JP2018140416A - Composite member, joining member used for producing the same, and cutting tool formed from composite member - Google Patents

Composite member, joining member used for producing the same, and cutting tool formed from composite member Download PDF

Info

Publication number
JP2018140416A
JP2018140416A JP2017035664A JP2017035664A JP2018140416A JP 2018140416 A JP2018140416 A JP 2018140416A JP 2017035664 A JP2017035664 A JP 2017035664A JP 2017035664 A JP2017035664 A JP 2017035664A JP 2018140416 A JP2018140416 A JP 2018140416A
Authority
JP
Japan
Prior art keywords
cemented carbide
based cemented
carbide member
composite
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017035664A
Other languages
Japanese (ja)
Inventor
五十嵐 誠
Makoto Igarashi
誠 五十嵐
藤原 和崇
Kazutaka Fujiwara
和崇 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2017035664A priority Critical patent/JP2018140416A/en
Publication of JP2018140416A publication Critical patent/JP2018140416A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a composite member excellent in high-temperature joining strength, formed by joining, via a joining member, two types of WC-based hard metal alloys different from each other in at least one of Co content, amount of added component, and average particle diameter of WC particles, and to provide a joining member therefor and to provide a cutting tool formed from this composite member.SOLUTION: In a composite member, a Ti surface of a joining member formed from a Ti-Sn laminate is diffused and joined to a WC-based hard metal alloy member A in solid phase, thereby forming a reaction layer and a Ti-Co alloy layer at a junction and, meanwhile a Sn surface of the joining member is PTLP-joined to a WC-based hard metal alloy member B, thereby forming a reaction layer, a Ti-Sn alloy phase, and a Ti-Co alloy layer at the junction, the reaction layer is mainly formed from a metal W phase and a TiC phase. The Ti-Co alloy layer formed further on the center side of the junction than the reaction layer is formed from a composition of 45 to 75 atom % of Ti and 25 to 55 atom % of Co. A Ti-Sn alloy phase intermittently formed between the reaction layer and the Ti-Co alloy layer is formed from a composition of 65 to 85 atom % of Ti and 15 to 35 atom % of Sn. A cutting tool is formed from this composite member.SELECTED DRAWING: Figure 2

Description

本発明は、接合部の高温接合強度に優れた複合部材に関し、特に、WC基超硬合金とWC基超硬合金とを接合した複合部材とこれを作製するために用いる接合部材、さらには、この複合部材からなる切削工具に関する。   The present invention relates to a composite member excellent in high-temperature bonding strength of a joint, and in particular, a composite member obtained by bonding a WC-based cemented carbide and a WC-based cemented carbide, a bonding member used for producing the same, The present invention relates to a cutting tool made of this composite member.

従来から、工具材料としては、WC基超硬合金、TiCN基サーメット、cBN焼結体等が良く知られているが、近年、工具材料を単一素材から形成するのではなく複合部材として工具材料を形成することが提案されている。   Conventionally, WC-based cemented carbide, TiCN-based cermet, cBN sintered body, and the like are well known as tool materials. However, in recent years, tool materials are not formed from a single material but as a composite member. Has been proposed to form.

例えば、特許文献1には、サーメット焼結体を第1の被接合材1とし、cBN焼結体またはダイヤモンド焼結体を第2の被接合材3とする接合体であって、第1の被接合材および第2の被接合材の間に1000℃未満では液相を生成しない接合材2(例えば、Ti、Co、Ni)を介して接合し、該接合は0.1MPa〜200MPaの圧力で加圧しながら通電加熱することによって行うことが提案されており、これによって得られた接合体は、切削中に、ロウ材が液相を生成する温度を超える高温となっても、接合層の接合強度が低下することがないため、高速切削加工工具やCVDコーティング切削工具として好適であるとされている。   For example, Patent Document 1 discloses a bonded body in which a cermet sintered body is a first material to be bonded 1 and a cBN sintered body or a diamond sintered body is a second material to be bonded 3. The joining material and the second joining material are joined via a joining material 2 (for example, Ti, Co, Ni) that does not generate a liquid phase at a temperature lower than 1000 ° C., and the joining is performed at a pressure of 0.1 MPa to 200 MPa. It has been proposed to perform heating by energization while pressurizing at a pressure, and the bonded body obtained by this can be used for the bonding layer even when the temperature of the brazing material becomes higher than the temperature at which the brazing material generates a liquid phase during cutting. Since the bonding strength does not decrease, it is considered suitable as a high-speed cutting tool or a CVD-coated cutting tool.

また、特許文献2には、超硬合金焼結体を第1の被接合材1とし、cBN焼結体を第2の被接合材2とする接合体において、第1の被接合材および第2の被接合材の間にはチタン(Ti)を含有する接合材3を介して、少なくとも、第2の被接合材の背面と底面からなる2面で接合し、第2の被接合材と接合材との界面には、厚み10〜300nmの窒化チタン(TiN)化合物層を形成し、また、背面の接合層の厚みを、底面の接合層の厚みよりも薄くすることによって、接合強度が高い切削工具等の接合体を得ることが提案されている。   Patent Document 2 discloses a bonded body in which a cemented carbide sintered body is a first material to be bonded 1 and a cBN sintered body is a second material to be bonded 2. The two materials to be joined are joined to each other by at least two surfaces consisting of a back surface and a bottom surface of the second material to be joined, with a joining material 3 containing titanium (Ti), A titanium nitride (TiN) compound layer having a thickness of 10 to 300 nm is formed at the interface with the bonding material, and the bonding strength is reduced by making the thickness of the bonding layer on the back surface smaller than the thickness of the bonding layer on the bottom surface. It has been proposed to obtain a joined body such as a high cutting tool.

さらに、特許文献3には、cBNを20〜100質量%含むcBN焼結体と、Ti、Zr、Hf、V、Nb、Ta、Cr、MoおよびWの炭化物、炭窒化物およびこれらの相互固溶体から成る群より選択された少なくとも1種からなる硬質相:50〜97質量%と、残部として、Co、NiおよびFeから成る群より選択された少なくとも1種を主成分とする結合相:3〜50質量%とからなる硬質合金との複合体において、cBN焼結体と硬質合金との間に接合層を設け、該接合層をセラミックス相と金属相とから構成し、さらに、該接合層の厚さを2〜30μmとすることによって、複合体の接合強度を高めることが提案されている。   Further, Patent Document 3 discloses a cBN sintered body containing 20 to 100% by mass of cBN, and carbides, carbonitrides, and mutual solid solutions of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W. Hard phase consisting of at least one selected from the group consisting of: 50 to 97% by mass, and the balance of the binder phase consisting mainly of at least one selected from the group consisting of Co, Ni and Fe: 3 to In a composite of 50% by mass of a hard alloy, a bonding layer is provided between the cBN sintered body and the hard alloy, and the bonding layer is composed of a ceramic phase and a metal phase. It has been proposed to increase the bonding strength of the composite by setting the thickness to 2 to 30 μm.

特開2009−241236号公報JP 2009-241236 A 特開2012−111187号公報JP 2012-111187 A 特開2014−131819号公報JP 2014-131819 A

前記特許文献1〜3で提案された複合材料あるいはこれからなる切削工具は、通常条件の切削加工では、ある程度の性能を発揮するが、例えば、切れ刃に高負荷が作用し、かつ、高熱発生を伴う高送り、高切り込みの重切削条件では、高温接合強度が十分であるとはいえず、接合部からの破損が発生する問題があった。
そこで、切れ刃に高負荷が作用し、かつ、高熱発生を伴う重切削条件においても、接合部からの破断が生じないような、より高い高温接合強度を備えた接合部を有する複合部材およびこれからなる切削工具が望まれている。
The composite material proposed in Patent Documents 1 to 3 or a cutting tool made of the same exhibits a certain level of performance under normal conditions of cutting. For example, a high load acts on the cutting edge, and high heat generation occurs. Under the accompanying high feed and high cutting heavy cutting conditions, the high-temperature bonding strength cannot be said to be sufficient, and there has been a problem that breakage occurs from the bonded portion.
Therefore, a composite member having a joint portion having a higher high-temperature joint strength that causes a high load to act on the cutting edge and that does not cause breakage from the joint portion even under heavy cutting conditions with high heat generation, and A cutting tool is desired.

本発明者らは、前記従来の複合部材およびこれからなる切削工具の問題点を解決すべく、WC基超硬合金とWC基超硬合金からなる複合部材およびこの複合材からなる切削工具、例えば、超高圧高温焼結時にcBN焼結体の焼結と同時にWC基超硬合金(裏打ち材)を接合した複合焼結体からなる切刃部とWC基超硬合金基体(台金)とを接合部材を介して接合した切削工具において、その接合部の接合強度を改善する方策について鋭意研究したところ、次のような知見を得た。   In order to solve the problems of the conventional composite member and the cutting tool comprising the same, the present inventors have prepared a composite member comprising a WC-base cemented carbide and a WC-base cemented carbide and a cutting tool comprising the composite material, for example, Joins cutting edge part and composite WC base cemented carbide substrate (base metal) made of composite sintered body joined with WC base cemented carbide (backing material) simultaneously with sintering of cBN sintered body during ultra high pressure and high temperature sintering As a result of diligent research on measures to improve the joint strength of the joint in a cutting tool joined via a member, the following findings were obtained.

接合されるWC基超硬合金部材が同材質の場合には、Ti箔からなる接合部材を介してWC基超硬合金部材同士を固相拡散接合により接合すると、WC基超硬合金部材に隣接する接合部には、金属W相とTiC相とからなる反応層が形成され、また、該反応層より接合部の中心側にはTi−Co合金層が形成されることによって、すぐれた接合強度を備えた複合部材が形成される。
しかし、WC基超硬合金部材として、WC基超硬合金部材のCo含有量、WC粒子の平均粒径および添加成分の含有量の少なくとも一つが異なる2種類のWC基超硬合金部材を用いた場合(以下、簡単のために、相対的に、Co含有量が多いWC基超硬合金部材、あるいは、WC粒子の平均粒径が大きいWC基超硬合金部材、あるいは、添加成分の含有量が多いWC基超硬合金部材を「WC基超硬合金部材A」とよび、相対的に、Co含有量が少ないWC基超硬合金部材、あるいは、WC粒子の平均粒径が小さいWC基超硬合金部材、あるいは、添加成分の含有量が少ないWC基超硬合金部材を「WC基超硬合金部材B」とよぶ)には、WC基超硬合金部材Aと接合部との接合強度と、WC基超硬合金部材Bと接合部との接合強度に差が生じて複合部材の接合部の接合強度が不均一になるため、複合部材全体としての高温接合強度を高めることができないという不都合が生じることが判明した。
つまり、前記の複合部材を切削工具用材料とした用いた場合には、高負荷が作用した際に、接合強度が小さい接合部で破断を生じる恐れがあり、このため、期待するほどには工具寿命の延長を図れない。
When the WC-based cemented carbide member to be joined is the same material, the WC-based cemented carbide member is adjacent to the WC-based cemented carbide member when the WC-based cemented carbide members are joined to each other by solid phase diffusion bonding via a joining member made of Ti foil. In the joining portion, a reaction layer composed of a metal W phase and a TiC phase is formed, and a Ti—Co alloy layer is formed on the center side of the joining portion from the reaction layer, thereby providing excellent joining strength. Is formed.
However, as the WC-based cemented carbide member, two types of WC-based cemented carbide members differing in at least one of the Co content of the WC-based cemented carbide member, the average particle size of the WC particles, and the content of the additive component were used. In the case (hereinafter, for the sake of simplicity, a WC-based cemented carbide member having a relatively large Co content, a WC-based cemented carbide member having a large average particle size of WC particles, or a content of an additive component is relatively small. Many WC-based cemented carbide members are referred to as “WC-based cemented carbide members A” and are relatively WC-based cemented carbide members having a low Co content or WC-based cemented carbides having a small average WC particle size. The alloy member or the WC-based cemented carbide member having a small content of additive components is referred to as “WC-based cemented carbide member B”), the bonding strength between the WC-based cemented carbide member A and the joint portion, Difference in bonding strength between WC-base cemented carbide member B and joint Since the bonding strength of the joint of the composite member is uneven, it was found that disadvantage that it is possible to increase the high temperature bond strength of the entire composite member occurs.
In other words, when the composite member is used as a cutting tool material, there is a risk of fracture at a joint having a low joint strength when a high load is applied. Can't extend life.

