JP2018051619A - Composite member and cutting tool - Google Patents

Composite member and cutting tool Download PDF

Info

Publication number
JP2018051619A
JP2018051619A JP2016194547A JP2016194547A JP2018051619A JP 2018051619 A JP2018051619 A JP 2018051619A JP 2016194547 A JP2016194547 A JP 2016194547A JP 2016194547 A JP2016194547 A JP 2016194547A JP 2018051619 A JP2018051619 A JP 2018051619A
Authority
JP
Japan
Prior art keywords
composite
cemented carbide
layer
joint
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016194547A
Other languages
Japanese (ja)
Inventor
五十嵐 誠
Makoto Igarashi
誠 五十嵐
藤原 和崇
Kazutaka Fujiwara
和崇 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2016194547A priority Critical patent/JP2018051619A/en
Publication of JP2018051619A publication Critical patent/JP2018051619A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a composite member excellent in high-temperature joint strength prepared by joining two WC-based hard metals via a joint member, and to provide a cutting tool comprising the composite member.SOLUTION: An objective composite member is produced by preparing a joint part by PTLP joint of a joint member comprising a lamination structure of Al foil-Ti foil-Al foil, and joining two WC-based hard metals through the joint part comprising the adhesion layer-intermediate layer-adhesion layer. The adhesion layer has a layer thickness of 0.2-10 μm, and a component composition of 60-98 atom% of Ti and 2-40 atom% of Al. The intermediate layer included between the adhesion layers has the component composition of more than 98 atom% of Ti and less than 2 atom% of Al. The cutting tool comprising the composite member is also provided.SELECTED DRAWING: Figure 2

Description

本発明は、接合部の高温接合強度に優れた複合部材及び切削工具に関し、特に、WC基超硬合金とWC基超硬合金とを接合した複合部材、さらには、この複合部材からなる切削工具に関する。   The present invention relates to a composite member and a cutting tool excellent in high-temperature bonding strength of a joint portion, and more particularly, a composite member obtained by joining a WC-based cemented carbide and a WC-based cemented carbide, and a cutting tool comprising the composite member. About.

従来から、工具材料としては、WC基超硬合金、TiCN基サーメット、cBN焼結体等が良く知られているが、近年、工具材料を単一素材から形成するのではなく複合部材として工具材料を形成することが提案されている。   Conventionally, WC-based cemented carbide, TiCN-based cermet, cBN sintered body, and the like are well known as tool materials. However, in recent years, tool materials are not formed from a single material but as a composite member. Has been proposed to form.

例えば、特許文献1には、サーメット焼結体を第1の被接合材1とし、cBN焼結体またはダイヤモンド焼結体を第2の被接合材3とする接合体であって、第1の被接合材および第2の被接合材の間に1000℃未満では液相を生成しない接合材2(例えば、Ti、Co、Ni)を介して接合し、該接合は0.1MPa〜200MPaの圧力で加圧しながら通電加熱することによって行うことが提案されており、これによって得られた接合体は、切削中に、ロウ材が液相を生成する温度を超える高温となっても、接合層の接合強度が低下することがないため、高速切削加工工具やCVDコーティング切削工具として好適であるとされている。   For example, Patent Document 1 discloses a bonded body in which a cermet sintered body is a first material to be bonded 1 and a cBN sintered body or a diamond sintered body is a second material to be bonded 3. The joining material and the second joining material are joined via a joining material 2 (for example, Ti, Co, Ni) that does not generate a liquid phase at a temperature lower than 1000 ° C., and the joining is performed at a pressure of 0.1 MPa to 200 MPa. It has been proposed to perform heating by energization while pressurizing at a pressure, and the bonded body obtained by this can be used for the bonding layer even when the temperature of the brazing material becomes higher than the temperature at which the brazing material generates a liquid phase during cutting. Since the bonding strength does not decrease, it is considered suitable as a high-speed cutting tool or a CVD-coated cutting tool.

また、特許文献2には、超硬合金焼結体を第1の被接合材1とし、cBN焼結体を第2の被接合材2とする接合体において、第1の被接合材および第2の被接合材の間にはチタン(Ti)を含有する接合材3を介して、少なくとも、第2の被接合材の背面と底面からなる2面で接合し、第2の被接合材と接合材との界面には、厚み10〜300nmの窒化チタン(TiN)化合物層を形成し、また、背面の接合層の厚みを、底面の接合層の厚みよりも薄くすることによって、接合強度が高い切削工具等の接合体を得ることが提案されている。   Patent Document 2 discloses a bonded body in which a cemented carbide sintered body is a first material to be bonded 1 and a cBN sintered body is a second material to be bonded 2. The two materials to be joined are joined to each other by at least two surfaces consisting of a back surface and a bottom surface of the second material to be joined, with a joining material 3 containing titanium (Ti), A titanium nitride (TiN) compound layer having a thickness of 10 to 300 nm is formed at the interface with the bonding material, and the bonding strength is reduced by making the thickness of the bonding layer on the back surface smaller than the thickness of the bonding layer on the bottom surface. It has been proposed to obtain a joined body such as a high cutting tool.

さらに、特許文献3には、cBNを20〜100質量%含むcBN焼結体と、Ti、Zr、Hf、V、Nb、Ta、Cr、MoおよびWの炭化物、炭窒化物およびこれらの相互固溶体から成る群より選択された少なくとも1種からなる硬質相:50〜97質量%と、残部として、Co、NiおよびFeから成る群より選択された少なくとも1種を主成分とする結合相:3〜50質量%とからなる硬質合金との複合体において、cBN焼結体と硬質合金との間に接合層を設け、該接合層をセラミックス相と金属相とから構成し、さらに、該接合層の厚さを2〜30μmとすることによって、複合体の接合強度を高めることが提案されている。   Further, Patent Document 3 discloses a cBN sintered body containing 20 to 100% by mass of cBN, and carbides, carbonitrides, and mutual solid solutions of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W. Hard phase consisting of at least one selected from the group consisting of: 50 to 97% by mass, and the balance of the binder phase consisting mainly of at least one selected from the group consisting of Co, Ni and Fe: 3 to In a composite of 50% by mass of a hard alloy, a bonding layer is provided between the cBN sintered body and the hard alloy, and the bonding layer is composed of a ceramic phase and a metal phase. It has been proposed to increase the bonding strength of the composite by setting the thickness to 2 to 30 μm.

