金化することで、WC基超硬製支持片およびWC基超硬製工具本体と接合合金との間に強固な接合層を形成する。このCr―W合金は、接合完了後は連続して存在する必要はなく、部分的に存在することでも接合強度の改善に十分寄与できることを見出した。 (1) In joining the sintered body cutting edge and the shank tip of the WC-based carbide tool body, the sintered body constituting the cutting edge is previously lined with a WC-based carbide support piece. deep. And after coating Cr in advance on the joint surface of the WC-base cemented carbide support piece and the WC-base cemented carbide tool body, a Ni-based joining alloy is inserted between the two and joined under predetermined conditions. Thereby, the Cr layer becomes a barrier for Ni diffusion, and it becomes possible to prevent excessive diffusion of Ni. Further, Cr is alloyed with W contained in the WC-based carbide to form a strong bonding layer between the WC-based carbide support piece and the WC-based carbide tool body and the bonding alloy. The present inventors have found that the Cr—W alloy does not need to be continuously present after the completion of the joining, and the presence of the Cr—W alloy can sufficiently contribute to the improvement of the joining strength.

(2)Cr層は、例えば、無水クロム酸を溶液として電解析出することで接合面表面にCr層を得ることができる。この時、Cr層が厚すぎるとNiがWC基超硬中に拡散することができなくなり、接合強度の向上に寄与するNi拡散層が形成されなくなるため、1.0μm以下とすることが望ましいことを見出した。一方、0.1μm未満になるとNiの過剰な拡散を抑制するという本来の機能が十分に発揮できなくなることも確認された。すなわち、Cr層を厚くするにつれてNiの拡散が抑えられ、Cr層を薄くするにつれてNiの拡散が増えるが、薄すぎるとNiが過剰に拡散してWC基超硬の機械的強度が低下する。したがって、Cr層の厚みを制御することが、接合強度を向上させるキーファクターであることを見出した。 (2) For the Cr layer, for example, the Cr layer can be obtained on the joint surface by electrolytically depositing chromic anhydride as a solution. At this time, if the Cr layer is too thick, Ni cannot be diffused into the WC-based cemented carbide, and a Ni diffusion layer that contributes to improving the bonding strength is not formed. I found. On the other hand, it was also confirmed that when the thickness is less than 0.1 μm, the original function of suppressing excessive diffusion of Ni cannot be sufficiently exhibited. That is, as the Cr layer is thickened, Ni diffusion is suppressed, and as the Cr layer is thinned, Ni diffusion increases. However, if the Cr layer is too thin, Ni is excessively diffused and the mechanical strength of the WC-based carbide is lowered. Therefore, it has been found that controlling the thickness of the Cr layer is a key factor for improving the bonding strength.

(3)接合合金の含有成分について仮説と検証に基づく幾多の必見を繰り返した結果、Ni−Cr―B−Si成分からなり、Feを含む不可避不純物を含有した合金が接合強度にすぐれているということを見出した。特に、接合合金中にBおよびSiを添加することによって、融点をさげることができ、焼結体の劣化を防止できることを見出した。 (3) As a result of repeating a number of must-sees based on hypotheses and verifications regarding the components contained in the bonded alloy, it is said that an alloy containing Ni-Cr-B-Si components and containing inevitable impurities including Fe has excellent bonding strength. I found out. In particular, it has been found that by adding B and Si to the bonding alloy, the melting point can be reduced, and deterioration of the sintered body can be prevented.

(4)前記接合部の状態を観察すると、図2に示すように、接合合金として挿入したNi−Cr−B−Si系合金は溶融しているが、Niは、超硬表面に形成されたCr層によって、過剰な拡散が防止されている。なお、切れ刃部のWC基超硬製支持片および超硬製工具本体の接合面表面に深さ2μm以上15μm以下のNi拡散層を形成していることを確認した。 (4) Observing the state of the joint, as shown in FIG. 2, the Ni—Cr—B—Si alloy inserted as a joining alloy was melted, but Ni was formed on the carbide surface. Excessive diffusion is prevented by the Cr layer. It was confirmed that a Ni diffusion layer having a depth of 2 μm or more and 15 μm or less was formed on the joining surface of the WC-based cemented carbide support piece and the cemented carbide tool body of the cutting edge.

本発明は、前記知見に基づいてなされたものであって、
「(1) WC基超硬製支持片で裏打ちされたcBN焼結体またはPCD焼結体から構成された切れ刃部とWC基超硬製工具本体とを接合合金を介在させて局部加熱で接合した接合部を有する切削工具において、
前記切れ刃部およびWC基超硬製工具本体が、接合合金との接合面にそれぞれCr層を有し、
前記Cr層間の接合層中の5点を測定し平均した合金組成が、Cr:14〜18at%、B:20〜26at%、Si:1〜5at%、Ni:32〜40at%、残部がFeおよび不可避不純物であることを特徴とする切削工具。
(2) 前記Cr層の平均層厚が、0.1〜1.0μmであることを特徴とする(1)に記載の切削工具。
(3) 前記接合部が、接合合金のNi成分が切れ刃部のWC基超硬製支持片内およびWC基超硬製工具本体内に拡散して形成されたNi拡散層と、前記Cr層と、前記Cr層間の接合層とからなり、該接合部の合計平均層厚が5〜50μであることを特徴とする(1)または(2)に記載の切削工具。」
を特徴とするものである。
The present invention has been made based on the above findings,
“(1) A cutting blade portion composed of a cBN sintered body or a PCD sintered body lined with a WC-based cemented carbide support piece and a WC-based cemented carbide tool body are locally heated with a joining alloy interposed therebetween. In a cutting tool having joined joints,
The cutting edge part and the WC-based carbide tool body each have a Cr layer on the joint surface with the joint alloy,
The alloy composition obtained by measuring and averaging five points in the bonding layer between the Cr layers was Cr: 14-18 at%, B: 20-26 at%, Si: 1-5 at%, Ni: 32-40 at%, and the balance was Fe. A cutting tool characterized by being an inevitable impurity.
(2) The cutting tool according to (1), wherein an average layer thickness of the Cr layer is 0.1 to 1.0 μm.
(3) The Ni diffusion layer formed by diffusing the Ni component of the bonding alloy in the WC-based cemented carbide support piece and the WC-based cemented carbide tool body of the cutting edge, and the Cr layer. The cutting tool according to (1) or (2), wherein the total average layer thickness of the joint is 5 to 50 μm. "
It is characterized by.

