JP6757519B2 - Composite members and cutting tools - Google Patents
Composite members and cutting tools Download PDFInfo
- Publication number
- JP6757519B2 JP6757519B2 JP2017009853A JP2017009853A JP6757519B2 JP 6757519 B2 JP6757519 B2 JP 6757519B2 JP 2017009853 A JP2017009853 A JP 2017009853A JP 2017009853 A JP2017009853 A JP 2017009853A JP 6757519 B2 JP6757519 B2 JP 6757519B2
- Authority
- JP
- Japan
- Prior art keywords
- cemented carbide
- based cemented
- composite
- joint
- atomic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Drilling Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Powder Metallurgy (AREA)
Description
本発明は、接合部の接合強度に優れた複合部材及び切削工具に関し、特に、WC基超硬合金とWC基超硬合金とを接合した複合部材、さらには、この複合部材からなる切削工具に関する。 The present invention relates to a composite member and a cutting tool having excellent joint strength at a joint portion, and more particularly to a composite member obtained by joining a WC-based cemented carbide and a WC-based cemented carbide, and further to a cutting tool composed of the composite member. ..
従来から、工具材料としては、WC基超硬合金、TiCN基サーメット、cBN焼結体等が良く知られているが、近年、工具材料を単一素材から形成するのではなく複合部材として工具材料を形成することが提案されている。 Conventionally, WC-based cemented carbide, TiCN-based cermet, cBN sintered body and the like are well known as tool materials, but in recent years, tool materials are not formed from a single material but as a composite member. It has been proposed to form.
例えば、特許文献1には、サーメット焼結体を第1の被接合材1とし、cBN焼結体またはダイヤモンド焼結体を第2の被接合材3とする接合体であって、第1の被接合材および第2の被接合材の間に1000℃未満では液相を生成しない接合材2(例えば、Ti、Co、Ni)を介して接合し、該接合は0.1MPa〜200MPaの圧力で加圧しながら通電加熱することによって行うことが提案されており、これによって得られた接合体は、切削中に、ロウ材が液相を生成する温度を超える高温となっても、接合層の接合強度が低下することがないため、高速切削加工工具やCVDコーティング切削工具として好適であるとされている。 For example, Patent Document 1 describes a first joint body in which a cermet sintered body is used as a first material to be joined and a cBN sintered body or a diamond sintered body is used as a second material to be joined. A bonding material 2 (for example, Ti, Co, Ni) that does not generate a liquid phase at a temperature lower than 1000 ° C. is bonded between the material to be bonded and the second material to be bonded, and the bonding is performed at a pressure of 0.1 MPa to 200 MPa. It has been proposed to carry out by energizing and heating while pressurizing with, and the bonded body obtained by this is a joint layer even if the temperature of the brazing material exceeds the temperature at which the brazing material forms a liquid phase during cutting. Since the joint strength does not decrease, it is said to be suitable as a high-speed cutting tool or a CVD coating cutting tool.
また、特許文献2には、超硬合金焼結体を第1の被接合材1とし、cBN焼結体を第2の被接合材2とする接合体において、第1の被接合材および第2の被接合材の間にはチタン(Ti)を含有する接合材3を介して、少なくとも、第2の被接合材の背面と底面からなる2面で接合し、第2の被接合材と接合材との界面には、厚み10〜300nmの窒化チタン(TiN)化合物層を形成し、また、背面の接合層の厚みを、底面の接合層の厚みよりも薄くすることによって、接合強度が高い切削工具等の接合体を得ることが提案されている。 Further, in Patent Document 2, in a bonded body in which a super hard alloy sintered body is used as a first material to be bonded and a cBN sintered body is used as a second material to be bonded, the first material to be bonded and the first material to be bonded are described. Between the two materials to be joined, at least two surfaces including the back surface and the bottom surface of the second material to be joined are joined via the joint material 3 containing titanium (Ti) to and the second material to be joined. A titanium nitride (TiN) compound layer having a thickness of 10 to 300 nm is formed at the interface with the bonding material, and the thickness of the bonding layer on the back surface is made thinner than the thickness of the bonding layer on the bottom surface to increase the bonding strength. It has been proposed to obtain joints such as expensive cutting tools.
さらに、特許文献3には、cBNを20〜100質量%含むcBN焼結体と、Ti、Zr、Hf、V、Nb、Ta、Cr、MoおよびWの炭化物、炭窒化物およびこれらの相互固溶体から成る群より選択された少なくとも1種からなる硬質相:50〜97質量%と、残部として、Co、NiおよびFeから成る群より選択された少なくとも1種を主成分とする結合相:3〜50質量%とからなる硬質合金との複合体において、cBN焼結体と硬質合金との間に接合層を設け、該接合層をセラミックス相と金属相とから構成し、さらに、該接合層の厚さを2〜30μmとすることによって、複合体の接合強度を高めることが提案されている。 Further, Patent Document 3 describes a cBN sintered body containing 20 to 100% by mass of cBN, carbides of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W, carbides and mutual solid solutions thereof. Hard phase consisting of at least one selected from the group consisting of: 50 to 97% by mass, and binding phase containing at least one selected from the group consisting of Co, Ni and Fe as a main component as a balance: 3 to In a composite with a cemented carbide consisting of 50% by mass, a bonding layer is provided between the cBN sintered body and the cemented carbide, the bonding layer is composed of a ceramic phase and a metal phase, and further, the bonding layer It has been proposed to increase the bonding strength of the composite by setting the thickness to 2 to 30 μm.
前記特許文献1〜3で提案された複合材料あるいはこれからなる切削工具は、通常条件の切削加工では、ある程度の性能を発揮するが、例えば、切れ刃に高負荷が作用する高送り、高切り込みの重切削条件では、接合強度が未だ十分であるとはいえず、接合部からの破損が発生する恐れがあった。
そこで、切れ刃に高負荷が作用する重切削条件においても、接合部からの破断が生じないような、より高い接合部の接合強度を有する複合部材およびこれからなる切削工具が望まれている。
The composite material or cutting tool made of the composite material proposed in Patent Documents 1 to 3 exhibits a certain level of performance in cutting under normal conditions, but for example, a high feed and a high depth of cut in which a high load acts on the cutting edge. Under heavy cutting conditions, the joint strength is not yet sufficient, and there is a risk of damage from the joint.
Therefore, there is a demand for a composite member having a higher joint strength at the joint and a cutting tool made of the same so that the cutting edge is not broken even under heavy cutting conditions where a high load acts on the cutting edge.
本発明者らは、前記従来の複合部材およびこれからなる切削工具の問題点を解決すべく、WC基超硬合金とWC基超硬合金からなる複合部材およびこの複合材からなる切削工具、例えば、超高圧高温焼結時にcBN焼結体の焼結と同時にWC基超硬合金(裏打ち材)を接合した複合焼結体からなる切刃部とWC基超硬合金工具基体(台金)とを接合部材を介して接合した切削工具において、その接合部の接合強度を改善する方策について鋭意研究した結果、
一方のWC基超硬合金部材と他方のWC基超硬合金部材を、Tiを主体とする接合部材を介して接合し、一方のWC基超硬合金部材と他方のWC基超硬合金部材とが接合部によって接合された複合部材において、WC基超硬合金部材の、接合部とWC基超硬合金部材の界面近傍(以下、WC基超硬合金部材界面近傍と呼ぶ)に所定の層厚の改質層を形成し、かつ改質層の結合相中に含有される成分の組成を適正範囲に維持した場合に、WC基超硬合金部材と接合部との密着強度、接合強度を向上させることができ、その結果、接合強度に優れた複合部材を得られることを見出した。
In order to solve the problems of the conventional composite member and the cutting tool made of the conventional composite member, the present inventors have made a composite member made of a WC-based cemented carbide and a WC-based cemented carbide and a cutting tool made of the composite material, for example. At the time of ultra-high pressure high temperature sintering, the cutting edge portion made of a composite sintered body to which the WC-based cemented carbide (lining material) is bonded at the same time as the cBN sintered body is sintered and the WC-based cemented carbide tool base (base metal) As a result of diligent research on measures to improve the joining strength of cutting tools joined via joining members.