特開2009−241236号公報JP 2009-241236 A 特開2012−111187号公報JP 2012-111187 A 特開2014−131819号公報JP 2014-131819 A

前記特許文献1〜3で提案された複合材料あるいはこれからなる切削工具は、通常条件の切削加工では、ある程度の性能を発揮するが、例えば、切れ刃に高負荷が作用し、かつ、高熱発生を伴う高送り、高切り込みの重切削条件では、高温接合強度が十分であるとはいえず、接合部からの破損が発生する問題があった。
そこで、切れ刃に高負荷が作用し、かつ、高熱発生を伴う重切削条件においても、接合部からの破断が生じないような、より高い高温接合強度を備えた接合部を有する複合部材およびこれからなる切削工具が望まれている。
The composite material proposed in Patent Documents 1 to 3 or a cutting tool made of the same exhibits a certain level of performance under normal conditions of cutting. For example, a high load acts on the cutting edge, and high heat generation occurs. Under the accompanying high feed and high cutting heavy cutting conditions, the high-temperature bonding strength cannot be said to be sufficient, and there has been a problem that breakage occurs from the bonded portion.
Therefore, a composite member having a joint portion having a higher high-temperature joint strength that causes a high load to act on the cutting edge and that does not cause breakage from the joint portion even under heavy cutting conditions with high heat generation, and A cutting tool is desired.

本発明者らは、前記従来の複合部材およびこれからなる切削工具の問題点を解決すべく、WC基超硬合金とWC基超硬合金からなる複合部材およびこの複合材からなる切削工具、例えば、超高圧高温焼結時にcBN焼結体の焼結と同時にWC基超硬合金(裏打ち材)を接合した複合焼結体からなる切刃部とWC基超硬合金工具基体(台金)とを接合部材を介して接合した切削工具において、その接合部の接合強度を改善する方策について鋭意研究した結果、
一方のWC基超硬合金部材と他方のWC基超硬合金部材を、Tiを主体とする接合部材を介して接合し、一方のWC基超硬合金部材と他方のWC基超硬合金部材とが接合部によって接合された複合部材において、WC基超硬合金部材の端部に隣接する接合部には、成分組成及び層厚を適正化した密着層を形成し、また、該密着層に隣接して、所定の成分組成の中央層を形成することによって、WC基超硬合金部材と接合部との高温接合強度を向上させた複合部材を得られることを見出した。
In order to solve the problems of the conventional composite member and the cutting tool comprising the same, the present inventors have prepared a composite member comprising a WC-base cemented carbide and a WC-base cemented carbide and a cutting tool comprising the composite material, for example, A cutting edge portion made of a composite sintered body obtained by bonding a WC-based cemented carbide (backing material) and a WC-based cemented carbide tool base (base metal) simultaneously with sintering of a cBN sintered body during ultra-high pressure and high-temperature sintering. As a result of earnest research on measures to improve the joint strength of the joint in the cutting tool joined via the joining member,
One WC-based cemented carbide member and the other WC-based cemented carbide member are joined via a joining member mainly composed of Ti, and one WC-based cemented carbide member and the other WC-based cemented carbide member are In the composite member joined by the joint, an adhesive layer with an optimized component composition and layer thickness is formed at the joint adjacent to the end of the WC-based cemented carbide member, and adjacent to the adhesive layer. And it discovered that the composite member which improved the high temperature joint strength of a WC group cemented carbide alloy member and a junction part by forming the center layer of a predetermined component composition was discovered.

そして、切削工具用の材料として、前記複合部材を用いた場合には、切れ刃に高負荷が作用し、かつ、高熱発生を伴う鋼や鋳鉄の重切削加工に供した場合であっても、接合部からの破断が発生することもなく、長期の使用に亘って、すぐれた切削性能を発揮することができることを見出したのである。 And as a material for a cutting tool, when using the composite member, even when a high load acts on the cutting edge, and when subjected to heavy cutting of steel or cast iron with high heat generation, The present inventors have found that excellent cutting performance can be exhibited over a long period of use without causing breakage from the joint.

本発明は、前記知見に基づいてなされたものであって、
「(1)WC基超硬合金部材同士が接合部を介して接合されている複合部材であって、
(a)前記接合部は、それぞれのWC基超硬合金部材の端部に隣接する密着層と、それぞれの密着層の間に介在位置する中間層とから構成され、
(b)前記密着層は、0.2〜10μmの層厚を有し、かつ、Tiを60〜98原子%、Alを2〜40原子%からなる成分組成を有し、
(c)前記密着層の間に介在位置する中間層は、Tiが98原子%を超え、Alが2原子%未満の成分組成を有することを特徴とする複合部材。
(2)前記(1)に記載の複合部材から構成されていることを特徴とする切削工具。」
を特徴とするものである。
The present invention has been made based on the above findings,
“(1) A composite member in which WC-based cemented carbide members are joined together via a joint,
(A) The joint is composed of an adhesion layer adjacent to an end of each WC-based cemented carbide member, and an intermediate layer located between the adhesion layers,
(B) The adhesion layer has a layer composition of 0.2 to 10 μm, and has a composition composed of Ti of 60 to 98 atomic% and Al of 2 to 40 atomic%,
(C) The composite member, wherein the intermediate layer located between the adhesion layers has a component composition in which Ti is more than 98 atomic% and Al is less than 2 atomic%.
(2) It is comprised from the composite member as described in said (1), The cutting tool characterized by the above-mentioned. "
It is characterized by.

以下に、本発明について、詳細に説明する。   The present invention is described in detail below.