以下に、本発明について、詳細に説明する。
本発明では、cBN焼結体またはPCD焼結体を素材とする切れ刃部とWC基超硬製工具本体とを接合合金を介在させて接合し、切削工具を構成する。
この切削工具の製造法の一例は、cBN焼結体を切れ刃部の素材とする場合は、以下のとおりである。
(a)65容量%のcBNと残りTiN、TiCN、TiC、Al結合相をボールミルで24時間、アセトンを用いて湿式混合する。
(b)得られた混合粉末を乾燥後、油圧プレスにて成形圧100MPaで成形する。
(c)得られた成形体を真空中1×10−2Pa、温度1000℃、保持時間30分の条件で熱処理し、揮発成分および粉末表面への吸着成分を除去する。
(d)成形体と超硬合金基材を積層し、代表的には圧力5GPa、温度1500℃、保持時間30分の条件で超高圧高温処理し、cBN焼結体を得る。
(e)得られたcBN焼結体の上下面を研削した後、cBN焼結体円板を得る。
(f)cBN焼結体円板をワイヤー放電加工機で所定寸法に切断し、WC基超硬製支持体付き切れ刃用cBN焼結体片を得る。
(g)cBN焼結体片のWC基超硬製支持片とWC基超硬製工具本体の接合面表面にあらかじめ、Crをコーティングする。例えば、無水クロム酸を溶液として電解析出することで超硬表面にCr層を得ることができる。Cr層が厚すぎると接合合金がcBN焼結体片のWC基超硬製支持体およびWC基超硬製工具本体中に拡散することができなくなるため、1.0μm以下が好ましい。
(h)接合合金は、所定量の組成になるように秤量し、真空アーク溶解炉で溶融してボタン形状のインゴットを得る。これを熱間圧延して板状にした後、さらに冷間圧延で所定の厚み、例えば、50μmの薄板を得る。
(i)前記(g)の工程でCrがコーティングされたWC基超硬製工具本体の先端部に前記(h)の方法で得た薄板形状の接合合金、例えば、Ni−Cr−B−Si合金を設置し、さらにcBN焼結体片をWC基超硬製支持体が接合面側に来るように設置する。このcBN焼結体片のWC基超硬製支持体表面には、同じくCrがコーティングされている。この状態で圧力100MPaで加圧し、不活性ガス中にて高周波で接合部を局部加熱することにより接合が形成される。
(j)上下面および外周面を研磨して、ロングネックタイプのボールエンドミル形状を得る。
(k)さらに面取り加工でホーニングを設ける。
(l)その後、必要に応じて、例えば、TiAlNなどからなる硬質被覆層をPVDで設けることによって、耐摩耗性などを向上させることもある。
The present invention is described in detail below.
In the present invention, a cutting tool is configured by joining a cutting edge portion made of a cBN sintered body or a PCD sintered body and a WC-based carbide tool body with a joining alloy interposed therebetween.
An example of the manufacturing method of this cutting tool is as follows, when using a cBN sintered compact as a raw material of a cutting edge part.
(A) 65 volume% cBN and the remaining TiN, TiCN, TiC, and Al 2 O 3 bonded phases are wet mixed in a ball mill for 24 hours using acetone.
(B) The obtained mixed powder is dried and then molded with a hydraulic press at a molding pressure of 100 MPa.
(C) The obtained molded body is heat-treated in vacuum at 1 × 10 −2 Pa, a temperature of 1000 ° C., and a holding time of 30 minutes to remove volatile components and components adsorbed on the powder surface.
(D) A compact and a cemented carbide base material are laminated, and typically subjected to ultra-high pressure and high temperature treatment under conditions of a pressure of 5 GPa, a temperature of 1500 ° C., and a holding time of 30 minutes to obtain a cBN sintered body.
(E) After grinding the upper and lower surfaces of the obtained cBN sintered body, a cBN sintered body disc is obtained.
(F) The cBN sintered compact disc is cut into a predetermined dimension with a wire electric discharge machine to obtain a cBN sintered compact for a cutting edge with a WC-based carbide support.
(G) Cr is coated in advance on the surface of the joint surface of the WC-based cemented carbide support piece of the cBN sintered compact and the WC-based cemented carbide tool body. For example, a Cr layer can be obtained on the carbide surface by electrolytically depositing chromic anhydride as a solution. If the Cr layer is too thick, the bonding alloy cannot be diffused into the WC-based cemented carbide support body and the WC-based cemented carbide tool body of the cBN sintered body piece, so 1.0 μm or less is preferable.
(H) The bonding alloy is weighed so as to have a predetermined composition and melted in a vacuum arc melting furnace to obtain a button-shaped ingot. This is hot-rolled into a plate shape, and further cold-rolled to obtain a thin plate having a predetermined thickness, for example, 50 μm.
(I) A thin plate-shaped bonding alloy obtained by the method (h), for example, Ni—Cr—B—Si, at the tip of the WC-based carbide tool body coated with Cr in the step (g). The alloy is installed, and the cBN sintered body piece is further installed so that the WC-based cemented carbide support comes on the bonding surface side. Similarly, Cr is coated on the surface of the WC-based cemented carbide support body of the cBN sintered body piece. In this state, pressurization is performed at a pressure of 100 MPa, and a joint is formed by locally heating the joint at a high frequency in an inert gas.
(J) The upper and lower surfaces and the outer peripheral surface are polished to obtain a long neck type ball end mill shape.
(K) Further honing is provided by chamfering.
(L) Thereafter, if necessary, for example, a hard coating layer made of TiAlN or the like may be provided by PVD to improve wear resistance or the like.