本発明者らは、このような現象が生じる原因について検討したところ、WC基超硬合金部材Aと接合部の接合界面に形成される反応層の厚さと、WC基超硬合金部材Bと接合部の接合界面に形成される反応層の厚さが異なること、言い換えれば、WC基超硬合金部材Bと接合部の接合界面に形成される反応層の厚さが、WC基超硬合金部材Aと接合部の接合界面に形成される反応層の厚さに比して、過度に厚くなり脆化すること、もしくは、WC基超硬合金部材Aと接合部の接合界面に形成される反応層の厚さが、WC基超硬合金部材Bと接合部の接合界面に形成される反応層の厚さに比して、過度に薄くなり接合強度を発揮できないことがその主たる原因であることを突き止めた。
そこで、本発明者らは、WC基超硬合金部材AとWC基超硬合金部材Bが接合部を介して接合された複合部材全体としての強度を高めるための方策についてさらに研究を進めたところ、接合部材として、Ti箔の表面および裏面のいずれか一面にSn箔が積層された積層体、あるいは、Ti箔の表面および裏面のいずれか一面にSn蒸着膜が形成された積層体を接合部材として用い、WC基超硬合金部材Aに対しては前記積層体のTi面を対向配置し、また、WC基超硬合金部材Bに対しては前記積層体のSn面を対向配置して接合した場合には、WC基超硬合金部材Bと接合部との接合界面に形成される反応層の厚さが過度に厚くなる、もしくは、WC基超硬合金部材Aと接合部との接合界面に形成される反応層の厚さが過度に薄くなるのを防止することができるため、WC基超硬合金部材Aと接合部との接合界面、また、WC基超硬合金部材Bと接合部との接合界面における接合強度がほぼ同等になり、そのため、複合部材全体としての高温接合強度を向上させ得ることを見出した。
When the present inventors examined the cause of such a phenomenon, the thickness of the reaction layer formed at the joint interface between the WC-based cemented carbide member A and the joint, and the joint between the WC-based cemented carbide member B and the joint. The thickness of the reaction layer formed at the joint interface of the joint is different, in other words, the thickness of the reaction layer formed at the joint interface of the WC-base cemented carbide member B and the joint is WC-base cemented carbide member. Compared to the thickness of the reaction layer formed at the joint interface between A and the joint, it becomes excessively thick and brittle, or the reaction formed at the joint interface between the WC-based cemented carbide member A and the joint. The main reason is that the thickness of the layer is excessively thin compared to the thickness of the reaction layer formed at the joint interface between the WC-based cemented carbide member B and the joint, and the joint strength cannot be exhibited. I found out.
Therefore, the present inventors have further researched on measures for increasing the strength of the entire composite member in which the WC-based cemented carbide member A and the WC-based cemented carbide member B are joined via the joint. As a joining member, a laminated body in which Sn foil is laminated on any one of the front and back surfaces of Ti foil, or a laminated body in which a Sn vapor deposition film is formed on any one of the front and back surfaces of Ti foil is used as a joining member. The Ti surface of the laminate is disposed opposite to the WC-based cemented carbide member A, and the Sn surface of the laminate is disposed opposite to the WC-based cemented carbide member B. In this case, the thickness of the reaction layer formed at the bonding interface between the WC-based cemented carbide member B and the bonding portion becomes excessively thick, or the bonding interface between the WC-based cemented carbide member A and the bonding portion. The thickness of the reaction layer formed on the Therefore, the bonding strength at the bonding interface between the WC-based cemented carbide member A and the bonding portion, and the bonding interface between the WC-based cemented carbide member B and the bonding portion are substantially equal, so that the composite It has been found that the high-temperature bonding strength of the entire member can be improved.

そして、前記複合部材を切削工具用の材料として用いた場合には、切刃に高負荷が作用し、かつ、高熱発生を伴う鋼や鋳鉄の重切削加工に供した場合であっても、WC基超硬合金部材と接合部との接合界面、特に、WC基超硬合金部材Bと接合部との接合界面、からの破断が発生することもなく、長期の使用に亘って、すぐれた切削性能を発揮することを見出したのである。 When the composite member is used as a material for a cutting tool, even if it is a case where a heavy load acts on the cutting blade and is subjected to heavy cutting of steel or cast iron accompanied by high heat generation, WC Excellent cutting over a long period of use without breakage from the joining interface between the base cemented carbide member and the joint, in particular, the joining interface between the WC base cemented carbide member B and the joint. It was found that it performs well.

本発明は、前記知見に基づいてなされたものであって、
「(1)Co含有量、WC粒子の平均粒径および添加成分の含有量の少なくとも一つが異なるWC基超硬合金部材AとWC基超硬合金部材Bとが接合部を介して接合されている複合部材であって、
(a)前記接合部は、1〜50μmの平均層厚を有し、かつ、Tiを平均組成で60〜99原子%含有し、
(b)前記WC基超硬合金部材Aと接合部との接合界面を縦断面観察した場合、前記WC基超硬合金部材Aに隣接して、0.5〜5μmの平均層厚を有し、かつ、金属W相およびTiC相を合計で90原子%以上含有する反応層が形成され、さらに、前記反応層より、接合部の厚さ方向中心側には、Tiを45〜75原子%、Coを25〜55原子%含有するTi−Co合金層が形成されており、
(c)前記WC基超硬合金部材Bと接合部との接合界面を縦断面観察した場合、前記(b)の反応層およびTi−Co合金層が形成されているとともに、前記反応層と前記Ti−Co合金層との間には、Tiを65〜85原子%、Snを15〜35原子%含有するTi−Sn合金相が形成されていることを特徴とする複合部材。
(2)前記WC基超硬合金部材Aは、前記WC基超硬合金部材Bに比して、相対的に、Co含有量が多いWC基超硬合金部材、あるいは、WC粒子の平均粒径が大きいWC基超硬合金部材、あるいは、添加成分の含有量が多いWC基超硬合金部材であることを特徴とする前記(1)に記載の複合部材。
(3)前記WC基超硬合金部材Aは、Co含有量:10〜30質量%、添加成分であるVC、TaC、ZrC、NbC、Crの合計含有量:0〜20質量%、残部はWC及び不可避不純物からなり、WC粒子の平均粒径が、0.8〜10μmであることを特徴とする前記(2)に記載の複合部材。
(4)前記WC基超硬合金部材Bは、Co含有量:4〜12質量%、添加成分であるVC、TaC、ZrC、NbC、Crの合計含有量:0〜20質量%、残部はWC及び不可避不純物からなり、WC粒子の平均粒径が、0.3〜2μmであることを特徴とする前記(2)に記載の複合部材。
(5)前記WC基超硬合金部材AおよびWC基超硬合金部材Bに接する接合部の厚さ方向に平行な縦断面を観察したとき、前記Ti−Co合金層が占める面積割合は、接合部面積の1〜10面積%であることを特徴とする前記(1)乃至(4)のいずれかに記載の複合部材。
(6)前記WC基超硬合金部材Bに接する接合部の厚さ方向に平行な縦断面を観察し、前記反応層の界面長さと、前記反応層に接する前記Ti−Sn合金相の界面長さを測定したとき、前記反応層の界面長さに対する前記Ti−Sn合金相の界面長さの割合は、10〜50%であることを特徴とする前記(1)乃至(5)のいずれかに記載の複合部材。
(7)前記Ti−Sn合金相が、前記反応層と前記Ti−Co合金層との間に断続的に形成されていることを特徴とする前記(1)乃至(6)のいずれかに記載の複合部材。
(8)前記Ti−Sn合金相は、前記反応層と前記Ti−Co合金層との間で、前記WC基超硬合金部材Bの表面の凹部を埋めるように断続的に存在していることを特徴とする前記(1)乃至(7)のいずれかに記載の複合部材。
(9)前記(1)乃至(8)のいずれかに記載の複合部材の作製に用いられる接合部材であって、該接合部材は、1〜50μmの厚さのTi箔の表面および裏面のいずれか一面に0.1〜5μmの厚さのSn箔が積層された積層体、あるいは、1〜50μmの厚さのTi箔の表面および裏面のいずれか一面に0.1〜5μmの厚さのSn蒸着膜が形成された積層体からなり、かつ、前記積層体における前記Sn箔あるいは前記Sn蒸着膜の厚さは、前記Ti箔の厚さの10%以下であることを特徴とする接合部材。
(10)前記(1)乃至(8)のいずれかに記載の複合部材から構成されていることを特徴とする切削工具。
(11)切削工具用切刃が、前記WC基超硬合金部材Bの側に形成されていることを特徴とする前記(10)に記載の切削工具。」
を特徴とするものである。
The present invention has been made based on the above findings,
“(1) A WC-based cemented carbide member A and a WC-based cemented carbide member B that are different in at least one of the Co content, the average particle size of the WC particles, and the content of the additive component are joined via the joint. A composite member comprising:
(A) The joint has an average layer thickness of 1 to 50 μm, and contains Ti in an average composition of 60 to 99 atomic%,
(B) When the longitudinal cross section of the bonding interface between the WC-based cemented carbide member A and the joint is observed, the WC-based cemented carbide member A is adjacent to the WC-based cemented carbide member A and has an average layer thickness of 0.5 to 5 μm. In addition, a reaction layer containing a total of 90 atomic% or more of the metal W phase and the TiC phase is formed, and further, Ti is 45 to 75 atomic% from the reaction layer to the center side in the thickness direction of the joint. A Ti—Co alloy layer containing Co in an amount of 25 to 55 atomic% is formed;
(C) When a longitudinal section of the bonding interface between the WC-based cemented carbide member B and the joint is observed, the reaction layer and the Ti—Co alloy layer of (b) are formed, and the reaction layer and the A composite member characterized in that a Ti-Sn alloy phase containing 65 to 85 atomic% Ti and 15 to 35 atomic% of Sn is formed between the Ti-Co alloy layer.
(2) The WC-based cemented carbide member A is a WC-based cemented carbide member having a relatively higher Co content than the WC-based cemented carbide member B, or the average particle size of WC particles. The composite member according to (1), wherein the composite member is a WC-based cemented carbide member having a large content or a WC-based cemented carbide member having a large content of additive components.
(3) The WC-based cemented carbide member A has a Co content of 10 to 30% by mass, a total content of VC, TaC, ZrC, NbC, and Cr 3 C 2 as additive components: 0 to 20% by mass, The balance is composed of WC and inevitable impurities, and the average particle size of the WC particles is 0.8 to 10 μm.
(4) The WC-based cemented carbide member B has a Co content of 4 to 12% by mass, a total content of VC, TaC, ZrC, NbC, and Cr 3 C 2 as additive components: 0 to 20% by mass, The balance is composed of WC and inevitable impurities, and the average particle size of the WC particles is 0.3 to 2 μm.
(5) When observing a longitudinal section parallel to the thickness direction of the joint portion in contact with the WC-base cemented carbide member A and the WC-base cemented carbide member B, the area ratio occupied by the Ti—Co alloy layer is It is 1-10 area% of a partial area, The composite member in any one of said (1) thru | or (4) characterized by the above-mentioned.
(6) A longitudinal section parallel to the thickness direction of the joint portion in contact with the WC-based cemented carbide member B is observed, and the interface length of the reaction layer and the interface length of the Ti—Sn alloy phase in contact with the reaction layer Any one of (1) to (5) above, wherein the ratio of the interface length of the Ti—Sn alloy phase to the interface length of the reaction layer is 10 to 50% when the thickness is measured. A composite member according to 1.
(7) The Ti—Sn alloy phase is intermittently formed between the reaction layer and the Ti—Co alloy layer, according to any one of (1) to (6), Composite member.
(8) The Ti—Sn alloy phase is intermittently present between the reaction layer and the Ti—Co alloy layer so as to fill the concave portion on the surface of the WC-based cemented carbide member B. The composite member according to any one of the above (1) to (7).
(9) A joining member used for manufacturing the composite member according to any one of (1) to (8), wherein the joining member is any one of a front surface and a back surface of a Ti foil having a thickness of 1 to 50 μm. Or a laminated body in which a Sn foil having a thickness of 0.1 to 5 μm is laminated on one surface, or a Ti foil having a thickness of 1 to 50 μm and a thickness of 0.1 to 5 μm on either one of the front and back surfaces of the Ti foil. A joining member comprising a laminate in which an Sn vapor deposition film is formed, and the thickness of the Sn foil or the Sn vapor deposition film in the laminate is 10% or less of the thickness of the Ti foil. .
(10) A cutting tool comprising the composite member according to any one of (1) to (8).
(11) The cutting tool according to (10), wherein a cutting blade for a cutting tool is formed on the WC-based cemented carbide member B side. "
It is characterized by.

以下に、本発明について、詳細に説明する。   The present invention is described in detail below.

図1に示すように、本発明の複合部材は、WC基超硬合金部材AとWC基超硬合金部材Bとの間に接合部材を配置し(図1(a)参照)、接合部材を介してWC基超硬合金部材AとWC基超硬合金部材Bとを突き合わせ、所定の加圧力を付加した状態で、所定の温度、時間をかけて、WC基超硬合金部材Aと接合部材とを固相拡散接合し、また、WC基超硬合金部材Bと接合部材とをPTLP(Partial Transient Liquid Phase)接合する(図1(b)参照)ことにより、WC基超硬合金部材AとWC基超硬合金部材Bが接合部を介して接合された複合部材である(図1(c)参照)。   As shown in FIG. 1, the composite member of this invention arrange | positions a joining member between WC base cemented carbide member A and WC base cemented carbide member B (refer FIG. 1 (a)), and joins a joining member. The WC-based cemented carbide member A and the WC-based cemented carbide member B are brought into contact with each other through a predetermined temperature and time with a predetermined pressure applied, and the WC-based cemented carbide member A and the joining member. And WC-based cemented carbide member B and the joining member are joined by PTLP (Partial Transient Liquid Phase) (see FIG. 1 (b)). This is a composite member in which the WC-base cemented carbide member B is joined through a joint (see FIG. 1C).