図1に示すように、本発明の複合部材は、一方のWC基超硬合金部材と他方のWC基超硬合金部材との間に接合部材を配置し(図1(a)参照)、接合部材を介して一方のWC基超硬合金部材と他方のWC基超硬合金部材とを突き合わせ、所定の加圧力を付加した状態で、所定の温度、時間をかけて、WC基超硬合金部材と接合部材とをPTLP(Partial Transient Liquid Phase)接合する(図1(b)参照)ことにより、WC基超硬合金部材同士が接合部を介して接合された本発明の複合部材を作製することができる(図1(c)参照)。
ここで、PTLP接合とは、接合中に接合部材の一部分のみを溶融し、溶融した部材が接合部材の他の部分、もしくは基材中に拡散する。それにより、溶融した部材は高融点の相に変化し、接合完了後は低融点の相は存在せず、接合温度では溶融しない耐熱性の高い接合となることを特徴とする接合法である。
As shown in FIG. 1, in the composite member of the present invention, a joining member is disposed between one WC-based cemented carbide member and the other WC-based cemented carbide member (see FIG. 1 (a)). One WC-based cemented carbide member and the other WC-based cemented carbide member are abutted with each other through the member, and a predetermined temperature and time are applied in a state where a predetermined pressure is applied, and a WC-based cemented carbide member is taken. The composite member of the present invention in which the WC-based cemented carbide members are joined to each other through the joint portion by joining the joining member and the PTLP (Partial Transient Liquid Phase) (see FIG. 1B). (See FIG. 1C).
Here, PTLP bonding means that only a part of the bonding member is melted during bonding, and the molten member diffuses into the other part of the bonding member or the base material. As a result, the melted member changes to a high melting point phase, and after joining is completed, a low melting point phase does not exist, and the joining method is characterized by high heat resistance joining that does not melt at the joining temperature.

図2は、図1(c)の拡大模式図を示すが、図2において、一方のWC基超硬合金部材の端部に隣接した接合部には、0.2〜10μmの層厚を有し、かつ、Tiを60〜98原子%(以下、「原子%」を、単に「%」で示す。)、Alを2〜40%からなる成分組成を有する密着層が形成される。同時に、他方のWC基超硬合金部材の端部に隣接した接合部には、0.2〜10μmの層厚を有し、かつ、Tiを60〜98%、Alを2〜40%からなる成分組成を有する密着層が形成される。
そして、一方のWC基超硬合金部材の端部に隣接する密着層と、他方のWC基超硬合金部材の端部に隣接する密着層との間には、中間層が形成される。
中間層は、Tiが98%を超え、Alが2%未満の成分組成を有し、好ましくは、1〜100μmの層厚を有する。
FIG. 2 shows an enlarged schematic diagram of FIG. 1 (c). In FIG. 2, the joint adjacent to the end of one WC-based cemented carbide member has a layer thickness of 0.2 to 10 μm. In addition, an adhesion layer having a component composition of 60 to 98 atomic% (hereinafter, “atomic%” is simply indicated by “%”) and Al of 2 to 40% is formed. At the same time, the joint adjacent to the end of the other WC-based cemented carbide member has a layer thickness of 0.2 to 10 μm, and consists of 60 to 98% Ti and 2 to 40% Al. An adhesion layer having a component composition is formed.
An intermediate layer is formed between the adhesion layer adjacent to the end of one WC-based cemented carbide member and the adhesion layer adjacent to the end of the other WC-based cemented carbide member.
The intermediate layer has a component composition in which Ti exceeds 98% and Al is less than 2%, and preferably has a layer thickness of 1 to 100 μm.

本発明では、特定構造、材質の接合部材を用いることによって、上記特定の成分組成の密着層および中間層を形成することができる。
例えば、本発明で使用する接合部材としては、Al箔−Ti箔−Al箔の三層構造からなる接合部材を用いることができ、Al箔の厚さは0.1〜5μm、また、Ti箔の厚さは1〜100μmとすることが望ましい。
そして、前記接合部材は、例えば、Ti箔の両面に蒸着によって、Alを膜として蒸着形成することにより作製することができる。
In the present invention, the adhesion layer and the intermediate layer having the specific component composition can be formed by using a bonding member having a specific structure and material.
For example, as a joining member used in the present invention, a joining member having a three-layer structure of Al foil-Ti foil-Al foil can be used, and the thickness of the Al foil is 0.1 to 5 μm, and Ti foil The thickness is preferably 1 to 100 μm.
And the said joining member can be produced by vapor-depositing and forming Al as a film | membrane by vapor deposition on both surfaces of Ti foil, for example.

本発明では、前記の接合部材を、一方のWC基超硬合金部材と他方のWC基超硬合金部材との間に介在させ、例えば、1×10−1Pa以下の真空中、670〜900℃の範囲内の所定温度に5〜600分間保持し、荷重0.5〜10MPaの条件で加圧し、PTLP接合することによって、前記密着層と前記中間層とからなる接合部を備えた複合部材を作製することができる。
PTLP接合においては、前記温度範囲でAl箔が溶融し、WC基超硬合金部材に存在する凹凸部分を溶融したAlが充填することにより、WC基超硬合金部材と接合部材の濡れ性を高め、強く密着することによって、強固な接合を形成する。
さらに、溶融AlはTi箔内部へと拡散し、Al単体の融点(約660℃)より高融点の合金相を形成して凝固することから、Al単体の融点以上の温度環境で使用しても、接合部が溶融することはなく、すぐれた高温接合強度を有する複合材料が形成される。
In the present invention, the joining member is interposed between one WC-based cemented carbide member and the other WC-based cemented carbide member. For example, in a vacuum of 1 × 10 −1 Pa or less, 670 to 900 A composite member having a joining portion composed of the adhesion layer and the intermediate layer by holding at a predetermined temperature within a range of 5 ° C. for 5 to 600 minutes, pressurizing under a load of 0.5 to 10 MPa, and performing PTLP joining. Can be produced.
In PTLP bonding, the Al foil melts in the above temperature range, and the concavo-convex portions present in the WC-based cemented carbide member are filled with molten Al, thereby improving the wettability of the WC-based cemented carbide member and the joining member. By firmly adhering, a strong bond is formed.
Furthermore, molten Al diffuses into the Ti foil and solidifies by forming an alloy phase with a melting point higher than the melting point of Al alone (about 660 ° C.), so it can be used in a temperature environment above the melting point of Al alone. The bonded portion does not melt, and a composite material having excellent high-temperature bonding strength is formed.