前記のようにしてできた接合面にCr層を形成したcBN焼結体を素材とする切れ刃部のWC基超硬製支持体とWC基超硬製工具本体との間の接合層の状態を目視観察すると、接合合金として挿入したNi−Cr−B−Si合金は消失しており、あたかも、WC基超硬製工具本体とcBN焼結体片とが一体化した複合材料が形成されているようにみられるが、接合層についてオージェ電子分光法(AES)を用いて、詳細にその構成成分、分布を調査したところ、WC基超硬製工具本体との接合面近傍では、WC基超硬製工具本体のWC粒子のW成分と表面にコーティングしたCrとが合金化することでWC基超硬と接合合金との間に強固な接合層を形成していること、および、接合合金成分のNiは、WC基超硬製工具本体の接合面に形成したCr層がバリアになって、WC基超硬製工具本体中に過剰に拡散することなく接合面近傍に留まっていることを確認した。一方、cBN焼結体片のWC基超硬製支持体表面近傍ではWC粒子のWと表面にコーティングしたCrとが合金化することでWC基超硬と接合合金との間に強固な接合層を形成していること、および、接合合金成分のNiは、WC基超硬製支持片の接合面に形成したCr層がバリアになって、WC基超硬製支持片中に過剰に拡散することなく接合面近傍に留まっていることを確認した(図2参照)。
なお、本発明において、接合層とは、WC基超硬製工具本体に形成したCr層とcBN焼結体片のWC基超硬製支持体表面に形成したCr層との間の層を意味している。また、接合部とは、WC基超硬製工具本体およびBN焼結体片のWC基超硬製支持体中に形成されるNi拡散層と、WC基超硬製工具本体およびBN焼結体片のWC基超硬製支持体の接合面表面に形成したCr層と、前記Cr層間に形成される接合層とから形成されるWC基超硬製工具本体とBN焼結体片との接合領域のことを意味している。
The state of the bonding layer between the WC-based cemented carbide support body and the WC-based cemented carbide tool body of the cutting edge portion made of the cBN sintered body having the Cr layer formed on the bonded surface as described above. As a result of visual observation, the Ni—Cr—B—Si alloy inserted as a bonding alloy disappeared, as if a composite material in which the WC-based carbide tool body and the cBN sintered body piece were integrated was formed. However, when the structural components and distribution of the bonding layer were investigated in detail using Auger electron spectroscopy (AES), in the vicinity of the bonding surface with the WC-based carbide tool body, the WC-based The W component of the WC particles of the hard tool body and the Cr coated on the surface are alloyed to form a strong bonding layer between the WC-based carbide and the bonding alloy, and the bonding alloy component Ni is formed on the joint surface of the WC-based carbide tool body Was turned Cr layer is the barrier, it was confirmed that remains on the joint surface near without excessively diffused in WC-based cemented carbide tool body. On the other hand, in the vicinity of the WC-based cemented carbide support surface of the cBN sintered compact, the WC particles W and Cr coated on the surface are alloyed to form a strong bonding layer between the WC-based cemented carbide and the bonding alloy. In addition, Ni of the bonding alloy component is excessively diffused in the WC-based cemented carbide support piece, with the Cr layer formed on the bonding surface of the WC-based cemented carbide support piece serving as a barrier. It confirmed that it remained in the joint surface vicinity (refer FIG. 2).
In the present invention, the bonding layer means a layer between the Cr layer formed on the WC-based cemented carbide tool body and the Cr layer formed on the surface of the WC-based cemented carbide support of the cBN sintered body piece. doing. In addition, the joining portion refers to the Ni diffusion layer formed in the WC-based cemented carbide support body of the WC-based cemented carbide tool body and the BN sintered body piece, the WC-based cemented carbide tool body, and the BN sintered body. Joining of a WC-based cemented carbide tool body formed from a Cr layer formed on the surface of a joining surface of a piece of a WC-based cemented carbide support and a bonding layer formed between the Cr layers and a BN sintered body piece It means an area.

さらに、前記接合層中の5点についてオージェ電子分光法により合金組成を求めその平均値を算出し、接合特性(引張強さ、曲げ強さ、せん断強度など)との関係について鋭意研究を重ねたところ、Cr:14〜18at%、B:20〜26at%、Si:1〜5at%、Ni:32〜40at%、残部がFeおよび不可避不純物であるときに、接合部はすぐれた接合特性を有することが判明した。   Furthermore, the alloy composition was obtained by Auger electron spectroscopy at the five points in the bonding layer, the average value was calculated, and extensive research was conducted on the relationship with bonding characteristics (tensile strength, bending strength, shear strength, etc.). However, when Cr: 14 to 18 at%, B: 20 to 26 at%, Si: 1 to 5 at%, Ni: 32 to 40 at%, and the balance is Fe and inevitable impurities, the joint has excellent joint characteristics. It has been found.

前述のようにWC基超硬製工具本体上に接合合金を設置し、さらにWC基超硬製支持体を有するcBN焼結体片を設置し、圧力100MPaをかけた状態で、例えば、Arガスのような不活性ガス中にて高周波で接合部近傍を局部加熱することにより、WC基超硬製工具本体とcBN焼結体片のWC基超硬製支持体との両方にNi拡散層を有する接合部を形成することができる。
このとき接合部の形成に用いる接合合金の厚みは、厚くなりすぎると接合強度が低下するため50μm以下が望ましい。また、Ni拡散層は、強固な接合強度を得るだけでなく、接合部に発生する応力を緩和する目的があるため、厚みは、2μm以上あることが望ましい。一方、厚くなりすぎると接合部の強度が低下するため15μm以下であることが望ましい。
また、接合合金のNi成分が切れ刃部のWC基超硬製支持片内およびWC基超硬製工具本体内に拡散して形成されたNi拡散層と、Cr層と、Cr層間の接合層とからなる接合部の合計平均層厚は、50μmを超えると接合部自身に曲げ、引っ張り等の力が直接加わり接合部分の強度が低下し、折損の問題が発生する。一方、5μm未満になるとNi接合層、接合層、Cr層の厚みのそれぞれが、薄くなるため、接合強度を十分に発揮できなくなるため好ましくない。そのため、接合部の接合部の合計平均層厚は、5〜50μと定めた。
As described above, a bonding alloy is installed on the WC-based cemented carbide tool body, a cBN sintered body having a WC-based cemented carbide support is installed, and a pressure of 100 MPa is applied, for example, Ar gas By locally heating the vicinity of the joint at a high frequency in an inert gas such as, a Ni diffusion layer is formed on both the WC-based cemented carbide tool body and the WC-based cemented carbide support of the cBN sintered body piece. The junction part which has can be formed.
At this time, the thickness of the bonding alloy used for forming the bonded portion is desirably 50 μm or less because the bonding strength decreases if the thickness is too large. In addition, the Ni diffusion layer not only obtains a strong bonding strength but also has the purpose of relaxing the stress generated in the bonded portion, so that the thickness is desirably 2 μm or more. On the other hand, if the thickness is too large, the strength of the joint portion is lowered, so that the thickness is desirably 15 μm or less.
Further, the Ni diffusion layer formed by diffusing the Ni component of the bonding alloy in the WC-based cemented carbide support piece and the WC-based cemented carbide body of the cutting edge, the Cr layer, and the bonding layer between the Cr layers When the total average layer thickness of the joints consisting of the above exceeds 50 μm, a force such as bending and pulling is directly applied to the joints themselves, the strength of the joints is lowered, and the problem of breakage occurs. On the other hand, when the thickness is less than 5 μm, the thicknesses of the Ni bonding layer, the bonding layer, and the Cr layer are each reduced, so that the bonding strength cannot be sufficiently exhibited. Therefore, the total average layer thickness of the joint part of the joint part was determined to be 5 to 50 μm.

