JP2016140920A - Composite member, and cutting tool - Google Patents

Composite member, and cutting tool Download PDF

Info

Publication number
JP2016140920A
JP2016140920A JP2015016474A JP2015016474A JP2016140920A JP 2016140920 A JP2016140920 A JP 2016140920A JP 2015016474 A JP2015016474 A JP 2015016474A JP 2015016474 A JP2015016474 A JP 2015016474A JP 2016140920 A JP2016140920 A JP 2016140920A
Authority
JP
Japan
Prior art keywords
cemented carbide
composite
based cemented
bonding
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015016474A
Other languages
Japanese (ja)
Inventor
五十嵐 誠
Makoto Igarashi
誠 五十嵐
藤原 和崇
Kazutaka Fujiwara
和崇 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015016474A priority Critical patent/JP2016140920A/en
Publication of JP2016140920A publication Critical patent/JP2016140920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the bond strength of a WC-based hard metal and a composite member made of a WC-based hard metal.SOLUTION: A composite member is prepared by jointing a WC-based hard metal member and a WC-based hard metal member with a bond member made of a Zn foil containing preferably Zn in 98 atom%. The binder phase of the WC-based hard metal in a junction is a composite member containing Zn: 40 to 85 atom% and Co: 15 to 60 atom%, and a tool is made of the composite member.SELECTED DRAWING: Figure 1

Description

本発明は、接合部の接合強度に優れた複合部材及び切削工具に関し、特に、WC基超硬合金とWC基超硬合金とを接合した複合部材、さらには、この複合部材からなる切削工具に関する。   The present invention relates to a composite member and a cutting tool having excellent joint strength at a joint portion, and more particularly, to a composite member obtained by joining a WC-based cemented carbide and a WC-based cemented carbide, and further to a cutting tool comprising the composite member. .

従来から、工具材料としては、WC基超硬合金、TiCN基サーメット、cBN焼結体等が良く知られているが、近年、工具材料を単一素材から形成するのではなく複合部材として工具材料を形成することが提案されている。   Conventionally, WC-based cemented carbide, TiCN-based cermet, cBN sintered body, and the like are well known as tool materials. However, in recent years, tool materials are not formed from a single material but as a composite member. Has been proposed to form.

例えば、特許文献1には、超硬合金部材と鋼部材とを接合層を介して接合した超硬合金部材と鋼部材の複合材料、あるいは、該複合材料の超硬合金部材に刃先加工を施したエンドミル、ドリル等の切削工具において、超硬合金部材に接する側の接合層はNiからなり、一方、鋼部材に接する側の接合層はNi−Cu合金からなり、さらに、鋼部材と接合層との接合面近傍には、該接合面から遠ざかるにしたがってCuの含有量が減少するCu拡散領域を形成することによって、超硬合金部材と鋼部材の接合強度を向上させることが提案されている。   For example, in Patent Document 1, a cutting edge process is applied to a composite material of a cemented carbide member and a steel member obtained by joining a cemented carbide member and a steel member via a joining layer, or a cemented carbide member of the composite material. In a cutting tool such as an end mill or a drill, the bonding layer on the side in contact with the cemented carbide member is made of Ni, while the bonding layer on the side in contact with the steel member is made of a Ni—Cu alloy, and further, the steel member and the bonding layer It has been proposed to improve the bonding strength between the cemented carbide member and the steel member by forming a Cu diffusion region in which the Cu content decreases as the distance from the bonding surface increases. .

また、特許文献2には、超硬合金からなる刃部と、炭素工具鋼からなる基体部をニッケル箔又はコバルト箔を介して接合させ、その接合部をレーザー照射し、刃部と基体部とを合金層を介して接合することによって、残留応力が小さく、かつ、接合強度が高い切断刃を得ることが提案されている。   Further, in Patent Document 2, a blade portion made of cemented carbide and a base portion made of carbon tool steel are joined via a nickel foil or a cobalt foil, and the joint portion is irradiated with a laser, the blade portion and the base portion, It has been proposed to obtain a cutting blade having a small residual stress and a high bonding strength by bonding the two through an alloy layer.

上記特許文献1、2で提案されているのは、異種材料相互を接合した複合部材からなる切削工具であるが、WC基超硬合金同士を接合した複合部材についての需要も高まっている。
このような複合部材は、例えば、超高圧高温焼結時にcBN焼結体の焼結と同時にWC基超硬合金基体を接合した複合焼結体からなる切刃部とWC基超硬合金製工具本体とを接合したcBN切削工具の分野で用いられ、また、多結晶ダイヤモンド層とWC基超硬合金が一体の積層構造をなしているPDC刃先材を、接合部を介してWC基超硬合金製工具本体と接合した地熱井掘削、岩盤掘削等に用いられるPDCビットの技術分野でも用いられている。
The above-mentioned Patent Documents 1 and 2 propose cutting tools made of a composite member in which different kinds of materials are joined together, but the demand for composite members in which WC-based cemented carbides are joined together is also increasing.
Such a composite member includes, for example, a cutting edge portion made of a composite sintered body in which a WC-based cemented carbide base is joined simultaneously with sintering of a cBN sintered body during ultra-high pressure and high-temperature sintering, and a WC-based cemented carbide tool. Used in the field of cBN cutting tools joined to the main body, and the PDC cutting edge material in which the polycrystalline diamond layer and the WC-based cemented carbide have an integrated laminated structure is connected to the WC-based cemented carbide through the joined portion. It is also used in the technical field of PDC bits used for geothermal well drilling, rock drilling, etc. joined to the tool body.