ここで、固相拡散接合とは、WC基超硬合金部材Aと接合部材とを突き合わせ、所定の加圧力(例えば、0.5〜10.0MPa)を付加した状態で、所定の温度(例えば、600〜900℃)、所定の時間(例えば、5〜600分)保持することにより、WC基超硬合金部材Aを構成する成分と接合部材とを反応させ合金を形成させることにより接合する手段であるが、接合部材自身の融点が比較的高温(1200℃以上)であること、1000℃以下でWC基超硬合金と反応すること、反応で生じる脆性相が接合界面の強度を低下させないよう反応を制御することが可能なこと、WC基超硬合金と接合部材の相互拡散において、拡散速度が不均衡となることにより生じるカーケンダルボイドが発生しにくいこと等の条件が接合部材に求められる。
また、PTLP接合とは、WC基超硬合金部材Bと接合部材とを突き合わせ、所定の加圧力(例えば、0.5〜10.0MPa)を付加した状態で、所定の温度(例えば、400〜900℃)、所定の時間(例えば、5〜600分)保持した際に、接合中に接合部材の一部分のみを溶融し、溶融した部材が接合部材の他の部分、もしくはWC基超硬合金部材B中に拡散し、溶融した部材は高融点の相に変化し、接合完了後は低融点の相は存在せず、接合温度では溶融しない耐熱性の高い接合部を形成する接合手段である。
本発明では、前記固相拡散接合と前記PTLP接合の要求に適う接合部材として、Ti箔の表面および裏面のいずれか一面にSn箔が積層された積層体、あるいは、Ti箔の表面および裏面のいずれか一面にSn蒸着膜が形成された積層体を使用する。
そして、固相拡散接合を行わせるWC基超硬合金部材A側に積層体のTiが対向するように接合部材を配置し、また、PTLP接合を行わせるWC基超硬合金部材B側に積層体のSnが対向するように接合部材を配置して接合を行う。
Here, the solid phase diffusion bonding means that the WC-base cemented carbide member A and the bonding member are abutted and a predetermined temperature (for example, 0.5 to 10.0 MPa) is applied and a predetermined temperature (for example, 0.5 to 10.0 MPa) is applied. , 600 to 900 ° C.) and holding for a predetermined time (for example, 5 to 600 minutes), the components constituting the WC-base cemented carbide member A react with the joining member to form an alloy. However, the melting point of the bonding member itself is relatively high (1200 ° C. or higher), reacts with the WC-based cemented carbide at 1000 ° C. or lower, and the brittle phase generated by the reaction does not reduce the strength of the bonding interface. Conditions that the reaction can be controlled and that the Kirkendall void, which occurs due to the diffusion rate being unbalanced in the interdiffusion between the WC-base cemented carbide and the bonding member, are difficult to generate. It is.
PTLP bonding refers to a predetermined temperature (for example, 400 to 400 mm) in a state in which the WC-base cemented carbide member B and the bonding member are butted and a predetermined pressure (for example, 0.5 to 10.0 MPa) is applied. 900 ° C.) for a predetermined time (for example, 5 to 600 minutes), only a part of the joining member is melted during joining, and the melted member is the other part of the joining member or a WC-based cemented carbide member. The member diffused in B and melted is changed into a high melting point phase, and after joining is completed, a low melting point phase does not exist and is a joining means for forming a joint having high heat resistance that does not melt at the joining temperature.
In the present invention, as a bonding member meeting the requirements of the solid phase diffusion bonding and the PTLP bonding, a laminated body in which Sn foil is laminated on any one of the front and back surfaces of the Ti foil, or the front and back surfaces of the Ti foil The laminated body in which Sn vapor deposition film was formed in any one surface is used.
Then, the joining member is arranged so that Ti of the laminate is opposed to the WC-based cemented carbide member A side on which solid phase diffusion bonding is performed, and is laminated on the WC-based cemented carbide member B side on which PTLP bonding is performed. Joining is performed by arranging the joining members so that Sn of the body faces each other.

本発明でいうCo含有量、WC粒子の平均粒径および添加成分の含有量の少なくとも一つが異なるWC基超硬合金部材AとWC基超硬合金部材Bとは、例えば、Co含有量に、5質量%以上の差がある場合、あるいは、WC基超硬合金部材の添加成分(例えば、VC、TaC、ZrC、NbC、Cr等)の合計含有量に、5質量%以上の差がある場合、あるいは、WC粒子の平均粒径に、2μm以上の差がある場合、をいう。
より具体的にいえば、WC基超硬合金部材Aに好適なWC基超硬合金としては、以下のものを例示することができる。
Co含有量:10〜30質量%、好ましくは、15〜25質量%、
添加成分の合計含有量:0〜20質量%、
WC粒子の平均粒径:0.8〜10μm、好ましくは、2〜6μm。
また、WC基超硬合金部材Bに好適なWC基超硬合金としては、以下のものを例示することができる。
Co含有量:4〜12質量%、好ましくは、4〜10質量%、
添加成分の合計含有量:0〜20質量%、
WC粒子の平均粒径:0.3〜2μm、好ましくは、0.3〜1.5μm。
なお、Co含有量、WC粒子の平均粒径および添加成分の含有量の差とは、接合部の両側に位置するWC基超硬合金部材を比較した際の相対的な値であるから、上記で例示したWC基超硬合金部材AあるいはWC基超硬合金部材Bに好適なWC基超硬合金のみに限定されるものではない。
The WC-based cemented carbide member A and the WC-based cemented carbide member B in which at least one of the Co content, the average particle size of the WC particles, and the content of the additive component in the present invention is different include, for example, the Co content, When there is a difference of 5% by mass or more, or a difference of 5% by mass or more in the total content of additive components (for example, VC, TaC, ZrC, NbC, Cr 3 C 2 etc.) of the WC-based cemented carbide member Or there is a difference of 2 μm or more in the average particle diameter of WC particles.
More specifically, examples of the WC-based cemented carbide suitable for the WC-based cemented carbide member A include the following.
Co content: 10-30% by mass, preferably 15-25% by mass,
Total content of additive components: 0 to 20% by mass,
Average particle diameter of WC particles: 0.8 to 10 μm, preferably 2 to 6 μm.
Examples of the WC-based cemented carbide suitable for the WC-based cemented carbide member B include the following.
Co content: 4 to 12% by mass, preferably 4 to 10% by mass,
Total content of additive components: 0 to 20% by mass,
Average particle diameter of WC particles: 0.3-2 μm, preferably 0.3-1.5 μm.
The difference in the Co content, the average particle size of the WC particles, and the content of the additive component is a relative value when comparing the WC-based cemented carbide members located on both sides of the joint. It is not limited only to the WC-based cemented carbide suitable for the WC-based cemented carbide member A or WC-based cemented carbide member B.

図2は、図1(c)の拡大模式図を示す。
図2において、WC基超硬合金部材Aと接合部との接合界面近傍をみると、WC基超硬合金部材Aと接合部との接合界面には、0.5〜5μmの平均層厚を有し、かつ、金属W相とTiC相を合計で90原子%以上含有する反応層がWC基超硬合金部材Aに隣接して形成される。
なお、反応層には、VC、TaC、ZrC、NbC、Cr等のWC基超硬合金部材Aの添加成分、WC基超硬合金部材Aの結合相成分であるCo、あるいは、接合部材の成分であるTiが、合計含有量で10原子%未満(なお、含有量は、金属成分換算による原子%である。)含有されることが許容される。
そして、反応層より接合部の厚さ方向中心側には、45〜75原子%Ti、25〜55原子%Co(以下、「原子%」を、単に「%」で示す。)の組成からなるTi−Co合金層が形成されている。
FIG. 2 shows an enlarged schematic diagram of FIG.
In FIG. 2, when the vicinity of the joining interface between the WC-based cemented carbide member A and the joint is viewed, an average layer thickness of 0.5 to 5 μm is formed at the joining interface between the WC-based cemented carbide member A and the joint. And a reaction layer containing a total of 90 atomic% or more of the metal W phase and the TiC phase is formed adjacent to the WC-based cemented carbide member A.
In the reaction layer, the additive component of WC-based cemented carbide member A such as VC, TaC, ZrC, NbC, Cr 3 C 2 , Co which is a binder phase component of WC-based cemented carbide member A, or bonding Ti which is a component of the member is allowed to be contained in a total content of less than 10 atomic% (note that the content is atomic% in terms of metal component).
And from the reaction layer to the thickness direction center side of a junction part, it consists of a composition of 45-75 atomic% Ti, 25-55 atomic% Co (henceforth "atomic%" is simply shown with "%"). A Ti—Co alloy layer is formed.

また、図2において、WC基超硬合金部材Bと接合部との接合界面近傍をみると、WC基超硬合金部材Bと接合部との接合界面には、0.5〜5μmの平均層厚を有し、かつ、金属W相とTiC相を合計で90原子%以上含有する反応層がWC基超硬合金部材Bに隣接して形成され、反応層より接合部の厚さ方向中心側には、45〜75原子%Ti、25〜55原子%Coの組成からなるTi−Co合金層が形成されている。
なお、反応層には、VC、TaC、ZrC、NbC、Cr等のWC基超硬合金部材Bの添加成分、WC基超硬合金部材Bの結合相成分であるCo、あるいは、WC基超硬合金部材B側の接合部材の成分であるSn、Tiが、合計含有量で10原子%未満(なお、含有量は、金属成分換算による原子%である。)含有されることが許容される。
さらに、前記反応層と前記Ti−Co合金層の間には、前記反応層と前記Ti−Co合金層の界面に接して、65〜85原子%Ti、15〜35原子%Snの組成からなるTi−Sn合金相が断続的に形成されている。
なお、前記Ti−Sn合金相は、反応層と前記Ti−Co合金層の全界面に接して形成される必要はなく、反応層とTi−Co合金層の界面に接して連続的もしくは断続的に形成されていればよい。
Further, in FIG. 2, when the vicinity of the bonding interface between the WC-based cemented carbide member B and the bonded portion is seen, an average layer of 0.5 to 5 μm is formed at the bonded interface between the WC-based cemented carbide member B and the bonded portion. A reaction layer having a thickness and containing a total of 90 atomic% or more of the metal W phase and the TiC phase is formed adjacent to the WC-based cemented carbide member B, and the thickness direction center side of the joint portion from the reaction layer A Ti—Co alloy layer having a composition of 45 to 75 atomic% Ti and 25 to 55 atomic% Co is formed.
In the reaction layer, the additive component of the WC-based cemented carbide member B such as VC, TaC, ZrC, NbC, Cr 3 C 2 , Co that is the binder phase component of the WC-based cemented carbide member B, or WC It is permissible for Sn and Ti, which are components of the joining member on the base cemented carbide member B side, to be contained in a total content of less than 10 atomic% (the content is atomic% in terms of metal component). Is done.
Furthermore, between the reaction layer and the Ti—Co alloy layer, it is in contact with the interface between the reaction layer and the Ti—Co alloy layer and has a composition of 65 to 85 atomic% Ti and 15 to 35 atomic% Sn. Ti-Sn alloy phases are formed intermittently.
The Ti—Sn alloy phase does not have to be formed in contact with the entire interface between the reaction layer and the Ti—Co alloy layer, and is continuous or intermittent in contact with the interface between the reaction layer and the Ti—Co alloy layer. What is necessary is just to be formed.

前記WC基超硬合金部材A、WC基超硬合金部材Bにそれぞれ隣接する前記反応層は、WC基超硬合金部材Aと接合部材(積層体のTi)との固相拡散接合時の拡散によって、また、WC基超硬合金部材Bと接合部材(積層体のSn)とのPTLP接合時の拡散によって形成されるものであるが、反応層を構成する成分である金属W相は、WC基超硬合金より小さい熱膨張係数を有し、また、TiC相は、WC基超硬合金より大きいが金属Tiよりは小さい熱膨張係数を有するため、前記反応層の見掛け熱膨張係数は、WC基超硬合金と金属Tiとの中間の値となる。
したがって、WC基超硬合金部材A、WC基超硬合金部材Bに接してTiC相と金属W相からなる反応層が形成されることによって、熱膨張係数の違いによりWC基超硬合金と接合部との間に発生する接合時の熱応力が緩和され、また、残留応力の形成も抑制される。
前記反応層は、金属W相とTiC相を合計で90原子%以上と定めたが、これは、金属W相とTiC相の合計量が90原子%未満では、金属WとTiC相以外の成分が偏析する箇所において反応層の厚さが不均一になりやすく、接合強度の担保が難しくなるという理由による。
なお、反応層中には、WC基超硬合金の添加成分であるVC、TaC、ZrC、NbC、Cr等、WC基超硬合金の結合相成分であるCo、接合部材の構成成分であるTi、Sn(但し、Snは、WC基超硬合金部材B側の接合部の場合)が、10原子%を超えない範囲において含有されることが許容される。
The reaction layers adjacent to the WC-based cemented carbide member A and the WC-based cemented carbide member B are diffused during solid phase diffusion bonding between the WC-based cemented carbide member A and the joining member (Ti in the laminate). In addition, the metal W phase, which is a component constituting the reaction layer, is formed by diffusion during PTLP joining of the WC-based cemented carbide member B and the joining member (Sn in the laminate). Since the TiC phase has a smaller thermal expansion coefficient than the base cemented carbide, and the TiC phase has a thermal expansion coefficient larger than that of the WC based cemented carbide but smaller than that of the metal Ti, the apparent thermal expansion coefficient of the reaction layer is WC It becomes an intermediate value between the base cemented carbide and the metal Ti.
Therefore, a reaction layer composed of a TiC phase and a metal W phase is formed in contact with the WC-based cemented carbide member A and the WC-based cemented carbide member B, so that the WC-based cemented carbide alloy is bonded to the WC-based cemented carbide due to the difference in thermal expansion coefficient. The thermal stress at the time of joining generated with the part is relaxed, and the formation of residual stress is also suppressed.
In the reaction layer, the total of the metal W phase and the TiC phase is determined to be 90 atomic% or more, but this is a component other than the metal W and the TiC phase when the total amount of the metal W phase and the TiC phase is less than 90 atomic%. This is because the thickness of the reaction layer is likely to be non-uniform at the location where segregation occurs, making it difficult to ensure the bonding strength.
In the reaction layer, VC, TaC, ZrC, NbC, Cr 3 C 2 and the like, which are additive components of the WC-based cemented carbide, Co, which is a binder phase component of the WC-based cemented carbide, and constituent components of the joining member Ti and Sn (where Sn is a joint portion on the WC-base cemented carbide member B side) are allowed to be contained within a range not exceeding 10 atomic%.

前記反応層における金属W相とTiC相の含有量の測定は、例えば、次のような方法によって求めることができる。
走査型電子顕微鏡およびオージェ電子分光装置を用いて、WC基超硬合金部材Aと接合部との境界近傍、また、WC基超硬合金部材Bと接合部との境界近傍を縦断面観察し、金属W相とTiC相が存在する箇所を反応層と同定し、反応層内で10点の組成分析を行い、その平均値からW、TiおよびCの含有量を求め、金属W相とTiC相の含有量とする。
The measurement of the content of the metal W phase and the TiC phase in the reaction layer can be obtained, for example, by the following method.
Using a scanning electron microscope and an Auger electron spectrometer, observe the longitudinal section of the vicinity of the boundary between the WC-based cemented carbide member A and the joint, and the vicinity of the boundary between the WC-based cemented carbide member B and the joint, The place where the metal W phase and the TiC phase exist is identified as the reaction layer, the composition analysis of 10 points is performed in the reaction layer, the contents of W, Ti and C are obtained from the average value, and the metal W phase and the TiC phase are obtained. Content.