接合合金中のNiは、WC基超硬製工具本体に含まれるCoバインダ中に拡散することで一体化し、強固な接合を得る効果があるが、WC基超硬製工具本体の接合面に形成されたCr層により、過剰な拡散が抑制されるため、WC基超硬製工具本体の機械的特性の低下が防止される。BとSiは、接合合金の融点を下げる作用があるため、接合時に加える温度を下げることができ、cBN焼結体やPCD焼結体の劣化を防止することができる。さらに、Crは、WC基超硬製工具本体およびcBN焼結体またはPCD焼結体に裏打ちされたWC基超硬製支持片中のW成分と合金化することにより、WC基超硬製工具本体およびWC基超硬製支持片と接合合金との間に強固な接合層を形成する。   Ni in the bonding alloy is integrated by diffusion in the Co binder contained in the WC-based carbide tool body, and has the effect of obtaining a strong bond, but formed on the bonding surface of the WC-based carbide tool body. Since the excessive diffusion is suppressed by the Cr layer, the deterioration of the mechanical characteristics of the WC-based cemented carbide tool body is prevented. Since B and Si have an effect of lowering the melting point of the bonding alloy, the temperature applied at the time of bonding can be lowered, and the deterioration of the cBN sintered body and the PCD sintered body can be prevented. Furthermore, Cr is alloyed with the W component in the WC-based cemented carbide support body lined with the WC-based cemented carbide tool body and the cBN sintered body or PCD sintered body, thereby forming a WC-based cemented carbide tool. A strong bonding layer is formed between the main body and the WC-based cemented carbide support piece and the bonding alloy.

ここで接合層中の5点で測定した合金組成の平均値を前記のように定めた理由について説明する。
Cr:
WC、Ni両元素とも濡れ性がよく、接合部の強度を改善する効果がある。しかしながら、含有量が18at%を超えると高温強度低下の原因となる。また、14at%より少ないと十分な濡れ性が得られない。そこで、Crの含有量は、14〜18at%と定めた。
B、Si:
接合は、950℃より低い温度で行う必要がある。というのは、950℃以上になるとcBN焼結体またはPCD焼結体の特性が劣化するからである。特に、バインダとしてCo等の金属を使用した場合、劣化が顕著になるため950℃以下で行う必要がある。
ところが、NiおよびCrは、融点がそれぞれ1455℃、1903℃であり、cBN焼結体やPCD焼結体の接合には高温すぎるため、融点を下げる必要がある。BおよびSiは、NiおよびCrの両方と共晶反応するため、融点を下げることが可能になる。そこで、BおよびSiを用いて融点を下げるのだが、Bが20at%よりも少ないと十分に融点を下げることができず、26at%よりも多いと脆化の原因になる。また、Siが1at%よりも少ないと十分に融点を下げることができず、5at%よりも多いと脆化の原因になる。そこで、BおよびSiの含有量は、B:20〜26at%、Si:1〜5at%と定めた。
Fe:
Feは、安価な素材であるため接合合金の低価格化につながり、Niと同様の効果が期待できるので数at%添加しているが、AES分析では検出されなかったため、その他不可避不純物と同じく量は規定しないが、表3に示すように接合合金中に数wt%添加している。
Ni:
接合層の合金組成において、前記成分を除いた残部を占める成分であって、高温強度が高いので強固な接合強度が得られる。また、Niは、溶融時の移動度も高いため、接合部全体に亘り拡散し、WC基超硬製工具本体とcBN焼結体またはPCD焼結体とを強固に接合する。Niが32at%よりも少ないと強度の改善効果が十分に得られず、40at%より多いと融点が高くなりすぎcBN焼結体やPCD焼結体の性能が劣化する原因となる。
Here, the reason why the average value of the alloy composition measured at five points in the bonding layer is determined as described above will be described.
Cr:
Both WC and Ni elements have good wettability and have the effect of improving the strength of the joint. However, if the content exceeds 18 at%, the high temperature strength is reduced. Moreover, when it is less than 14 at%, sufficient wettability cannot be obtained. Therefore, the Cr content is determined to be 14 to 18 at%.
B, Si:
Bonding needs to be performed at a temperature lower than 950 ° C. This is because the characteristics of the cBN sintered body or the PCD sintered body deteriorate at 950 ° C. or higher. In particular, when a metal such as Co is used as the binder, the deterioration becomes remarkable, so it is necessary to perform the treatment at 950 ° C. or lower.
However, Ni and Cr have melting points of 1455 ° C. and 1903 ° C., respectively, which are too high for joining a cBN sintered body and a PCD sintered body, and thus the melting point needs to be lowered. Since B and Si undergo a eutectic reaction with both Ni and Cr, the melting point can be lowered. Therefore, the melting point is lowered using B and Si. However, if B is less than 20 at%, the melting point cannot be lowered sufficiently, and if it exceeds 26 at%, embrittlement occurs. Further, if Si is less than 1 at%, the melting point cannot be lowered sufficiently, and if it exceeds 5 at%, it causes embrittlement. Therefore, the contents of B and Si are determined as B: 20 to 26 at% and Si: 1 to 5 at%.
Fe:
Fe is an inexpensive material, which leads to a reduction in the price of the bonding alloy and can be expected to have the same effect as Ni. Therefore, it is added in several at%, but it was not detected by AES analysis. However, as shown in Table 3, several wt% is added to the bonded alloy.
Ni:
In the alloy composition of the bonding layer, it is a component that occupies the remainder excluding the above components, and since the high-temperature strength is high, a strong bonding strength can be obtained. Further, since Ni has a high mobility at the time of melting, it diffuses over the entire joint and firmly joins the WC-based cemented carbide tool body and the cBN sintered body or PCD sintered body. When Ni is less than 32 at%, the effect of improving the strength cannot be sufficiently obtained, and when it is more than 40 at%, the melting point becomes too high and the performance of the cBN sintered body or PCD sintered body deteriorates.