例えば、特許文献3には、cBN焼結体が接合部を介してWC基超硬合金製工具基体上に接合された切削工具において、15〜65重量%TiまたはZrの1種または2種とCuからなる接合部を形成することにより、cBN焼結体に割れや亀裂を発生させることなく、強固にWC基超硬合金製工具基体に接合する技術が提案されている。   For example, in Patent Document 3, in a cutting tool in which a cBN sintered body is bonded onto a WC-based cemented carbide tool base through a bonding portion, one or two of 15 to 65 wt% Ti or Zr is used. There has been proposed a technique for strongly joining a WC-based cemented carbide tool substrate without forming cracks or cracks in the cBN sintered body by forming a joint made of Cu.

さらに、特許文献4には、cBN基焼結体が接合部を介してWC基超硬合金製工具基体上に接合されており、cBN基焼結体と接合材の界面に厚み10〜300nmの窒化チタン化合物層を形成すると共に、cBN基焼結体背面の接合部の厚みを、底面の接合部の厚みよりも薄くすることにより、cBN基焼結体とWC基超硬合金製工具基体間の接合強度を高めることが提案されている。   Furthermore, in Patent Document 4, a cBN-based sintered body is bonded onto a WC-based cemented carbide tool base via a joint, and a thickness of 10 to 300 nm is formed at the interface between the cBN-based sintered body and the bonding material. A titanium nitride compound layer is formed, and the thickness of the bonding portion on the back surface of the cBN-based sintered body is made thinner than the thickness of the bonding portion on the bottom surface. It has been proposed to increase the bonding strength.

特開2009−131971号公報JP 2009-131971 A 特開2008−100348号公報JP 2008-100348 A 特開平11−320218号公報JP-A-11-320218 特開2012−111187号公報JP 2012-111187 A

特許文献1で提案された複合材料あるいはこれからなる切削工具は、通常条件の切削加工では、ある程度の性能を発揮するが、切刃に高負荷が作用する重切削条件では、接合強度が十分であるとはいえず、接合部からの破損が発生する恐れがあった。
特許文献2で提案された切断刃は、ガラス繊維を一定の長さに切断するための工具であって、鋼や鋳鉄等の切削用工具としては使用することができないものであった。
特許文献3で提案された切削工具は、Ti系の金属を用いることで強固な接合強度が得られるとしているが、Tiが拡散し過ぎると超硬シャンクおよび刃先側の超硬合金からなる工具基体の機械特性が低下し、折損の原因になるという問題があった。
特許文献4で提案された10〜300nmの窒化チタン化合物層を有する接合体は、接合材とcBN基焼結体との反応が適切でなく、十分な接合強度が得られないという問題があった。
The composite material proposed in Patent Document 1 or a cutting tool made of the composite material exhibits a certain level of performance in cutting under normal conditions, but has sufficient bonding strength under heavy cutting conditions in which a high load acts on the cutting blade. However, there was a risk of damage from the joint.
The cutting blade proposed in Patent Document 2 is a tool for cutting glass fibers into a certain length, and cannot be used as a cutting tool for steel, cast iron or the like.
The cutting tool proposed in Patent Document 3 says that a strong bonding strength can be obtained by using a Ti-based metal. However, if Ti diffuses too much, a tool base made of a cemented carbide shank and a cemented carbide on the cutting edge side. There was a problem that the mechanical properties of the resin deteriorated, causing breakage.
The bonded body having a 10-300 nm titanium nitride compound layer proposed in Patent Document 4 has a problem that the reaction between the bonding material and the cBN-based sintered body is not appropriate, and sufficient bonding strength cannot be obtained. .

そこで、本発明者らは、前記従来の複合部材およびこれからなる切削工具の問題点を解決すべく、WC基超硬合金とWC基超硬合金からなる複合部材およびこの複合材からなる切削工具、例えば、超高圧高温焼結時にcBN焼結体の焼結と同時にWC基超硬合金(裏打ち材)を接合した複合焼結体からなる切刃部とWC基超硬合金工具基体(台金)とを接合部材を介して接合した切削工具において、その接合部の接合強度を改善する方策について鋭意研究した結果、
WC基超硬合金とWC基超硬合金とを、Zn単層箔からなる接合部材を介して接合して複合部材を形成するにあたり、WC基超硬合金相互の接合部に、Zn:40〜85原子%及びCo:15〜60原子%の平均成分組成からなる結合相を形成することにより、WC基超硬合金相互の接合部の接合強度が向上することを見出した。
Therefore, the present inventors, in order to solve the problems of the conventional composite member and the cutting tool composed thereof, a composite member composed of a WC-based cemented carbide and a WC-based cemented carbide and a cutting tool composed of the composite material, For example, a cutting edge portion made of a composite sintered body in which a WC-based cemented carbide (lining material) is joined simultaneously with sintering of a cBN sintered body during ultra-high pressure and high-temperature sintering, and a WC-based cemented carbide tool base (base metal) As a result of diligent research on measures to improve the joint strength of the joint,
In forming a composite member by joining a WC-based cemented carbide and a WC-based cemented carbide through a joining member made of a Zn single layer foil, Zn: 40 to It has been found that by forming a binder phase having an average component composition of 85 atomic% and Co: 15 to 60 atomic%, the joint strength of the joint part between the WC-based cemented carbides is improved.

そして、WC基超硬合金相互の接合部に、前記平均成分組成の結合相を有するWC基超硬合金とWC基超硬合金からなる複合部材は、接合部の接合強度が向上するため、この複合部材から作製した切削工具は、切れ刃に高負荷が作用する鋼や鋳鉄の重切削加工に供した場合であっても、接合部からの破損発生を防止でき、長期の使用に亘って、すぐれた切削性能を発揮することができることを見出した。   And since the joint strength of the WC base cemented carbide and the WC base cemented carbide having the binder phase having the above average component composition at the joint portion between the WC base cemented carbide alloys improves the joint strength of the joint portion. The cutting tool made from the composite member can prevent the occurrence of breakage from the joint even when subjected to heavy cutting of steel or cast iron where a high load acts on the cutting edge. It has been found that excellent cutting performance can be exhibited.