図2示される本発明の複合部材において、それぞれのWC基超硬合金部材の端部に隣接した接合部に、Ti:60〜98%、Al:2〜40%からなる成分組成を有し、0.2〜10μmの層厚を有する密着層が形成される。
前記密着層におけるAlおよびTiの含有量が、各々2%未満の場合、98%を超える場合には、Ti中への溶融Alの拡散が十分でないため、TiとAlの合金相(主として、TiAl相)の形成度合いが低く、高温接合強度に優れた層が形成されず、一方、密着層におけるAlおよびTiの含有量が、各々40%を超える場合、60%未満の場合には、形成される合金相の融点が高融点ではないため、高温における密着強度が低下する。
また、密着層の層厚が0.2μmでは、高融点のTiとAlの合金相の形成量が少ないため、高温接合強度の向上効果が少なく、一方、密着層の層厚が10μmを超えると、密着層に脆性が現れ、複合層の密着層部分での破壊が発生しやすくなる。
したがって、本発明では、前記密着層の成分組成について、Tiを60〜98%、Alを2〜40%と定め、さらに、密着層の層厚を0.2〜10μmと定めた。
In the composite member of the present invention shown in FIG. 2, the joint portion adjacent to the end portion of each WC-based cemented carbide member has a composition composed of Ti: 60 to 98%, Al: 2 to 40%, An adhesion layer having a layer thickness of 0.2 to 10 μm is formed.
When the contents of Al and Ti in the adhesion layer are each less than 2% or more than 98%, the diffusion of molten Al into Ti is not sufficient, and therefore an alloy phase of Ti and Al (mainly Ti 3 Al phase) is not formed, and a layer excellent in high-temperature bonding strength is not formed. On the other hand, when the content of Al and Ti in the adhesion layer exceeds 40% or less than 60%, Since the melting point of the alloy phase to be formed is not a high melting point, the adhesion strength at a high temperature is lowered.
Moreover, when the layer thickness of the adhesion layer is 0.2 μm, since the amount of the alloy phase of high melting point Ti and Al is small, the effect of improving the high-temperature bonding strength is small, whereas when the layer thickness of the adhesion layer exceeds 10 μm In addition, brittleness appears in the adhesion layer, and breakage is likely to occur in the adhesion layer portion of the composite layer.
Therefore, in this invention, about the component composition of the said contact | adherence layer, Ti was defined as 60 to 98%, Al was defined as 2 to 40%, and the layer thickness of the adhesion layer was determined as 0.2 to 10 μm.

図3に示されるように、前記密着層の間には、中間層が介在形成される。
中間層は、Tiが98%を超え、Alが2%未満の成分組成を有するが、中間層のTiが98%以下、Alが2%以上となった場合には、TiへのAlの拡散量が過剰となるため、低融点合金相の生成によって密着層の高温強度が低下し、密着層の箇所における破断が生じやすくなる。
中間層は、その厚さが10μm未満では密着層の層厚が不均一となり、満足な接合強度を発揮することが難しく、一方、100μmを超えると接合部の性質が金属Tiに近くなり、接合強度が低下するため、中間層厚さは10〜100μmとすることが望ましい。
As shown in FIG. 3, an intermediate layer is interposed between the adhesion layers.
The intermediate layer has a component composition in which Ti exceeds 98% and Al is less than 2%. However, when Ti in the intermediate layer is 98% or less and Al is 2% or more, Al diffuses into Ti. Since the amount becomes excessive, the high-temperature strength of the adhesion layer is lowered due to the generation of the low melting point alloy phase, and breakage at the location of the adhesion layer is likely to occur.
When the thickness of the intermediate layer is less than 10 μm, the layer thickness of the adhesion layer becomes non-uniform, and it is difficult to exhibit satisfactory bonding strength. On the other hand, when the thickness exceeds 100 μm, the properties of the joint become close to that of metal Ti. Since the strength is lowered, the intermediate layer thickness is preferably 10 to 100 μm.

本発明における前記密着層の成分組成、層厚は、例えば、次のようにして求めることができる。
まず、走査型電子顕微鏡およびオージェ電子分光装置を用いて、WC基超硬合金部材と接合部との境界近傍を縦断面観察し、WC基超硬合金部材側からみて、WC結晶粒が観察される臨界位置をWC基超硬合金部材と接合部との界面と定め、界面から界面と垂直な方向に50μmの範囲において線分を引き、該線分について線分析を行う。
そして、この線分析において、Tiを60〜98%、Alを2〜40%含有する層を密着層とし、Tiが98%を超え、Alが2%未満の層を中間層として特定する。さらに、前記線分について、5本の線分を5μmの線間隔で引き、各線分について前記線分析を行い、Tiを60〜98%、Alを2〜40%含有する層の層厚を測定し、これらの測定値を平均することによって密着層の厚さとして求めた。
また、中間層の層厚についても、前記と同様な5本の線分について行った線分析の値から、Tiが98%を超え、Alが2%未満である層厚を測定し、これを平均することによって求めることができる。
The component composition and layer thickness of the adhesion layer in the present invention can be determined, for example, as follows.
First, using a scanning electron microscope and an Auger electron spectroscope, the longitudinal section of the boundary between the WC-based cemented carbide member and the joint is observed, and WC crystal grains are observed as viewed from the WC-based cemented carbide member side. The critical position is defined as the interface between the WC-based cemented carbide member and the joint, a line segment is drawn in a range of 50 μm from the interface in a direction perpendicular to the interface, and the line segment is analyzed.
In this line analysis, a layer containing 60 to 98% Ti and 2 to 40% Al is defined as an adhesion layer, and a layer having Ti exceeding 98% and Al less than 2% is specified as an intermediate layer. Further, with respect to the line segment, 5 line segments are drawn at a line interval of 5 μm, the line analysis is performed for each line segment, and the thickness of the layer containing 60 to 98% Ti and 2 to 40% Al is measured. Then, the thickness of the adhesion layer was obtained by averaging these measured values.
In addition, for the thickness of the intermediate layer, from the value of the line analysis performed for the five line segments similar to the above, the layer thickness in which Ti exceeds 98% and Al is less than 2% is measured. It can be obtained by averaging.