本発明によれば、cBN焼結材またはPCD焼結材を素材とする切れ刃部とWC基超硬製工具本体とを接合合金を介在させて接合した接合部を有する切削工具において、切れ刃部およびWC基超硬製工具本体が、接合合金との接合面にCr層を有し、Cr層間の接合層中の5点を測定し平均した合金組成が、Cr:14〜18at%、B:20〜26at%、Si:1〜5at%、Ni:32〜40at%、残部がFeおよび不可避不純物であることによって、接合面のCr層がNi拡散のバリアになり、過剰なNiの拡散を防止することが可能になることから、切れ刃部とWC基超硬製工具本体との接合強度が飛躍的に向上する。
その結果、cBNやPCDチップを刃先に使用したエンドミルやドリルにおいて、接合部からの折損がない強固な接合を得ることが可能になる。また、回転工具だけでなくインサートによる高硬度鋼やAl−SiC複合材料の高負荷加工において、刃先飛びがない強固な結合を安価で得ることが可能になる。
According to the present invention, in a cutting tool having a joined portion obtained by joining a cutting blade portion made of a cBN sintered material or a PCD sintered material and a WC-based carbide tool body with a joining alloy interposed therebetween, Part and WC-based cemented carbide tool body have a Cr layer on the joint surface with the joint alloy, and an alloy composition obtained by measuring and averaging five points in the joint layer between the Cr layers is Cr: 14 to 18 at%, B : 20 to 26 at%, Si: 1 to 5 at%, Ni: 32 to 40 at%, the balance being Fe and inevitable impurities, the Cr layer of the joint surface becomes a barrier for Ni diffusion, and excessive Ni diffusion Since it becomes possible to prevent, the joining strength of a cutting blade part and a WC base carbide tool main body improves remarkably.
As a result, in an end mill or drill that uses cBN or a PCD chip as a cutting edge, it is possible to obtain a strong joint without breakage from the joint. Further, in high load machining of not only rotating tools but also high hardness steel or Al—SiC composite material by insert, it is possible to obtain a strong bond without flying edge at low cost.

ロングネックタイプのボールエンドミルの外観を示した斜視図である。It is the perspective view which showed the external appearance of the long neck type ball end mill. 本発明エンドミル1の接合部全体を観察した写真である。It is the photograph which observed the whole junction part of this invention end mill 1.

つぎに、本発明を実施例により具体的に説明する。   Next, the present invention will be specifically described with reference to examples.

原料粉末として、いずれも0.5〜1μmの平均粒径を有するWC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度1400℃、保持時間1時間の条件で焼結し、表1に示される4種のWC基超硬製工具本体(以下、単に超硬製工具本体と云う)A−1〜A−4を形成した。 As raw material powders, WC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 0.5 to 1 μm were prepared. These raw material powders are shown in Table 1. It is blended into the blended composition, wet mixed in a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 100 MPa, and this green compact is vacuumed at 6 Pa, temperature 1400 ° C., holding time 1 hour. Sintering was performed under conditions to form four types of WC-based carbide tool bodies (hereinafter simply referred to as carbide tool bodies) A-1 to A-4 shown in Table 1.

次に、cBN焼結体の原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiCN粉末、TiB粉末、TiC粉末、AlN粉末、Al粉末を用意し、これら原料粉末を所定の配合組成で配合し、ボールミルで24時間アセトンを用いて湿式混合し、乾燥した後、100MPaの圧力で直径15mm×厚さ1mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力1×10−2Paの真空雰囲気中、温度1000℃、保持時間30分の条件で焼結して、揮発成分および粉末表面への吸着成分を除去し、切れ刃片用予備焼結体を形成した。そして、この切れ刃片予備焼結体を、別途用意したCo:16質量%、WC:残りの組成を有し、直径15mm×厚さ2mmの寸法を持ったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、圧力5GPaの真空雰囲気中、温度1500℃、保持時間30分の条件で超高圧高温焼結し、cBN焼結体B−1〜B−6を作製した。cBN焼結体B−1〜B−6の焼結体の組成を、焼結体断面研磨面のSEM観察結果の画像分析により求めたcBNの面積%を容量%として求めた。cBN以外の成分については、主結合相およびその他の結合相を構成している成分を確認するに止めた。その結果を表2に示す。 Next, cBN powder, TiN powder, TiCN powder, TiB 2 powder, TiC powder, AlN powder, Al 2 O each having an average particle size in the range of 0.5 to 4 μm as the raw material powder of the cBN sintered body 3 powders were prepared, these raw material powders were blended in a prescribed composition, wet mixed with acetone for 24 hours in a ball mill, dried, and then pressure having a size of 15 mm diameter × 1 mm thickness at 100 MPa pressure. Press compacted into powder, and then the green compact is sintered in a vacuum atmosphere at a pressure of 1 × 10 −2 Pa at a temperature of 1000 ° C. and a holding time of 30 minutes to adsorb the volatile components and the powder surface. The components were removed, and a pre-sintered body for cutting edge pieces was formed. And this cutting edge piece pre-sintered body was prepared separately with Co: 16% by mass, WC: WC-based cemented carbide support piece having the remaining composition, diameter 15 mm × thickness 2 mm, In a superposed state, it was charged into a normal ultra-high pressure sintering apparatus, and sintered at a high pressure and high temperature in a vacuum atmosphere at a pressure of 5 GPa at a temperature of 1500 ° C. and a holding time of 30 minutes. -B-6 was produced. The composition of the sintered bodies of the cBN sintered bodies B-1 to B-6 was determined by taking the area% of cBN determined by image analysis of the SEM observation result of the sintered body cross-section polished surface as the volume%. About components other than cBN, it stopped only to confirm the component which comprises the main binder phase and other binder phases. The results are shown in Table 2.