また、前記反応層の平均層厚は、0.5〜5μmと定めているが、平均層厚が0.5μm未満では十分な応力緩和を図ることができず、一方、平均層厚が5μmを超えると、反応層の脆性が顕在化し、複合部材の接合箇所(特に、WC基超硬合金部材Bと接合部との接合界面)に高負荷が作用した場合にクラックの発生、クラックの進展経路となりやすく、WC基超硬合金と強固な接合状態を維持することができなくなるので、反応層の平均層厚は、0.5〜5μmとする。
本発明では、反応層の層厚が厚くなりやすいWC基超硬合金部材Bに対向させて、TiとSnの積層体からなる接合部材のSnの面を対向配置してPTLP接合することによって、反応層とTi−Co合金層の間に、65〜85原子%Ti、15〜35原子%Snの組成からなるTi−Sn合金相が、反応層とTi−Co合金層の界面に接して断続的に形成され、このTi−Sn合金相の存在によって、WC基超硬合金部材Bに隣接する反応層の層厚が過度に厚くなることが抑制される。
The average layer thickness of the reaction layer is set to 0.5 to 5 μm, but if the average layer thickness is less than 0.5 μm, sufficient stress relaxation cannot be achieved, while the average layer thickness is 5 μm. If exceeded, the brittleness of the reaction layer becomes obvious, and when a high load is applied to the joint location of the composite member (particularly, the joint interface between the WC-based cemented carbide member B and the joint), the generation of cracks and the crack propagation path Since it becomes difficult to maintain a strong bonding state with the WC-based cemented carbide, the average thickness of the reaction layer is set to 0.5 to 5 μm.
In the present invention, by facing the WC-based cemented carbide member B where the layer thickness of the reaction layer is likely to be thick, the Sn surface of the joining member made of a laminate of Ti and Sn is placed facing and subjected to PTLP bonding, Between the reaction layer and the Ti—Co alloy layer, the Ti—Sn alloy phase having a composition of 65 to 85 atomic% Ti and 15 to 35 atomic% Sn is intermittently in contact with the interface between the reaction layer and the Ti—Co alloy layer. Thus, the presence of this Ti—Sn alloy phase suppresses the reaction layer adjacent to the WC-based cemented carbide member B from becoming too thick.

反応層の平均層厚は、例えば、次のような方法によって求めることができる。
走査型電子顕微鏡およびオージェ電子分光装置を用いて、WC基超硬合金部材Aと接合部との境界近傍、また、WC基超硬合金部材Bと接合部との境界近傍を縦断面観察し、WC基超硬合金部材側からみて、WC結晶粒が観察される臨界位置をWC基超硬合金部材と接合部との界面と定め、界面から界面に垂直な方向に線分を引き、該線分間の間隔を5μmとして20本について線分析を行って反応層の厚さを測定し、これらの測定値の平均値を反応層の平均層厚とする。
The average layer thickness of the reaction layer can be determined, for example, by the following method.
Using a scanning electron microscope and an Auger electron spectrometer, observe the longitudinal section of the vicinity of the boundary between the WC-based cemented carbide member A and the joint, and the vicinity of the boundary between the WC-based cemented carbide member B and the joint, When viewed from the WC-based cemented carbide member side, the critical position where the WC crystal grains are observed is defined as the interface between the WC-based cemented carbide member and the joint, and a line segment is drawn from the interface in a direction perpendicular to the interface. A line analysis is performed on 20 lines with an interval of 5 μm, and the thickness of the reaction layer is measured. The average value of these measured values is defined as the average layer thickness of the reaction layer.

WC基超硬合金部材AあるいはWC基超硬合金部材Bが接合されている接合部の、反応層より接合部の厚さ方向中心側には、45〜75原子%Ti、25〜55原子%Coの組成からなるTi−Co合金層が形成されている。
前記Ti−Co合金層において、Tiが45%未満でCoが55%を超えると、WC基超硬合金からのCo拡散量が多すぎるため、WC基超硬合金自体の強度が低下しやすくなり、一方、Tiが75%を超えCoが25%未満になると、WC基超硬合金部材と接合部との間の原子拡散が十分でなく、接合部を介したWC基超硬合金AあるいはWC基超硬合金部材Bの接合部における強固な接合状態を維持できなくなる。
したがって、接合部の、反応層より接合部の厚さ方向中心側に形成されるTi−Co合金層におけるTi含有量は45〜75%、また、Co含有量は25〜55%とする。
45-75 atomic% Ti, 25-55 atomic% of the joint where the WC-based cemented carbide member A or WC-based cemented carbide member B is joined to the center in the thickness direction of the joint from the reaction layer. A Ti—Co alloy layer made of Co is formed.
In the Ti-Co alloy layer, when Ti is less than 45% and Co is more than 55%, the amount of Co diffusion from the WC-based cemented carbide is too large, and the strength of the WC-based cemented carbide itself tends to decrease. On the other hand, when Ti exceeds 75% and Co becomes less than 25%, atomic diffusion between the WC-based cemented carbide member and the joint is not sufficient, and WC-based cemented carbide A or WC through the joint is not sufficient. It becomes impossible to maintain a strong bonded state at the bonded portion of the base cemented carbide member B.
Therefore, the Ti content in the Ti—Co alloy layer formed at the center of the joint in the thickness direction from the reaction layer is 45 to 75%, and the Co content is 25 to 55%.

また、接合部全体に占める前記Ti−Co合金層の面積割合を測定した場合、Ti−Co合金層の面積割合は、1〜10面積%とすることが好ましい。
これは、Ti−Co合金層の面積割合が1%未満ではWC基超硬合金部材からのCoの拡散が十分でなく、満足な接合強度を発揮することが困難であり、面積割合が10%を超えるとWC基超硬合金部材からのCo拡散量が多すぎるため、WC基超硬合金部材A自体あるいはWC基超硬合金部材B自体の強度が低下しやすいためである。
また、Ti−Co合金層の面積割合は、次のようにして求めることができる。
WC基超硬合金部材Aと接合部との界面を中心として、界面に垂直な方向±50μmの範囲内の接合部の厚さ方向に平行な断面において元素マッピングを行い、WC相、Co相、TiC相、金属W相およびTi−Co合金相を特定するとともに、WC基超硬合金部材A、反応層およびTi−Co合金層を特定し、元素マッピングの結果から、WC基超硬合金部材A側で特定されたTi−Co合金層の縦断面面積が接合部全体の縦断面面積に占める面積割合を求めることができる。
また、WC基超硬合金部材Bと接合部との界面を中心として、界面に垂直な方向±50μmの範囲内の接合部の厚さ方向に平行な断面において元素マッピングを行い、WC相、Co相、TiC相、金属W相、(後記する)Ti−Sn合金相およびTi−Co合金相を特定するとともに、WC基超硬合金部材、反応層、(後記する)Ti−Sn合金相およびTi−Co合金層を特定し、元素マッピングの結果から、WC基超硬合金部材B側で特定されたTi−Co合金層の縦断面面積が接合部全体の縦断面面積に占める面積割合を求めることができる。
Moreover, when the area ratio of the said Ti-Co alloy layer which occupies for the whole junction part is measured, it is preferable that the area ratio of a Ti-Co alloy layer shall be 1-10 area%.
This is because if the area ratio of the Ti—Co alloy layer is less than 1%, the diffusion of Co from the WC-based cemented carbide member is not sufficient, and it is difficult to exhibit satisfactory bonding strength, and the area ratio is 10%. This is because the amount of Co diffusion from the WC-based cemented carbide member is too large, and the strength of the WC-based cemented carbide member A itself or the WC-based cemented carbide member B itself tends to decrease.
Moreover, the area ratio of a Ti-Co alloy layer can be calculated | required as follows.
Centering on the interface between the WC-base cemented carbide member A and the joint, element mapping is performed in a cross section parallel to the thickness direction of the joint within a range of ± 50 μm in the direction perpendicular to the interface, and the WC phase, Co phase, While specifying the TiC phase, the metal W phase, and the Ti—Co alloy phase, the WC base cemented carbide member A, the reaction layer, and the Ti—Co alloy layer are specified. The area ratio of the vertical cross-sectional area of the Ti—Co alloy layer specified on the side to the vertical cross-sectional area of the entire joint can be determined.
Further, element mapping is performed in a cross section parallel to the thickness direction of the joint within a range of ± 50 μm in the direction perpendicular to the interface centering on the interface between the WC-based cemented carbide member B and the joint, and the WC phase, Co Phase, TiC phase, metal W phase, Ti—Sn alloy phase and Ti—Co alloy phase (described later), WC-based cemented carbide member, reaction layer, Ti—Sn alloy phase and Ti (described later) -Co alloy layer is specified, and the area ratio of the vertical cross-sectional area of the Ti-Co alloy layer specified on the WC-based cemented carbide member B side to the vertical cross-sectional area of the entire joint is obtained from the element mapping result. Can do.

図3には、WC基超硬合金部材Bと接合部の接合界面近傍の拡大概略模式図を示すが、WC基超硬合金部材B側の接合部の、前記反応層と前記Ti−Co合金層の間には、65〜85%Ti、15〜35%Snの組成からなるTi−Sn合金相が形成されている。
前記Ti−Sn合金相において、Tiが65%未満でSnが35%を超えると、TiSnに比べ融点の低いTiSnや金属Snが現れ、高温接合強度が低下し、一方、Tiが85%を超えSnが15%未満になると、Ti中へのSnの固溶によりSnが不足し、結果、基体凹部を埋めるに十分なTi−Sn合金相を形成することが難しくなり、反応層の厚さの増大を抑制する効果が低下するため、WC基超硬合金部材Bと接合部との接合強度が低下する。
したがって、接合部の、反応層とTi−Co合金層の間に形成されるTi−Sn合金相におけるTi含有量は65〜85%、また、Sn含有量は15〜35%とする。
FIG. 3 shows an enlarged schematic view of the vicinity of the joint interface between the WC-based cemented carbide member B and the joint. The reaction layer and the Ti—Co alloy at the joint on the WC-based cemented carbide member B side are shown. A Ti—Sn alloy phase having a composition of 65 to 85% Ti and 15 to 35% Sn is formed between the layers.
In the Ti—Sn alloy phase, when Ti is less than 65% and Sn exceeds 35%, Ti 6 Sn 5 and metal Sn having a lower melting point than Ti 3 Sn appear, and the high-temperature bonding strength is reduced. When it exceeds 85% and Sn becomes less than 15%, Sn becomes deficient due to solid solution of Sn in Ti, and as a result, it becomes difficult to form a Ti—Sn alloy phase sufficient to fill the substrate recess. Since the effect of suppressing the increase in the thickness of the layer is reduced, the bonding strength between the WC-based cemented carbide member B and the bonding portion is reduced.
Therefore, the Ti content in the Ti—Sn alloy phase formed between the reaction layer and the Ti—Co alloy layer in the joint is 65 to 85%, and the Sn content is 15 to 35%.