本発明は、前記知見に基づいてなされたものであって、
「(1)WC基超硬合金部材とWC基超硬合金部材が、接合部で接合されている複合部材であって、
前記接合部は2〜50μmの厚さを有し、かつ、該接合部におけるWC基超硬合金の結合相は、Zn:40〜85原子%及びCo:15〜60原子%の平均成分組成からなることを特徴とする複合部材。
(2)前記複合部材は、WC基超硬合金部材とWC基超硬合金部材との間に接合部材を介した加圧接合によって形成されたものであり、該接合部材は、Znを98原子%以上含有するZn箔であることを特徴とする(1)に記載の複合部材。
(3)前記(1)または(2)に記載の複合部材から構成されていることを特徴とする工具。」
を特徴とするものである。
The present invention has been made based on the above findings,
“(1) A composite member in which a WC-based cemented carbide member and a WC-based cemented carbide member are joined at a joint,
The joint has a thickness of 2 to 50 μm, and the binder phase of the WC-based cemented carbide in the joint has an average composition of Zn: 40 to 85 atomic% and Co: 15 to 60 atomic%. A composite member characterized by comprising:
(2) The composite member is formed by pressure bonding through a bonding member between a WC-based cemented carbide member and a WC-based cemented carbide member, and the bonding member contains 98 atoms of Zn. The composite member according to (1), which is a Zn foil containing at least%.
(3) A tool comprising the composite member according to (1) or (2). "
It is characterized by.

以下に、本発明について、詳細に説明する。   The present invention is described in detail below.

図1に示すように、本発明の複合部材は、WC基超硬合金部材間に接合部材を配置し(図1(a)参照)、接合部材を介してWC基超硬合金部材とWC基超硬合金部材とを突き合わせ、所定の加圧力を付加した状態で、所定の温度、時間をかけて、WC基超硬合金部材と接合部材とを液相拡散接合する(図1(b)参照)ことにより、WC基超硬合金部材相互を接合することによって形成することができる(図1(c)参照)。   As shown in FIG. 1, in the composite member of the present invention, a joining member is disposed between WC-based cemented carbide members (see FIG. 1 (a)), and the WC-based cemented carbide member and the WC-based member are interposed via the joining members. The WC-base cemented carbide member and the joining member are subjected to liquid phase diffusion bonding over a predetermined temperature and time in a state where the cemented carbide member is abutted and a predetermined pressure is applied (see FIG. 1B). Thus, the WC-based cemented carbide member can be formed by joining together (see FIG. 1C).

本発明で採用する液相拡散接合とは、次のような接合手段である。
即ち、接合部材を介してWC基超硬合金部材とWC基超硬合金部材とを突き合わせ、所定の加圧力を付加した状態で、所定の温度、時間保持することにより、低融点の接合部材を一度溶融させ、WC基超硬合金成分と反応させ合金を形成させる。そして、合金が形成すると融点が上昇するため、接合温度で凝固が始まる。その結果、接合温度では液相が出現せず、高温特性に優れた接合界面を得ることができる接合手段である。
なお、接合部材を用いたWC基超硬合金部材同士の液相拡散接合に際しては、接合部材には、低融点(およそ1000℃以下)であること、WC基超硬合金の結合相成分であるCoと固溶し、高融点合金を形成すること、WC基超硬合金との濡れ性に優れること等の条件が求められる。
The liquid phase diffusion bonding employed in the present invention is the following bonding means.
That is, a WC-based cemented carbide member and a WC-based cemented carbide member are abutted with each other through a joining member, and a joining member having a low melting point is obtained by maintaining a prescribed temperature and time with a prescribed pressure applied. Once melted, it reacts with the WC-based cemented carbide component to form an alloy. And since the melting point rises when the alloy is formed, solidification starts at the joining temperature. As a result, it is a joining means in which a liquid phase does not appear at the joining temperature and a joining interface having excellent high temperature characteristics can be obtained.
When liquid phase diffusion bonding is performed between WC-based cemented carbide members using a bonding member, the bonding member has a low melting point (approximately 1000 ° C. or less) and is a binder phase component of the WC-based cemented carbide. Conditions such as solid solution with Co to form a high melting point alloy and excellent wettability with a WC-based cemented carbide are required.

本発明は、WC基超硬合金部材と接合部材とを液相拡散接合させることから、最終的に形成された複合部材において、WC基超硬合金同士の接合部におけるWC基超硬合金の成分組成は変化することになるが、複合部材の接合部におけるWC基超硬合金の平均成分組成、特に、結合相の平均成分組成が、Zn:40〜85原子%及びCo:15〜60原子%である場合に、複合部材の接合部の強度が向上し、その結果として、複合部材全体としての強度も向上する。
ここで、複合部材の接合部とは、複合部材の接合部近傍を縦断面観察および組成の点分析を行った際に、結合相中のZn含有量が40〜85原子%である領域をいう(図1(c)参照)。
Since the present invention performs liquid phase diffusion bonding of a WC-based cemented carbide member and a joining member, in the finally formed composite member, the components of the WC-based cemented carbide at the joint between the WC-based cemented carbides Although the composition will change, the average component composition of the WC-based cemented carbide in the joint part of the composite member, particularly the average component composition of the binder phase is Zn: 40 to 85 atomic% and Co: 15 to 60 atomic% In this case, the strength of the joint portion of the composite member is improved, and as a result, the strength of the composite member as a whole is also improved.
Here, the joint portion of the composite member refers to a region where the Zn content in the binder phase is 40 to 85 atomic% when the vicinity of the joint portion of the composite member is subjected to longitudinal section observation and point analysis of the composition. (See FIG. 1 (c)).