次に、前記cBN焼結体(以下、単に焼結体と云う)片のWC基超硬支持片と超硬合金製工具本体の接合面表面にそれぞれ、Crをコーティングする。Crのコーティングは、通常のコーティング方法を用いることができるが、本実施例においては、次に説明する電解メッキ法を用いた。すなわち、無水クロム酸を溶液として電解析出することで接合面表面にCr層を形成した。Cr層の厚さは、Niの過剰な拡散を抑制しつつ、接合部に要求される接合強度を確保するのに必要な適度な量の接合合金が焼結体および超硬合金製工具本体中に拡散することができる厚さとすることが必要である。その厚さについて、鋭意探求したところ、Cr層が厚すぎると接合合金がWC基超硬中に拡散することができなくなるため1.0μm以下とすることが望ましいことを見出した。一方、0.1μm未満になるとNiの過剰な拡散を抑制するという本来の機能が十分に発揮できなくなることも確認された。したがって、Cr層の厚さは、0.1〜1.0μmとすることが好ましい。Cr層形成面の縦断面をオージェ電子分光法(AES)による面分析で観察し、Cr層の平均層厚を求めた。その結果を表4に示した。   Next, Cr is coated on the joint surface of the WC-based cemented carbide support piece of the cBN sintered body (hereinafter simply referred to as a sintered body) and the cemented carbide tool body. For the Cr coating, a normal coating method can be used. In this example, the electrolytic plating method described below was used. That is, a Cr layer was formed on the joint surface by electrolytically depositing chromic anhydride as a solution. The thickness of the Cr layer is such that an appropriate amount of bonding alloy necessary for securing the bonding strength required for the bonded portion is suppressed in the sintered body and cemented carbide tool body while suppressing excessive diffusion of Ni. It is necessary to have a thickness that can be diffused into the surface. As a result of diligent investigations on the thickness, it was found that if the Cr layer is too thick, the bonding alloy cannot be diffused into the WC-based cemented carbide, so that it is preferably 1.0 μm or less. On the other hand, it was also confirmed that when the thickness is less than 0.1 μm, the original function of suppressing excessive diffusion of Ni cannot be sufficiently exhibited. Therefore, the thickness of the Cr layer is preferably 0.1 to 1.0 μm. The longitudinal section of the Cr layer forming surface was observed by surface analysis by Auger electron spectroscopy (AES), and the average layer thickness of the Cr layer was determined. The results are shown in Table 4.

次に、接合合金は、表3に示される配合組成になるように原料粉末を秤量し、真空アーク溶解炉で溶融してボタン形状のインゴットとする。これを熱間圧延して板状にした後、さらに冷間圧延で50μmの薄板形状の接合合金C−1〜C―6を得た。   Next, the raw material powder is weighed so as to have the composition shown in Table 3, and the bonding alloy is melted in a vacuum arc melting furnace to form a button-shaped ingot. This was hot-rolled into a plate shape, and then cold-rolled to obtain 50 μm thin plate-shaped joining alloys C-1 to C-6.

次に、前述の工程で接合面表面にCrがコーティングされた超硬合金製工具本体の先端部に前述の方法で得た薄板形状の接合合金を設置し、さらに前述の工程で接合面表面にCrがコーティングされたWC基超硬合金製支持片が裏打ちされた焼結体を設置する。この状態で圧力100MPaで加圧し、不活性ガス中にて高周波で接合部近傍を局部加熱することによりNi拡散層とCr層と残留している接合合金とからなる接合部が形成される。なお、接合条件によっては、接合合金がすべてWC基超硬合金製支持片および超硬合金製工具本体中に拡散して消失していても構わない。   Next, the bonding alloy in the form of a thin plate obtained by the above-described method is installed at the tip of the cemented carbide tool main body whose Cr is coated on the bonding surface in the above-described process, and further on the bonding surface in the above-described process. A sintered body lined with a support piece made of WC-based cemented carbide coated with Cr is installed. In this state, pressurization is performed at a pressure of 100 MPa, and the vicinity of the joint is locally heated at a high frequency in an inert gas, thereby forming a joint composed of the Ni diffusion layer, the Cr layer, and the remaining joint alloy. Depending on the joining conditions, all of the joining alloy may diffuse and disappear in the WC-based cemented carbide support piece and the cemented carbide tool body.

前述のようにそして、上下面および外周面を研磨して、図1に示すようなロングネックタイプのボールエンドミル形状とし、さらに面取り加工でホーニングを設けることにより、表4に示すような本発明エンドミル1〜10を作製した。 As described above, the upper and lower surfaces and the outer peripheral surface are polished to form a long neck type ball end mill as shown in FIG. 1, and further, honing is provided by chamfering so that the present invention end mill as shown in Table 4 is obtained. 1-10 were produced.

また、比較の意味で、前記と同様の工程により、Cr層が0.1〜1.0μmの範囲から逸脱するもの、接合合金の合金組成が本発明で用いるのとは異なる接合合金C−7〜C−10を用いた比較エンドミル1〜6を作製した。   Further, for comparison purposes, a bonding alloy C-7 in which the Cr layer deviates from the range of 0.1 to 1.0 μm by the same process as described above, and the alloy composition of the bonding alloy is different from that used in the present invention. Comparative end mills 1 to 6 using -C-10 were produced.