また、Ti−Sn合金相は、前記反応層を介して、前記WC基超硬合金部材B表面の凹部を埋めるように、断続的に存在していることが好ましい。
これは、後記するように、Ti箔の表面にSn箔が積層された積層体、あるいは、Ti箔の表面にSn蒸着膜が形成された積層体からなる接合部材を用いて、PTLP接合した場合に、低融点のSnが溶融し、WC基超硬合金との接合性を確保し、強固な接合となるとともに、WC基超硬合金部材B表面の凹部を埋めるように、例えば、TiSnのようなTi−Sn合金相が形成されるため、WC基超硬合金部材Bの表面粗さが粗い場合でも、接合部における空隙の生成が低減され、WC基超硬合金部材B表面との界面長さが増加することによって、強固な接合強度が得られるからである。
加えて、PTLP接合に際し形成されるTiSn合金の融点は1670℃と非常に高いため、形成した複合部材をSnの融点(232℃)以上の温度環境で使用しても、WC基超硬合金部材Bに隣接する接合部自体が溶融・軟化することはなく、高い高温接合強度を有する。
なお、前記WC基超硬合金部材Bに隣接して形成されている反応層と前記Ti−Sn合金相の接触界面長さの測定は、WC基超硬合金部材Bと接合部の界面近傍を、その厚さ方向に平行な断面を観察し、前記反応層の界面長さと、前記反応層に接する前記Ti−Sn合金相の界面長さを測定することによって求めることができるが、前記反応層の界面長さに対する前記Ti−Sn合金相の接触界面長さの割合は、10〜50%であることが好ましい。
これは、接触界面長さの割合が10%未満では、WC基超硬合金部材B表面の凹部を埋める効果が十分に発揮されず、接合界面に空隙を生じ、接合強度が低下しやすく、一方、接触界面長さの割合が50%を超えるとTi−Sn合金相の脆性が顕在化し、界面剥離を生じやすくなるためである。
また、WC基超硬合金部材B表面の凹部の測定方法は、まず、WC基超硬合金部材Bと反応層の界面を曲線として表し、同曲線の長さ割合が50:50となるように二分する界面におおよそ平行な基準線を引く。同基準線より界面がWC基超硬合金部材B側であれば、その箇所のWC基超硬合金部材B表面は凹部であるとする。また、基準線に垂直な直線を引き、同直線上に凹部およびTi−Sn合金相が共に存在する場合、WC基超硬合金部材B表面の凹部上にTi−Sn合金相が形成されているとする。また、同時に前述の反応層とTi−Sn合金相の接触界面長さの割合が10〜50%であり、かつ、2,000倍の断面SEM像において、前記凹部上にTi−Sn合金相が形成されている箇所が3箇所以上ある場合、WC基超硬合金部材B表面の凹部を埋めるようにTi−Sn合金相が形成されているとする。
Moreover, it is preferable that the Ti-Sn alloy phase exists intermittently so as to fill the concave portion on the surface of the WC-based cemented carbide member B through the reaction layer.
As will be described later, this is a case where PTLP bonding is performed using a bonding member made of a laminated body in which an Sn foil is laminated on the surface of the Ti foil or a laminated body in which an Sn vapor deposition film is formed on the surface of the Ti foil. In addition, for example, Ti 3 Sn is used so that Sn having a low melting point is melted to secure the bondability with the WC-based cemented carbide and to be firmly bonded, and to fill the concave portion on the surface of the WC-based cemented carbide member B. Thus, even when the surface roughness of the WC-based cemented carbide member B is rough, the generation of voids at the joint is reduced, and the surface of the WC-based cemented carbide member B is reduced. This is because a strong bonding strength can be obtained by increasing the interface length.
In addition, since the melting point of the Ti 3 Sn alloy formed at the time of PTLP bonding is very high at 1670 ° C., even if the formed composite member is used in a temperature environment higher than the melting point of Sn (232 ° C.), the WC-based carbide The joint itself adjacent to the alloy member B is not melted / softened and has high high-temperature joint strength.
The contact interface length between the reaction layer formed adjacent to the WC-based cemented carbide member B and the Ti-Sn alloy phase is measured in the vicinity of the interface between the WC-based cemented carbide member B and the joint. The reaction layer can be obtained by observing a cross section parallel to the thickness direction and measuring the interface length of the reaction layer and the interface length of the Ti—Sn alloy phase in contact with the reaction layer. The ratio of the contact interface length of the Ti—Sn alloy phase to the interface length is preferably 10 to 50%.
This is because when the ratio of the contact interface length is less than 10%, the effect of filling the recesses on the surface of the WC-base cemented carbide member B is not sufficiently exhibited, voids are generated at the bonding interface, and the bonding strength is liable to decrease. This is because when the proportion of the contact interface length exceeds 50%, the brittleness of the Ti—Sn alloy phase becomes obvious, and interface peeling tends to occur.
Further, in the method of measuring the recesses on the surface of the WC-based cemented carbide member B, first, the interface between the WC-based cemented carbide member B and the reaction layer is represented as a curve, and the length ratio of the curve is 50:50. A reference line approximately parallel to the bisecting interface is drawn. If the interface is closer to the WC-based cemented carbide member B than the reference line, the surface of the WC-based cemented carbide member B at that location is a recess. In addition, when a straight line perpendicular to the reference line is drawn and both the recess and the Ti—Sn alloy phase exist on the same line, the Ti—Sn alloy phase is formed on the recess on the surface of the WC-based cemented carbide member B. And At the same time, the ratio of the contact interface length between the reaction layer and the Ti—Sn alloy phase is 10 to 50%, and in the cross-sectional SEM image of 2,000 times, the Ti—Sn alloy phase is present on the recess. When there are three or more places formed, it is assumed that the Ti—Sn alloy phase is formed so as to fill the concave portion on the surface of the WC-based cemented carbide member B.

前述のごとき構造を有する本発明の複合部材は、WC基超硬合金部材Aと、これに対向する接合部材のTiが固相拡散接合により接合されて、反応層、Ti−Co合金層を含む接合部を形成し、また、WC基超硬合金部材Bと、これに対向する接合部材のSnがPTLP接合により接合されて、反応層、Ti−Sn合金相、Ti−Co合金層を含む接合部を形成した複合部材であって、前記構造の接合部が形成されていることによって、高温接合強度に優れた複合部材を得ることができる。
また、上記複合部材から切削工具を構成した場合には、切刃に高負荷が作用する重切削加工に供した場合であっても、接合部からの破断を生じることはなく、長期の使用に亘って、すぐれた切削性能が発揮される。
なお、切削工具用切刃は、相対的に高硬度を有し耐摩耗性に優れる前記WC基超硬合金部材B側に形成することが望ましい。
The composite member of the present invention having the structure as described above includes a reaction layer and a Ti—Co alloy layer in which WC-based cemented carbide member A and Ti of a joining member facing the WC base cemented carbide member A are joined by solid phase diffusion bonding. A junction is formed, and the WC-based cemented carbide member B and the Sn of the joining member opposed to the WC-based cemented carbide member B are joined by PTLP joining, and includes a reaction layer, a Ti—Sn alloy phase, and a Ti—Co alloy layer. A composite member having a high temperature joint strength can be obtained by forming the joint portion having the above structure.
In addition, when a cutting tool is constructed from the above composite member, even if it is subjected to heavy cutting where a high load acts on the cutting blade, it will not break from the joint, and it can be used for a long time. Excellent cutting performance is exhibited throughout.
The cutting blade for a cutting tool is desirably formed on the WC-based cemented carbide member B side having relatively high hardness and excellent wear resistance.

本発明では、特定の接合部材を用い、WC基超硬合金部材A側では固相拡散接合により接合部材と接合し、また、WC基超硬合金部材B側ではPTLP接合により接合部材と接合することにより、高温接合強度にすぐれた本発明の複合部材を得ることができる。
本発明で使用する接合部材としては、前述したように、Ti箔の表面および裏面のいずれか一面にSn箔が積層された積層体、あるいは、Ti箔の表面および裏面のいずれか一面にSn蒸着膜が形成された積層体を用いることができ、Ti箔の平均厚さは1〜50μm、また、Sn箔(蒸着膜)の平均厚さは0.1〜5μmとすること、さらに、Sn箔(蒸着膜)の厚さは、Ti箔の厚さの10%以下とすることが好ましい。
これは、Sn箔(蒸着膜)の厚さが5μmを超える場合、あるいは、Ti箔の厚さの10%を超える場合には、Ti−Sn合金相の接触界面長さの割合が50%を超え、Ti−Sn合金相の脆性により接合強度が低下しやすいという理由により、また、Sn箔(蒸着膜)の厚さが0.1μm未満の場合には、Ti−Sn合金相の形成が不十分となり、反応層の層厚の過度の成長を抑制できなくなるため、結果として、接合強度が低下しやすいという理由による。
また、接合部材全体としての平均組成については、Ti含有量が60%未満になると、接合部自体の強度を確保し得なくなること、一方、Ti含有量が99%を超えると、Sn含有量が少なくなりすぎ、WC基超硬合金部材B側におけるTi−Sn合金相形成による効果が低減することから、Ti含有量を60〜99%とする。
なお、前記接合部材は、例えば、Ti箔の片面のみに、所定の厚さのSn箔を積層することによって作製することができ、また、Ti箔の片面のみに、Snを所定の厚さの蒸着膜として形成することによって作製することができ、その作製手法は、特に限定されるものではない。
In the present invention, a specific bonding member is used, and the WC-based cemented carbide member A side is bonded to the bonding member by solid phase diffusion bonding, and the WC-based cemented carbide member B side is bonded to the bonding member by PTLP bonding. As a result, the composite member of the present invention having excellent high-temperature bonding strength can be obtained.
As described above, the bonding member used in the present invention is a laminate in which Sn foil is laminated on either the front surface or the back surface of the Ti foil, or Sn vapor deposition on any one surface of the Ti foil. A laminated body on which a film is formed can be used, the average thickness of Ti foil is 1 to 50 μm, the average thickness of Sn foil (deposited film) is 0.1 to 5 μm, and Sn foil The thickness of the (deposited film) is preferably 10% or less of the thickness of the Ti foil.
This is because when the thickness of the Sn foil (deposited film) exceeds 5 μm or exceeds 10% of the thickness of the Ti foil, the ratio of the contact interface length of the Ti—Sn alloy phase is 50%. The Ti-Sn alloy phase is not easily formed due to the brittleness of the Ti-Sn alloy phase, and when the Sn foil (deposited film) thickness is less than 0.1 μm. This is because it becomes sufficient and excessive growth of the thickness of the reaction layer cannot be suppressed, and as a result, the bonding strength tends to decrease.
Moreover, about the average composition as the whole joining member, when Ti content will be less than 60%, it will become impossible to ensure the intensity | strength of joining part itself, on the other hand, when Ti content exceeds 99%, Sn content will become The Ti content is set to 60 to 99% because the effect of Ti-Sn alloy phase formation on the WC-based cemented carbide member B side is reduced too much.
In addition, the said joining member can be produced by laminating | stacking Sn foil of predetermined | prescribed thickness only on the single side | surface of Ti foil, for example, and Sn of predetermined | prescribed thickness is only on the single side | surface of Ti foil. It can produce by forming as a vapor deposition film, The preparation method is not specifically limited.

本発明の複合部材は、例えば、以下の方法により、作製することができる。
前記の接合部材を、WC基超硬合金部材AにTiが対向し、WC基超硬合金部材BにSnが対向するようにWC基超硬合金部材AとWC基超硬合金部材B間に介在させ、例えば、1×10−1Pa以下の真空中、600〜900℃の範囲内の所定温度に5〜600分間保持し、荷重0.5〜10.0MPaの条件で加圧し、WC基超硬合金部材Aと接合部材間で固相拡散接合を行わせ、また、WC基超硬合金部材Bと接合部材間でPTLP接合を行わせることによって、WC基超硬合金部材A側では、反応層およびTi−Co層を含む接合部を形成し、また、WC基超硬合金部材B側では、反応層、Ti−Sn合金相およびTi−Co層を含む接合部を形成することにより、本発明の複合部材を作製することができる。
なお、PTLP接合においては、WC基超硬合金部材Bと接合部材の界面に金属W相とTiC相からなる反応層が形成され、また、前記温度範囲でSn箔(薄膜)が溶融し、WC基超硬合金部材Bの表面に存在する凹部を埋めるように溶融したSnが充填され、WC基超硬合金部材Bの表面と接合部材の接合性を高め、強固に密着することによって、強固な接合を形成し、さらに、反応層の過度の層厚増加を抑制することによって反応層の脆化による高温接合強度の低下を防止する。
さらに、溶融Snは接合部材であるTi箔内部へと拡散し、Sn単体の融点(約232℃)より高融点の合金相(例えば、TiSn相)を形成して凝固することから、Sn単体の融点以上の温度環境で使用しても、接合部が溶融・軟化することはなく、すぐれた高温接合強度を有する複合材料が形成される。
The composite member of the present invention can be produced, for example, by the following method.
Between the WC-based cemented carbide member A and the WC-based cemented carbide member B, Ti is opposed to the WC-based cemented carbide member A and Sn is opposed to the WC-based cemented carbide member B. For example, in a vacuum of 1 × 10 −1 Pa or less, hold at a predetermined temperature in the range of 600 to 900 ° C. for 5 to 600 minutes, pressurize under conditions of a load of 0.5 to 10.0 MPa, By performing solid phase diffusion bonding between the cemented carbide member A and the bonding member, and by performing PTLP bonding between the WC group cemented carbide member B and the bonding member, on the WC group cemented carbide member A side, By forming a joint including a reaction layer and a Ti—Co layer, and forming a joint including a reaction layer, a Ti—Sn alloy phase, and a Ti—Co layer on the WC-based cemented carbide member B side, The composite member of the present invention can be produced.
In PTLP bonding, a reaction layer composed of a metal W phase and a TiC phase is formed at the interface between the WC-based cemented carbide member B and the bonding member, and the Sn foil (thin film) is melted in the above temperature range. It is filled with Sn melted so as to fill the recesses present on the surface of the base cemented carbide member B, and enhances the bondability between the surface of the WC base cemented carbide member B and the joining member, thereby providing strong adhesion. By forming a bond and further suppressing an excessive increase in the thickness of the reaction layer, a decrease in high-temperature bonding strength due to embrittlement of the reaction layer is prevented.
Further, the molten Sn diffuses into the Ti foil as a joining member, and forms an alloy phase (for example, Ti 3 Sn phase) having a melting point higher than the melting point of Sn alone (about 232 ° C.) and solidifies. Even when used in a temperature environment higher than the melting point of a single substance, the joint does not melt or soften, and a composite material having excellent high-temperature joint strength is formed.

前記の固相拡散接合およびPLTP接合により作製した本発明の複合部材は、例えば、WC基超硬合金部材Bを切刃とし、WC基超硬合金部材Aを基体とすることにより切削工具を構成することができる。
また、例えば、複合部材のWC基超硬合金部材Bを、切刃を構成するcBN焼結体の裏打ち材とし、WC基超硬合金部材Aを基体(台金)とすることにより、cBN切削工具を形成することもできる。
The composite member of the present invention produced by the solid phase diffusion bonding and the PLTP bonding constitutes a cutting tool by using, for example, a WC-based cemented carbide member B as a cutting blade and a WC-based cemented carbide member A as a base. can do.
Further, for example, by using the composite WC-based cemented carbide member B as a backing material of a cBN sintered body constituting the cutting blade and the WC-based cemented carbide member A as a base (base metal), cBN cutting is performed. A tool can also be formed.

本発明は、Co含有量、WC粒子の平均粒径および添加成分の含有量の少なくとも一つが異なるWC基超硬合金部材AとWC基超硬合金部材Bとが接合部を介して接合されている複合部材において、相対的に、Co含有量が多い、あるいは、WC粒子の平均粒径が大きい、あるいは、添加成分の含有量が多いWC基超硬合金部材A側の接合部に反応層とTi−Co合金層を形成し、WC基超硬合金部材B側の接合部に反応層とTi−Sn合金相とTi−Co合金層を形成していることから、WC基超硬合金部材B側の接合部に形成される反応層の層厚の過度の増大を抑制することができ、接合部の高温接合強度にすぐれた複合部材を得ることができる。
そして、上記複合部材から構成される切削工具は、切刃に高負荷が作用する重切削加工に供した場合であっても、接合部からの破断を生じることはなく、長期の使用に亘って、すぐれた切削性能を発揮するのである。
In the present invention, a WC-based cemented carbide member A and a WC-based cemented carbide member B that are different in at least one of the Co content, the average particle size of WC particles, and the content of additive components are joined via a joint. In the composite member having a relatively large Co content, a large average particle diameter of WC particles, or a large content of additive components, a reaction layer and a joint layer on the WC-based cemented carbide member A side Since the Ti—Co alloy layer is formed and the reaction layer, the Ti—Sn alloy phase, and the Ti—Co alloy layer are formed at the joint on the WC base cemented carbide member B side, the WC base cemented carbide member B An excessive increase in the layer thickness of the reaction layer formed on the side bonded portion can be suppressed, and a composite member excellent in high-temperature bonding strength of the bonded portion can be obtained.
And the cutting tool comprised from the said composite member does not produce the fracture | rupture from a junction part even if it is a case where it uses for the heavy cutting which a high load acts on a cutting blade, Over a long-term use It demonstrates excellent cutting performance.