接合部におけるWC基超硬合金について、結合相中の平均Zn含有量が85原子%を超えると、Co含有量が少ない合金相(例えば、Zn7.8Co,Zn13Co)が出現するため、液相出現温度が700℃程度まで低下し、結合相が脆弱化して高温下で使用する際に接合部の剥離を生じやすくなり、一方、平均Zn含有量が40原子%未満では、ZnとCoが合金相を形成しないため、接合部の強度上昇が図れない。
したがって、本発明では、複合部材の接合部におけるWC基超硬合金の結合相の平均成分組成を、Zn:40〜85原子%及びCo:15〜60原子%とする。
For the WC-based cemented carbide at the joint, if the average Zn content in the binder phase exceeds 85 atomic%, an alloy phase with a low Co content (for example, Zn 7.8 Co, Zn 13 Co) appears. When the liquid phase appearance temperature is lowered to about 700 ° C. and the binder phase becomes brittle and is used at a high temperature, peeling of the joint portion is likely to occur. On the other hand, when the average Zn content is less than 40 atomic%, Since Co does not form an alloy phase, the strength of the joint cannot be increased.
Therefore, in this invention, the average component composition of the binder phase of the WC base cemented carbide in the joint part of a composite member shall be Zn: 40-85 atomic% and Co: 15-60 atomic%.

前記の平均成分組成の接合部を有する複合部材を形成するためには、例えば10μmの厚さを有し、少なくとも98原子%以上の純度を有するZn箔からなる接合部材を用い、該接合部材を、WC基超硬合金部材間に介在させ、500〜5000kPaの加圧力を加えてWC基超硬合金部材同士を押し付け、500〜700℃に5〜120分間加熱し、WC基超硬合金部材と接合部材とを液相拡散接合することによって作製することができる。
このようにして作製された複合部材は、WC基超硬合金部材と接合部材との液相拡散接合により接合されているため、WC基超硬合金部材とWC基超硬合金部材との接合部には、最終的に接合部材が独立した層として残存することはない。
ここで、接合部材であるZn箔におけるZn純度が98原子%未満であると、接合部材を介してWC基超硬合金部材同士を加圧接合する際に、接合部材中に含有される不純物成分によってZnの拡散が阻害され、WC基超硬合金部材同士の接合部にZn箔がZn層として残留し、あるいは、前記低Co含有量のZn−Co合金(例えば、Zn7.8Co,Zn13Co)が形成されてしまい、接合部の強度が低下することから、接合部材としてのZn箔の純度は98原子%以上であることが望ましい。
In order to form a composite member having a joint portion having the above average component composition, for example, a joining member made of Zn foil having a thickness of 10 μm and a purity of at least 98 atomic% is used. The WC-based cemented carbide member is interposed between the WC-based cemented carbide members, the WC-based cemented carbide member is pressed between the WC-based cemented carbide members by applying a pressure of 500 to 5000 kPa, It can be produced by liquid phase diffusion bonding with a bonding member.
Since the composite member produced in this way is bonded by liquid phase diffusion bonding between the WC-based cemented carbide member and the bonding member, the joint between the WC-based cemented carbide member and the WC-based cemented carbide member. Finally, the joining member does not remain as an independent layer.
Here, when the Zn purity of the Zn foil that is the bonding member is less than 98 atomic%, the impurity component contained in the bonding member when the WC-based cemented carbide members are pressure bonded to each other via the bonding member. Zn is inhibited by diffusion, and Zn foil remains as a Zn layer at the joint between the WC-based cemented carbide members, or the Zn-Co alloy having a low Co content (for example, Zn 7.8 Co, Zn 13 Co) is formed, and the strength of the joint portion is reduced. Therefore, the purity of the Zn foil as the joining member is desirably 98 atomic% or more.

液相拡散接合させるための条件としては、接合部材を介してWC基超硬合金部材同士を押し付けるための加圧力は1500〜3500kPa、加熱は500〜700℃で5〜120分とすることが好ましい。
また、接合部を十分に液相拡散接合するとともに、接合部にZn層を残留させないため、あるいは、低Co含有量のZn−Co合金を形成させないためには、Zn箔の純度を98原子%以上とすることに加え、接合部材であるZn箔の厚さを5〜15μmとすることが望ましい。
The conditions for liquid phase diffusion bonding are preferably 1500-3500 kPa for pressing the WC-base cemented carbide members through the bonding members, and heating at 500-700 ° C. for 5 to 120 minutes. .
Further, in order to sufficiently liquid phase diffusely bond the bonding portion and not leave a Zn layer in the bonding portion or to form a Zn-Co alloy having a low Co content, the purity of the Zn foil is set to 98 atomic%. In addition to the above, it is desirable that the thickness of the Zn foil as the joining member is 5 to 15 μm.

本発明の複合部材は、複合部材の一方を切刃部側のWC基超硬合金部材とし、他方のWC基超硬合金部材を工具基体とすることにより切削工具を構成することができる。
例えば、複合部材の一方のWC基超硬合金部材を、切刃部側であるcBN焼結体の裏打ち材とし、他方のWC基超硬合金部材を工具基体(台金)とすることにより、cBN切削工具を形成することができる。
The composite member of the present invention can constitute a cutting tool by using one of the composite members as a WC-based cemented carbide member on the side of the cutting edge and using the other WC-based cemented carbide member as a tool base.
For example, by using one WC-based cemented carbide member of the composite member as a backing material of a cBN sintered body on the cutting edge side and the other WC-based cemented carbide member as a tool base (base metal), A cBN cutting tool can be formed.