本発明エンドミル1〜10、比較エンドミル1〜6のそれぞれについて、接合部縦断面をオージェ電子分光法(AES)による面分析で観察した。その結果の一部を図2に示す。図2は、本発明エンドミル1の接合部全体を観察した写真である。明るく見えるのがNi、中央が接合合金、左側が切れ刃のWC基超硬合金製支持部、右側がWC超硬製工具本体である。Niが切れ刃の超硬合金部およびWC超硬製工具本体に拡散しているのが確認できるが、接合合金と超硬との境界部分にCrとWの合金層が形成されており、これにより、Niの過剰な拡散が阻止されていることが確認できる。このNiが拡散している領域全体が、接合部に相当する。この写真から接合部の厚みを算出すると、写真の左側、すなわち、切れ刃の超硬合金部内のNi拡散層の平均層厚が7.3μm、それに隣接するCr層の平均層厚が0.6μm、接合層の平均層厚が5.2μm、WC超硬製工具本体内のNi拡散層の平均層厚が8.8μm、それに隣接するCr層の平均層厚が0.7μmで接合部の合計平均層厚は、22.6μmとなっていた。他のサンプルについても同様に接合部の厚みを測定した。また、接合層中の5点について、オージェ電子分光法(AES)による面分析で測定した合金組成の平均値を求めた。なお、オージェ電子分光(AES)による面分析による合金測定の測定には、表4に示したような平均マトリックスル相対感度係数(AMRSF)を使用した半定量分析をおこなった。AMRSFは密度、電子の脱出深さ、背面散乱効果、弾性散乱補正などのマトリックス補正をほぼすべて含んでいるので、いくつかある相対感度係数(RSF)の中でも最も正確である。したがって、本発明では、AMRSFを用いた。その結果を表4にしめした。 About each of this invention end mills 1-10 and comparative end mills 1-6, the junction longitudinal section was observed by surface analysis by Auger electron spectroscopy (AES). A part of the result is shown in FIG. FIG. 2 is a photograph observing the entire joint portion of the end mill 1 of the present invention. Ni is visible, the center is a bonded alloy, the left side is a WC-based cemented carbide support part with a cutting edge, and the right side is a WC cemented carbide tool body. Although it can be confirmed that Ni has diffused into the cemented carbide part of the cutting edge and the tool body made of WC carbide, an alloy layer of Cr and W is formed at the boundary part between the bonded alloy and the cemented carbide. Thus, it can be confirmed that excessive diffusion of Ni is prevented. The entire area where Ni is diffused corresponds to the joint. When the thickness of the joint is calculated from this photograph, the average layer thickness of the Ni diffusion layer in the cemented carbide part of the cutting edge on the left side of the photograph is 7.3 μm, and the average layer thickness of the Cr layer adjacent thereto is 0.6 μm. The average layer thickness of the bonding layer is 5.2 μm, the average layer thickness of the Ni diffusion layer in the WC cemented carbide tool body is 8.8 μm, and the average layer thickness of the adjacent Cr layer is 0.7 μm. The average layer thickness was 22.6 μm. Similarly, the thickness of the joint was measured for the other samples. Moreover, the average value of the alloy composition measured by the surface analysis by Auger electron spectroscopy (AES) was calculated | required about five points in a joining layer. In addition, the semiquantitative analysis which used the average matrix relative sensitivity coefficient (AMRSF) as shown in Table 4 was performed for the measurement of the alloy measurement by surface analysis by Auger electron spectroscopy (AES). Since AMRSF includes almost all matrix corrections such as density, electron escape depth, backscattering effect, and elastic scattering correction, it is the most accurate of several relative sensitivity factors (RSFs). Therefore, AMRSF was used in the present invention. The results are shown in Table 4.

つぎに、本発明エンドミル1〜10、比較エンドミル1〜6のそれぞれについて、曲げ試験を実施し、曲げ強さを測定するとともに、破断箇所を目視観察した。その結果を表4に示した。なお、曲げ試験は、JIS・R1601で規定される超硬合金の曲げ強さ試験方法に準じた3点曲げ試験によって、JISより小さいサンプル形状を用いて行った。 Next, for each of the present invention end mills 1 to 10 and comparative end mills 1 to 6, a bending test was performed, the bending strength was measured, and the fractured portion was visually observed. The results are shown in Table 4. The bending test was performed using a sample shape smaller than JIS by a three-point bending test according to the bending strength test method of cemented carbide defined in JIS R1601.

表4に示される結果から、本発明エンドミル1〜10は、cBN焼結材を素材とする切れ刃部とWC基超硬製工具本体とを接合合金を介在させて接合した接合層を有し、切れ刃部およびWC基超硬製工具本体が、接合合金との接合面にCr層を有し、接合層の5点で測定した合金組成の平均値が、Cr:14〜18at%、B:20〜26at%、Si:1〜5at%、Ni:32〜40at%、残部がFeおよび不可避不純物であることによって、接合面のCr層がNi拡散のバリアになり、過剰なNiの拡散を防止することが可能になることから、切れ刃部とWC基超硬製工具本体との接合強度が飛躍的に向上する。その結果、2.7GPa以上の曲げ強さを示し、かつ、破断は、接合部以外の箇所(超硬合金部材)で生じていることから、すぐれた接合強度を有する複合材料であることが明らかである。   From the results shown in Table 4, the present invention end mills 1 to 10 have a joining layer obtained by joining a cutting edge portion made of a cBN sintered material and a WC-based carbide tool body with a joining alloy interposed therebetween. The cutting edge portion and the WC-based cemented carbide tool body have a Cr layer on the joining surface with the joining alloy, and the average value of the alloy composition measured at five points of the joining layer is Cr: 14 to 18 at%, B : 20 to 26 at%, Si: 1 to 5 at%, Ni: 32 to 40 at%, the balance being Fe and inevitable impurities, the Cr layer of the joint surface becomes a barrier for Ni diffusion, and excessive Ni diffusion Since it becomes possible to prevent, the joining strength of a cutting blade part and a WC base carbide tool main body improves remarkably. As a result, it shows a bending strength of 2.7 GPa or more, and since the fracture occurs at a place other than the joint (a cemented carbide member), it is clear that the composite material has excellent joint strength. It is.

特に、接合合金との接合面に設けるCr層の平均層厚が0.1〜1.0μmである場合または接合部の合計平均層厚が5〜50μmである場合には、曲げ強度は、3.7GPa以上とさらにすぐれた接合強度を示す。   In particular, when the average layer thickness of the Cr layer provided on the bonding surface with the bonding alloy is 0.1 to 1.0 μm, or when the total average layer thickness of the bonding portion is 5 to 50 μm, the bending strength is 3 Excellent bond strength of 7 GPa or more.

それに対して、接合層の合金組成、Cr層の平均層厚が本発明の範囲を逸脱する比較エンドミル1〜6は、曲げ強度が0.7〜1.8GPaを低い上に、いずれも接合面または接合部で破断が生じており、接合強度の点で劣っている。   On the other hand, the comparative end mills 1 to 6 in which the alloy composition of the bonding layer and the average layer thickness of the Cr layer depart from the scope of the present invention have a bending strength as low as 0.7 to 1.8 GPa, and all of the bonding surfaces Or the fracture | rupture has arisen in the junction part and it is inferior in the point of joining strength.

なお、本実施例においては、エンドミルを例にとって具体的に説明したが、本発明は、エンドミルに限られることなく、ドリル、インサートなど切り刃部と工具本体との接合部をもつすべての切削工具に適用可能であることはいうまでもない。また、切れ刃部の素材にcBN焼結体を用いたものを例にとって具体的に説明したが、PCD焼結体であっても同様の効果が得られることを確認した。   In the present embodiment, the end mill has been specifically described as an example. However, the present invention is not limited to the end mill, and all cutting tools having a joint portion between a cutting blade portion such as a drill and an insert and a tool body. Needless to say, this is applicable. Moreover, although what concretely demonstrated what used the cBN sintered compact for the raw material of a cutting blade part was confirmed, even if it was a PCD sintered compact, it confirmed that the same effect was acquired.