本発明の複合部材の作製過程を示した模式図であって、(a)は、接合前、(b)は固相拡散接合およびPTLP接合時、(c)は固相拡散接合およびPTLP接合によって得られた接合後の複合部材を示す。It is the schematic diagram which showed the preparation process of the composite member of this invention, Comprising: (a) before joining, (b) at the time of solid phase diffusion joining and PTLP joining, (c) by solid phase diffusion joining and PTLP joining. The composite member after joining obtained is shown. 図1(c)の拡大模式図であり、本発明複合部材の接合部近傍拡大模式図を示す。It is an expansion schematic diagram of Drawing 1 (c), and shows the joint vicinity neighborhood expansion schematic diagram of the present composite member. 図2の拡大概略模式図であり、本発明複合部材のWC基超硬合金部材B側の接合部近傍拡大模式図を示す。FIG. 3 is an enlarged schematic diagram of FIG. 2, showing an enlarged schematic view of the vicinity of the joint portion on the WC-based cemented carbide member B side of the composite member of the present invention. 本発明の複合部材のWC基超硬合金部材A側の接合部近傍の断面SEM像の一例を示す。An example of the cross-sectional SEM image of the junction part vicinity of the WC base cemented carbide member A side of the composite member of this invention is shown. 本発明の複合部材のWC基超硬合金部材B側の接合部近傍の断面SEM像の一例を示す。An example of the cross-sectional SEM image of the junction part vicinity of the WC base cemented carbide member B side of the composite member of this invention is shown.

つぎに、本発明を実施例に基づき具体的に説明する。
なお、以下に説明した実施例は、本発明の一実施態様であって、本発明の具体的な実施の形態は、これに制限されるものではない。
Next, the present invention will be specifically described based on examples.
In addition, the Example demonstrated below is one embodiment of this invention, Comprising: Specific embodiment of this invention is not restrict | limited to this.

原料粉末として、WC粉末、VC粉末、TaC粉末、ZrC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を所定の配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度1400℃、保持時間1時間の条件で焼結し、表1に示される8種のWC基超硬合金焼結体からなるWC基超硬合金部材a〜h(以下、単に「超硬部材a〜h」という)を作製した。 WC powder, VC powder, TaC powder, ZrC powder, NbC powder, Cr 3 C 2 powder and Co powder are prepared as raw material powders. These raw material powders are blended into a predetermined blending composition and wet mixed in a ball mill for 24 hours. After being dried, it was press-molded into a green compact at a pressure of 100 MPa, and this green compact was sintered in a 6 Pa vacuum at a temperature of 1400 ° C. and a holding time of 1 hour. WC-based cemented carbide members a to h (hereinafter simply referred to as “carbide members a to h”) made of a sintered WC-based cemented carbide alloy were produced.

次に、cBN焼結体の原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiCN粉末、TiB粉末、TiC粉末、AlN粉末、Al粉末を用意し、これら原料粉末を所定の配合組成で配合し、ボールミルで24時間アセトンを用いて湿式混合し、乾燥した後、100MPaの圧力で直径15mm×厚さ1mmの寸法をもった圧粉体にプレス成形した。
ついで、前記で作製した裏打ち材用の超硬部材(以下、裏打ち材用の超硬部材を「超硬部材B」という)を、直径15mm×厚さ2mmのサイズの焼結体とし、これを、cBN焼結体の焼結時の裏打ち材とし、裏打ち材上に前記cBN圧粉体を表2に示す組合せで積層し、ついでこの積層体を、超高圧発生装置を用いて、温度:1300℃、圧力:5.5GPa、時間:30分の条件で焼結し、複合焼結体C1〜C5を作製した。
複合焼結体C1〜C5のcBN焼結体の組成について、cBN焼結体断面研磨面のSEM観察結果の画像分析によりcBNの面積%を容量%として求めた。
cBN以外の成分については、主結合相およびその他の結合相を構成している成分を確認するに止めた。その結果を表2に示す。
Next, cBN powder, TiN powder, TiCN powder, TiB 2 powder, TiC powder, AlN powder, Al 2 O each having an average particle size in the range of 0.5 to 4 μm as the raw material powder of the cBN sintered body 3 powders were prepared, these raw material powders were blended in a prescribed composition, wet mixed with acetone for 24 hours in a ball mill, dried, and then pressure having a size of 15 mm diameter × 1 mm thickness at 100 MPa pressure. Press-molded into powder.
Next, the cemented carbide member for the backing material prepared above (hereinafter, the cemented carbide member for the backing material is referred to as “carbide member B”) is formed into a sintered body having a diameter of 15 mm × thickness of 2 mm. The cBN compact is laminated in the combination shown in Table 2 on the backing material, and the laminated material is then laminated at a temperature of 1300 using an ultra-high pressure generator. The composite sintered bodies C1 to C5 were manufactured by sintering under the conditions of ° C., pressure: 5.5 GPa, and time: 30 minutes.
Regarding the composition of the cBN sintered bodies of the composite sintered bodies C1 to C5, the area% of cBN was determined as the volume% by image analysis of the SEM observation result of the cross-section polished surface of the cBN sintered body.
About components other than cBN, it stopped only to confirm the component which comprises the main binder phase and other binder phases. The results are shown in Table 2.

次に、本発明接合部材1〜10を作製するために、表3に示すTi箔の片面にSn箔を積層した積層体からなる接合部材D1〜D3、および、Ti箔の片面にSn蒸着膜を形成した積層体からなる接合部材D4〜D6を用意した。
また、後記する比較例のために、比較例接合部材として、同じく表3に示すTi箔のみから接合部材D7、Ti箔の表裏両面にSn箔を積層した積層体からなる接合部材D8、Ti箔の表裏両面にSn蒸着膜を形成した積層体からなる接合部材D9も用意した。
Next, in order to produce this invention joining members 1-10, joining member D1-D3 which consists of a laminated body which laminated | stacked Sn foil on the single side | surface of Ti foil shown in Table 3, and Sn vapor deposition film on the single side | surface of Ti foil Bonding members D4 to D6 made of a laminated body in which were formed were prepared.
Moreover, for the comparative example described later, as a comparative example joining member, the joining member D7 consisting of only the Ti foil shown in Table 3 and the laminate obtained by laminating the Sn foil on both the front and back surfaces of the Ti foil, Ti foil A joining member D9 made of a laminate in which Sn vapor deposition films were formed on both front and back surfaces was also prepared.

次いで、基体(台金)となる超硬部材(以下、これを「超硬部材A」という)と複合焼結体C1〜C5(裏打ち材は、超硬部材Bである)の間に、表3に示す本発明接合部材D1〜D6を挿入介在し、表4に示す条件(即ち、1×10−1Pa以下の真空中、400〜900℃の範囲内の所定温度に5〜600分間保持し、0.5〜5MPaの加圧力を付加した条件)で複合焼結体C1〜C5と超硬部材Aを接合することにより、複合焼結体C1〜C5側(即ち、裏打ち材である超硬部材B側)では表6に示す反応層とTi−Sn合金相とTi−Co合金層が形成された接合部を、また、基体(台金)である超硬部材A側では表7に示す反応層とTi−Co合金層が形成された接合部を有する本発明複合部材1〜10を作製した。
なお、接合に際し、複合焼結体C1〜C5は、cBN焼結体が外面で裏打ち材が内面となるように配置した。即ち、裏打ち材である超硬部材Bと基体(台金)である超硬部材Aが、それぞれ、接合部材を介し接合するように配置し、また、超硬部材A側には、接合部材D1〜D6のTiが対向するように、一方、複合焼結体C1〜C5の裏打ち材である超硬部材B側には、接合部材D1〜D6のSnが対向するように接合部材を配置した。
図4には、本発明複合部材の基体(台金)である超硬部材A側の接合部近傍の断面SEM像(倍率:10,000倍)の一例を示す。
図5には、本発明複合部材の裏打ち材である超硬部材B側の接合部近傍の断面SEM像(倍率:10,000倍)の一例を示す。
Next, between the cemented carbide member (hereinafter referred to as “carbide member A”) serving as a base (base metal) and the composite sintered bodies C1 to C5 (the backing material is the cemented carbide member B), The present invention joining members D1 to D6 shown in Fig. 3 are inserted, and the conditions shown in Table 4 (that is, kept at a predetermined temperature in the range of 400 to 900 ° C for 5 to 600 minutes in a vacuum of 1 x 10 -1 Pa or less. Then, the composite sintered bodies C1 to C5 and the cemented carbide member A are joined under a condition in which a pressing force of 0.5 to 5 MPa is applied), so that the composite sintered bodies C1 to C5 side (i.e., super In the hard member B side), the reaction layer shown in Table 6, the Ti—Sn alloy phase, and the joint portion where the Ti—Co alloy layer is formed, and in the super hard member A side, which is the base (base metal), are shown in Table 7. The composite members 1 to 10 of the present invention having the joint portion in which the reaction layer shown and the Ti—Co alloy layer were formed were produced.
In the bonding, the composite sintered bodies C1 to C5 were arranged such that the cBN sintered body was the outer surface and the backing material was the inner surface. That is, the cemented carbide member B that is the backing material and the cemented carbide member A that is the base (base metal) are arranged so as to be joined via the joining member, and the joining member D1 is disposed on the cemented carbide member A side. On the other hand, the joining members were arranged on the cemented carbide member B side which is the backing material of the composite sintered bodies C1 to C5 so that the Sns of the joining members D1 to D6 face each other so that Ti of .about.D6 faces.
FIG. 4 shows an example of a cross-sectional SEM image (magnification: 10,000 times) in the vicinity of the bonded portion on the cemented carbide member A side that is the base (base metal) of the composite member of the present invention.
FIG. 5 shows an example of a cross-sectional SEM image (magnification: 10,000 times) in the vicinity of the joint on the cemented carbide member B side which is the backing material of the composite member of the present invention.

比較のために、表3に示される接合部材D7〜D9を用い、これを、超硬部材Aと複合焼結体C1〜C5(裏打ち材は、超硬部材Bである)の間に介在挿入し、表5に示す条件で、複合焼結体と超硬部材を接合し、表8、表9に示す接合部を有する比較例複合部材1〜10を作製した。
なお、複合焼結体の接合配置は本発明複合部材と同様とした。
また、表8は、複合焼結体C1〜C5側の裏打ち材である超硬部材Bの接合部に形成される反応層とTi−Sn合金相とTi−Co合金層を示し、表9は、基体(台金)である超硬部材A側の接合部に形成された反応層とTi−Sn合金相とTi−Co合金層を示す。
For comparison, the joining members D7 to D9 shown in Table 3 are used, and this is inserted between the cemented carbide member A and the composite sintered bodies C1 to C5 (the backing material is the cemented carbide member B). And the composite sintered compact and the cemented carbide member were joined on the conditions shown in Table 5, and the comparative example composite members 1-10 which have a junction part shown in Table 8 and Table 9 were produced.
The joint arrangement of the composite sintered body was the same as that of the composite member of the present invention.
Table 8 shows a reaction layer, a Ti—Sn alloy phase, and a Ti—Co alloy layer formed at the joint portion of the cemented carbide member B which is the backing material on the side of the composite sintered bodies C1 to C5. 2 shows a reaction layer, a Ti—Sn alloy phase, and a Ti—Co alloy layer formed at a bonding portion on the cemented carbide member A side that is a base (base metal).

ついで、本発明複合部材1〜10について、複合焼結体C1〜C5に隣接する反応層(即ち、超硬部材Bに隣接する反応層)、Ti−Sn合金相およびTi−Co合金層の成分組成、平均層厚、さらに、超硬部材Aに隣接する反応層およびTi−Co合金層の成分組成、平均層厚等を、走査型電子顕微鏡及びオージェ電子分光装置を用いて、次のように測定・算出した。
同様に、比較例複合部材1〜10について、複合焼結体C1〜C5の超硬部材Bに隣接する接合部および超硬部材Aに隣接する接合部の反応層、Ti−Sn合金相およびTi−Co合金層の成分組成、平均層厚等を、走査型電子顕微鏡及びオージェ電子分光装置を用いて、次のように測定・算出した。
Subsequently, with respect to the composite members 1 to 10 of the present invention, the components of the reaction layer adjacent to the composite sintered bodies C1 to C5 (that is, the reaction layer adjacent to the cemented carbide member B), the Ti—Sn alloy phase, and the Ti—Co alloy layer. The composition, the average layer thickness, and the component composition of the reaction layer and Ti—Co alloy layer adjacent to the cemented carbide member A, the average layer thickness, etc. are as follows using a scanning electron microscope and an Auger electron spectrometer. Measured and calculated.
Similarly, with respect to the composite members 1 to 10 of the comparative examples, the bonded portion adjacent to the cemented carbide member B of the composite sintered bodies C1 to C5, the reaction layer of the bonded portion adjacent to the cemented carbide member A, the Ti—Sn alloy phase, and Ti The component composition, average layer thickness, and the like of the -Co alloy layer were measured and calculated as follows using a scanning electron microscope and an Auger electron spectrometer.