本発明の複合部材は、一方のWC基超硬合金部材を切刃部側とし、他方のWC基超硬合金部材を工具基体とすることにより切削工具を構成することができる。
より具体的にいえば、例えば、複合部材の一方のWC基超硬合金部材を、切刃部側であるcBN焼結体の裏打ち材とし、また、他方のWC基超硬合金部材を工具基体(台金)とすることにより、cBN切削工具を形成することができる。
The composite member of the present invention can constitute a cutting tool by using one WC-based cemented carbide member as the cutting edge portion side and the other WC-based cemented carbide member as the tool base.
More specifically, for example, one WC-based cemented carbide member of the composite member is used as a backing material for a cBN sintered body on the cutting edge side, and the other WC-based cemented carbide member is used as a tool base. By using (base metal), a cBN cutting tool can be formed.

本発明は、WC基超硬合金部材同士(一方のWC基超硬合金部材と他方のWC基超硬合金部材)を、Al箔−Ti箔−Al箔の三層構造からなる接合部材を、PTLP接合によって形成した接合部を介して接合した複合部材であって、WC基超硬合金部材の端部に隣接して高温接合強度に優れた密着層が形成されることから、複合部材全体としての高温接合強度が向上する。
そして、上記複合部材から構成される切削工具は、切刃に高負荷が作用する重切削加工に供した場合であっても、接合部からの破断を生じることはなく、長期の使用に亘って、すぐれた切削性能を発揮するのである。
In the present invention, a WC-based cemented carbide member (one WC-based cemented carbide member and the other WC-based cemented carbide member) is joined to a joining member having a three-layer structure of Al foil-Ti foil-Al foil, A composite member joined through a joint formed by PTLP joining, and an adhesive layer having excellent high-temperature joint strength is formed adjacent to the end of the WC-based cemented carbide member. The high-temperature bonding strength is improved.
And the cutting tool comprised from the said composite member does not produce the fracture | rupture from a junction part even if it is a case where it uses for the heavy cutting which a high load acts on a cutting blade, Over a long-term use It demonstrates excellent cutting performance.

本発明の複合部材の作製過程を示した模式図であって、(a)は、接合前、(b)はPTLP接合時、(c)は接合後の複合部材を示す。It is the schematic diagram which showed the preparation process of the composite member of this invention, Comprising: (a) is before joining, (b) is at the time of PTLP joining, (c) shows the composite member after joining. 本発明の複合部材の接合部近傍の拡大模式図を示す。The enlarged schematic diagram of the junction part vicinity of the composite member of this invention is shown.

つぎに、本発明を実施例に基づき具体的に説明する。なお、以下に説明した実施例は、本発明の一実施態様であって、本発明の具体的な実施の形態は、これに制限されるものではない。   Next, the present invention will be specifically described based on examples. In addition, the Example demonstrated below is one embodiment of this invention, Comprising: Specific embodiment of this invention is not restrict | limited to this.

原料粉末として、いずれも0.5〜1μmの平均粒径を有するWC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度1400℃、保持時間1時間の条件で焼結し、表1に示される4種のWC基超硬合金焼結体(以下、単に「超硬合金」と云う)A−1〜A−4を形成した。 As raw material powders, WC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 0.5 to 1 μm were prepared. These raw material powders are shown in Table 1. It is blended into the blended composition, wet mixed in a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 100 MPa, and this green compact is vacuumed at 6 Pa, temperature 1400 ° C., holding time 1 hour. Sintering was performed under the conditions to form four types of WC-based cemented carbide sintered bodies (hereinafter simply referred to as “superhard alloys”) A-1 to A-4 shown in Table 1.


次に、cBN焼結体の原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiCN粉末、TiB粉末、TiC粉末、AlN粉末、Al粉末を用意し、これら原料粉末を表2に示す焼結体となるよう配合し、ボールミルで24時間アセトンを用いて湿式混合し、乾燥した後、100MPaの圧力で直径15mm×厚さ1mmの寸法をもった圧粉体にプレス成形した。
ついで、前記超硬合金A−1〜A−4を、直径15mm×厚さ2mmのサイズの焼結体とし、これを、cBN焼結体の焼結時の裏打ち材とし、裏打ち材上に前記cBN圧粉体を表2に示す組合せで積層し、ついでこの積層体を、超高圧発生装置を用いて、温度:1300℃、圧力:5.5GPa、時間:30分の条件で焼結し、複合焼結体B−1〜B−4を作製した。
複合焼結体B−1〜B−4のcBN焼結体の組成について、cBN焼結体断面研磨面のSEM観察結果の画像分析によりcBNの面積%を容量%として求めた。
cBN以外の成分については、主結合相およびその他の結合相を構成している成分を確認するに止めた。その結果を表2に示す。
Next, cBN powder, TiN powder, TiCN powder, TiB 2 powder, TiC powder, AlN powder, Al 2 O each having an average particle size in the range of 0.5 to 4 μm as the raw material powder of the cBN sintered body 3 powders were prepared, these raw material powders were blended so as to form the sintered body shown in Table 2, wet-mixed with acetone for 24 hours in a ball mill, dried, and then 15 mm in diameter and 1 mm in thickness at a pressure of 100 MPa. Press compacted into compacts with dimensions.
Next, the cemented carbides A-1 to A-4 are made into a sintered body having a diameter of 15 mm and a thickness of 2 mm, and this is used as a backing material during sintering of the cBN sintered body, cBN compacts were laminated in the combinations shown in Table 2, and this laminate was then sintered using an ultrahigh pressure generator at a temperature of 1300 ° C., a pressure of 5.5 GPa, and a time of 30 minutes. Composite sintered bodies B-1 to B-4 were produced.
Regarding the composition of the cBN sintered bodies of the composite sintered bodies B-1 to B-4, the area% of cBN was determined as the volume% by image analysis of the SEM observation result of the cross-section polished surface of the cBN sintered body.
About components other than cBN, it stopped only to confirm the component which comprises the main binder phase and other binder phases. The results are shown in Table 2.