本発明の複合部材の接合部は、走査型電子顕微鏡及びエネルギー分散型X線分光器を用いて、接合部を縦断面観察し、WC基超硬合金同士の突き合わせ面(接合界面)に垂直な方向に±50μmの範囲内において、各直線間が1μmの間隔を有するように前記突き合わせ面(接合界面)と平行な直線を引く。引き続き、5000倍の視野で、各直線上における結合相上で5点の点測定を行い、5点の測定結果を平均化することによって、各直線上における結合相の成分であるZn、Coの平均組成(各元素の平均含有量)を求めることができる。
そして、各直線上における結合相中のZnの含有量から、Znが40原子%以上含有される領域を同定し、該領域厚さを、接合部の厚さとして求めることができる。
The joint part of the composite member of the present invention is observed in a longitudinal section using a scanning electron microscope and an energy dispersive X-ray spectrometer, and is perpendicular to the butt surface (joint interface) between WC-based cemented carbides. Within a range of ± 50 μm in the direction, a straight line parallel to the butt surface (bonding interface) is drawn so that each straight line has an interval of 1 μm. Subsequently, with a field of view of 5000 times, 5 points were measured on the bonded phase on each straight line, and the measurement results of 5 points were averaged to obtain Zn and Co components of the bonded phase on each straight line. The average composition (average content of each element) can be determined.
And the area | region where Zn is contained 40 atomic% or more is identified from content of Zn in the binder phase on each straight line, and this area | region thickness can be calculated | required as thickness of a junction part.

本発明の複合部材の接合部における成分Zn、Coの平均組成(各元素の平均含有量)は、走査型電子顕微鏡及びエネルギー分散型X線分光器を用いて、接合部を縦断面観察し、前記接合部内における各直線上の結合相の成分を平均化することによって、求めることができる。   The average composition (average content of each element) of the components Zn and Co in the joint part of the composite member of the present invention was observed by using a scanning electron microscope and an energy dispersive X-ray spectrometer, and the joint part was observed in a longitudinal section. It can be obtained by averaging the components of the binder phase on each straight line in the joint.

本発明は、WC基超硬合金部材とWC基超硬合金部材を、好ましくは、Znを98原子%以上含有するZn箔からなる接合部材を介して液相拡散接合によって接合した複合部材であって、接合部におけるWC基超硬合金の結合相の平均成分組成が、Zn:40〜85原子%及びCo:15〜60原子%からなるため、接合部の強度がすぐれ、その結果、複合部材全体としての強度も向上する。
したがって、上記複合部材から構成される切削工具は、切刃に高負荷が作用する重切削加工に供した場合であっても、接合部からの破損が生じることはなく、長期の使用に亘って、すぐれた切削性能を発揮する。
The present invention is a composite member in which a WC-based cemented carbide member and a WC-based cemented carbide member are bonded by liquid phase diffusion bonding, preferably through a bonding member made of a Zn foil containing 98 atomic% or more of Zn. In addition, since the average component composition of the binder phase of the WC-based cemented carbide in the joint is composed of Zn: 40 to 85 atomic% and Co: 15 to 60 atomic%, the strength of the joint is excellent. As a result, the composite member The overall strength is also improved.
Therefore, even when the cutting tool composed of the composite member is subjected to heavy cutting in which a high load acts on the cutting edge, damage from the joint portion does not occur, and it can be used over a long period of use. Exhibits excellent cutting performance.

本発明の複合部材の作製過程を示した模式図であって、(a)は、接合前、(b)は液相拡散接合時、(c)は接合後の複合部材を示す。It is the schematic diagram which showed the preparation process of the composite member of this invention, Comprising: (a) is before joining, (b) is at the time of liquid phase diffusion joining, (c) shows the composite member after joining.

つぎに、本発明を実施例に基づき具体的に説明する。なお、以下に説明した実施例は、本発明の一実施態様であって、本発明の具体的な実施の形態は、これに制限されるものではない。   Next, the present invention will be specifically described based on examples. In addition, the Example demonstrated below is one embodiment of this invention, Comprising: Specific embodiment of this invention is not restrict | limited to this.

原料粉末として、いずれも0.5〜1μmの平均粒径を有するWC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度1400℃、保持時間1時間の条件で焼結し、表1に示される4種のWC基超硬合金焼結体(以下、単に「超硬合金」と云う)A−1〜A−4を形成した。 As raw material powders, WC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 0.5 to 1 μm were prepared. These raw material powders are shown in Table 1. It is blended into the blended composition, wet mixed in a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 100 MPa, and this green compact is vacuumed at 6 Pa, temperature 1400 ° C., holding time 1 hour. Sintering was performed under the conditions to form four types of WC-based cemented carbide sintered bodies (hereinafter simply referred to as “superhard alloys”) A-1 to A-4 shown in Table 1.

次に、cBN焼結体の原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiCN粉末、TiB粉末、TiC粉末、AlN粉末、Al粉末を用意し、これら原料粉末を所定の配合組成で配合し、ボールミルで24時間アセトンを用いて湿式混合し、乾燥した後、100MPaの圧力で直径15mm×厚さ1mmの寸法をもった圧粉体にプレス成形した。
ついで、前記超硬合金A−1〜A−4を直径15mm×厚さ2mmのサイズの焼結体とし、これを、cBN焼結体の焼結時の裏打ち材とし、裏打ち材上に前記cBN圧粉体を表2に示す組合せで積層し、ついでこの積層体を、超高圧発生装置を用いて、温度:1300℃、圧力:5.5GPa、時間:30分の条件で焼結し、複合焼結体B−1〜B−4を作製した。
複合焼結体B−1〜B−4のcBN焼結体の組成について、cBN焼結体断面研磨面のSEM観察結果の画像分析によりcBNの面積%を容量%として求めた。
cBN以外の成分については、主結合相およびその他の結合相を構成している成分を確認するに止めた。その結果を表2に示す。
Next, cBN powder, TiN powder, TiCN powder, TiB 2 powder, TiC powder, AlN powder, Al 2 O each having an average particle size in the range of 0.5 to 4 μm as the raw material powder of the cBN sintered body 3 powders were prepared, these raw material powders were blended in a prescribed composition, wet mixed with acetone for 24 hours in a ball mill, dried, and then pressure having a size of 15 mm diameter × 1 mm thickness at 100 MPa pressure. Press-molded into powder.
Next, the cemented carbides A-1 to A-4 are made into a sintered body having a size of 15 mm in diameter and 2 mm in thickness, and this is used as a backing material during sintering of the cBN sintered body, and the cBN is placed on the backing material. The green compacts were laminated in the combinations shown in Table 2, and this laminate was then sintered using an ultrahigh pressure generator at a temperature of 1300 ° C., a pressure of 5.5 GPa, and a time of 30 minutes. Sintered bodies B-1 to B-4 were produced.
Regarding the composition of the cBN sintered bodies of the composite sintered bodies B-1 to B-4, the area% of cBN was determined as the volume% by image analysis of the SEM observation result of the cross-section polished surface of the cBN sintered body.
About components other than cBN, it stopped only to confirm the component which comprises the main binder phase and other binder phases. The results are shown in Table 2.