まず、複合焼結体C1〜C5と接合部との境界近傍、言い換えれば、超硬部材Bと接合部との境界近傍、について、接合部の厚さ方向に平行な縦断面を観察し、超硬部材B側からみて、WC結晶粒が観察される臨界位置を超硬部材Bと接合部との界面と定めた。
ついで、界面から界面と垂直な方向±50μmにわたって、面状の元素分析を行い、まず、超硬部材Bと接合部において、金属W相およびTiC相を含有する相を反応層とし、また、Tiを65〜85%およびSnを15〜35%含有する相をTi−Sn合金相とし、さらに、Tiを45〜75%およびCoを25〜55%含有する相をTi−Co合金層とした。特定したTi−Sn合金相およびTi−Co合金層について、10点の点組成分析を行い、10点の測定結果を平均することによりTi−Sn合金相のTi、Sn含有量ならびにTi−Co合金層のTi、Co含有量を算出した。
ついで、上記で特定した反応層について、次の方法で反応層の層厚を測定し、平均層厚を求め、さらに、反応層の界面長さを求めた。
走査型電子顕微鏡およびオージェ電子分光装置を用いて、超硬部材Bと接合部との境界近傍を縦断面観察し、超硬部材B側からみて、WC結晶粒が観察される臨界位置を超硬部材Bと接合部との界面と定め、界面から界面に垂直な方向に線分を引き、該線分間の間隔を5μmとして20本について線分析を行って反応層の厚さを測定し、また、これらの測定値の平均値を反応層の平均層厚として求めた。
また、金属WおよびTiC層からなる反応層と、Ti−Co合金層、更にTi−Sn合金相の三領域が一点で隣接している三重点を特定し、隣り合う三重点間の直線距離を求めた。同直線上にTi−Sn合金相が存在する場合、同直線はTi−Sn合金相の接触界面長さとし、Ti−Sn合金相が存在しない場合には反応層とTi−Co合金相の接触界面長さとした。これら二つの接触界面長さを合計し、反応層の界面長さとし、前記Ti−Sn合金相の接触界面長さとの関係から割合を求めた。測定・算出方法の模式図を図3に示す。なお、Ti−Sn合金相が層状に形成され、三重点が存在しない場合は便宜的に接触界面長さ割合を100%とした。
また、超硬部材Bと反応層の界面を曲線として表し、同曲線の長さ割合が50:50となるように二分する界面におおよそ平行な基準線を引き、同基準線より界面が超硬部材B側であれば、その箇所の超硬部材Bの表面は凹部であるとし、次いで、基準線に垂直な直線を引き、同直線上に凹部およびTi−Sn合金相が共に存在する場合、超硬部材Bの表面の凹部上にTi−Sn合金相が形成されているとした。2,000倍の断面SEM像において、前記凹部上にTi−Sn合金相が形成されている箇所の数を求めた。
ついで、接合部全体の縦断面に占める接合部の厚さ方向中央部に位置するTi−Co層の縦断面面積の割合を、前記の面状の元素分析結果から求めた。
同様に接合部全体について、前記の面上の元素分析結果からTiの平均組成を求めた。
前記は、複合焼結体C1〜C5と接合部との境界近傍、即ち、超硬部材B側の接合部についての測定・算出法であったが、超硬部材Aと接合部の境界近傍についても前記の同様の測定・算出を行い、反応層およびTi−Co合金層の成分組成、平均層厚等を測定・算出した。
なお、比較例複合部材1〜10については、超硬部材B側の接合部についての測定・算出と同様な方法によって、超硬部材A側の接合部の測定を行った。
表6〜表9に、その結果を示す。
First, for the vicinity of the boundary between the composite sintered bodies C1 to C5 and the joint, in other words, the vicinity of the boundary between the cemented carbide member B and the joint, a longitudinal section parallel to the thickness direction of the joint is observed. When viewed from the side of the hard member B, the critical position where WC crystal grains are observed was determined as the interface between the cemented carbide member B and the joint.
Next, a planar elemental analysis is performed from the interface to the direction perpendicular to the interface ± 50 μm. First, in the cemented carbide member B and the joint, a phase containing a metal W phase and a TiC phase is used as a reaction layer, and Ti A phase containing 65 to 85% of Sn and 15 to 35% of Sn was used as a Ti-Sn alloy phase, and a phase containing 45 to 75% of Ti and 25 to 55% of Co was used as a Ti-Co alloy layer. The identified Ti—Sn alloy phase and Ti—Co alloy layer are subjected to 10 point composition analysis, and the results of 10 points are averaged to obtain Ti, Sn content and Ti—Co alloy of the Ti—Sn alloy phase. The Ti and Co contents of the layer were calculated.
Next, for the reaction layer specified above, the layer thickness of the reaction layer was measured by the following method, the average layer thickness was obtained, and the interface length of the reaction layer was further obtained.
Using a scanning electron microscope and an Auger electron spectrometer, observe the longitudinal section of the vicinity of the boundary between the cemented carbide member B and the joint, and view the critical position where WC crystal grains are observed from the cemented carbide member B side. The interface between the member B and the joint is defined, a line segment is drawn from the interface in a direction perpendicular to the interface, and the thickness of the reaction layer is measured by performing a line analysis on 20 lines with an interval of 5 μm between the line segments. The average value of these measured values was determined as the average layer thickness of the reaction layer.
In addition, the triple point where the reaction layer composed of the metal W and the TiC layer, the Ti-Co alloy layer, and the three regions of the Ti-Sn alloy phase are adjacent at one point is specified, and the linear distance between the adjacent triple points is determined. Asked. When the Ti—Sn alloy phase exists on the same line, the straight line is the contact interface length of the Ti—Sn alloy phase. When the Ti—Sn alloy phase does not exist, the contact interface between the reaction layer and the Ti—Co alloy phase. It was a length. These two contact interface lengths were summed to determine the ratio from the relationship with the interface length of the reaction layer and the contact interface length of the Ti—Sn alloy phase. A schematic diagram of the measurement / calculation method is shown in FIG. In addition, when the Ti-Sn alloy phase was formed in layers and no triple point was present, the contact interface length ratio was set to 100% for convenience.
Also, the interface between the cemented carbide member B and the reaction layer is expressed as a curve, and a reference line approximately parallel to the interface that bisects the length ratio of the curve to 50:50 is drawn, and the interface is cemented with carbide from the reference line. If it is the member B side, the surface of the carbide member B at that location is a recess, and then a straight line perpendicular to the reference line is drawn, and when both the recess and the Ti-Sn alloy phase exist on the same line, It is assumed that a Ti—Sn alloy phase is formed on the concave portion of the surface of the cemented carbide member B. In a 2,000-fold cross-sectional SEM image, the number of locations where a Ti—Sn alloy phase was formed on the concave portion was determined.
Subsequently, the ratio of the longitudinal cross-sectional area of the Ti-Co layer located in the central part in the thickness direction of the joint in the longitudinal section of the entire joint was determined from the planar elemental analysis results.
Similarly, the average composition of Ti was determined from the elemental analysis results on the above-mentioned surface for the entire joint.
The above is the measurement and calculation method for the vicinity of the boundary between the composite sintered bodies C1 to C5 and the joint, that is, the joint on the cemented carbide member B side. The same measurement and calculation as described above were performed, and the component composition, average layer thickness, and the like of the reaction layer and the Ti—Co alloy layer were measured and calculated.
In addition, about the comparative example composite members 1-10, the junction part by the side of the carbide member A was measured by the method similar to the measurement and calculation about the junction part by the side of the carbide member B.
Tables 6 to 9 show the results.

次に、本発明複合部材1〜10及び比較例複合部材1〜10から切削工具を作製し、切削加工における破断発生の有無を調査し、これによって本発明複合部材1〜10の特性を評価した。
まず、複合部材からなる切削工具は、以下のように作製した。
前記で作製した複合焼結体C1〜C5(超硬部材Bが裏打ち材となっている)を、平面形状:開き角80°の一辺が4mmの二等辺三角形×厚さ:2mmの寸法に切断した。続いて、超硬部材Aを、平面形状:12.7mmの内接円で開き角80°の菱形×厚さ:4.76mmの寸法の焼結体とし、この焼結体の上下平行面の内、何れかの面の1角を、研削盤を用いて上記複合焼結体の形状に対応した大きさの切欠きを形成した。この切欠きの底面の面積は2.96mmであり、側面の面積は4.89mmである。次いで、超硬部材Aと複合焼結体C1〜C5の間に、表3に示される接合部材D1〜D6を挿入介在させ、表4に示す条件で複合焼結体C1〜C5と超硬部材Aを加圧接合し、この複合部材を外周研磨加工後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNGA120408のインサート形状を有する、本発明切削工具1〜10を作製した。
なお、複合焼結体C1〜C5は、cBN焼結体が外面、裏打ち材(超硬部材B)が内面となるように、即ち、裏打ち材と基体(台金)が接合部材を介し接合するように配置した。
また、これら本発明切削工具1〜10の接合部は表6、表7に示す本発明複合部材1〜10と実質的に同様であることを確認した。
同様に、前記で作製した複合焼結体C1〜C5と、前記で作製した超硬合金Aの間に、表3に示す接合部材D7〜D9を挿入介在させ、表5に示す条件で加圧接合し、比較例切削工具1〜10を作製した。
また、これら比較例切削工具1〜10の接合部は、表8、表9に示す比較例複合部材1〜10と実質的に同様であることを確認した。
Next, a cutting tool was produced from the composite members 1 to 10 of the present invention and the composite members 1 to 10 of the comparative example, and the presence or absence of occurrence of breakage in the cutting process was investigated, thereby evaluating the characteristics of the composite members 1 to 10 of the present invention. .
First, the cutting tool which consists of a composite member was produced as follows.
The composite sintered bodies C1 to C5 (carved with the carbide member B as the backing material) prepared above are cut into a plane shape: an isosceles triangle having an opening angle of 80 ° on one side and a thickness of 2 mm. did. Subsequently, the cemented carbide member A is a sintered body having a planar shape: 12.7 mm inscribed circle and an opening angle of 80 ° rhombus × thickness: 4.76 mm. A notch having a size corresponding to the shape of the composite sintered body was formed in one corner of any of the surfaces using a grinding machine. The area of the bottom surface of this notch is 2.96 mm 2 and the area of the side surface is 4.89 mm 2 . Next, the joining members D1 to D6 shown in Table 3 are inserted between the cemented carbide member A and the composite sintered bodies C1 to C5, and the composite sintered bodies C1 to C5 and the cemented carbide member are inserted under the conditions shown in Table 4. The present invention cutting tools 1 to 10 having an ISO standard / CNGA120408 insert shape are formed by press-bonding A, grinding the outer periphery of this composite member, and then performing a honing process of R: 0.07 mm on the cutting edge portion. Produced.
In the composite sintered bodies C1 to C5, the cBN sintered body is the outer surface, and the backing material (carbide member B) is the inner surface, that is, the backing material and the base (base metal) are joined via the joining member. Arranged.
Moreover, it confirmed that the junction part of these invention cutting tools 1-10 was substantially the same as this invention composite member 1-10 shown in Table 6, Table 7. FIG.
Similarly, the joining members D7 to D9 shown in Table 3 are inserted between the composite sintered bodies C1 to C5 produced above and the cemented carbide A produced above, and pressurization is performed under the conditions shown in Table 5. It joined and produced the comparative example cutting tools 1-10.
Moreover, it confirmed that the junction part of these comparative example cutting tools 1-10 was substantially the same as the comparative example composite members 1-10 shown in Table 8, Table 9.

高温せん断強度測定試験:
上記で作製した本発明複合部材1〜10及び比較例複合部材1〜10について、接合部の強度を測定するためにせん断強度測定試験を行った。
試験に使用する試験片は、上記で作製した本発明複合部材1〜10及び比較例複合部材1〜10から、複合焼結体C1〜C5:1.5mm(W)×1.5mm(L)×0.75mm(H)、基体(台金)用超硬部材A:1.5mm(W)×4.5mm(L)×1.5mm(H)のサイズとなるように切り出してせん断強度測定用試験片とした。
試験片の上下面をクランプで把持固定し、1辺が1.5mmの超硬合金からなる角柱状の押圧片を用い、雰囲気温度を600℃として、試験片の上面略中心付近に荷重を加え、試験片が破断する荷重を測定した。
表10に、測定されたせん断強度の値を示す。
High temperature shear strength measurement test:
About this invention composite member 1-10 produced above and comparative example composite member 1-10, in order to measure the intensity | strength of a junction part, the shear strength measurement test was done.
The test pieces used for the test were composite sintered bodies C1 to C5: 1.5 mm (W) × 1.5 mm (L) from the composite members 1 to 10 of the present invention and the comparative composite members 1 to 10 manufactured above. × 0.75 mm (H), Substrate (base metal) cemented carbide member A: 1.5 mm (W) × 4.5 mm (L) × 1.5 mm (H) cut out to measure shear strength A test piece was obtained.
The upper and lower surfaces of the test piece are clamped and fixed, and a prismatic pressing piece made of cemented carbide with a side of 1.5 mm is used. The ambient temperature is set to 600 ° C., and a load is applied near the center of the upper surface of the test piece. The load at which the test piece breaks was measured.
Table 10 shows the measured shear strength values.

つぎに、前記各種の切削工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明切削工具1〜10、比較例切削工具1〜10について、以下に示す浸炭焼き入れ鋼の乾式高速重切削試験を行い、刃先脱落の有無および破断部の場所を観察した。
被削材:JIS・SCM415(硬さ:58HRc)の丸棒、
切削速度:260 m/min.、
切り込み:0.3 mm、
送り:0.4 mm/rev.、
切削時間:16分、
(通常の切削速度、送りは、それぞれ、150m/min、0.2mm/rev.)、
表10に、切削試験結果を示す。
Next, the cutting tools 1 to 10 and the comparative cutting tools 1 to 10 according to the present invention are shown below in the state in which the various cutting tools are all screwed to the tip of the tool steel tool with a fixing jig. A dry high-speed heavy cutting test of carburized and quenched steel was performed, and the presence or absence of the cutting edge and the location of the fracture portion were observed.
Work material: JIS / SCM415 (hardness: 58HRc) round bar,
Cutting speed: 260 m / min. ,
Cutting depth: 0.3 mm,
Feed: 0.4 mm / rev. ,
Cutting time: 16 minutes,
(Normal cutting speed and feed are 150 m / min and 0.2 mm / rev., Respectively)
Table 10 shows the cutting test results.