One WC-based cemented carbide member and the other WC-based cemented carbide member are joined via a joining member mainly composed of Ti, and one WC-based cemented carbide member and the other WC-based cemented carbide member are joined. In the composite member joined by the joint portion, a predetermined layer thickness of the WC-based cemented carbide member near the interface between the joint portion and the WC-based cemented carbide member (hereinafter referred to as WC-based cemented carbide member interface). When the modified layer of WC is formed and the composition of the components contained in the bonded phase of the modified layer is maintained within an appropriate range, the adhesion strength and bonding strength between the WC-based cemented carbide member and the joint portion are improved. As a result, it was found that a composite member having excellent joint strength can be obtained.
そして、切削工具用の材料として、前記複合部材を用いた場合には、切れ刃に高負荷が作用する鋼や鋳鉄の重切削加工に供した場合であっても、接合部からの破断が発生することもなく、長期の使用に亘って、すぐれた切削性能を発揮することができることを見出したのである。 When the composite member is used as a material for a cutting tool, breakage occurs from the joint even when it is subjected to heavy cutting of steel or cast iron in which a high load acts on the cutting edge. It was found that excellent cutting performance can be exhibited over a long period of use without doing so.
本発明は、前記知見に基づいてなされたものであって、
「(1)WC基超硬合金部材同士が接合部を介して接合されている複合部材であって、
(a)前記WC基超硬合金部材は、少なくとも、WC粒子と該WC粒子の間隙を埋めるCo成分を主体とする結合相からなり、
(b)前記接合部は、Tiを50原子%以上含有し、残部は、少なくとも、W、C、Coを含有する成分組成を有し、
(c)前記WC基超硬合金部材において、接合部とWC基超硬合金部材の界面近傍には、結合相組成が、W:5〜20原子%、C:5〜20原子%、残部が60〜90原子%のCoおよび不可避不純物からなり、0.2〜5.0μmの平均幅を有する改質層が存在しており、かつ、改質層より超硬合金部材内部側では結合相組成がW:5原子%未満、C:5原子%未満、残部Coおよび不可避不純物であることを特徴とする複合部材。
(2)前記接合部の厚さが、2〜100μmであることを特徴とする(1)に記載の複合部材。
(3)前記(1)または(2)に記載の複合部材から構成されていることを特徴とする切削工具。」
を特徴とするものである。
The present invention has been made based on the above findings.
"(1) A composite member in which WC-based cemented carbide members are joined to each other via a joint portion.
(A) The WC-based cemented carbide member is composed of at least a bonding phase mainly composed of a Co component that fills the gap between the WC particles and the WC particles.
(B) The joint portion has a component composition containing 50 atomic% or more of Ti, and the balance has a component composition containing at least W, C, and Co.
(C) In the WC-based cemented carbide member, the bonded phase composition is W: 5 to 20 atomic%, C: 5 to 20 atomic%, and the balance in the vicinity of the interface between the joint portion and the WC-based cemented carbide member. A modified layer consisting of 60 to 90 atomic% of Co and unavoidable impurities and having an average width of 0.2 to 5.0 μm exists, and the cemented carbide member has a bonded phase composition on the inner side of the cemented carbide member from the modified layer. W: less than 5 atomic%, C: less than 5 atomic%, balance Co and unavoidable impurities.
(2) The composite member according to (1), wherein the joint portion has a thickness of 2 to 100 μm.
(3) A cutting tool characterized by being composed of the composite member according to the above (1) or (2). "
It is characterized by.
以下に、本発明について、詳細に説明する。 The present invention will be described in detail below.
図1に示すように、一方のWC基超硬合金部材と他方のWC基超硬合金部材との間に接合部材(Tiを85原子%以上含有する純Ti箔、Ti合金箔等)を配置し(図1(a)参照)、接合部材を介して一方のWC基超硬合金部材と他方のWC基超硬合金部材とを突き合わせ、所定の加圧力を付加した状態で、所定の温度、時間をかけて、WC基超硬合金部材と接合部材とを固相拡散接合する(図1(b)参照)ことにより、WC基超硬合金部材同士が接合部を介して接合された本発明の複合部材を作製することができる(図1(c)参照)。 As shown in FIG. 1, a joining member (pure Ti foil containing 85 atomic% or more of Ti, Ti alloy foil, etc.) is arranged between one WC-based cemented carbide member and the other WC-based cemented carbide member. (See FIG. 1 (a)), one WC-based cemented carbide member and the other WC-based cemented carbide member are butted against each other via a joining member, and a predetermined pressing force is applied to a predetermined temperature. The present invention in which the WC-based cemented carbide members are joined via the joint by solid-phase diffusion-bonding the WC-based cemented carbide member and the joining member over time (see FIG. 1 (b)). Can be produced (see FIG. 1 (c)).
図2は、図1(c)の拡大模式図を示すが、図2において、接合部に隣接した一方のWC基超硬合金部材界面近傍の結合相中には、WC粒子を構成するWおよびCが結合相であるCo中に拡散した改質層が形成される。また、接合部に隣接した他方のWC基超硬合金部材界面近傍の結合相中にも、同様に、WおよびCが拡散した改質層が形成される。
また、一方のWC基超硬合金部材と他方のWC基超硬合金部材との間に介在させた接合部材は、固相拡散接合によって、WC基超硬合金部材からその成分であるW、C、Coが拡散してくるため、Ti含有量が50原子%以上、残部は、少なくとも、W、C、Coを含有する接合部として形成されることになる。
前記の改質層、接合部を形成するに好適なWC基超硬合金の配合成分組成は、Co:5〜15質量%、残部WCからなるWC基超硬合金であるが、必要に応じて、TaC、NbC、VC及びCr3C2のうちから選ばれる一種または二種以上の成分を、合計含有量で3質量%以下含有することができる。
FIG. 2 shows an enlarged schematic view of FIG. 1 (c). In FIG. 2, W and W constituting WC particles are contained in the bonding phase near the interface of one WC-based cemented carbide member adjacent to the joint. A modified layer diffused in Co in which C is a bonding phase is formed. Similarly, a modified layer in which W and C are diffused is also formed in the bonded phase near the interface of the other WC-based cemented carbide member adjacent to the joint portion.
Further, the bonding member interposed between the one WC-based cemented carbide member and the other WC-based cemented carbide member is formed by solid-phase diffusion bonding from the WC-based cemented carbide member to its components W, C. , Co is diffused, so that the Ti content is 50 atomic% or more, and the balance is formed as a junction containing at least W, C, and Co.