次に、表3に示されるZn箔を接合部材として用意した。   Next, Zn foil shown in Table 3 was prepared as a bonding member.

次いで、超硬合金A−1〜A−4と複合焼結体B−1〜B−4の間に、表3に示される接合部材を挿入介在させ、表4に示す条件で複合焼結体と超硬合金を加圧接合し、表7に示す本発明複合部材1〜9を作製した。なお、複合焼結体はcBN焼結体が外面、裏打ち材が内面となるよう、即ち裏打ち材であるWC基超硬合金と工具基体(台金)であるWC基超硬合金が接合部材を介し接合するように配置した。   Subsequently, the joining members shown in Table 3 are inserted between the cemented carbides A-1 to A-4 and the composite sintered bodies B-1 to B-4, and the composite sintered body is subjected to the conditions shown in Table 4. The present invention composite members 1 to 9 shown in Table 7 were produced by pressure bonding the cemented carbide and the cemented carbide. Note that the composite sintered body is such that the cBN sintered body is the outer surface and the backing material is the inner surface, that is, the WC-based cemented carbide that is the backing material and the WC-based cemented carbide that is the tool base (base metal) are the bonding members. It arrange | positioned so that it might join.

比較のために、表5に示される成分組成、サイズからなる接合部材を用意し、これを、超硬合金A−1〜A−4と複合焼結体B−1〜B−4の間に介在装入し、表6に示す条件で、複合焼結体と超硬合金を加圧接合し、表8に示す比較例複合部材1〜10を作製した。複合焼結体の接合配置は本発明複合部材と同様とした。   For comparison, a joining member having the component composition and size shown in Table 5 is prepared, and this is placed between the cemented carbides A-1 to A-4 and the composite sintered bodies B-1 to B-4. The composite sintered body and the cemented carbide were pressure bonded under the conditions shown in Table 6 under the conditions shown in Table 6 to produce comparative example composite members 1 to 10 shown in Table 8. The joint arrangement of the composite sintered body was the same as that of the composite member of the present invention.

高温せん断強度測定試験:
上記で作製した本発明複合部材1〜9及び比較例複合部材1〜10について、接合部の強度を測定するためにせん断強度測定試験を行った。
試験に使用する試験片は、上記で作製した本発明複合部材1〜9及び比較例複合部材1〜10から、複合焼結体:1.5mm(W)×1.5mm(L)×0.75mm(H)、WC基超硬合金基体(台金):1.5mm(W)×4.5mm(L)×1.5mm(H)のサイズとなるように切り出してせん断強度測定用試験片とした。
試験片の上下面をクランプで把持固定し、1辺が1.5mmの超硬合金からなる角柱状の押圧片を用い、雰囲気温度を600℃として、試験片の上面略中心付近に荷重を加え、試験片が破断する荷重を測定した。
表7、表8に、測定されたせん断強度の値を示す。
High temperature shear strength measurement test:
The present invention composite members 1-9 and comparative example composite members 1-10 produced above were subjected to a shear strength measurement test in order to measure the strength of the joint.
The test pieces used for the test were composite sintered bodies: 1.5 mm (W) × 1.5 mm (L) × 0. 75 mm (H), WC-based cemented carbide substrate (base metal): 1.5 mm (W) x 4.5 mm (L) x 1.5 mm (H) cut out to obtain a shear strength measurement specimen It was.
The upper and lower surfaces of the test piece are clamped and fixed, and a prismatic pressing piece made of cemented carbide with a side of 1.5 mm is used. The ambient temperature is set to 600 ° C., and a load is applied near the center of the upper surface of the test piece. The load at which the test piece breaks was measured.
Tables 7 and 8 show the measured shear strength values.

また、本発明複合部材1〜9及び比較例複合部材1〜10について、WC基超硬合金と接合部の縦断面の組成分析を、走査型電子顕微鏡及びエネルギー分散型X線分光器を用いて行った。
WC基超硬合金同士の突き合わせ面(接合界面)に垂直な方向に±50μmの範囲内において、各直線間が1μmの間隔を有するように前記突き合わせ面(接合界面)と平行な直線を引き、引き続き、5000倍の視野で、各直線上における結合相上で5点の点測定を行い、5点の測定結果を平均化することによって、各直線上における結合相の成分であるZn、Coの平均組成(各元素の平均含有量)を求めた。
そして、結合相中にZnが40原子%以上含有される領域の厚さを、接合部の厚さとして求めた。
表7、表8に、その結果を示す。
Moreover, about this invention composite members 1-9 and comparative example composite members 1-10, the composition analysis of the longitudinal cross-section of a WC base cemented carbide and a junction part is performed using a scanning electron microscope and an energy dispersive X-ray spectrometer. went.
Within a range of ± 50 μm in the direction perpendicular to the butt surfaces (bonding interface) between the WC-base cemented carbides, a straight line parallel to the butt surface (bonding interface) is drawn so that each straight line has an interval of 1 μm, Subsequently, with a field of view of 5000 times, 5 points were measured on the bonded phase on each straight line, and the measurement results of 5 points were averaged to obtain Zn and Co components of the bonded phase on each straight line. The average composition (average content of each element) was determined.
And the thickness of the area | region in which Zn contained 40 atomic% or more in a binder phase was calculated | required as the thickness of a junction part.
Tables 7 and 8 show the results.