表10に示されるように、本発明複合部材1〜10は、すぐれたせん断強度を有し、また、本発明複合部材1〜10から構成された本発明切削工具1〜10は、刃先の脱落もなく、長期の使用に亘ってすぐれた切削性能を発揮することから、本発明複合部材の接合部は、すぐれた高温接合強度を有するといえる。
これに対して、比較例複合部材1〜10は、本発明複合部材1〜10に比して、せん断強度に劣り、また、比較例複合部材1〜10から構成される比較例切削工具1〜10は、切削中に接合部から刃先脱落が生じ、早期に工具寿命に至ることから、本発明複合部材に比して、接合部の高温接合強度が劣っていることは明らかである。
As shown in Table 10, the composite members 1 to 10 of the present invention have excellent shear strength, and the cutting tools 1 to 10 of the present invention composed of the composite members of the present invention 1 to 10 In addition, since it exhibits excellent cutting performance over a long period of use, it can be said that the joint portion of the composite member of the present invention has excellent high-temperature joint strength.
On the other hand, the comparative example composite members 1-10 are inferior in shear strength compared with this invention composite member 1-10, and the comparative example cutting tool 1 comprised from the comparative example composite members 1-10. In No. 10, the cutting edge comes off from the joint during cutting and the tool life is reached early, so it is clear that the high-temperature joint strength of the joint is inferior to the composite member of the present invention.

なお、本実施例においては、切削工具としてインサートを例にとって説明したが、本発明は、インサートに限られることなく、ドリル、エンドミルなど切刃部と工具本体との接合部をもつすべての切削工具、ビット等の掘削工具に適用可能であることはいうまでもない。   In this embodiment, the insert has been described as an example of the cutting tool. However, the present invention is not limited to the insert, and all cutting tools having a joint between the cutting edge portion and the tool body, such as a drill and an end mill. Needless to say, the present invention is applicable to drilling tools such as bits.

本発明の複合部材は、その接合部の高温接合強度が大であり、この複合部材から作製した切削工具は、各種の鋼や鋳鉄などの高速重切削加工等の高負荷切削加工に使用することができ、しかも、長期に亘って安定した切削性能を発揮するものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。

The composite member of the present invention has high joint strength at high temperatures, and cutting tools made from this composite member should be used for high-load cutting such as high-speed heavy cutting of various steels and cast iron. In addition, since it exhibits stable cutting performance over a long period of time, it can sufficiently satisfy the high performance of cutting equipment, labor saving and energy saving of cutting, and further cost reduction. It is.

Claims (11)

Co含有量、WC粒子の平均粒径および添加成分の含有量の少なくとも一つが異なるWC基超硬合金部材AとWC基超硬合金部材Bとが接合部を介して接合されている複合部材であって、
(a)前記接合部は、1〜50μmの平均層厚を有し、かつ、Tiを平均組成で60〜99原子%含有し、
(b)前記WC基超硬合金部材Aと接合部との接合界面を縦断面観察した場合、前記WC基超硬合金部材Aに隣接して、0.5〜5μmの平均層厚を有し、かつ、金属W相およびTiC相を合計で90原子%以上含有する反応層が形成され、さらに、前記反応層より、接合部の厚さ方向中心側には、Tiを45〜75原子%、Coを25〜55原子%含有するTi−Co合金層が形成されており、
(c)前記WC基超硬合金部材Bと接合部との接合界面を縦断面観察した場合、前記(b)の反応層およびTi−Co合金層が形成されているとともに、前記反応層と前記Ti−Co合金層との間には、Tiを65〜85原子%、Snを15〜35原子%含有するTi−Sn合金相が形成されていることを特徴とする複合部材。
A composite member in which a WC-based cemented carbide member A and a WC-based cemented carbide member B having different Co content, average particle size of WC particles, and content of additive components are joined via a joint. There,
(A) The joint has an average layer thickness of 1 to 50 μm, and contains Ti in an average composition of 60 to 99 atomic%,
(B) When the longitudinal cross section of the bonding interface between the WC-based cemented carbide member A and the joint is observed, the WC-based cemented carbide member A is adjacent to the WC-based cemented carbide member A and has an average layer thickness of 0.5 to 5 μm. In addition, a reaction layer containing a total of 90 atomic% or more of the metal W phase and the TiC phase is formed, and further, Ti is 45 to 75 atomic% from the reaction layer to the center side in the thickness direction of the joint. A Ti—Co alloy layer containing Co in an amount of 25 to 55 atomic% is formed;
(C) When a longitudinal section of the bonding interface between the WC-based cemented carbide member B and the joint is observed, the reaction layer and the Ti—Co alloy layer of (b) are formed, and the reaction layer and the A composite member characterized in that a Ti-Sn alloy phase containing 65 to 85 atomic% Ti and 15 to 35 atomic% of Sn is formed between the Ti-Co alloy layer.
前記WC基超硬合金部材Aは、前記WC基超硬合金部材Bに比して、相対的に、Co含有量が多いWC基超硬合金部材、あるいは、WC粒子の平均粒径が大きいWC基超硬合金部材、あるいは、添加成分の含有量が多いWC基超硬合金部材であることを特徴とする請求項1に記載の複合部材。 The WC-based cemented carbide member A is a WC-based cemented carbide member having a relatively large Co content or a WC particle having a larger average particle size than the WC-based cemented carbide member B. 2. The composite member according to claim 1, wherein the composite member is a base cemented carbide member or a WC-based cemented carbide member having a high content of additive components. 前記WC基超硬合金部材Aは、Co含有量:10〜30質量%、添加成分であるVC、TaC、ZrC、NbC、Crの合計含有量:0〜20質量%、残部はWC及び不可避不純物からなり、WC粒子の平均粒径が、0.8〜10μmであることを特徴とする請求項2に記載の複合部材。 The WC-based cemented carbide member A has a Co content of 10 to 30% by mass, a total content of VC, TaC, ZrC, NbC, and Cr 3 C 2 as additive components: 0 to 20% by mass, and the balance is WC. 3. The composite member according to claim 2, wherein the composite member is made of unavoidable impurities and has an average particle diameter of WC particles of 0.8 to 10 μm. 前記WC基超硬合金部材Bは、Co含有量:4〜12質量%、添加成分であるVC、TaC、ZrC、NbC、Crの合計含有量:0〜20質量%、残部はWC及び不可避不純物からなり、WC粒子の平均粒径が、0.3〜2μmであることを特徴とする請求項2に記載の複合部材。 The WC-based cemented carbide member B has a Co content of 4 to 12% by mass, a total content of VC, TaC, ZrC, NbC, and Cr 3 C 2 as additive components: 0 to 20% by mass, and the balance is WC. The composite member according to claim 2, wherein the composite member is made of unavoidable impurities, and an average particle diameter of the WC particles is 0.3 to 2 μm. 前記WC基超硬合金部材AおよびWC基超硬合金部材Bに接する接合部の厚さ方向に平行な縦断面を観察したとき、前記Ti−Co合金層が占める面積割合は、接合部面積の1〜10面積%であることを特徴とする請求項1乃至4のいずれか一項に記載の複合部材。 When observing a longitudinal section parallel to the thickness direction of the joint contacting the WC-based cemented carbide member A and the WC-based cemented carbide member B, the area ratio occupied by the Ti-Co alloy layer is the joint area It is 1-10 area%, The composite member as described in any one of Claims 1 thru | or 4 characterized by the above-mentioned. 前記WC基超硬合金部材Bに接する接合部の厚さ方向に平行な縦断面を観察し、前記反応層の界面長さと、前記反応層に接する前記Ti−Sn合金相の界面長さを測定したとき、前記反応層の界面長さに対する前記Ti−Sn合金相の界面長さの割合は、10〜50%であることを特徴とする請求項1乃至5のいずれか一項に記載の複合部材。 Observe a longitudinal section parallel to the thickness direction of the joint portion in contact with the WC-based cemented carbide member B, and measure the interface length of the reaction layer and the interface length of the Ti—Sn alloy phase in contact with the reaction layer. 6. The composite according to claim 1, wherein a ratio of an interface length of the Ti—Sn alloy phase to an interface length of the reaction layer is 10 to 50%. Element. 前記Ti−Sn合金相が、前記反応層と前記Ti−Co合金層との間に断続的に形成されていることを特徴とする請求項1乃至6のいずれか一項に記載の複合部材。 The composite member according to any one of claims 1 to 6, wherein the Ti-Sn alloy phase is intermittently formed between the reaction layer and the Ti-Co alloy layer. 前記Ti−Sn合金相は、前記反応層と前記Ti−Co合金層との間で、前記WC基超硬合金部材Bの表面の凹部を埋めるように断続的に存在していることを特徴とする請求項1乃至7のいずれか一項に記載の複合部材。 The Ti—Sn alloy phase is intermittently present between the reaction layer and the Ti—Co alloy layer so as to fill a concave portion on the surface of the WC-based cemented carbide member B. The composite member according to any one of claims 1 to 7. 請求項1乃至8のいずれか一項に記載の複合部材の作製に用いられる接合部材であって、該接合部材は、1〜50μmの厚さのTi箔の表面および裏面のいずれか一面に0.1〜5μmの厚さのSn箔が積層された積層体、あるいは、1〜50μmの厚さのTi箔の表面および裏面のいずれか一面に0.1〜5μmの厚さのSn蒸着膜が形成された積層体からなり、かつ、前記積層体における前記Sn箔あるいは前記Sn蒸着膜の厚さは、前記Ti箔の厚さの10%以下であることを特徴とする接合部材。 It is a joining member used for preparation of the composite member as described in any one of Claims 1 thru | or 8, Comprising: This joining member is 0 in any one of the surface of a Ti foil of 1-50 micrometers thickness, and a back surface. A laminated body in which Sn foils having a thickness of 1 to 5 μm are laminated, or a Sn vapor deposition film having a thickness of 0.1 to 5 μm on one of the front and back surfaces of a Ti foil having a thickness of 1 to 50 μm. A joining member comprising the formed laminate, and the thickness of the Sn foil or the Sn vapor deposition film in the laminate is 10% or less of the thickness of the Ti foil. 請求項1乃至8のいずれか一項に記載の複合部材から構成されていることを特徴とする切削工具。 A cutting tool comprising the composite member according to any one of claims 1 to 8. 切削工具用切刃が、前記WC基超硬合金部材Bの側に形成されていることを特徴とする請求項10に記載の切削工具。











11. The cutting tool according to claim 10, wherein a cutting tool cutting blade is formed on the WC-based cemented carbide member B side.











JP2017035664A 2017-02-28 2017-02-28 Composite member, joining member used for producing the same, and cutting tool formed from composite member Pending JP2018140416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017035664A JP2018140416A (en) 2017-02-28 2017-02-28 Composite member, joining member used for producing the same, and cutting tool formed from composite member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017035664A JP2018140416A (en) 2017-02-28 2017-02-28 Composite member, joining member used for producing the same, and cutting tool formed from composite member

Publications (1)

Publication Number Publication Date
JP2018140416A true JP2018140416A (en) 2018-09-13

Family

ID=63527287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017035664A Pending JP2018140416A (en) 2017-02-28 2017-02-28 Composite member, joining member used for producing the same, and cutting tool formed from composite member

Country Status (1)

Country Link
JP (1) JP2018140416A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110449680A (en) * 2019-08-05 2019-11-15 辽宁三三工业有限公司 Cutter and welding method in a kind of cutter head of shield machine
CN110899799A (en) * 2019-12-10 2020-03-24 福建中成新材料科技有限公司 Tungsten steel milling cutter for horizontal machining center and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110449680A (en) * 2019-08-05 2019-11-15 辽宁三三工业有限公司 Cutter and welding method in a kind of cutter head of shield machine
CN110899799A (en) * 2019-12-10 2020-03-24 福建中成新材料科技有限公司 Tungsten steel milling cutter for horizontal machining center and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5999362B2 (en) Surface coated cutting tool
JP5413047B2 (en) Composite sintered body
JP6245520B2 (en) Composite member and cutting tool
US8998062B2 (en) Rotary tool
JP2013014792A (en) Hard material as well as manufacturing method thereof, and cutting tool
JP6459042B2 (en) Joining brazing material, composite member using the same, and cutting tool
JP2018140416A (en) Composite member, joining member used for producing the same, and cutting tool formed from composite member
JP2019042830A (en) Composite sintered body cutting tool
WO2017038855A1 (en) Composite member and cutting tool
JP2010089223A (en) Cubic boron nitride sintered body tool
JP2014077174A (en) Hard material, method for manufacturing hard material, cutting tool, and friction stir welding tool
JPS5860679A (en) High tenacity boron nitride base super high pressure sintering material for cutting and abrasion-resistant tool
WO2017135243A1 (en) Composite member and cutting tool
JP5071462B2 (en) Rotary cutting tool
JP2018122313A (en) Composite member, junction member used to manufacture the same, and cutting tool consisting of this composite member
JP5656076B2 (en) cBN insert
JP6757519B2 (en) Composite members and cutting tools
JPS6225630B2 (en)
JP2018051619A (en) Composite member and cutting tool
JP2018111108A (en) Composite member and cutting tool comprising the composite member
JP6694597B2 (en) Composite member and cutting tool
JP6716408B2 (en) Laminated structure sintered superabrasive composite material and manufacturing method thereof
JPS629808A (en) Composite machining tip
JPH07124804A (en) Cutting chip showing excellent wear resistance
JP2019063901A (en) Composite member and cutting tool