The composition of the WC-based cemented carbide suitable for forming the modified layer and the joint portion is a WC-based cemented carbide composed of Co: 5 to 15% by mass and the balance WC, but if necessary. , TaC, NbC, one or two or more components selected from among the VC and Cr 3 C 2, may contain 3 wt% or less in total content.
本発明で採用する固相拡散接合とは、次のような接合手段である。
即ち、接合部材を介してWC基超硬合金部材とWC基超硬合金部材とを突き合わせ、所定の加圧力を付加した状態で、所定の温度、時間保持することにより、接合部材とWC基超硬合金成分を反応させ合金を形成させる。この際、接合層を構成する各層の組成、層厚を適切に制御することにより優れた強度を有する接合とすることができる。
なお、接合部材を用いたWC基超硬合金部材同士の固相拡散接合に際しては、接合部材自身の融点が比較的高温(1200℃以上)であること、1000℃以下でWC基超硬合金と反応すること、反応で生じる脆性相が接合界面の強度を低下させないよう反応を制御することが可能なこと、WC基超硬合金と接合部材の相互拡散において、拡散速度が不均衡となることにより生じるカーケンダルボイドが発生しにくいこと等の条件が求められる。
本発明では、このような要求に適う接合部材として、純Ti箔あるいはTi含有量が85原子%以上であるTi合金箔を使用した。
The solid-phase diffusion bonding adopted in the present invention is the following bonding means.
That is, by abutting the WC-based cemented carbide member and the WC-based cemented carbide member via the joining member and holding the WC-based cemented carbide member at a predetermined temperature and time in a state where a predetermined pressing force is applied, the joining member and the WC-based cemented carbide member are superposed. The cemented carbide component is reacted to form an alloy. At this time, by appropriately controlling the composition and layer thickness of each layer constituting the bonding layer, the bonding having excellent strength can be obtained.
When solid-phase diffusion bonding between WC-based cemented carbide members using a bonding member, the melting point of the bonding member itself must be relatively high (1200 ° C. or higher), and the WC-based cemented carbide member must be at 1000 ° C. or lower. By reacting, the reaction can be controlled so that the brittle phase generated by the reaction does not reduce the strength of the bonding interface, and the diffusion rate becomes imbalanced in the mutual diffusion between the WC-based cemented carbide and the bonding member. Conditions such as the fact that the generated Kirkendal voids are unlikely to occur are required.
In the present invention, a pure Ti foil or a Ti alloy foil having a Ti content of 85 atomic% or more is used as a joining member that meets such requirements.
本発明は、複合部材の作製にあたり、WC基超硬合金部材と接合部材とを固相拡散接合させることから、最終的に形成された複合部材の接合部には、接合部材とは異なる成分組成の接合部が形成され、また、接合部に隣接したWC基超硬合金部材においても、WC粒子を構成するWおよびCが結合相であるCo中へ拡散することから、接合前のWC基超硬合金の結合相とは異なる組成の改質層が形成される。
そして、接合部材とは異なる成分組成の接合部の形成、および、接合前のWC基超硬合金の結合相とは異なる組成の改質層の形成によって、剥離の起点やクラックの伝播経路となり得る改質層が強化され、その結果、接合部付近からの剥離を生じにくいすぐれた強度を有する複合部材を作製することができる。
In the present invention, in the production of the composite member, the WC-based cemented carbide member and the joining member are solid-phase diffusion-bonded. Therefore, the finally formed joint portion of the composite member has a component composition different from that of the joining member. In addition, even in the WC-based cemented carbide member adjacent to the junction, W and C constituting the WC particles diffuse into Co, which is the bonding phase, so that the WC-based cemented carbide before bonding is formed. A modified layer having a composition different from that of the bonded phase of the cemented carbide is formed.
Then, by forming a joint portion having a component composition different from that of the bonding member and forming a modified layer having a composition different from that of the bonding phase of the WC-based cemented carbide before bonding, it can be a starting point of peeling and a propagation path of cracks. The modified layer is strengthened, and as a result, a composite member having excellent strength that is unlikely to peel off from the vicinity of the joint can be produced.
なお、WC基超硬合金部材と接合部材とを固相拡散接合させるに先立って、接合部材に対向配置するWC基超硬合金部材の表面に対して、予め、ブラスト処理を施し、歪を導入しておくことが望ましい。予め歪が導入されることによって、固相拡散接合時に、WCとCoの歪が緩和され、その結果、WC、CoとTiとの反応が促進され、固相拡散接合温度を低温とした場合でも、均一な反応が実現される。 Prior to solid-phase diffusion bonding of the WC-based cemented carbide member and the bonding member, the surface of the WC-based cemented carbide member arranged to face the bonding member is blasted in advance to introduce strain. It is desirable to keep it. By introducing the strain in advance, the strain of WC and Co is relaxed at the time of solid-phase diffusion bonding, and as a result, the reaction between WC and Co and Ti is promoted, even when the solid-phase diffusion bonding temperature is lowered. , A uniform reaction is achieved.
図3として、本発明の複合部材におけるWC基超硬合金部材と接合部との界面近傍のSEM像を示し、また、図4として、界面近傍の模式図を示す。
本発明では、図3、図4に示すように接合部に隣接したWC基超硬合金部材において、WC基超硬合金部材の結合相中に、WC粒子を構成する成分であるWおよびCが拡散した改質層を形成する。
本発明では、WC基超硬合金部材界面近傍の結合相中において、WC粒子から拡散したWおよびCの含有量が、各々5原子%以上、20原子%以下である領域を改質層とするが、改質層の平均幅が0.2μm未満では、WC基超硬合金部材界面近傍の結合相中へのWおよびCの拡散が十分ではないため、改質効果が発揮されず、改質層が破壊の起点となりやすくなる。
一方、改質層の平均幅が5.0μmを超えると、形成された改質層に脆性が現れ、WC基超硬合金部材内部へ破壊が伝播しやすくなる。
したがって、本発明では、前記改質層の平均幅を0.2〜5.0μmと定めた。
FIG. 3 shows an SEM image of the vicinity of the interface between the WC-based cemented carbide member and the joint in the composite member of the present invention, and FIG. 4 shows a schematic view of the vicinity of the interface.
In the present invention, in the WC-based cemented carbide member adjacent to the joint as shown in FIGS. 3 and 4, W and C, which are components constituting the WC particles, are contained in the bonding phase of the WC-based cemented carbide member. Form a diffused reformed layer.
In the present invention, the modified layer is a region in which the W and C contents diffused from the WC particles are 5 atomic% or more and 20 atomic% or less, respectively, in the bonded phase near the interface of the WC-based superhard alloy member. However, if the average width of the modified layer is less than 0.2 μm, the diffusion of W and C into the bonded phase near the interface of the WC-based superhard alloy member is not sufficient, so that the modifying effect is not exhibited and the modified layer is modified. Layers are more likely to be the starting point for destruction.
On the other hand, when the average width of the modified layer exceeds 5.0 μm, brittleness appears in the formed modified layer, and fracture easily propagates inside the WC-based cemented carbide member.
Therefore, in the present invention, the average width of the modified layer is set to 0.2 to 5.0 μm.