次に、本発明複合部材1〜9及び比較例複合部材1〜10からなる切削工具を作製し、切削加工における破断発生の有無を調査した。
複合部材からなる切削工具は、以下のように作製した。
前記で作製した複合焼結体B−1〜B−4を、平面形状:開き角80°の一辺が4mmの二等辺三角形×厚さ:2mmの寸法に切断した。続いて、前記超硬合金A−1〜A−4を、平面形状:12.7mmの内接円で開き角80°の菱形×厚さ:4.76mmの寸法の焼結体とし、この焼結体の上下平行面の内、何れかの面の1角を、研削盤を用いて上記複合焼結体の形状に対応した大きさの切欠きを形成した。この切欠きの底面の面積は2.96mmであり、側面の面積は4.89mmである。次いで、超硬合金A−1〜A−4と複合焼結体B−1〜B−4の間に、表3に示される接合部材を挿入介在させ、表4に示す条件で複合焼結体とWC基超硬合金を加圧接合し、この複合部材を外周研磨加工後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNGA120408のインサート形状を有する、本発明切削工具1〜9を作製した。
なお、複合焼結体はcBN焼結体が外面、裏打ち材が内面となるよう、即ち、裏打ち材と工具基体(台金)が接合部材を介し接合するように配置した。
また、これら本発明切削工具1〜9の接合部は表7に示す本発明複合部材1〜9と実質的に同様であることを確認した。
同様に、前記で作製した複合焼結体B−1〜B−4と、前記で作製した超硬合金A−1〜A−4の間に、表5に示す接合部材を挿入介在させ、表6に示す条件で加圧接合し、比較例切削工具1〜10を作製した。
また、これら比較例切削工具1〜10の接合部は表8に示す比較例複合部材1〜10と実質的に同様であることを確認した。
Next, cutting tools composed of the composite members 1 to 9 of the present invention and the comparative composite members 1 to 10 were produced, and the presence or absence of breakage in the cutting process was investigated.
A cutting tool made of a composite member was produced as follows.
The composite sintered bodies B-1 to B-4 produced above were cut into a plane shape: an isosceles triangle with an opening angle of 80 ° having a side of 4 mm × thickness: 2 mm. Subsequently, the cemented carbides A-1 to A-4 are formed into a sintered body having a planar shape: an inscribed circle of 12.7 mm and an open angle of 80 ° × thickness: 4.76 mm. A notch having a size corresponding to the shape of the composite sintered body was formed in one corner of any one of the upper and lower parallel surfaces of the bonded body using a grinding machine. The area of the bottom surface of this notch is 2.96 mm 2 and the area of the side surface is 4.89 mm 2 . Subsequently, the joining members shown in Table 3 are inserted between the cemented carbides A-1 to A-4 and the composite sintered bodies B-1 to B-4, and the composite sintered body is subjected to the conditions shown in Table 4. And the WC base cemented carbide are pressure bonded, and after cutting the outer periphery of this composite member, the cutting edge portion is subjected to a honing process of R: 0.07 mm to have an ISO standard / CNGA120408 insert shape. Tools 1-9 were produced.
The composite sintered body was arranged so that the cBN sintered body was the outer surface and the backing material was the inner surface, that is, the backing material and the tool base (base metal) were joined via the joining member.
Moreover, it confirmed that the junction part of these invention cutting tools 1-9 was substantially the same as this invention composite members 1-9 shown in Table 7.
Similarly, the joining members shown in Table 5 are inserted between the composite sintered bodies B-1 to B-4 produced above and the cemented carbides A-1 to A-4 produced above, Pressure bonding was performed under the conditions shown in FIG.
Moreover, it confirmed that the junction part of these comparative example cutting tools 1-10 was substantially the same as the comparative example composite members 1-10 shown in Table 8.

つぎに、前記各種の切削工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明切削工具1〜9、比較例切削工具1〜10について、以下に示す浸炭焼き入れ鋼の乾式高速重切削試験を行い、刃先脱落および破断部の場所を観察した。
被削材:JIS・SCM415(硬さ:58HRc)の丸棒、
切削速度:255 m/min.、
切り込み:0.5 mm、
送り:0.4 mm/rev.、
切削時間:18分、
(通常の切削速度、送りは、それぞれ、150m/min、0.2mm/rev.)、
表9に、切削試験結果を示す。
Next, it shows below about this invention cutting tool 1-9 and comparative example cutting tool 1-10 in the state which screwed all the said various cutting tools to the front-end | tip part of the tool steel tool | tool with the fixing jig. A dry high-speed heavy cutting test of carburized and hardened steel was performed, and the location of the blade tip falling off and fractured portion was observed.
Work material: JIS / SCM415 (hardness: 58HRc) round bar,
Cutting speed: 255 m / min. ,
Cutting depth: 0.5 mm,
Feed: 0.4 mm / rev. ,
Cutting time: 18 minutes
(Normal cutting speed and feed are 150 m / min and 0.2 mm / rev., Respectively)
Table 9 shows the cutting test results.