次に、表3に示されるAl箔−Ti箔−Al箔の三層構造からなる接合部材を用意した。   Next, a joining member having a three-layer structure of Al foil-Ti foil-Al foil shown in Table 3 was prepared.

次いで、超硬合金A−1〜A−4と複合焼結体B−1〜B−4の間に、表3に示される接合部材を挿入介在させ、表4に示す条件(即ち、1×10−3Pa以下の真空中、670〜900℃の範囲内の所定温度に5〜600分間保持し、0.5〜10MPaの加圧荷重を付加した条件)で複合焼結体と超硬合金を加圧接合し、表4に示す密着層及び中間層からなる接合部を有する本発明複合部材1〜10を作製した。なお、複合焼結体はcBN焼結体が外面、裏打ち材が内面となるように配置、即ち、裏打ち材であるWC基超硬合金と工具基体(台金)であるWC基超硬合金が接合部材を介し接合するように配置した。 Next, the cemented members A-1 to A-4 and the composite sintered bodies B-1 to B-4 are inserted between the joining members shown in Table 3, and the conditions shown in Table 4 (that is, 1 × The composite sintered body and the cemented carbide alloy under the condition of holding a predetermined temperature in the range of 670 to 900 ° C. for 5 to 600 minutes in a vacuum of 10 −3 Pa or less and applying a pressure load of 0.5 to 10 MPa. The composite members 1 to 10 of the present invention having joint portions composed of an adhesion layer and an intermediate layer shown in Table 4 were produced. The composite sintered body is arranged so that the cBN sintered body is the outer surface and the backing material is the inner surface, that is, the WC-based cemented carbide that is the backing material and the WC-based cemented carbide that is the tool base (base metal). It arrange | positioned so that it may join via a joining member.

比較のために、表3に示される接合部材を用い、これを、超硬合金A−1〜A−4と複合焼結体B−1〜B−4の間に介在装入し、表5に示す条件で、複合焼結体と超硬合金を加圧接合し、表5に示す接合部を有する比較例複合部材1〜11を作製した。複合焼結体の接合配置は本発明複合部材と同様とした。   For comparison, a joining member shown in Table 3 was used, and this was interposed between cemented carbides A-1 to A-4 and composite sintered bodies B-1 to B-4. The composite sintered body and the cemented carbide were pressure-bonded under the conditions shown in Table 1 to produce Comparative Example composite members 1 to 11 having the joints shown in Table 5. The joint arrangement of the composite sintered body was the same as that of the composite member of the present invention.

また、本発明複合部材1〜10及び比較例複合部材1〜11について、WC基超硬合金部材及び複合焼結体部材の端部に隣接する密着層の成分組成、密着層の層厚を、走査型電子顕微鏡及びオージェ電子分光装置を用いて、次のように測定・算出した。
まず、WC基超硬合金部材と接合部との境界近傍ならびに複合焼結体部材と接合部の境界付近を縦断面観察し、WC基超硬合金部材側もしくは複合焼結体部材側からみて、WC結晶粒が観察される臨界位置をWC基超硬合金部材と接合部との界面もしくは複合焼結体部材と接合部の界面と定めた。
ついで、界面から界面と垂直な方向に50μmにわたって、5μm間隔で5本の線測定を行い、接合部(密着層と中間層)におけるTi含有量及びAl含有量を測定した。
ついで、Tiを60〜98%、Alを2〜40%含有する領域を密着層として定め、その層厚を測定し、前記5本の線測定における測定値を平均して密着層の層厚として求めた。同様に、Tiが98%を超え、Alが2%未満である領域を前記5本の線測定で測定し、これらを平均することによって中間層の層厚を求めた。
表4、表5に、その結果を示す。
Moreover, about this invention composite members 1-10 and comparative example composite members 1-11, the component composition of the contact | adherence layer adjacent to the edge part of a WC group cemented carbide alloy member and a composite sintered compact member, the layer thickness of an adhesive layer, Using a scanning electron microscope and an Auger electron spectrometer, measurement and calculation were performed as follows.
First, observe the longitudinal section of the vicinity of the boundary between the WC-based cemented carbide member and the joint and the vicinity of the boundary between the composite sintered body member and the joint, as viewed from the WC-based cemented carbide member side or the composite sintered body member side, The critical position where the WC crystal grains were observed was defined as the interface between the WC-based cemented carbide member and the joint or the interface between the composite sintered body member and the joint.
Next, five lines were measured at intervals of 5 μm over 50 μm in the direction perpendicular to the interface from the interface, and the Ti content and Al content in the joint (adhesion layer and intermediate layer) were measured.
Next, a region containing 60 to 98% Ti and 2 to 40% Al is defined as the adhesion layer, the layer thickness is measured, and the average value of the measured values in the five line measurements is used as the layer thickness of the adhesion layer. Asked. Similarly, the region where Ti is over 98% and Al is less than 2% was measured by the above five line measurements, and averaged to determine the layer thickness of the intermediate layer.
Tables 4 and 5 show the results.