改質層における結合相中のWおよびC含有量は、前述のとおり5原子%以上20原子%以下の領域であるとしたが、これは、改質層におけるW含有量が5原子%未満もしくはC含有量が5%未満では、結合相の改質効果が不十分なことから、WC基超硬合金部材と接合部との間で界面剥離を生じやすいからであり、一方、改質層におけるW含有量もしくはC含有量が20質量%を超えると脆弱な遊離C相もしくはη相が多量に析出し、改質層内部での破壊が発生しやすくなるため、改質層の結合相におけるWおよびCの含有量は5〜20原子%とする。
そして、WC基超硬合金部材の結合相を構成する主体はCoであるから、前記改質層の結合相組成は、W:5〜20原子%、C:5〜20原子%、残部が60〜90原子%のCoおよび不可避不純物となる。
The W and C contents in the bonded phase in the modified layer are in the region of 5 atomic% or more and 20 atomic% or less as described above, but this means that the W content in the modified layer is less than 5 atomic% or If the C content is less than 5%, the effect of modifying the bonded phase is insufficient, so that interfacial peeling is likely to occur between the WC-based superhard alloy member and the joint, while in the modified layer. If the W content or C content exceeds 20% by mass, a large amount of fragile free C phase or η phase is precipitated, and destruction inside the modified layer is likely to occur. Therefore, W in the bonded phase of the modified layer And C content is 5 to 20 atomic%.
Since the main component of the bonded phase of the WC-based cemented carbide member is Co, the bonded phase composition of the modified layer is W: 5 to 20 atomic%, C: 5 to 20 atomic%, and the balance is 60. It becomes ~ 90 atomic% of Co and unavoidable impurities.
改質層より超硬合金部材内部側では、結合相組成がW:5原子%未満、C:5原子%未満、残部Coおよび不可避不純物であるとしたが、これは、改質層の平均幅上限の5.0μmを超えた超硬合金内部にWもしくはCを5原子%以上含有する結合相が存在すると、遊離C相やη相が出現し、超硬合金部材全体の強度が低下するため、改質層より超硬合金部材内部側の結合相組成はW:5原子%未満、C:5原子%未満、残部Coおよび不可避不純物とした。 On the inner side of the cemented carbide member from the modified layer, the bonded phase composition was W: less than 5 atomic%, C: less than 5 atomic%, the balance Co and unavoidable impurities, but this is the average width of the modified layer. If there is a bonded phase containing 5 atomic% or more of W or C inside the cemented carbide that exceeds the upper limit of 5.0 μm, a free C phase or η phase will appear and the strength of the entire cemented carbide member will decrease. The bonded phase composition on the inner side of the cemented carbide member from the modified layer was W: less than 5 atomic%, C: less than 5 atomic%, the balance Co, and unavoidable impurities.
本発明における前記改質層の平均幅は、例えば、次のようにして求めることができる。
図3、図4に示すように、まず、走査型電子顕微鏡およびオージェ電子分光装置を用いて、WC基超硬合金部材と接合部との境界近傍を縦断面観察し、WC基超硬合金部材側からみて、WC結晶粒が観察される臨界位置をWC基超硬合金部材と接合部との界面と定め、界面を始点とし、界面からWC基超硬合金部材の内側方向に、界面と垂直に、20μmの長さの線測定を行う。この線測定は、各線の間隔を1μmとして、合計10本の線測定を行う。線測定の結果から結合相中に含有されるW量、C量、Co量を求め、結合相中にWおよびCを5原子%以上含有する点のうち、界面からWC基超硬合金部材の最も内側の点までの距離を各線における改質領域と定め、10本の線測定のうち、改質領域の広い3本の改質領域幅を平均することにより、改質層の平均幅を求めることができる。
The average width of the modified layer in the present invention can be obtained, for example, as follows.
As shown in FIGS. 3 and 4, first, a scanning electron microscope and an Auger electron spectroscope are used to observe the vicinity of the interface between the WC-based cemented carbide member and the joint, and the WC-based cemented carbide member is observed. When viewed from the side, the critical position where the WC crystal grains are observed is defined as the interface between the WC-based cemented carbide member and the joint, the interface is the starting point, and the interface is perpendicular to the interface in the inner direction of the WC-based cemented carbide member. In addition, a line measurement with a length of 20 μm is performed. In this line measurement, a total of 10 lines are measured with the interval between each line being 1 μm. From the results of line measurement, the amount of W, C, and Co contained in the bonded phase was obtained, and among the points where W and C were contained in the bonded phase in an amount of 5 atomic% or more, the WC-based cemented carbide member was formed from the interface. The distance to the innermost point is defined as the modified region in each line, and the average width of the modified layer is obtained by averaging the widths of the three modified regions with the widest modified region out of the 10 line measurements. be able to.
また、本発明の前記改質層におけるW、C、Coの含有量も、例えば、次のようにして求めることができる。
まず、走査型電子顕微鏡を用いて、WC基超硬合金部材と接合部との境界近傍を縦断面観察し、前記界面に平行な3本の直線を、前記で求めた改質層の幅方向を4等分するように引く。前記3本の直線上に存在する結合相を各直線上で3箇所、合計9箇所選び、オージェ電子分光装置を用いて、前記9箇所で点測定を行い、9点の測定値を平均化することによって、W、C、Coの含有量を求めることができる。
Further, the contents of W, C and Co in the modified layer of the present invention can also be determined, for example, as follows.
First, using a scanning electron microscope, the vertical cross section of the vicinity of the boundary between the WC-based cemented carbide member and the joint is observed, and three straight lines parallel to the interface are obtained in the width direction of the modified layer obtained above. Is divided into four equal parts. The coupling phases existing on the three straight lines are selected at three points on each straight line, for a total of nine points, and point measurements are performed at the nine points using an Auger electron spectrometer, and the measured values at the nine points are averaged. Thereby, the contents of W, C and Co can be determined.
本発明の複合部材では、純Ti箔あるいは85原子%以上のTi合金箔からなる接合部材を用い、固相拡散接合することによって接合部を形成するが、接合部の組成は、Tiを50原子%以上含有し、残部は、少なくとも、W、C、Coを含有する組成とする。
接合部には、WC基超硬合金部材の成分であるW、C、Coが拡散してくるため、接合部の組成は接合部材の組成からは変化するが、接合部のTi含有量が50原子%未満になると、接合部自体が脆化傾向を示すため、接合部のTi含有量は50原子%以上とすることが必要である。
接合部のTi含有量を50原子%以上に維持するための手段としては、例えば、厚さ1〜100μmの接合部材を用い、0.5〜5MPaの加圧力を付加した状態で、600〜900℃の温度範囲に5〜600分間保持するという条件で固相拡散接合を行うことによって、接合部のTi含有量を50原子%以上とすることができる。
本発明の複合部材では、接合部の厚さが2μm以下では接合部に空隙を生じやすくなることから十分な接合強度を得ることが難しく、100μm以上では金属Tiが厚く残存することにより金属Ti内で剥離が発生し、十分な接合強度を得ることが難しいため、接合部の厚さは2〜100μmの範囲であることが望ましい。
In the composite member of the present invention, a joint member made of a pure Ti foil or a Ti alloy foil of 85 atomic% or more is used, and a joint portion is formed by solid-phase diffusion bonding. The composition of the joint portion is 50 atoms of Ti. % Or more, and the balance has a composition containing at least W, C, and Co.
Since W, C, and Co, which are components of the WC-based cemented carbide member, are diffused into the joint portion, the composition of the joint portion changes from the composition of the joint member, but the Ti content of the joint portion is 50. If it is less than atomic%, the joint itself tends to be embrittled, so that the Ti content of the joint needs to be 50 atomic% or more.