前述のように、本発明の切削工具は、各種の鋼や鋳鉄、Al−SiC複合材料などの高負荷切削加工であっても、cBN焼結体またはPCD焼結体製切れ刃部とWC基超硬製工具本体との接合強度がすぐれていることによって、長期に亘って安定した切削性能を発揮するものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the cutting tool of the present invention has a cutting edge portion made of a cBN sintered body or a PCD sintered body and a WC base even in high-load cutting such as various types of steel, cast iron, and Al—SiC composite materials. Because it has excellent bonding strength with the carbide tool body, it will exhibit stable cutting performance over a long period of time. Furthermore, it can cope with cost reduction sufficiently satisfactorily.

Claims (3)

WC基超硬製支持片に裏打ちされたcBN焼結体またはPCD焼結体から構成される切れ刃部とWC基超硬製工具本体とを接合合金を介在させて接合した接合部を有する切削工具において、
前記切れ刃部およびWC基超硬製工具本体が、接合合金との接合面にそれぞれCr層を有し、
前記Cr層間の接合層中の5点を測定し平均した合金組成が、Cr:14〜18at%、B:20〜26at%、Si:1〜5at%、Ni:32〜40at%、残部がFeおよび不可避不純物であることを特徴とする切削工具。
Cutting having a joining portion obtained by joining a cutting edge portion formed of a cBN sintered body or a PCD sintered body backed by a WC-based cemented carbide support piece and a WC-based cemented carbide tool body via a joining alloy. In the tool
The cutting edge part and the WC-based carbide tool body each have a Cr layer on the joint surface with the joint alloy,
The alloy composition obtained by measuring and averaging five points in the bonding layer between the Cr layers was Cr: 14-18 at%, B: 20-26 at%, Si: 1-5 at%, Ni: 32-40 at%, and the balance was Fe. A cutting tool characterized by being an inevitable impurity.
前記Cr層の平均層厚が、0.1〜1.0μmであることを特徴とする請求項1に記載の切削工具。 The cutting tool according to claim 1, wherein an average layer thickness of the Cr layer is 0.1 to 1.0 μm. 前記接合部が、接合合金のNi成分が切れ刃部およびWC基超硬製工具本体内に拡散して形成されたNi拡散層と、前記Cr層と、前記Cr層間の接合層とからなり、該接合部の合計平均層厚が5〜50μであることを特徴とする請求項1または請求項2に記載の切削工具。 The joining portion is composed of a Ni diffusion layer formed by diffusing the Ni component of the joining alloy in the cutting edge portion and the WC-based carbide tool body, the Cr layer, and a joining layer between the Cr layers, The cutting tool according to claim 1 or 2, wherein a total average layer thickness of the joint portion is 5 to 50 µm.
JP2012048881A 2012-03-06 2012-03-06 Cutting tool made of ultra high pressure sintered body Active JP5804380B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012048881A JP5804380B2 (en) 2012-03-06 2012-03-06 Cutting tool made of ultra high pressure sintered body
CN201310068873.1A CN103302345B (en) 2012-03-06 2013-03-05 Ultra-high pressure sintering system cutting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012048881A JP5804380B2 (en) 2012-03-06 2012-03-06 Cutting tool made of ultra high pressure sintered body

Publications (2)

Publication Number Publication Date
JP2013184229A JP2013184229A (en) 2013-09-19
JP5804380B2 true JP5804380B2 (en) 2015-11-04

Family

ID=49128309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012048881A Active JP5804380B2 (en) 2012-03-06 2012-03-06 Cutting tool made of ultra high pressure sintered body

Country Status (2)

Country Link
JP (1) JP5804380B2 (en)
CN (1) CN103302345B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141880A (en) * 1982-02-16 1983-08-23 Sumitomo Electric Ind Ltd Joining method of sintered hard alloy
ZA831949B (en) * 1982-03-31 1983-11-30 De Beers Ind Diamond Abrasive bodies
JP4787387B2 (en) * 1998-07-22 2011-10-05 住友電工ハードメタル株式会社 Cutting tool with excellent crater resistance and strength and method for producing the same
US7261753B2 (en) * 2002-07-26 2007-08-28 Mitsubishi Materials Corporation Bonding structure and bonding method for cemented carbide element and diamond element, cutting tip and cutting element for drilling tool, and drilling tool
JP2007268647A (en) * 2006-03-31 2007-10-18 Mitsubishi Materials Kobe Tools Corp End mill
JP5071462B2 (en) * 2009-09-18 2012-11-14 日立ツール株式会社 Rotary cutting tool

Also Published As

Publication number Publication date
CN103302345B (en) 2016-05-11
JP2013184229A (en) 2013-09-19
CN103302345A (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP6330387B2 (en) Sintered body and manufacturing method thereof
JP6245520B2 (en) Composite member and cutting tool
JP6459042B2 (en) Joining brazing material, composite member using the same, and cutting tool
WO2017038855A1 (en) Composite member and cutting tool
JP5656076B2 (en) cBN insert
JP5804380B2 (en) Cutting tool made of ultra high pressure sintered body
JP6695566B2 (en) Cemented carbide used as a tool for machining non-metallic materials
JP2018140416A (en) Composite member, joining member used for producing the same, and cutting tool formed from composite member
JP6819018B2 (en) TiCN-based cermet cutting tool
JP3803694B2 (en) Nitrogen-containing sintered hard alloy
WO2017135243A1 (en) Composite member and cutting tool
JP6757519B2 (en) Composite members and cutting tools
JP3520787B2 (en) Cutting tool using brazing filler metal with excellent bondability between cBN-based ultra-high pressure sintered compact and base cemented carbide
JP6304615B1 (en) tool
JP6694597B2 (en) Composite member and cutting tool
JP2002013377A (en) Excavation tool having brazed join part of cutting edge piece having excellent resistance against impact and join strength
JP6819017B2 (en) TiCN-based cermet cutting tool
JPH10193210A (en) Cemented carbide-made cutting tool having excellent brazing connection strength in cutting edge piece
JP2018111108A (en) Composite member and cutting tool comprising the composite member
JP4244108B2 (en) CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance
JP2018051619A (en) Composite member and cutting tool
JP3358477B2 (en) Cutting tool with excellent brazing joint strength with cutting edge piece
JP2016140920A (en) Composite member, and cutting tool
JP2016101603A (en) Composite member and cutting tool
JP2019063901A (en) Composite member and cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150820

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5804380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150