高温せん断強度測定試験:
上記で作製した本発明複合部材1〜10及び比較例複合部材1〜11について、接合部の強度を測定するためにせん断強度測定試験を行った。
試験に使用する試験片は、上記で作製した本発明複合部材1〜10及び比較例複合部材1〜11から、複合焼結体:1.5mm(W)×1.5mm(L)×0.75mm(H)、WC基超硬合金基体(台金):1.5mm(W)×4.5mm(L)×1.5mm(H)のサイズとなるように切り出してせん断強度測定用試験片とした。
試験片の上下面をクランプで把持固定し、1辺が1.5mmの超硬合金からなる角柱状の押圧片を用い、雰囲気温度を600℃として、試験片の上面略中心付近に荷重を加え、試験片が破断する荷重を測定した。
表4、表5に、測定されたせん断強度の値を示す。
High temperature shear strength measurement test:
The present invention composite members 1 to 10 and comparative example composite members 1 to 11 produced above were subjected to a shear strength measurement test in order to measure the strength of the joint.
The test pieces used for the test were composite sintered bodies: 1.5 mm (W) × 1.5 mm (L) × 0. 75 mm (H), WC-based cemented carbide substrate (base metal): 1.5 mm (W) x 4.5 mm (L) x 1.5 mm (H) cut out to obtain a shear strength measurement specimen It was.
The upper and lower surfaces of the test piece are clamped and fixed, and a prismatic pressing piece made of cemented carbide with a side of 1.5 mm is used. The ambient temperature is set to 600 ° C., and a load is applied near the center of the upper surface of the test piece. The load at which the test piece breaks was measured.
Tables 4 and 5 show the measured shear strength values.


次に、本発明複合部材1〜10及び比較例複合部材1〜11からなる切削工具を作製し、切削加工における破断発生の有無を調査した。
複合部材からなる切削工具は、以下のように作製した。
前記で作製した複合焼結体B−1〜B−4を、平面形状:開き角80°の一辺が4mmの二等辺三角形×厚さ:2mmの寸法に切断した。続いて、前記超硬合金A−1〜A−4を、平面形状:12.7mmの内接円で開き角80°の菱形×厚さ:4.76mmの寸法の焼結体とし、この焼結体の上下平行面の内、何れかの面の1角を、研削盤を用いて上記複合焼結体の形状に対応した大きさの切欠きを形成した。この切欠きの底面の面積は2.96mmであり、側面の面積は4.89mmである。次いで、超硬合金A−1〜A−4と複合焼結体B−1〜B−4の間に、表3に示される接合部材を挿入介在させ、表4に示す条件で複合焼結体とWC基超硬合金を加圧接合し、この複合部材を外周研磨加工後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNGA120408のインサート形状を有する、本発明切削工具1〜10を作製した。
なお、複合焼結体はcBN焼結体が外面、裏打ち材が内面となるよう、即ち、裏打ち材と工具基体(台金)が接合部材を介し接合するように配置した。
また、これら本発明切削工具1〜10の接合部は表4に示す本発明複合部材1〜10と実質的に同様であることを確認した。
同様に、前記で作製した複合焼結体B−1〜B−4と、前記で作製した超硬合金A−1〜A−4の間に、表3に示す接合部材を挿入介在させ、表5に示す条件で加圧接合し、比較例切削工具1〜11を作製した。
また、これら比較例切削工具1〜11の接合部は表5に示す比較例複合部材1〜11と実質的に同様であることを確認した。
Next, the cutting tool which consists of this invention composite member 1-10 and comparative example composite member 1-11 was produced, and the presence or absence of the fracture | rupture generation | occurrence | production in cutting was investigated.
A cutting tool made of a composite member was produced as follows.
The composite sintered bodies B-1 to B-4 produced above were cut into a plane shape: an isosceles triangle with an opening angle of 80 ° having a side of 4 mm × thickness: 2 mm. Subsequently, the cemented carbides A-1 to A-4 are formed into a sintered body having a planar shape: an inscribed circle of 12.7 mm and an open angle of 80 ° × thickness: 4.76 mm. A notch having a size corresponding to the shape of the composite sintered body was formed in one corner of any one of the upper and lower parallel surfaces of the bonded body using a grinding machine. The area of the bottom surface of this notch is 2.96 mm 2 and the area of the side surface is 4.89 mm 2 . Subsequently, the joining members shown in Table 3 are inserted between the cemented carbides A-1 to A-4 and the composite sintered bodies B-1 to B-4, and the composite sintered body is subjected to the conditions shown in Table 4. And the WC base cemented carbide are pressure bonded, and after cutting the outer periphery of this composite member, the cutting edge portion is subjected to a honing process of R: 0.07 mm to have an ISO standard / CNGA120408 insert shape. Tools 1-10 were produced.
The composite sintered body was arranged so that the cBN sintered body was the outer surface and the backing material was the inner surface, that is, the backing material and the tool base (base metal) were joined via the joining member.
Moreover, it confirmed that the junction part of these cutting tool 1-10 of this invention was substantially the same as this invention composite member 1-10 shown in Table 4.
Similarly, the joining members shown in Table 3 are inserted between the composite sintered bodies B-1 to B-4 produced above and the cemented carbides A-1 to A-4 produced above, Pressure bonding was performed under the conditions shown in FIG.
Moreover, it confirmed that the junction part of these comparative example cutting tools 1-11 was substantially the same as the comparative example composite members 1-11 shown in Table 5.

つぎに、前記各種の切削工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明切削工具1〜10、比較例切削工具1〜11について、以下に示す浸炭焼き入れ鋼の乾式高速重切削試験を行い、刃先脱落および破断部の場所を観察した。
被削材:JIS・SCM415(硬さ:58HRc)の丸棒、
切削速度:275 m/min.、
切り込み:0.5 mm、
送り:0.35 mm/rev.、
切削時間:13分、
(通常の切削速度、送りは、それぞれ、150m/min、0.2mm/rev.)、
表6に、切削試験結果を示す。
Next, the cutting tools 1 to 10 and the comparative cutting tools 1 to 11 according to the present invention are shown below in a state where all of the various cutting tools are screwed to the tip of the tool steel tool with a fixing jig. A dry high-speed heavy cutting test of carburized and hardened steel was performed, and the tip of the blade was dropped and the location of the fractured portion was observed.
Work material: JIS / SCM415 (hardness: 58HRc) round bar,
Cutting speed: 275 m / min. ,
Cutting depth: 0.5 mm,
Feed: 0.35 mm / rev. ,
Cutting time: 13 minutes
(Normal cutting speed and feed are 150 m / min and 0.2 mm / rev., Respectively)
Table 6 shows the cutting test results.