As a means for maintaining the Ti content of the joint portion at 50 atomic% or more, for example, a joint member having a thickness of 1 to 100 μm is used, and a pressing force of 0.5 to 5 MPa is applied to 600 to 900. The Ti content of the joint can be 50 atomic% or more by performing solid-phase diffusion bonding under the condition that the temperature is maintained in the temperature range of ° C. for 5 to 600 minutes.
In the composite member of the present invention, when the thickness of the joint portion is 2 μm or less, it is difficult to obtain sufficient joint strength because voids are likely to be generated in the joint portion. It is desirable that the thickness of the joint is in the range of 2 to 100 μm because peeling occurs in the joint and it is difficult to obtain sufficient joint strength.
本発明の複合部材は、例えば、以下に示す方法によって作製することができる。
まず、一方のWC基超硬合金部材と他方のWC基超硬合金部材の、接合部材に対向するそれぞれの面にブラスト処理を施すことにより歪を導入する前処理を行う。
次いで、一方のWC基超硬合金部材と他方のWC基超硬合金部材との間に、接合部材である純Ti箔あるいは85原子%以上のTiを含有するTi合金箔を挟み込み、これを、真空中、600〜900℃の所定温度に5〜600分間保持し、加圧荷重0.5〜5MPaの条件で加圧し、固相拡散接合することによって、一方のWC基超硬合金部材と他方のWC基超硬合金部材とが接合部を介して接合された複合部材を作製することができる。
なお、固相拡散接合前に行った前処理は、既に述べたように、固相拡散接合時にWCとCoの歪が緩和されると同時にCo中へのW、Cの拡散が促進され、600〜900℃という比較的低温条件下でも均一な反応が実現されることを目的とする処理である。
The composite member of the present invention can be produced, for example, by the method shown below.
First, a pretreatment for introducing strain is performed by blasting the surfaces of one WC-based cemented carbide member and the other WC-based cemented carbide member facing the joint member.
Next, a pure Ti foil as a joining member or a Ti alloy foil containing 85 atomic% or more of Ti is sandwiched between one WC-based cemented carbide member and the other WC-based cemented carbide member. One WC-based cemented carbide member and the other by holding in a vacuum at a predetermined temperature of 600 to 900 ° C. for 5 to 600 minutes, pressurizing under a pressure load of 0.5 to 5 MPa, and solid-phase diffusion bonding. It is possible to manufacture a composite member in which the WC-based cemented carbide member of No. 1 is joined via a joint portion.
As described above, the pretreatment performed before the solid-phase diffusion bonding relaxes the strain of WC and Co during the solid-phase diffusion bonding, and at the same time promotes the diffusion of W and C into Co. This treatment aims to realize a uniform reaction even under relatively low temperature conditions of ~ 900 ° C.
本発明の複合部材は、一方のWC基超硬合金部材を切刃部側とし、他方のWC基超硬合金部材を工具基体とすることにより切削工具を構成することができる。
より具体的にいえば、例えば、複合部材の一方のWC基超硬合金部材を、切刃部側であるcBN焼結体の裏打ち材とし、また、他方のWC基超硬合金部材を工具基体(台金)とすることにより、cBN切削工具を形成することができる。
In the composite member of the present invention, a cutting tool can be constructed by using one WC-based cemented carbide member as the cutting edge side and the other WC-based cemented carbide member as a tool base.
More specifically, for example, one WC-based cemented carbide member of the composite member is used as a backing material for the cBN sintered body on the cutting edge side, and the other WC-based cemented carbide member is used as a tool base. By using (base metal), a cBN cutting tool can be formed.
本発明は、WC基超硬合金部材同士(一方のWC基超硬合金部材と他方のWC基超硬合金部材)を、接合部材として純Ti箔あるいは85原子%以上のTiを含有するTi合金箔を用い、固相拡散接合によって形成した接合部を介して接合した複合部材であって、接合部に隣接するWC基超硬合金部材界面近傍の結合相中にはWおよびCが拡散した改質層が形成され、該改質層の平均幅を所定範囲内にするとともに、該改質層に含有される成分の組成を適正範囲にコントロールすることによって、WC基超硬合金部材と接合部との密着強度、接合強度が向上し、その結果、接合強度に優れた複合部材を得ることができるのである。
そして、上記複合部材から構成される切削工具は、切刃に高負荷が作用する重切削加工に供した場合であっても、接合部からの破断を生じることはなく、長期の使用に亘って、すぐれた切削性能を発揮するのである。
In the present invention, WC-based cemented carbide members (one WC-based cemented carbide member and the other WC-based cemented carbide member) are joined to each other as a pure Ti foil or a Ti alloy containing 85 atomic% or more of Ti. A composite member bonded via a joint formed by solid-phase diffusion bonding using a foil, in which W and C are diffused in the bonding phase near the interface of the WC-based cemented carbide member adjacent to the bonding. By forming a quality layer, keeping the average width of the modified layer within a predetermined range, and controlling the composition of the components contained in the modified layer within an appropriate range, the WC-based cemented carbide member and the joint portion Adhesion strength and joint strength with and from are improved, and as a result, a composite member having excellent joint strength can be obtained.
The cutting tool composed of the composite member does not break from the joint even when it is subjected to heavy cutting in which a high load acts on the cutting edge, and it can be used for a long period of time. , Demonstrates excellent cutting performance.
つぎに、本発明を実施例に基づき具体的に説明する。なお、以下に説明した実施例は、本発明の一実施態様であって、本発明の具体的な実施の形態は、これに制限されるものではない。 Next, the present invention will be specifically described based on examples. It should be noted that the examples described below are embodiments of the present invention, and specific embodiments of the present invention are not limited thereto.
原料粉末として、いずれも0.5〜1μmの平均粒径を有するWC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度1400℃、保持時間1時間の条件で焼結し、表1に示される4種のWC基超硬合金焼結体(以下、単に「超硬合金」と云う)A−1〜A−4を形成した。 As raw material powders, WC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder having an average particle size of 0.5 to 1 μm are prepared, and these raw material powders are shown in Table 1. Wet-mixed in a ball mill for 24 hours, dried, and then press-molded into a green compact at a pressure of 100 MPa, and the green compact was pressed in a vacuum of 6 Pa at a temperature of 1400 ° C. and a holding time of 1 hour. Sintering was performed under the conditions to form four types of WC-based superhard alloy sintered bodies (hereinafter, simply referred to as "superhard alloys") A-1 to A-4 shown in Table 1.
次に、cBN焼結体の原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiCN粉末、TiB2粉末、TiC粉末、AlN粉末、Al2O3粉末を用意し、これら原料粉末を所定の配合組成で配合し、ボールミルで24時間アセトンを用いて湿式混合し、乾燥した後、100MPaの圧力で直径15mm×厚さ1mmの寸法をもった圧粉体にプレス成形した。
ついで、前記超硬合金A−1〜A−4を、直径15mm×厚さ2mmのサイズの焼結体とし、これを、cBN焼結体の焼結時の裏打ち材とし、裏打ち材上に前記cBN圧粉体を表2に示す組合せで積層し、ついでこの積層体を、超高圧発生装置を用いて、温度:1300℃、圧力:5.5GPa、時間:30分の条件で焼結し、複合焼結体B−1〜B−4を作製した。
複合焼結体B−1〜B−4のcBN焼結体の組成について、cBN焼結体断面研磨面のSEM観察結果の画像分析によりcBNの面積%を容量%として求めた。
cBN以外の成分については、主結合相およびその他の結合相を構成している成分を確認するに止めた。その結果を表2に示す。
Next, as the raw material powder of the cBN sintered body, cBN powder, TiN powder, TiCN powder, TiB 2 powder, TiC powder, AlN powder, Al 2 O, each having an average particle size in the range of 0.5 to 4 μm. 3 powders are prepared, these raw material powders are blended in a predetermined compounding composition, wet-mixed with acetone for 24 hours in a ball mill, dried, and then pressure having a size of 15 mm in diameter × 1 mm in thickness at a pressure of 100 MPa. It was press-molded into powder.