表7、表8に示されるせん断強度の値から、本発明複合部材1〜9は、比較例複合部材1〜10に比して、すぐれた接合強度を有することが分かる。
また、表9に示される結果から、本発明複合部材1〜9によって構成される本発明切削工具1〜9は、刃先の脱落もなく、長期の使用に亘ってすぐれた切削性能を発揮するのに対して、比較例複合部材1〜10から構成される比較例切削工具1〜10は、切削中に接合部から刃先脱落が生じ、早期に工具寿命に至ることが分かる。
From the values of the shear strength shown in Tables 7 and 8, it can be seen that the composite members 1 to 9 of the present invention have superior bonding strength as compared with the composite members 1 to 10 of the comparative example.
Further, from the results shown in Table 9, the cutting tools 1 to 9 of the present invention composed of the composite members 1 to 9 of the present invention exhibit excellent cutting performance over a long period of use without the removal of the cutting edge. On the other hand, it can be seen that the comparative cutting tools 1 to 10 constituted by the comparative composite members 1 to 10 cause the cutting edge to fall off from the joint during cutting, leading to early tool life.

なお、本実施例においては、インサートを例にとって具体的に説明したが、本発明は、インサートに限られることなく、ドリル、エンドミルなど切刃部と工具本体との接合部をもつすべての切削工具、ビット等の掘削工具に適用可能であることはいうまでもない。   In the present embodiment, the insert has been specifically described as an example. However, the present invention is not limited to the insert, and all cutting tools having a joint between the cutting edge portion and the tool body, such as a drill and an end mill. Needless to say, the present invention is applicable to drilling tools such as bits.

本発明の複合部材は、その接合強度が大であり、この複合部材から作製した切削工具は、各種の鋼や鋳鉄などの高負荷切削加工に使用することができ、しかも、長期に亘って安定した切削性能を発揮するものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。

The composite member of the present invention has a high bonding strength, and the cutting tool produced from this composite member can be used for high-load cutting of various steels and cast irons, and is stable over a long period of time. Since the cutting performance is exhibited, it is possible to satisfactorily cope with high performance of the cutting device, labor saving and energy saving of the cutting work, and further cost reduction.

Claims (3)

WC基超硬合金部材とWC基超硬合金部材が、接合部で接合されている複合部材であって、
前記接合部は2〜50μmの厚さを有し、かつ、該接合部におけるWC基超硬合金の結合相は、Zn:40〜85原子%及びCo:15〜60原子%の平均成分組成からなることを特徴とする複合部材。
A WC-based cemented carbide member and a WC-based cemented carbide member are composite members joined at a joint,
The joint has a thickness of 2 to 50 μm, and the binder phase of the WC-based cemented carbide in the joint has an average composition of Zn: 40 to 85 atomic% and Co: 15 to 60 atomic%. A composite member characterized by comprising:
前記複合部材は、WC基超硬合金部材とWC基超硬合金部材との間に接合部材を介した加圧接合によって形成されたものであり、該接合部材は、Znを98原子%以上含有するZn箔であることを特徴とする請求項1に記載の複合部材。   The composite member is formed by pressure bonding via a bonding member between a WC-based cemented carbide member and a WC-based cemented carbide member, and the bonding member contains 98 atomic% or more of Zn. The composite member according to claim 1, wherein the composite member is a Zn foil. 請求項1または2に記載の複合部材から構成されていることを特徴とする工具。





A tool comprising the composite member according to claim 1.





JP2015016474A 2015-01-30 2015-01-30 Composite member, and cutting tool Pending JP2016140920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015016474A JP2016140920A (en) 2015-01-30 2015-01-30 Composite member, and cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015016474A JP2016140920A (en) 2015-01-30 2015-01-30 Composite member, and cutting tool

Publications (1)

Publication Number Publication Date
JP2016140920A true JP2016140920A (en) 2016-08-08

Family

ID=56568176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015016474A Pending JP2016140920A (en) 2015-01-30 2015-01-30 Composite member, and cutting tool

Country Status (1)

Country Link
JP (1) JP2016140920A (en)

Similar Documents

Publication Publication Date Title
JP5999362B2 (en) Surface coated cutting tool
JP6245520B2 (en) Composite member and cutting tool
US20110182682A1 (en) Cutting insert and cutting tool
JP6459042B2 (en) Joining brazing material, composite member using the same, and cutting tool
JP2011194511A (en) High toughness cubic boron nitride base ultra-high pressure sintered material and cutting tool
WO2017038855A1 (en) Composite member and cutting tool
JP5152667B2 (en) Cubic boron nitride sintered tool
JP2014062314A (en) Hard material, method for manufacturing hard material, cutting tool, and frictional agitation joining tool
JP2018140416A (en) Composite member, joining member used for producing the same, and cutting tool formed from composite member
JPS5860679A (en) High tenacity boron nitride base super high pressure sintering material for cutting and abrasion-resistant tool
WO2017135243A1 (en) Composite member and cutting tool
JP2016140920A (en) Composite member, and cutting tool
JP5656076B2 (en) cBN insert
JP2016101603A (en) Composite member and cutting tool
JP6757519B2 (en) Composite members and cutting tools
JP2018051619A (en) Composite member and cutting tool
JP6694597B2 (en) Composite member and cutting tool
JP2018111108A (en) Composite member and cutting tool comprising the composite member
JP2019063901A (en) Composite member and cutting tool
JPH07124804A (en) Cutting chip showing excellent wear resistance
JP6716408B2 (en) Laminated structure sintered superabrasive composite material and manufacturing method thereof
JPH06198504A (en) Cutting tool for high hardness sintered body
JP2018122313A (en) Composite member, junction member used to manufacture the same, and cutting tool consisting of this composite member
JP5804380B2 (en) Cutting tool made of ultra high pressure sintered body
JP2013014002A (en) Cubic boron nitride sintered body tool