表4、表5に示されるせん断強度の値から、本発明複合部材1〜10は、比較例複合部材1〜11に比して、すぐれた高温接合強度を有することが分かる。
また、表6に示される結果から、本発明複合部材1〜10によって構成される本発明切削工具1〜10は、刃先の脱落もなく、長期の使用に亘ってすぐれた切削性能を発揮するのに対して、比較例複合部材1〜10から構成される比較例切削工具1〜11は、切削中に接合部から刃先脱落が生じ、早期に工具寿命に至ることが分かる。
From the values of the shear strength shown in Tables 4 and 5, it can be seen that the composite members 1 to 10 of the present invention have superior high-temperature bonding strength as compared with the composite members 1 to 11 of the comparative example.
Further, from the results shown in Table 6, the cutting tools 1 to 10 of the present invention constituted by the composite members 1 to 10 of the present invention exhibit excellent cutting performance over a long period of use without dropping of the cutting edge. On the other hand, it can be seen that, in the comparative cutting tools 1 to 11 constituted by the comparative composite members 1 to 10, the cutting edge is dropped from the joint during cutting, and the tool life is reached early.

なお、本実施例においては、インサートを例にとって具体的に説明したが、本発明は、インサートに限られることなく、ドリル、エンドミルなど切刃部と工具本体との接合部をもつすべての切削工具、ビット等の掘削工具に適用可能であることはいうまでもない。   In the present embodiment, the insert has been specifically described as an example. However, the present invention is not limited to the insert, and all cutting tools having a joint between the cutting edge portion and the tool body, such as a drill and an end mill. Needless to say, the present invention is applicable to drilling tools such as bits.

本発明の複合部材は、その接合部の高温接合強度が大であり、この複合部材から作製した切削工具は、各種の鋼や鋳鉄などの高速重切削加工等の高負荷切削加工に使用することができ、しかも、長期に亘って安定した切削性能を発揮するものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。

The composite member of the present invention has high joint strength at high temperatures, and cutting tools made from this composite member should be used for high-load cutting such as high-speed heavy cutting of various steels and cast iron. In addition, since it exhibits stable cutting performance over a long period of time, it can sufficiently satisfy the high performance of cutting equipment, labor saving and energy saving of cutting, and further cost reduction. It is.

Claims (2)

WC基超硬合金部材同士が接合部を介して接合されている複合部材であって、
(a)前記接合部は、それぞれのWC基超硬合金部材の端部に隣接する密着層と、それぞれの密着層の間に介在位置する中間層とから構成され、
(b)前記密着層は、0.2〜10μmの層厚を有し、かつ、Tiを60〜98原子%、Alを2〜40原子%からなる成分組成を有し、
(c)前記密着層の間に介在位置する中間層は、Tiが98原子%を超え、Alが2原子%未満の成分組成を有することを特徴とする複合部材。
A WC-based cemented carbide member is a composite member joined through a joint,
(A) The joint is composed of an adhesion layer adjacent to an end of each WC-based cemented carbide member, and an intermediate layer located between the adhesion layers,
(B) The adhesion layer has a layer composition of 0.2 to 10 μm, and has a composition composed of Ti of 60 to 98 atomic% and Al of 2 to 40 atomic%,
(C) The composite member, wherein the intermediate layer located between the adhesion layers has a component composition in which Ti is more than 98 atomic% and Al is less than 2 atomic%.
請求項1に記載の複合部材から構成されていることを特徴とする切削工具。


A cutting tool comprising the composite member according to claim 1.


JP2016194547A 2016-09-30 2016-09-30 Composite member and cutting tool Pending JP2018051619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016194547A JP2018051619A (en) 2016-09-30 2016-09-30 Composite member and cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016194547A JP2018051619A (en) 2016-09-30 2016-09-30 Composite member and cutting tool

Publications (1)

Publication Number Publication Date
JP2018051619A true JP2018051619A (en) 2018-04-05

Family

ID=61832824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016194547A Pending JP2018051619A (en) 2016-09-30 2016-09-30 Composite member and cutting tool

Country Status (1)

Country Link
JP (1) JP2018051619A (en)

Similar Documents

Publication Publication Date Title
US20110182682A1 (en) Cutting insert and cutting tool
JP6245520B2 (en) Composite member and cutting tool
JP6459042B2 (en) Joining brazing material, composite member using the same, and cutting tool
JP5603954B2 (en) Carbide element, method of using the same and method of manufacturing the same
WO2017038855A1 (en) Composite member and cutting tool
JP5971616B2 (en) Hard material, manufacturing method of hard material, cutting tool and friction stir welding tool
JP2014062314A (en) Hard material, method for manufacturing hard material, cutting tool, and frictional agitation joining tool
JP2018140416A (en) Composite member, joining member used for producing the same, and cutting tool formed from composite member
WO2017135243A1 (en) Composite member and cutting tool
JPS5860679A (en) High tenacity boron nitride base super high pressure sintering material for cutting and abrasion-resistant tool
JP2018051619A (en) Composite member and cutting tool
US10363624B2 (en) Active metal braze joint with stress relieving layer
JP5656076B2 (en) cBN insert
JP6757519B2 (en) Composite members and cutting tools
JP2007276079A (en) HIGH-HARDNESS MACHINING CUTTING TOOL MADE OF CUBIC BORON NITRIDE GROUP CERAMICS HAVING EXCELLENT BRAZING BONDING STRENGTH, AND Ag ALLOY BRAZING MAERIAL TO BE USED FOR THE SAME
JP2018111108A (en) Composite member and cutting tool comprising the composite member
JP6716408B2 (en) Laminated structure sintered superabrasive composite material and manufacturing method thereof
JP2018122313A (en) Composite member, junction member used to manufacture the same, and cutting tool consisting of this composite member
JP6694597B2 (en) Composite member and cutting tool
JP2016101603A (en) Composite member and cutting tool
JPS6225630B2 (en)
JP2016140920A (en) Composite member, and cutting tool
JP2019063901A (en) Composite member and cutting tool
JPH07124804A (en) Cutting chip showing excellent wear resistance
JPS629808A (en) Composite machining tip