Next, the cemented carbides A-1 to A-4 were used as a sintered body having a size of 15 mm in diameter and 2 mm in thickness, and this was used as a backing material for sintering the cBN sintered body, and the above-mentioned was put on the backing material. The cBN green compacts were laminated in the combination shown in Table 2, and then the laminate was sintered using an ultra-high pressure generator under the conditions of temperature: 1300 ° C., pressure: 5.5 GPa, and time: 30 minutes. Composite sintered bodies B-1 to B-4 were prepared.
Regarding the composition of the cBN sintered body of the composite sintered bodies B-1 to B-4, the area% of cBN was determined as the volume% by image analysis of the SEM observation result of the cross-section polished surface of the cBN sintered body.
For components other than cBN, only the components constituting the main binding phase and other binding phases were confirmed. The results are shown in Table 2.
次に、表3に示される純Ti箔あるいはTi合金箔を接合部材として用意した。 Next, the pure Ti foil or Ti alloy foil shown in Table 3 was prepared as a joining member.
次いで、超硬合金A−1〜A−4と複合焼結体B−1〜B−4の間に、表3に示される接合部材を挿入介在させ、表4に示す条件(即ち、1〜100μmの厚さの純Ti箔あるいは85原子%以上のTiを含有するTi合金箔を接合部材とし、1×10−3Pa以下の真空中、600〜900℃の範囲内の所定温度に5〜600分間保持し、0.5〜5MPaの加圧力を付加した条件)で複合焼結体と超硬合金を加圧接合し、表6に示す本発明複合部材1〜10を作製した。なお、複合焼結体はcBN焼結体が外面、裏打ち材が内面となるよう、即ち裏打ち材であるWC基超硬合金と工具基体(台金)であるWC基超硬合金が接合部材を介し接合するように配置した。 Next, the joining member shown in Table 3 is inserted between the cemented carbides A-1 to A-4 and the composite sintered bodies B-1 to B-4, and the conditions shown in Table 4 (that is, 1 to 1) are inserted. A pure Ti foil with a thickness of 100 μm or a Ti alloy foil containing 85 atomic% or more of Ti is used as a joining member, and the temperature is 5 to a predetermined temperature within the range of 600 to 900 ° C. in a vacuum of 1 × 10 -3 Pa or less. The composite sintered body and the cemented carbide were pressure-bonded under the condition of holding for 600 minutes and applying a pressing force of 0.5 to 5 MPa to prepare the composite members 1 to 10 of the present invention shown in Table 6. In the composite sintered body, the cBN sintered body is the outer surface and the backing material is the inner surface, that is, the WC-based cemented carbide that is the backing material and the WC-based cemented carbide that is the tool base (base metal) form the joining member. It was arranged so as to be joined through.
比較のために、表3に示される接合部材を用い、これを、超硬合金A−1〜A−4と複合焼結体B−1〜B−4の間に介在装入し、表5に示す条件で、複合焼結体と超硬合金を加圧接合し、表8に示す比較例複合部材1〜10を作製した。複合焼結体の接合配置は本発明複合部材と同様とした。 For comparison, the joining members shown in Table 3 were used, and this was intervened and charged between the cemented carbides A-1 to A-4 and the composite sintered bodies B-1 to B-4, and Table 5 Under the conditions shown in (1), the composite sintered body and the cemented carbide were pressure-bonded to prepare Comparative Example composite members 1 to 10 shown in Table 8. The joint arrangement of the composite sintered body was the same as that of the composite member of the present invention.
高温せん断強度測定試験:
上記で作製した本発明複合部材1〜10及び比較例複合部材1〜10について、接合部の強度を測定するためにせん断強度測定試験を行った。
試験に使用する試験片は、上記で作製した本発明複合部材1〜10及び比較例複合部材1〜10から、複合焼結体:1.5mm(W)×1.5mm(L)×0.75mm(H)、WC基超硬合金基体(台金):1.5mm(W)×4.5mm(L)×1.5mm(H)のサイズとなるように切り出してせん断強度測定用試験片とした。
試験片の上下面をクランプで把持固定し、1辺が1.5mmの超硬合金からなる角柱状の押圧片を用い、雰囲気温度を600℃として、試験片の上面略中心付近に荷重を加え、試験片が破断する荷重を測定した。
表6、表8に、測定されたせん断強度の値を示す。
High temperature shear strength measurement test:
The composite members 1 to 10 of the present invention and the composite members 1 to 10 of Comparative Examples produced above were subjected to a shear strength measurement test in order to measure the strength of the joint.
The test piece used for the test was made from the composite members 1 to 10 of the present invention and the composite members 1 to 10 of Comparative Example produced above, and the composite sintered body: 1.5 mm (W) × 1.5 mm (L) × 0. 75 mm (H), WC-based cemented carbide substrate (base metal): A test piece for shear strength measurement cut out to a size of 1.5 mm (W) x 4.5 mm (L) x 1.5 mm (H). And said.
The upper and lower surfaces of the test piece are gripped and fixed with a clamp, and a prismatic pressing piece made of cemented carbide with a side of 1.5 mm is used, the ambient temperature is set to 600 ° C., and a load is applied near the center of the upper surface of the test piece. , The load at which the test piece breaks was measured.
Tables 6 and 8 show the measured shear strength values.
また、本発明複合部材1〜10及び比較例複合部材1〜10について、WC基超硬合金部材界面近傍の結合相中に、WC粒子を構成する成分であるWおよびCが拡散した改質層の平均幅を、走査型電子顕微鏡及びオージェ電子分光装置を用いて、次のように測定・算出した。
まず、WC基超硬合金部材と接合部との境界近傍を縦断面観察し、WC基超硬合金部材側からみて、WC結晶粒が観察される臨界位置をWC基超硬合金部材と接合部との界面と定めた。
ついで、界面からWC基超硬合金部材の内側へ、界面から垂直な方向へ20μmにわたって、1μm間隔で10本の線測定を行い、結合相中に含有されるW量、C量、Co量を求めた。
ついで、結合相中にWおよびCを5原子%以上含有する点のうち、界面からWC基超硬合金部材の最も内側の点までの距離を各線における改質領域と定め、10本の線測定のうち、改質領域の広い3本の改質領域幅を平均することにより、改質層の平均幅として求めた。
また、改質層におけるW量、C量、Co量については、走査型電子顕微鏡を用いて、WC基超硬合金部材と接合部との境界近傍を縦断面観察し、前記界面に平行な5本の直線を、前記で求めた改質層の幅方向を4等分するように引き、オージェ電子分光装置を用いて、各直線上に存在する改質層中の結合相上で点測定を行い、測定点9点の値を平均化することによって、W、C、Coの含有量を求めた。
なお、比較例複合工具の一部については改質層が形成されていなかったため、参考としてWC基超硬合金部材と接合部との界面から1μm超硬合金部材内部の箇所の測定を行い、代替値とした。
さらに、参考のために、前記WC基超硬合金部材と接合部との界面によって画成される接合部の中央部分におけるTi、W、Co、Cの含有量を、オージェ電子分光装置を用いて測定することによって、これを接合部の組成として求めた。
表6、表8に、工具基体(台金)側改質層の測定結果および接合部の組成、厚さ、ならびにせん断強度を示す。表7、9に複合焼結体側改質層の測定結果を示す。なお、本発明複合部材1〜4、および比較例複合部材1〜4は工具基体(台金)側と複合焼結体側の測定結果が実質的に同一であったため、工具基体側を代表として表に示した。
Further, with respect to the composite members 1 to 10 of the present invention and the composite members 1 to 10 of the comparative examples, a modified layer in which W and C, which are components constituting WC particles, are diffused in the bonding phase near the interface of the WC-based cemented carbide member. The average width of the particles was measured and calculated as follows using a scanning electron microscope and an Auger electron spectrometer.
First, the vertical cross section is observed near the boundary between the WC-based cemented carbide member and the joint, and the critical position where the WC crystal grains are observed when viewed from the WC-based cemented carbide member side is the WC-based cemented carbide member and the joint. It was defined as the interface with.
Then, 10 lines were measured at 1 μm intervals from the interface to the inside of the WC-based cemented carbide member in the direction perpendicular to the interface over 20 μm, and the W amount, C amount, and Co amount contained in the bonded phase were measured. I asked.
Next, among the points containing 5 atomic% or more of W and C in the bonded phase, the distance from the interface to the innermost point of the WC-based cemented carbide member is defined as the modified region in each line, and 10 line measurements are performed. Of these, the average width of the three modified regions having a wide modified region was averaged to obtain the average width of the modified layer.
Regarding the W amount, C amount, and Co amount in the modified layer, a longitudinal cross-sectional view was observed near the boundary between the WC-based superhard alloy member and the joint portion using a scanning electron microscope, and 5 parallel to the interface. Draw a straight line of the book so as to divide the width direction of the modified layer obtained above into four equal parts, and use an Auger electron spectrometer to perform point measurement on the bonded phase in the modified layer existing on each straight line. By averaging the values at 9 measurement points, the contents of W, C, and Co were determined.
Since the modified layer was not formed in a part of the comparative example composite tool, as a reference, the part inside the cemented carbide member 1 μm from the interface between the WC-based cemented carbide member and the joint was measured and replaced. The value was taken.
Further, for reference, the content of Ti, W, Co, and C in the central portion of the joint defined by the interface between the WC-based cemented carbide member and the joint is determined by using an Auger electron spectrometer. By measuring, this was determined as the composition of the joint.
Tables 6 and 8 show the measurement results of the modified layer on the tool substrate (base metal) side and the composition, thickness, and shear strength of the joint. Tables 7 and 9 show the measurement results of the modified layer on the composite sintered body side. Since the measurement results of the composite members 1 to 4 of the present invention and the composite members 1 to 4 of the comparative examples on the tool base (base body) side and the composite sintered body side were substantially the same, the tool base side is represented as a representative. It was shown to.
次に、本発明複合部材1〜10及び比較例複合部材1〜10からなる切削工具を作製し、切削加工における破断発生の有無を調査した。
複合部材からなる切削工具は、以下のように作製した。
前記で作製した複合焼結体B−1〜B−4を、平面形状:開き角80°の一辺が4mmの二等辺三角形×厚さ:2mmの寸法に切断した。続いて、前記超硬合金A−1〜A−4を、平面形状:12.7mmの内接円で開き角80°の菱形×厚さ:4.76mmの寸法の焼結体とし、この焼結体の上下平行面の内、何れかの面の1角を、研削盤を用いて上記複合焼結体の形状に対応した大きさの切欠きを形成した。この切欠きの底面の面積は2.96mm2であり、側面の面積は4.89mm2である。次いで、超硬合金A−1〜A−4と複合焼結体B−1〜B−4の間に、表3に示される接合部材を挿入介在させ、表4に示す条件で複合焼結体とWC基超硬合金を加圧接合し、この複合部材を外周研磨加工後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNGA120408のインサート形状を有する、本発明切削工具1〜10を作製した。
なお、複合焼結体はcBN焼結体が外面、裏打ち材が内面となるよう、即ち、裏打ち材と工具基体(台金)が接合部材を介し接合するように配置した。
また、これら本発明切削工具1〜10の接合部は表6に示す本発明複合部材1〜10と実質的に同様であることを確認した。
同様に、前記で作製した複合焼結体B−1〜B−4と、前記で作製した超硬合金A−1〜A−4の間に、表3に示す接合部材を挿入介在させ、表5に示す条件で加圧接合し、比較例切削工具1〜10を作製した。
また、これら比較例切削工具1〜10の接合部は表8に示す比較例複合部材1〜10と実質的に同様であることを確認した。
Next, a cutting tool composed of the composite members 1 to 10 of the present invention and the composite members 1 to 10 of the comparative example was produced, and the presence or absence of breakage in the cutting process was investigated.
A cutting tool made of a composite member was produced as follows.
The composite sintered bodies B-1 to B-4 produced above were cut into an isosceles triangle having a plane shape: an opening angle of 80 ° and a side of 4 mm × a thickness of 2 mm. Subsequently, the cemented carbides A-1 to A-4 were made into a sintered body having a plane shape: 12.7 mm inscribed circle, a rhombus having an opening angle of 80 ° and a thickness of 4.76 mm, and this baking was performed. A notch having a size corresponding to the shape of the composite sintered body was formed on one corner of one of the vertically parallel planes of the body by using a grinding machine. The area of the bottom surface of this notch is 2.96 mm 2 , and the area of the side surface is 4.89 mm 2 . Next, the joining member shown in Table 3 is inserted between the cemented carbides A-1 to A-4 and the composite sintered bodies B-1 to B-4, and the composite sintered body is provided under the conditions shown in Table 4. And WC-based cemented carbide are pressure-bonded, and after the outer circumference of this composite member is ground, the cutting edge is honed to R: 0.07 mm to have an insert shape of ISO standard CNGA120408. Tools 1-10 were made.
The composite sintered body was arranged so that the cBN sintered body had an outer surface and the backing material had an inner surface, that is, the backing material and the tool base (base metal) were joined via a joining member.
Further, it was confirmed that the joints of the cutting tools 1 to 10 of the present invention are substantially the same as those of the composite members 1 to 10 of the present invention shown in Table 6.
Similarly, the joining member shown in Table 3 is inserted between the composite sintered bodies B-1 to B-4 produced above and the cemented carbide A-1 to A-4 produced above, and the table is shown. The cutting tools 1 to 10 of Comparative Example were manufactured by pressure joining under the conditions shown in 5.
Further, it was confirmed that the joints of the cutting tools 1 to 10 of the comparative examples are substantially the same as those of the composite members 1 to 10 of the comparative examples shown in Table 8.
つぎに、前記各種の切削工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明切削工具1〜10、比較例切削工具1〜10について、以下に示す浸炭焼き入れ鋼の乾式高速重切削試験を行い、刃先脱落および破断部の場所を観察した。
被削材:JIS・SCM415(硬さ:58HRc)の丸棒、
切削速度:265 m/min.、
切り込み:0.5 mm、
送り:0.35 mm/rev.、
切削時間:17分、
(通常の切削速度、送りは、それぞれ、150m/min、0.2mm/rev.)、
表10に、切削試験結果を示す。
Next, the cutting tools 1 to 10 of the present invention and the cutting tools 1 to 10 of the comparative examples are shown below in a state where all of the various cutting tools are screwed to the tip of the tool steel cutting tool with a fixing jig. A dry high-speed heavy-cutting test was conducted on carburized and hardened steel, and the location of the cutting edge dropout and breakage was observed.
Work material: JIS / SCM415 (hardness: 58HRc) round bar,
Cutting speed: 265 m / min. ,
Notch: 0.5 mm,
Feed: 0.35 mm / rev. ,
Cutting time: 17 minutes,
(Normal cutting speed and feed are 150 m / min and 0.2 mm / rev, respectively),
Table 10 shows the cutting test results.
表6、表8に示されるせん断強度の値から、本発明複合部材1〜10は、比較例複合部材1〜10に比して、すぐれた接合強度を有することが分かる。
また、表10に示される結果から、本発明複合部材1〜10によって構成される本発明切削工具1〜10は、刃先の脱落もなく、長期の使用に亘ってすぐれた切削性能を発揮するのに対して、比較例複合部材1〜10から構成される比較例切削工具1〜10は、切削中に接合部から刃先脱落が生じ、早期に工具寿命に至ることが分かる。
From the values of shear strength shown in Tables 6 and 8, it can be seen that the composite members 1 to 10 of the present invention have excellent joint strength as compared with the composite members 1 to 10 of Comparative Examples.
Further, from the results shown in Table 10, the cutting tools 1 to 10 of the present invention composed of the composite members 1 to 10 of the present invention do not fall off the cutting edge and exhibit excellent cutting performance over a long period of use. On the other hand, it can be seen that in the comparative example cutting tools 1 to 10 composed of the comparative example composite members 1 to 10, the cutting edge falls off from the joint during cutting, and the tool life is reached at an early stage.
なお、本実施例においては、インサートを例にとって具体的に説明したが、本発明は、インサートに限られることなく、ドリル、エンドミルなど切刃部と工具本体との接合部をもつすべての切削工具、ビット等の掘削工具に適用可能であることはいうまでもない。 In this embodiment, the insert has been specifically described as an example, but the present invention is not limited to the insert, and all cutting tools such as drills and end mills having a joint portion between the cutting edge portion and the tool body. Needless to say, it can be applied to drilling tools such as bits.
本発明の複合部材は、その接合強度が大であり、この複合部材から作製した切削工具は、各種の鋼や鋳鉄などの高速重切削加工等の高負荷切削加工に使用することができ、しかも、長期に亘って安定した切削性能を発揮するものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
The composite member of the present invention has a high joint strength, and the cutting tool produced from this composite member can be used for high-load cutting such as high-speed heavy cutting of various types of steel and cast iron. Since it exhibits stable cutting performance over a long period of time, it is possible to sufficiently satisfy the high performance of the cutting machine, labor saving and energy saving of the cutting process, and cost reduction.
Claims (3)
(a)前記WC基超硬合金部材は、少なくとも、WC粒子と該WC粒子の間隙を埋めるCo成分を主体とする結合相からなり、
(b)前記接合部は、Tiを50原子%以上含有し、残部は、少なくとも、W、C、Coを含有する成分組成を有し、
(c)前記WC基超硬合金部材において、接合部とWC基超硬合金部材の界面近傍には、結合相組成が、W:5〜20原子%、C:5〜20原子%、残部が60〜90原子%のCoおよび不可避不純物からなり、0.2〜5.0μmの平均幅を有する改質層が存在しており、かつ、改質層より超硬合金部材内部側では結合相組成がW:5原子%未満、C:5原子%未満、残部Coおよび不可避不純物であることを特徴とする複合部材。 A composite member in which WC-based cemented carbide members are joined to each other via a joint.
(A) The WC-based cemented carbide member is composed of at least a bonding phase mainly composed of a Co component that fills the gap between the WC particles and the WC particles.
(B) The joint portion has a component composition containing 50 atomic% or more of Ti, and the balance has a component composition containing at least W, C, and Co.
(C) In the WC-based cemented carbide member, the bonded phase composition is W: 5 to 20 atomic%, C: 5 to 20 atomic%, and the balance in the vicinity of the interface between the joint portion and the WC-based cemented carbide member. A modified layer consisting of 60 to 90 atomic% of Co and unavoidable impurities and having an average width of 0.2 to 5.0 μm exists, and the cemented carbide member has a bonded phase composition on the inner side of the cemented carbide member from the modified layer. W: less than 5 atomic%, C: less than 5 atomic%, balance Co and unavoidable impurities.
A cutting tool characterized by being composed of the composite member according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/003390 WO2017135243A1 (en) | 2016-02-01 | 2017-01-31 | Composite member and cutting tool |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016016961 | 2016-02-01 | ||
JP2016016961 | 2016-02-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017137574A JP2017137574A (en) | 2017-08-10 |
JP6757519B2 true JP6757519B2 (en) | 2020-09-23 |
Family
ID=59564866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017009853A Active JP6757519B2 (en) | 2016-02-01 | 2017-01-23 | Composite members and cutting tools |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6757519B2 (en) |
-
2017
- 2017-01-23 JP JP2017009853A patent/JP6757519B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017137574A (en) | 2017-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102326622B1 (en) | Surface-coated cutting tool with excellent chipping resistance and wear resistance | |
JP5414744B2 (en) | Cubic boron nitride sintered body and cutting tool using the same | |
JP5999362B2 (en) | Surface coated cutting tool | |
JP2018513928A (en) | Ultra-hard structure and its manufacturing method | |
JPH09194978A (en) | Superhard composite member and its production | |
JP6245520B2 (en) | Composite member and cutting tool | |
JP5413047B2 (en) | Composite sintered body | |
JP6459042B2 (en) | Joining brazing material, composite member using the same, and cutting tool | |
WO2017038855A1 (en) | Composite member and cutting tool | |
JP2009066741A (en) | Cutting tool made of wc-based cemented carbide excellent in chipping resistance | |
JP6757519B2 (en) | Composite members and cutting tools | |
WO2017135243A1 (en) | Composite member and cutting tool | |
JP2018140416A (en) | Composite member, joining member used for producing the same, and cutting tool formed from composite member | |
JP5656076B2 (en) | cBN insert | |
JP6775694B2 (en) | Composite sintered body | |
JP6694597B2 (en) | Composite member and cutting tool | |
JP2017179474A (en) | Hard metal used for tool for processing nonmetallic material | |
JP4960126B2 (en) | Brazing cBN tool | |
JP2008018505A (en) | Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed cutting hard material hard to cut | |
JP2018051619A (en) | Composite member and cutting tool | |
JP2018111108A (en) | Composite member and cutting tool comprising the composite member | |
JP2019063901A (en) | Composite member and cutting tool | |
JP2018048038A (en) | Layer structure sintered super abrasive particle composite material and manufacturing method therefor | |
JP2018122313A (en) | Composite member, junction member used to manufacture the same, and cutting tool consisting of this composite member | |
JP2016101603A (en) | Composite member and cutting tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200731 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200813 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6757519 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |