JP5613970B2 - Method for synthesizing cubic boron nitride and method for producing sintered cubic boron nitride - Google Patents

Method for synthesizing cubic boron nitride and method for producing sintered cubic boron nitride Download PDF

Info

Publication number
JP5613970B2
JP5613970B2 JP2011074501A JP2011074501A JP5613970B2 JP 5613970 B2 JP5613970 B2 JP 5613970B2 JP 2011074501 A JP2011074501 A JP 2011074501A JP 2011074501 A JP2011074501 A JP 2011074501A JP 5613970 B2 JP5613970 B2 JP 5613970B2
Authority
JP
Japan
Prior art keywords
cbn
mass
metal catalyst
boron nitride
cubic boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011074501A
Other languages
Japanese (ja)
Other versions
JP2012206902A (en
Inventor
アフマディ・エコ・ワルドヨ
脩 福長
脩 福長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011074501A priority Critical patent/JP5613970B2/en
Priority to CN201210043797.4A priority patent/CN102731097B/en
Publication of JP2012206902A publication Critical patent/JP2012206902A/en
Application granted granted Critical
Publication of JP5613970B2 publication Critical patent/JP5613970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、六方晶窒化ホウ素(以下、hBNで示す)から立方晶窒化ホウ素(以下、cBNで示す)を合成するcBNの合成方法であって、かつ、合成したcBNを原料粉末とするcBN焼結体の製造方法に関する。   The present invention relates to a cBN synthesis method for synthesizing cubic boron nitride (hereinafter referred to as cBN) from hexagonal boron nitride (hereinafter referred to as hBN), and cBN sintering using the synthesized cBN as a raw powder. The present invention relates to a method for producing a bonded body.

従来、hBNからcBNを合成する合成方法としては、アルカリあるいはアルカリ土類元素を含むホウチッ化物(代表的な例はLiBN)を触媒として用いる方法が一般的なものとして知られているが、Co,Ni,Feなどの遷移金属とAlの合金、混合物も有効な触媒であることも知られている。 Conventionally, as a synthesis method for synthesizing cBN from hBN, a method using a boride containing an alkali or alkaline earth element (typically Li 3 BN 2 ) as a catalyst is generally known. It is also known that alloys of Al, transition metals such as Co, Ni and Fe, and mixtures thereof are effective catalysts.

例えば、特許文献1には、NiAl、CoAl、FeNiAl、FeNiCoAlなどの各合金が、圧力およそ6〜8.5GPa、温度800〜1600℃の条件で触媒作用を有することが報告されている。   For example, Patent Document 1 reports that alloys such as NiAl, CoAl, FeNiAl, and FeNiCoAl have a catalytic action under conditions of a pressure of about 6 to 8.5 GPa and a temperature of 800 to 1600 ° C.

特許文献2には、Fe46−Ni32−Cr21−Al1質量%、Ni39.2−Mn58.8−Al2質量%、Ni49−Cr49−Al2質量%、Fe8−Ni43−Cr47−Al2質量%などの混合物が、圧力5〜5.5GPa、温度約1400〜1500℃の範囲で、原料hBNをcBNに転換する触媒として効果があることが報告されている。   In Patent Document 2, a mixture such as Fe46-Ni32-Cr21-Al 1% by mass, Ni39.2-Mn58.8-Al2% by mass, Ni49-Cr49-Al2% by mass, Fe8-Ni43-Cr47-Al2% by mass, It is reported that the catalyst is effective as a catalyst for converting the raw material hBN into cBN at a pressure of 5 to 5.5 GPa and a temperature of about 1400 to 1500 ° C.

非特許文献1には、あらかじめアーク溶解炉で合金化したFe90−Al10質量%の組成の合金が、約6GPa以上でcBN合成触媒として有効であると報告されている。   Non-Patent Document 1 reports that an alloy having a composition of 10% by mass of Fe90-Al previously alloyed in an arc melting furnace is effective as a cBN synthesis catalyst at about 6 GPa or more.

また、触媒を用いてhBNからcBNを合成した後、これを焼結することによって、cBN焼結体を製造し得ることも知られている。   It is also known that a cBN sintered body can be produced by synthesizing cBN from hBN using a catalyst and then sintering it.

例えば、特許文献3には、Co−Al混合物、Ni87−Al13質量%混合物、WC−Co−Al、NiAl合金、Co67−W16.5−Al16.5質量%などを原料hBNと共存させ、圧力5.4GPa以上、温度範囲は約1500〜1550℃で合成することによってcBNを生成させると、合成されたcBNは構成粒子が強固に結合した焼結体となることが報告されている。 For example, Patent Document 3, Co-Al mixture, Ni87-Al13% by weight mixture, WC-Co-Al, NiAl 3 alloy, such as Co67-W16.5-Al16.5 wt% to coexist with raw material hBN, pressure It has been reported that when cBN is produced by synthesis at 5.4 GPa or more and a temperature range of about 1500 to 1550 ° C., the synthesized cBN becomes a sintered body in which constituent particles are firmly bonded.

特許文献4には、MoとAlと残部はFe,Co及びNiのうちから選ばれる1種又は2種以上の成分組成からなる合金粉末あるいは混合粉末を、また、特許文献5には、Cr(あるいは、さらにMo)とAlと残部はFe,Co及びNiのうちから選ばれる1種又は2種以上の成分組成からなる合金粉末あるいは混合粉末を、金属触媒として用いてcBNを合成することにより、低圧力条件でcBNの合成を行うことができること、また、これを焼結助剤として用いてcBN焼結体を製造すると、緻密な組織な組織を有し、かつ、高硬度のcBN焼結体を製造することができることが報告されている。   Patent Document 4 discloses an alloy powder or mixed powder composed of one or more components selected from Mo, Al and the balance selected from Fe, Co, and Ni, and Patent Document 5 describes Cr ( Or, further, by synthesizing cBN using an alloy powder or mixed powder composed of one or more component compositions selected from Fe, Co and Ni as the metal catalyst, and Mo), Al and the balance. It is possible to synthesize cBN under low pressure conditions, and when this is used as a sintering aid to produce a cBN sintered body, the cBN sintered body has a dense structure and a high hardness. It has been reported that can be produced.

米国特許3768972号明細書US Pat. No. 3,768,972 米国特許3918931号明細書US Pat. No. 3,918,931 米国特許3918219号明細書US Pat. No. 3,918,219 特開2010−137997号公報JP 2010-137997 A 特開2010−235369号公報JP 2010-235369 A

「窯業協会誌」Vol.78,No.1(1970年)7−14頁“Ceramic Association Magazine” Vol. 78, no. 1 (1970) 7-14

cBNは、ダイヤモンドに匹敵する硬度を持つほか、熱的、化学的にも安定であることから、cBN焼結体は、例えば、高速度鋼、ダイス鋼、鋳鉄等の鉄系被削材の切削工具用硬質材料等として幅広い分野で利用されている。   Since cBN has hardness comparable to diamond and is also thermally and chemically stable, cBN sintered bodies are used for cutting high-speed steel, die steel, cast iron and other iron-based work materials. It is used in a wide range of fields as a hard material for tools.

ところで、hBNからcBNを合成する際には、前記従来技術にも示したように、通常超高圧(5GPa以上)高温条件での合成が行われるが、cBN材料の大型化、生産性の向上等を目的として、特に、合成装置の大型化を図ったような場合には、(5GPa以上の)超高圧が必要であるか否かによって、操業の難易度、装置構成に大きな違いがあり、また、例えば、金型装置の中心部材である大型超硬合金の寿命も操業圧力が超高圧(5GPa以上)であるか否かによって格段の違いが生じる。   By the way, when synthesizing cBN from hBN, as shown in the prior art, synthesis is usually performed under ultra-high pressure (5 GPa or more) and high temperature conditions. In particular, when the size of the synthesizer is increased, there are significant differences in the operational difficulty and device configuration depending on whether or not an ultra-high pressure (over 5 GPa) is required. For example, the life of a large cemented carbide, which is the central member of a mold apparatus, varies greatly depending on whether or not the operating pressure is extremely high (5 GPa or more).

したがって、合成装置を大型化し、生産性の向上を図ったような場合にも、より緩和された低圧条件下で簡易にcBNを合成することができるcBNの合成方法が望まれている。   Therefore, there is a demand for a method for synthesizing cBN capable of easily synthesizing cBN under more relaxed low-pressure conditions even when the synthesis apparatus is enlarged and productivity is improved.

一方、cBN焼結体についても、より緻密で微粒組織のcBN焼結体を製造する方法が望まれている。   On the other hand, a method for producing a cBN sintered body having a finer and finer structure is also desired for the cBN sintered body.

本発明者らは、hBNからcBNを合成するに当たって、従来よりも低圧力条件(最低合成圧力が4GPa)で合成する方法について鋭意研究した結果、次のような知見を得た。   As a result of intensive studies on a method for synthesizing cBN from hBN under a lower pressure condition (minimum synthesis pressure is 4 GPa), the inventors have obtained the following knowledge.

hBNからcBNを合成するに当たって、従来は、Fe,Ni,Coなどの遷移金属とAlとの合金、混合物からなる金属触媒を用いていたが、その反応メカニズムは、まず、超高圧高温条件下で金属触媒が溶融して液相状態になり、該液相中にhBNの成分B(ホウ素)とN(窒素)が溶解し、その後cBNの核発生・成長が生じ、cBNの合成が進行すると考えられることから、B及びNの上記液相への溶解度が小さいような場合には、cBNが生成するに必要な条件が満足されず、また、仮に、上記液相中に十分なBとNが溶解したとしても、cBNの熱力学的平衡条件付近(例えば、従来の合成圧力よりも低い4〜5GPaという圧力条件)でcBNの核発生・成長を行わせcBNを合成するためには、cBNの核発生・成長を促進・助長する条件が必要となると考えられる。   In the synthesis of cBN from hBN, conventionally, a metal catalyst comprising an alloy or mixture of transition metals such as Fe, Ni, Co and Al was used, but the reaction mechanism was first under ultra high pressure and high temperature conditions. It is thought that the metal catalyst melts into a liquid phase and the components B (boron) and N (nitrogen) of hBN dissolve in the liquid phase, and then nucleation and growth of cBN occurs and the synthesis of cBN proceeds. Therefore, in the case where the solubility of B and N in the liquid phase is small, the conditions necessary for forming cBN are not satisfied, and if sufficient B and N are present in the liquid phase, Even if dissolved, in order to synthesize cBN by nucleating and growing cBN near the thermodynamic equilibrium condition of cBN (for example, pressure conditions of 4-5 GPa lower than the conventional synthesis pressure) Promote nucleation and growth It is considered a condition for promoting is required.

したがって、金属触媒が液相状態でB溶解能力及びN溶解能力に優れ、同時に、cBNの核生成・成長を促進・助長する作用を有する場合には、従来よりも低圧力条件下でhBNからcBNを合成することができるといえる。   Therefore, when the metal catalyst has an excellent B-dissolving ability and N-dissolving ability in a liquid phase state and at the same time has an action of promoting and promoting nucleation / growth of cBN, it is possible to convert cBN to It can be said that can be synthesized.

ところで、従来用いられてきた金属触媒について、上記の観点から触媒成分の作用を見ると、Fe,Ni,Coなどの遷移金属は、それらが溶融して液相状態になっているときに数%程度のBを溶解する能力があり、ホウ素溶解成分の作用を有するが、その一方、Nを溶解する能力はきわめて小さいために、特に、低圧条件下で合成を行おうとした場合には、結果として、cBNへの転換反応が極めて不満足なものとなる。   By the way, regarding the conventionally used metal catalysts, when the action of the catalyst component is seen from the above viewpoint, transition metals such as Fe, Ni, Co and the like are several percent when they are melted and in a liquid phase state. It has the ability to dissolve a certain amount of B, and has the effect of a boron-dissolving component, while the ability to dissolve N is extremely small. , The conversion reaction to cBN becomes extremely unsatisfactory.

そこで、本発明者等は、N溶解能力に優れ、同時に、低圧条件下でもcBNの核生成・成長を促進・助長する作用を有する金属触媒について研究を進めたところ、特許文献4,5に示されるようなCr及び/又はMoとAlと残部はFe,Co及びNiのうちから選ばれる1種又は2種以上の成分組成からなる合金粉末あるいは混合粉末からなる金属触媒において、その成分として、1〜50質量%のVを含有させると、金属触媒の溶融温度を低下させることができるため、4〜5GPaという低圧の合成圧力条件において、しかも、低温度範囲(1200〜1700℃)において、平均粒径が30μm以下の微粒cBNを合成し得ることを見出した。   Therefore, the present inventors conducted research on a metal catalyst that has an excellent ability to dissolve N and at the same time promotes and promotes nucleation / growth of cBN even under low pressure conditions. In the metal catalyst composed of alloy powder or mixed powder composed of one or more components selected from Fe, Co, and Ni, such as Cr and / or Mo and Al, and the balance, When V is contained in an amount of ˜50 mass%, the melting temperature of the metal catalyst can be lowered. Therefore, the average grain size is low in the synthesis pressure condition of 4 to 5 GPa and in the low temperature range (1200 to 1700 ° C.). It has been found that fine cBN having a diameter of 30 μm or less can be synthesized.

なお、上記金属触媒の成分であるCr,Moは、液相状態において、Nを溶解する能力が大であり、また、同じく金属触媒の成分であるAlと共存することによって、cBNの核発生・成長を促進・助長する。さらに、CrとMoが共存する場合には、Mo添加によってチッ素の溶解度が増加するため、Cr単独含有の場合に比して、生成するcBN粒径が増大する。   The Cr and Mo components of the metal catalyst have a large ability to dissolve N in the liquid phase state. Also, by coexisting with Al, which is also a component of the metal catalyst, Promote and encourage growth. Further, in the case where Cr and Mo coexist, the solubility of nitrogen is increased by the addition of Mo, so that the generated cBN particle size is increased as compared with the case of containing Cr alone.

また、上記金属触媒の残部成分であるFe,Co及びNiは、ホウ素溶解成分の作用を有する。   In addition, Fe, Co, and Ni which are the remaining components of the metal catalyst have an action of a boron dissolving component.

つまり、hBNからcBNを合成する際の金属触媒として、Nを溶解する作用を有するCr及び/又はMoと、cBN核発生・成長を促進・助長する作用を有するAl成分と、残部はBを溶解する作用を有するFe,Co,Ni成分からなる合金粉末あるいは混合粉末を用いることによって、合成最低圧力を4GPaにまで低下させることができ、しかも、低温度範囲(1200〜1700℃)において、平均粒径が30μm以下の微粒cBNを合成できることを見出したのである。   That is, as a metal catalyst for synthesizing cBN from hBN, Cr and / or Mo having an action of dissolving N, an Al component having an action of promoting and promoting cBN nucleation / growth, and the remainder dissolving B By using an alloy powder or mixed powder composed of Fe, Co, and Ni components having the function of reducing the synthesis, the minimum synthesis pressure can be reduced to 4 GPa, and in the low temperature range (1200 to 1700 ° C.), the average particle size can be reduced. It has been found that fine cBN particles having a diameter of 30 μm or less can be synthesized.

さらに、本発明者らは、cBNを原料粉末とし、上記金属触媒を焼結助剤として用い、原料粉末と焼結助剤との混合粉に対して焼結を行ったところ、平均粒径が30μm以下の微粒子で構成され、しかも、cBN粒子間で強固な直接結合を有する緻密なcBN焼結体が得られることをも見出した。   Furthermore, the present inventors used cBN as a raw material powder, the above metal catalyst as a sintering aid, and sintered the mixed powder of the raw material powder and the sintering aid. It was also found that a dense cBN sintered body composed of fine particles of 30 μm or less and having a strong direct bond between cBN particles can be obtained.

本発明は、上記知見に基づいてなされたものであって、
「(1) 金属触媒の存在下、超高圧高温条件で六方晶窒化ホウ素から立方晶窒化ホウ素を合成する立方晶窒化ホウ素の合成方法において、上記金属触媒は、CrおよびMoのいずれか1種又は2種を含有し、かつ、Cr単独で含有の場合はCr:10〜55質量%、Mo単独で含有の場合はMo:10〜50質量%、CrとMoを共に含有する場合は(Cr+Mo):10〜50質量%の範囲内において含有するとともに、V:1〜50質量%、Al:1.5〜8質量%を含有し、残部はFe、NiおよびCoのいずれか1種又は2種以上の成分組成からなる合金粉末あるいは混合粉末であって、さらに、上記合成を、4GPa以上、1200〜1700℃で行うことを特徴とする立方晶窒化ホウ素の合成方法。
The present invention has been made based on the above findings,
“(1) In the method for synthesizing cubic boron nitride in which cubic boron nitride is synthesized from hexagonal boron nitride under ultrahigh pressure and high temperature conditions in the presence of a metal catalyst, the metal catalyst is any one of Cr and Mo, In the case of containing two types and containing Cr alone, Cr: 10 to 55% by mass, when containing Mo alone, Mo: 10 to 50% by mass, and containing both Cr and Mo (Cr + Mo) : In the range of 10 to 50% by mass, V: 1 to 50% by mass, Al: 1.5 to 8% by mass, the balance being any one or two of Fe, Ni and Co A method for synthesizing cubic boron nitride, which is an alloy powder or a mixed powder having the above component composition, and further comprising performing the synthesis at 4 GPa or more and 1200 to 1700 ° C.

(2)立方晶窒化ホウ素を原料粉末とし、該原料粉末に焼結助剤を添加して焼結することからなる立方晶窒化ホウ素焼結体の製造方法において、上記焼結助剤として、CrおよびMoのいずれか1種又は2種を含有し、かつ、Cr単独で含有の場合はCr:10〜55質量%、Mo単独で含有の場合はMo:10〜50質量%、CrとMoを共に含有する場合は(Cr+Mo):10〜50質量%の範囲内において含有するとともに、V:1〜50質量%、Al:1.5〜8質量%を含有し、残部はFe、NiおよびCoのいずれか1種又は2種以上の成分組成からなる合金粉末あるいは混合粉末を、原料粉末に5〜20体積%添加して焼結することを特徴とする立方晶窒化ホウ素焼結体の製造方法。」
を特徴とするものである。
(2) In a method for producing a cubic boron nitride sintered body comprising cubic boron nitride as a raw material powder, adding a sintering aid to the raw material powder and sintering, Cr as the above-mentioned sintering aid In the case of containing only one or two of Mo and Mo and containing Cr alone, Cr: 10 to 55% by mass, when containing Mo alone, Mo: 10 to 50% by mass, Cr and Mo. When both are contained, they are contained within the range of (Cr + Mo): 10 to 50% by mass, V: 1 to 50% by mass, Al: 1.5 to 8% by mass, the balance being Fe, Ni and Co A method for producing a cubic boron nitride sintered body, comprising adding 5 to 20% by volume of an alloy powder or mixed powder composed of any one or more of the above components to a raw material powder and sintering it . "
It is characterized by.

本発明について、以下に詳細に説明する。
金属触媒の成分・組成:
請求項1記載の発明では、金属触媒は、CrおよびMoのいずれか1種又は2種を、Cr:10〜55質量%、Mo:10〜50質量%、(Cr+Mo):10〜50質量%の範囲内において含有するとともに、V:1〜50質量%、Al:1.5〜8質量%を含有し、残部はFe、NiおよびCoのいずれか1種又は2種以上の成分組成からなる合金粉末あるいは混合粉末として形成される。
The present invention will be described in detail below.
Components and composition of metal catalyst:
In the first aspect of the present invention, the metal catalyst may be one or two of Cr and Mo, Cr: 10 to 55% by mass, Mo: 10 to 50% by mass, (Cr + Mo): 10 to 50% by mass. In the range of V: 1 to 50% by mass, Al: 1.5 to 8% by mass, and the balance is composed of one or more of Fe, Ni and Co. It is formed as an alloy powder or a mixed powder.

Cr成分、Mo成分は、いずれも、原材料であるhBNのNを溶融状態(液相)の金属触媒に溶解する作用を有するが、Cr成分、Mo成分の含有割合が10質量%未満では、Nの溶解量が少ないためcBNが十分生成されず、一方、Cr成分の含有割合が55質量%を超えた場合、または、Mo成分の含有割合が50質量%を超えた場合には、金属触媒の溶融温度が高くなりすぎるために4〜5GPaという低圧力条件ではNの溶解度が低下しcBNが十分生成されなくなる。したがって、Nを溶解する作用を有するCr成分、Mo成分の含有割合は、Crを単独で含有させた場合には10質量%〜55質量%、好ましくは20〜40質量%であり、また、Moを単独で含有させた場合には10〜50質量%、好ましくは20〜40質量%である。   Both the Cr component and the Mo component have the action of dissolving N of hBN, which is a raw material, in a metal catalyst in a molten state (liquid phase), but if the content ratio of the Cr component and the Mo component is less than 10% by mass, When cBN is not sufficiently generated due to the low dissolution amount of Cr, on the other hand, when the content ratio of Cr component exceeds 55% by mass or when the content rate of Mo component exceeds 50% by mass, Since the melting temperature becomes too high, the solubility of N decreases under low pressure conditions of 4 to 5 GPa, and cBN is not sufficiently generated. Therefore, the content ratio of the Cr component and Mo component having an action of dissolving N is 10% to 55% by mass, preferably 20 to 40% by mass when Cr is contained alone, and Mo Is contained in an amount of 10 to 50% by mass, preferably 20 to 40% by mass.

また、Cr成分とMo成分の両者を含有させた場合には、相乗的にNの溶解度が向上するが、Cr成分とMo成分の合計含有割合が10質量%未満となる場合には、cBNの合成に際し、金属触媒の成分として、Cr、Moを含有させたことによる溶融状態(液相)の金属触媒にNを溶解する作用が低減し、低圧条件でcBNの合成を行うことが困難となり、一方、Cr成分とMo成分の合計含有割合が50質量%を超えると、必然的に、ホウ素溶解成分であるFe,Co,Niなどの組成比が減少し、融点上昇やホウ素の溶解度の低下によって、cBNの合成圧力が上昇する。また、cBN焼結体を製造する場合、cBN粒子間に存在せしめる金属の融点が上昇して好ましくない。   Further, when both the Cr component and the Mo component are contained, the solubility of N is synergistically improved. However, when the total content ratio of the Cr component and the Mo component is less than 10% by mass, In the synthesis, the action of dissolving N in the metal catalyst in the molten state (liquid phase) due to the inclusion of Cr, Mo as a component of the metal catalyst is reduced, and it becomes difficult to synthesize cBN under low pressure conditions, On the other hand, when the total content ratio of the Cr component and the Mo component exceeds 50% by mass, the composition ratio of Fe, Co, Ni, etc., which are boron-soluble components, inevitably decreases, due to an increase in melting point and a decrease in boron solubility. , CBN synthesis pressure increases. Moreover, when manufacturing a cBN sintered compact, the melting | fusing point of the metal which exists between cBN particle | grains raises, and is not preferable.

それ故、Cr成分とMo成分の合計含有割合は、10〜50質量%以下を満足することが必要である。   Therefore, the total content ratio of the Cr component and the Mo component needs to satisfy 10 to 50% by mass or less.

金属触媒の成分として1〜50質量%のVを含有させることにより、金属触媒の溶融温度を低下させることができるため、1200〜1700℃という低温度範囲において、しかも、4〜5GPaという低圧条件において、cBNを合成することができる。ただ、V含有割合が50質量%を超えると、最低融点が約1600℃を超えるようになるため、圧力4GPaの領域ではhBN安定領域に入ってしまい、一方、V含有割合が1質量%未満では、cBN粒子の微細化効果が低下し、平均粒径30μm以下のcBN粒子を合成し得なくなることから、V含有割合は、1〜50質量%と定めた。なお、cBN粒子の微細化効果の観点からは、10〜50質量%とすることが好ましい。   By containing 1 to 50% by mass of V as a component of the metal catalyst, the melting temperature of the metal catalyst can be lowered. Therefore, in a low temperature range of 1200 to 1700 ° C. and in a low pressure condition of 4 to 5 GPa. , CBN can be synthesized. However, when the V content exceeds 50% by mass, the minimum melting point exceeds about 1600 ° C., so the hBN stable region is entered in the region of pressure 4 GPa, while the V content is less than 1% by mass. Since the effect of refining cBN particles is reduced and cBN particles having an average particle size of 30 μm or less cannot be synthesized, the V content is determined to be 1 to 50% by mass. In addition, it is preferable to set it as 10-50 mass% from a viewpoint of the refinement | miniaturization effect of cBN particle | grains.

Al成分は、cBNの核発生・成長を促進・助長する作用を有し、金属触媒に少量添加含有させることで、cBN合成時の必要圧力を大きく低下させ、4〜5GPaの低圧条件でのcBNの合成を可能とするが、Al成分の含有割合が1.5質量%未満では、cBNの核発生・成長の促進・助長作用が少ないためcBNの形成が不十分となり、一方、Al成分が多すぎると窒化アルミニウムが生成してcBN生成の阻害要因となることがあり、焼結体を形成する上で望ましくないので、Al成分含有割合)を、1.5〜8質量%と定めた。   The Al component has the effect of promoting and promoting the generation and growth of cBN nuclei, and by adding a small amount to the metal catalyst, the required pressure during cBN synthesis is greatly reduced, and cBN under low pressure conditions of 4 to 5 GPa. However, when the content ratio of the Al component is less than 1.5% by mass, cBN nucleation, growth promotion, and promoting effect are small, and cBN formation is insufficient. If it is too much, aluminum nitride may be generated, which may be an obstructive factor for cBN formation, which is not desirable for forming a sintered body. Therefore, the Al component content ratio was determined to be 1.5 to 8% by mass.

Fe、CoおよびNiのいずれか1種又は2種以上の成分は、夫々単独でも、また、これらを2種以上組み合わせた場合でも、原材料であるhBNのBを、溶融状態(液相)の金属触媒に溶解する作用を有する。   Either one or more of Fe, Co, and Ni may be used alone or in combination of two or more thereof, and B of raw material hBN may be a molten (liquid phase) metal. It has the effect of dissolving in the catalyst.

なお、本発明の金属触媒は、所定の組成となるように各成分を混合した後、予めアーク溶解法、アトマイズ法等で合金化した合金粉末の形態で使用できるほか、各成分の粉末を所定の組成(配合)となるように配合しこれを混合した混合粉末の形態で使用することができる。
合成条件(圧力、温度):
hBNからcBNへの合成は、例えば、図1に示す合成装置内に、合成用原材料であるhBNと上記金属触媒の粉末を共存させた状態で配置し、圧力4GPa以上、温度1200〜1700℃で合成することによって行うことができる。
The metal catalyst of the present invention can be used in the form of an alloy powder that is previously alloyed by an arc melting method, an atomizing method, etc. after mixing each component so as to have a predetermined composition. It can be used in the form of a mixed powder obtained by mixing and mixing so as to have the composition (mixing).
Synthesis conditions (pressure, temperature):
In the synthesis from hBN to cBN, for example, in the synthesis apparatus shown in FIG. 1, hBN, which is a raw material for synthesis, and the metal catalyst powder are coexisted, and the pressure is 4 GPa or more and the temperature is 1200 to 1700 ° C. This can be done by synthesis.

この発明では、上記金属触媒を用いることにより、cBNの最低合成圧力を4GPaにまで低減することができ、従来の合成法に比し、はるかに低圧力範囲(好ましくは、4.4GPa以上)、しかも、低温度範囲(好ましくは、1300〜1600℃)でcBNの合成を行うことができる(勿論、従来法における5〜8.5GPaという高圧の合成圧力、1700〜1900℃という高温の合成温度で合成を行うことも可能であるが)ため、設備の大型化が不要になり、装置構成部材の耐用寿命も延びる等のメリットがある。   In this invention, by using the above metal catalyst, the minimum synthesis pressure of cBN can be reduced to 4 GPa, which is much lower than the conventional synthesis method (preferably 4.4 GPa or more), Moreover, cBN can be synthesized in a low temperature range (preferably 1300 to 1600 ° C.) (Of course, the conventional method has a high synthesis pressure of 5 to 8.5 GPa and a high synthesis temperature of 1700 to 1900 ° C.) Therefore, there is an advantage that the size of the equipment is not increased and the service life of the apparatus constituent members is extended.

合成温度が1200℃未満では、金属触媒の溶解が生じないためcBNの合成反応が進行せず、一方、1700℃を超えると、cBNの粒成長が発生しやすくなるばかりか、hBN⇔cBNの圧力・温度平衡状態により4〜5GPa圧力領域においてはhBNの安定領域に近づくため、合成したcBNがhBNに逆変換する恐れがあることから、反応合成温度を1200〜1700℃(好ましくは、1300〜1600℃)と定めた。
cBN焼結体:
従来、例えば、特許文献3に記載されたように、WC−Co−Al、NiAl、Co67−W16.5−Al16.5質量%などを焼結助剤とし、cBN粒子が強固に結合した焼結体を作製するためには、圧力5.4GPa以上、温度1500℃以上で行わなければならなかったが、本発明によれば、cBNを原料粉末とし、cBNの合成に用いた前記特定の成分組成の合金粉末あるいは混合粉末からなる金属触媒を焼結助剤として用い、焼結助剤の配合割合が5〜20体積%となるように原料粉末に配合し、例えば、図2に示す焼結セル内にこの混合粉末を配置し、例えば、4.0〜6.0GPaで加圧しながら、1200〜1700℃の温度範囲で焼結すると、平均粒径が30μm以下の微粒子で構成され、しかも、cBN粒子間で強固な直接結合を有する緻密なcBN焼結体を得ることができる。つまり、cBN合成時に用いる上記金属触媒は、cBN焼結体を製造する際の焼結助剤としての機能も備えるといえる。
When the synthesis temperature is less than 1200 ° C., the metal catalyst does not dissolve, so the cBN synthesis reaction does not proceed. On the other hand, when the synthesis temperature exceeds 1700 ° C., cBN grain growth tends to occur, and the pressure of hBNBcBN -Since it approaches the stable region of hBN in the 4-5 GPa pressure region due to temperature equilibrium, the synthesized cBN may be converted back to hBN. Therefore, the reaction synthesis temperature is 1200-1700 ° C (preferably 1300-1600). ° C).
cBN sintered body:
Conventionally, for example, as described in Patent Document 3, WC-Co-Al, NiAl 3, Co67-W16.5-Al16.5 wt% and a sintering aid, cBN particles are strongly bonded baked In order to produce a bonded body, it had to be performed at a pressure of 5.4 GPa or higher and a temperature of 1500 ° C. or higher. According to the present invention, the specific component used in the synthesis of cBN using cBN as a raw material powder. A metal catalyst composed of an alloy powder or a mixed powder of the composition is used as a sintering aid, and is blended into the raw material powder so that the blending ratio of the sintering aid is 5 to 20% by volume. For example, the sintering shown in FIG. When this mixed powder is arranged in a cell and sintered at a temperature range of 1200 to 1700 ° C. while being pressurized at 4.0 to 6.0 GPa, for example, the average particle size is composed of fine particles having a particle size of 30 μm or less, Strong among cBN particles A dense cBN sintered body having a solid direct bond can be obtained. That is, it can be said that the metal catalyst used at the time of cBN synthesis also has a function as a sintering aid when producing a cBN sintered body.

ここで、焼結助剤の配合割合を5〜20体積%とするのは、焼結助剤の配合割合が5体積%未満では、焼結助剤とcBN原料と混合させる際に、焼結助剤が均一に分散せず、焼結助剤が不足している領域では、cBN粒子間の結合が十分に行えず、高強度なcBN焼結体が得られない。
一方、配合割合が20体積%を超える場合には、cBN粒子同士の隙間に過剰の焼結助剤が存在するため、cBN粒子同士の接触面が減少することで、cBN粒子間で強固な直接結合が得られず、その結果、緻密なcBN焼結体を得ることができなくなることから、焼結助剤の配合割合は5〜20体積%と定めた。
Here, the mixing ratio of the sintering aid is set to 5 to 20% by volume. When the mixing ratio of the sintering auxiliary is less than 5% by volume, the sintering aid is mixed with the cBN raw material when sintered. In the region where the auxiliary is not uniformly dispersed and the sintering auxiliary is insufficient, the bonding between the cBN particles cannot be sufficiently performed, and a high-strength cBN sintered body cannot be obtained.
On the other hand, when the blending ratio exceeds 20% by volume, an excess of the sintering aid exists in the gaps between the cBN particles, so that the contact surface between the cBN particles decreases, and the strong direct contact between the cBN particles. Bonding was not obtained, and as a result, a dense cBN sintered body could not be obtained. Therefore, the mixing ratio of the sintering aid was determined to be 5 to 20% by volume.

例えば、図1に示す合成セルにより、本発明の合成法で合成(金属触媒としては、Co40.87−Mo17.39−Cr20.87−V18.26−Al2.61質量%の成分組成のCo−Mo−Cr−V−Al系の金属触媒を使用)したcBN粉末を原料粉末とし、上記金属触媒と同一成分組成のCo−Mo−Cr−V−Al系合金を焼結助剤として用い、焼結助剤の含有割合が、10体積%となるように配合し、これを図2に示す焼結セルで、4.8GPa×1400℃の条件で60分間焼結することによってcBN焼結体を製造した。   For example, the synthesis cell shown in FIG. 1 is synthesized by the synthesis method of the present invention (as a metal catalyst, Co—40.87-Mo17.39-Cr20.87-V18.26-Al2.61 mass% Co— Using a cBN powder obtained by using a Mo-Cr-V-Al-based metal catalyst) as a raw material powder, using a Co-Mo-Cr-V-Al-based alloy having the same composition as that of the metal catalyst as a sintering aid, The content ratio of the binder is compounded so as to be 10% by volume, and this is sintered in the sintering cell shown in FIG. 2 for 60 minutes under the condition of 4.8 GPa × 1400 ° C. to thereby obtain the cBN sintered body. Manufactured.

すなわち、本発明の製造法で得られたcBN焼結体は、低温度での焼結であっても、非常に緻密な組織を有すると同時に、平均粒径が30μm以下の微粒子で構成されていることが分かる。
なお、本発明で平均粒径30μm以下のcBN粒子からなる焼結体を製造する目的において、cBN原料粒径は当社30μm以下を使用すべきであり、好ましくは数μmの微粒子が好ましい。hBN原料においても同様に出発状態においてhBN粒径は30μm以下が好ましい。
That is, the cBN sintered body obtained by the production method of the present invention has a very dense structure and is composed of fine particles having an average particle size of 30 μm or less even when sintered at a low temperature. I understand that.
In the present invention, for the purpose of producing a sintered body composed of cBN particles having an average particle size of 30 μm or less, the cBN raw material particle size should be 30 μm or less, preferably fine particles of several μm. Similarly, in the starting state of the hBN raw material, the hBN particle size is preferably 30 μm or less.

上記のとおり、本発明は、特定の成分組成の金属触媒を用いてhBNからcBNを合成することにより、最低合成圧力を4GPaまで低下させ、しかも、低温度範囲(1200〜1700℃)で合成を行うことにより、平均粒径が30μm以下の微粒cBNを合成することができるため、cBN合成装置の大型化を必要とせず、設備費の低減を図ることができ、さらに、cBN合成装置構造部材の長寿命化を図ることができる。   As described above, the present invention reduces the minimum synthesis pressure to 4 GPa by synthesizing cBN from hBN using a metal catalyst having a specific component composition, and further, synthesis is performed in a low temperature range (1200 to 1700 ° C.). By doing so, since it is possible to synthesize fine cBN particles having an average particle size of 30 μm or less, it is not necessary to increase the size of the cBN synthesizer, and the equipment cost can be reduced. Long life can be achieved.

また、cBNを原料粉末とし、上記金属触媒と同一成分組成の合金粉末、混合粉末を焼結助剤として用いて焼結を行うと、他の焼結所剤を用いることなしに、平均粒径が30μm以下の微粒子で構成され、しかも、cBN粒子間で強固な直接結合を有する緻密なcBN焼結体を製造することができ、cBN焼結体製造の低コスト化を図ることもできる。   In addition, when cBN is used as a raw material powder and sintering is performed using an alloy powder having the same component composition as the metal catalyst and a mixed powder as a sintering aid, the average particle size can be obtained without using another sintering agent. Is composed of fine particles of 30 μm or less, and a dense cBN sintered body having a strong direct bond between the cBN particles can be manufactured, and the cost of manufacturing the cBN sintered body can be reduced.

hBNからcBNを合成するcBN合成セルの試料配置概略図を示す。The sample arrangement schematic of the cBN synthesis cell which synthesize | combines cBN from hBN is shown. 合成したcBNを原料粉末としてcBN焼結体を製造するためのcBN焼結体製造セルの試料配置概略図を示す。The sample arrangement | positioning schematic of the cBN sintered compact manufacturing cell for manufacturing a cBN sintered compact using synthesized cBN as a raw material powder is shown. 実施例2(圧力:4.6GPa、温度:1330℃、反応時間;60分)により合成した微粒cBNのX線回折チャート(cBNピークが存在する)を示す。The X-ray-diffraction chart (cBN peak exists) of the fine particle cBN synthesized by Example 2 (pressure: 4.6 GPa, temperature: 1330 ° C., reaction time: 60 minutes) is shown. 実施例2(圧力:4.6GPa、温度:1330℃、反応時間;60分)により合成した微粒cBNの走査型電子顕微鏡による組織写真を示す。The structure photograph by the scanning electron microscope of the fine particle cBN synthesized by Example 2 (pressure: 4.6 GPa, temperature: 1330 ° C., reaction time: 60 minutes) is shown. 比較例2(圧力:5.0GPa、温度:1560℃、反応時間;60分)により合成した粗粒cBNの走査型電子顕微鏡による組織写真を示す。The structure photograph by the scanning electron microscope of the coarse-grained cBN synthesized by Comparative Example 2 (pressure: 5.0 GPa, temperature: 1560 ° C., reaction time: 60 minutes) is shown.

以下に、本発明のcBN合成方法、cBN焼結体の製造方法について、実施例に基づいて具体的に説明する。   Hereinafter, the cBN synthesis method and the cBN sintered body manufacturing method of the present invention will be specifically described based on examples.

実施例1:
図1に示すように、金属触媒として、Co60−Mo20−V16−Al4質量%からなる成分組成の合金粉末をあらかじめ作り、約7mm径で3mm厚さの2枚のhBN成形板(4)間に約1.6mm厚さのサンドイッチされた金属触媒(合金粉末)層(3)が形成されるように、外径10mm,内径7mm,高さ7.6mmの食塩(ジルコニア粉末を10質量%含む)成形体(5)の試料容器中に充填した。
Example 1:
As shown in FIG. 1, an alloy powder having a component composition of Co60-Mo20-V16-Al4% by mass is prepared in advance as a metal catalyst, and is formed between two hBN molded plates (4) having a diameter of about 7 mm and a thickness of 3 mm. Sodium chloride having an outer diameter of 10 mm, an inner diameter of 7 mm, and a height of 7.6 mm (including 10% by mass of zirconia powder) so that a sandwiched metal catalyst (alloy powder) layer (3) having a thickness of about 1.6 mm is formed. It filled in the sample container of the molded object (5).

これらの試料を、外径12mm,内径10mm,高さ17.6mmのグラファイト管状ヒーター(1)で囲み、内面にはMo箔(2)を配置し、ベルト型超高圧装置(アンビル先端径21mm,シリンダー内径25mm)で加圧し、その後ヒーターに電力を投入して加熱して、一定時間保持後、急速に温度を下げ、その後除圧して試料を取り出し、走査型電子顕微鏡、X線回折などの手法で試料を同定した。   These samples were surrounded by a graphite tubular heater (1) having an outer diameter of 12 mm, an inner diameter of 10 mm, and a height of 17.6 mm, Mo foil (2) was disposed on the inner surface, and a belt-type ultrahigh pressure device (anvil tip diameter of 21 mm, Pressurization with a cylinder inner diameter of 25 mm), and then apply power to the heater to heat it, hold it for a certain period of time, then rapidly lower the temperature, then depressurize and take out the sample, and take a scanning electron microscope, X-ray diffraction, etc. A sample was identified.

圧力5.6GPa、1550℃で30分間反応させた試料を解析した結果、cBN変換率95%以上で、平均粒径30μmの微粒cBNが合成された。   As a result of analyzing a sample reacted at a pressure of 5.6 GPa and 1550 ° C. for 30 minutes, fine cBN particles having a cBN conversion rate of 95% or more and an average particle size of 30 μm were synthesized.

なお、X線回折は、ブルカー製AXSMXP18VAHFにより測定した。
また、cBN変換率は、あらかじめhBNとcBN粉末を既知量混合したX線回折図形で各々の最強線の比率を求め、それを基にした検定曲線を作成する。図3の実施例2によるX線回折図形ではcBNの最強線の相対強度は約89.3%で、cBNの体積%は約95%である。
その他に、走査型電子顕微鏡(SEM)の反射電子像(BEI)により、合成した試料断面の観察を行い、観察面(倍率:1000倍)におけるcBNと金属触媒との面積比(その後、体積比に換算)により、凡そのcBN変換率を求めることができる。
実施例2:
金属触媒として、Co40.87−Mo17.39−Cr20.87−V18.26−Al2.61質量%からなる成分組成の合金粉末を用い、実施例1と同様にして、圧力4.6GPa、1330℃で60分間反応させてcBNを合成したところ、cBN変換率90%以上で、平均粒径20μmの微粒cBNが合成された。
X-ray diffraction was measured with Bruxer AXSMXP18VAHF.
Further, the cBN conversion rate is obtained by obtaining the ratio of each strongest line in an X-ray diffraction pattern obtained by mixing a known amount of hBN and cBN powder in advance, and creating a test curve based on the ratio. In the X-ray diffraction pattern according to Example 2 in FIG. 3, the relative intensity of the strongest line of cBN is about 89.3%, and the volume percentage of cBN is about 95%.
In addition, the cross-section of the synthesized sample was observed by a backscattered electron image (BEI) of a scanning electron microscope (SEM), and the area ratio of cBN and metal catalyst on the observation surface (magnification: 1000 times) (the volume ratio thereafter) The approximate cBN conversion rate can be obtained by
Example 2:
As the metal catalyst, an alloy powder having a component composition of Co40.87-Mo17.39-Cr20.87-V18.26-Al2.61% by mass was used, and the pressure was 4.6 GPa and 1330 ° C. in the same manner as in Example 1. When cBN was synthesized by reacting for 60 minutes, a fine cBN particle having a cBN conversion rate of 90% or more and an average particle size of 20 μm was synthesized.

図3に、実施例2で得られた微粒cBNについて求めたX線回折チャートを示す。   FIG. 3 shows an X-ray diffraction chart obtained for the fine particle cBN obtained in Example 2.

また、図4には、実施例2で得られた微粒cBNの走査型電子顕微鏡によって観察される組織写真を示す。
実施例3:
金属触媒として、Co47−Mo20―Cr24−V6−Al3質量%からなる成分組成の合金粉末を用い、実施例1と同様にして、圧力4.6GPa、1320℃で30分間反応させてcBNを合成したところ、cBN変換率は80%以上で、平均粒径20μmの微粒cBNが合成された。なお、同時に、ごく少量の平均粒径約40μmの粗粒cBNも合成された。このように、Vの添加量を減少すると、Vの分布が部分的に不均一となり、Vの濃度が小さい部分においては、cBNの粒子が30μm以上に大きく成長した。
実施例4:
金属触媒として、Ni64−Mo16−V16−Al4質量%からなる成分組成の合金粉末を用い、実施例1と同様にして、圧力5.6GPa、1460℃で30分間反応させてcBNを合成したところ、cBN変換率80%以上で、平均粒径30μmの微粒cBNが合成された。
実施例5:
金属触媒として、Ni53.04−Fe9.36−Cr20.16−V13.44−Al4質量%からなる成分組成の合金粉末を用い、実施例1と同様にして、圧力4.0GPa、1315℃で60分間反応させてcBNを合成したところ、cBN変換率90%以上で、平均粒径25μmの微粒cBNが合成された。
実施例6:
金属触媒として、Co63−Cr20−V13−Al4質量%からなる成分組成の合金粉末を用い、実施例1と同様にして、圧力5.6GPa、1580℃で30分間反応させてcBNを合成したところ、cBN変換率80%以上で、平均粒径10μmの微粒cBNが合成された。
実施例7:
金属触媒として、Co40−Ni20−Cr20−V16−Al4質量%からなる成分組成の合金粉末を用い、実施例1と同様にして、圧力5.6GPa、1588℃で30分間反応させてcBNを合成したところ、cBN変換率80%以上で、平均粒径5μmの微粒cBNが合成された。
実施例8:
金属触媒として、Co22−Ni50−Cr10−V10−Al8質量%からなる成分組成の合金粉末を用い、実施例1と同様にして、圧力5.6GPa、1590℃で30分間反応させてcBNを合成したところ、cBN変換率95%以上で、平均粒径10μmの微粒cBNが合成された。
実施例9:
金属触媒として、Fe18.7−Co21−Mo2.3−Cr47.4−V1.9−Al3.7質量%からなる成分組成の合金粉末を用い、実施例1と同様にして、圧力5.6GPa、1600℃で30分間反応させてcBNを合成したところ、cBN変換率90%以上で、平均粒径30μmの微粒cBNが合成された。
実施例10:
金属触媒として、Fe10−Co20−Ni15−Mo50−V1−Al4質量%からなる成分組成の合金粉末を用い、実施例1と同様にして、圧力4.8GPa、1500℃で60分間反応させてcBNを合成したところ、cBN変換率85%以上で、平均粒径25μmの微粒cBNが合成された。
実施例11:
金属触媒として、Fe10.2−Co29.4−Mo7.2−Cr3.2−V48.5−Al1.5質量%からなる成分組成の合金粉末を用い、実施例1と同様にして、圧力5.4GPa、1650℃で60分間反応させてcBNを合成したところ、cBN変換率85%以上で、平均粒径15μmの微粒cBNが合成された。
比較例1:
図1に示すように、金属触媒として、Co46.5−Mo20−Cr31−Al2.5質量%からなる成分組成の合金粉末(即ち、V成分を含有しない)をあらかじめ作り、約7mm径で3mm厚さの2枚のhBN成形板(4)間に約1.6mm厚さのサンドイッチされた金属触媒(合金粉末)層(3)が形成されるように、外径10mm,内径7mm,高さ7.6mmの食塩(ジルコニア粉末を10質量%含む)成形体(5)の試料容器中に充填した。
FIG. 4 shows a structure photograph of the fine particle cBN obtained in Example 2 observed with a scanning electron microscope.
Example 3:
As a metal catalyst, an alloy powder having a composition of Co47-Mo20-Cr24-V6-Al 3% by mass was used and reacted at a pressure of 4.6 GPa at 1320 ° C. for 30 minutes to synthesize cBN in the same manner as in Example 1. However, cBN conversion was 80% or more, and fine particles cBN having an average particle size of 20 μm were synthesized. At the same time, a very small amount of coarse cBN having an average particle diameter of about 40 μm was synthesized. As described above, when the amount of V added was decreased, the distribution of V was partially non-uniform, and in the portion where the concentration of V was small, cBN particles grew larger than 30 μm.
Example 4:
As the metal catalyst, an alloy powder composed of Ni64-Mo16-V16-Al4% by mass was used, and cBN was synthesized by reacting at a pressure of 5.6 GPa and 1460 ° C. for 30 minutes in the same manner as in Example 1. Fine cBN particles having a cBN conversion rate of 80% or more and an average particle size of 30 μm were synthesized.
Example 5:
As a metal catalyst, an alloy powder having a composition of Ni53.04-Fe9.36-Cr20.16-V13.44-Al4 mass% was used, and the pressure was 4.0 GPa at 1315 ° C. in the same manner as in Example 1. When cBN was synthesized by reacting for 5 minutes, fine cBN having a cBN conversion rate of 90% or more and an average particle size of 25 μm was synthesized.
Example 6:
As the metal catalyst, an alloy powder composed of Co63-Cr20-V13-Al4% by mass was used, and cBN was synthesized by reacting at a pressure of 5.6 GPa and 1580 ° C. for 30 minutes in the same manner as in Example 1. Fine cBN particles having an cBN conversion rate of 80% or more and an average particle size of 10 μm were synthesized.
Example 7:
As a metal catalyst, an alloy powder having a component composition of Co40-Ni20-Cr20-V16-Al4% by mass was used and reacted at a pressure of 5.6 GPa and 1588 ° C. for 30 minutes in the same manner as in Example 1 to synthesize cBN. However, fine cBN particles having a cBN conversion rate of 80% or more and an average particle size of 5 μm were synthesized.
Example 8:
As a metal catalyst, an alloy powder having a composition of Co22-Ni50-Cr10-V10-Al 8% by mass was used and reacted at a pressure of 5.6 GPa and 1590 ° C. for 30 minutes to synthesize cBN in the same manner as in Example 1. However, fine cBN particles having a cBN conversion rate of 95% or more and an average particle size of 10 μm were synthesized.
Example 9:
As a metal catalyst, an alloy powder having a component composition of Fe18.7-Co21-Mo2.3-Cr47.4-V1.9-Al3.7% by mass was used, and in the same manner as in Example 1, a pressure of 5.6 GPa, When cBN was synthesized by reacting at 1600 ° C. for 30 minutes, fine cBN having a cBN conversion rate of 90% or more and an average particle size of 30 μm was synthesized.
Example 10:
As a metal catalyst, an alloy powder having a component composition of Fe10-Co20-Ni15-Mo50-V1-Al4% by mass was used and reacted at a pressure of 4.8 GPa and 1500 ° C. for 60 minutes in the same manner as in Example 1. When synthesized, fine cBN particles having a cBN conversion rate of 85% or more and an average particle size of 25 μm were synthesized.
Example 11:
As a metal catalyst, an alloy powder having a component composition of Fe10.2-Co29.4-Mo7.2-Cr3.2-V48.5-Al1.5% by mass was used, in the same manner as in Example 1, with a pressure of 5. When cBN was synthesized by reacting at 4 GPa and 1650 ° C. for 60 minutes, fine cBN having a cBN conversion rate of 85% or more and an average particle size of 15 μm was synthesized.
Comparative Example 1:
As shown in FIG. 1, an alloy powder (that is, containing no V component) composed of 2.5% by mass of Co46.5-Mo20-Cr31-Al is prepared in advance as a metal catalyst, and is approximately 7 mm in diameter and 3 mm thick. In order to form a sandwiched metal catalyst (alloy powder) layer (3) having a thickness of about 1.6 mm between the two hBN molded plates (4), an outer diameter of 10 mm, an inner diameter of 7 mm, and a height of 7 A 6 mm salt (containing 10% by mass of zirconia powder) compact (5) was filled into a sample container.

これらの試料を、外径12mm,内径10mm,高さ17.6mmのグラファイト管状ヒーター(1)で囲み、内面にはMo箔(2)を配置し、ベルト型超高圧装置(アンビル先端径21mm,シリンダー内径25mm)で加圧し、その後ヒーターに電力を投入して加熱して、一定時間保持後、急速に温度を下げ、その後除圧して試料を取り出し、走査型電子顕微鏡、X線回折などの手法で試料を同定した。   These samples were surrounded by a graphite tubular heater (1) having an outer diameter of 12 mm, an inner diameter of 10 mm, and a height of 17.6 mm, Mo foil (2) was disposed on the inner surface, and a belt-type ultrahigh pressure device (anvil tip diameter of 21 mm, Pressurization with a cylinder inner diameter of 25 mm), and then apply power to the heater to heat it, hold it for a certain period of time, then rapidly lower the temperature, then depressurize and take out the sample, and take a scanning electron microscope, X-ray diffraction, etc. A sample was identified.

圧力4.2GPa、1320℃で30分間反応させた試料を解析した結果、cBN変換率は50%以上であるものの、得られたcBNの平均粒径は80μmの粗粒であって、微粒cBNは合成されなかった。
比較例2:
金属触媒として、Co76−Mo20−Al4質量%からなる成分組成の合金粉末(即ち、V成分を含有しない)を用い、比較例1と同様にして、圧力5.0GPa、1560℃で60分間反応させてcBNを合成したところ、cBN変換率は50%以上であるものの、得られたcBNの平均粒径は50μmの粗粒であって、微粒cBNは合成されなかった。
As a result of analyzing the sample reacted at a pressure of 4.2 GPa and 1320 ° C. for 30 minutes, the cBN conversion rate is 50% or more, but the average particle size of the obtained cBN is 80 μm coarse particles, and the fine particle cBN is It was not synthesized.
Comparative Example 2:
As a metal catalyst, an alloy powder having a composition of Co76-Mo20-Al 4% by mass (that is, containing no V component) was used and reacted at a pressure of 5.0 GPa and 1560 ° C. for 60 minutes in the same manner as in Comparative Example 1. When cBN was synthesized, the cBN conversion was 50% or more, but the average particle size of the obtained cBN was 50 μm coarse particles, and no fine cBN was synthesized.

図5に、比較例2で得られた粗粒cBNの走査型電子顕微鏡によって観察される組織写真を示す。
比較例3:
金属触媒として、Ni53.04−Fe9.36−Cr33.6−Al4質量%からなる成分組成の合金粉末(即ち、V成分を含有しない)を用い、比較例1と同様にして、圧力4.2GPa、1350℃で60分間反応させてcBNを合成したところ、cBN変換率は80%以上であるものの、得られたcBNの平均粒径は100μmの粗粒であって、微粒cBNは合成されなかった。
In FIG. 5, the structure | tissue photograph observed with the scanning electron microscope of the coarse grain cBN obtained by the comparative example 2 is shown.
Comparative Example 3:
As a metal catalyst, an alloy powder (that is, containing no V component) composed of Ni 53.04-Fe 9.36-Cr 33.6-Al 4% by mass was used, and the pressure was 4.2 GPa in the same manner as in Comparative Example 1. When cBN was synthesized by reacting at 1350 ° C. for 60 minutes, the cBN conversion was 80% or more, but the average particle size of the obtained cBN was 100 μm coarse particles, and fine cBN was not synthesized. .

表1に、上記の実施例1〜11,比較例1〜3の結果をまとめて示す。   In Table 1, the result of said Examples 1-11 and Comparative Examples 1-3 is shown collectively.

表1の結果からみて、本発明の金属触媒を用いたcBN粒の合成によれば、低圧力、低温度範囲において、cBN変換率が高く、かつ、微粒のcBNを得ることができる。   From the results shown in Table 1, according to the synthesis of cBN grains using the metal catalyst of the present invention, a cBN conversion rate is high and fine cBN can be obtained in a low pressure and low temperature range.

これに対して、V成分を含有しない金属触媒を用いた比較例1〜3の合成法では、低圧力、低温度範囲においては、微粒のcBNを得ることはできない。   On the other hand, in the synthesis methods of Comparative Examples 1 to 3 using a metal catalyst containing no V component, fine cBN cannot be obtained in a low pressure and low temperature range.

Figure 0005613970
ついで、上記で合成した実施例1〜11,比較例1〜3のcBN粒子に対して、表2に示される平均粒径となるように粉砕・分級を行い、cBN焼結体21〜31(実施例21〜31)および比較例のcBN焼結体11〜13(比較例11〜13)の原料粉末として使用した。
Figure 0005613970
Next, the cBN particles of Examples 1 to 11 and Comparative Examples 1 to 3 synthesized above were pulverized and classified so as to have an average particle size shown in Table 2, and cBN sintered bodies 21 to 31 ( It was used as a raw material powder for the cBN sintered bodies 11 to 13 (Comparative Examples 11 to 13) of Examples 21 to 31) and Comparative Examples.

実施例21〜31および比較例11〜13の焼結実験における焼結助剤として、それぞれ表1に示される金属触媒と同一成分組成からなる混合粉末を用い、焼結助剤の含有割合が実施例21〜31においては、5〜20体積%、比較例11〜13においては30〜50体積%となるよう配合した混合粉末(12)を、図2に示すように0.02mm厚さのMo箔(13)で内側を囲んだ外径10mm、内径7mm、高さ7.6mmの食塩(ジルコニア粉末を10wt%含む)成形体(15)間にサンドイッチされるように充填し、表2に示すそれぞれの条件で焼結した。   As the sintering aid in the sintering experiments of Examples 21 to 31 and Comparative Examples 11 to 13, mixed powders having the same composition as the metal catalyst shown in Table 1 were used, and the content ratio of the sintering aid was carried out. In Examples 21-31, mixed powder (12) blended so as to be 5 to 20% by volume, and in Comparative Examples 11 to 13 to be 30 to 50% by volume, 0.02 mm thick Mo as shown in FIG. Filled so as to be sandwiched between sodium chloride (containing 10 wt% zirconia powder) molded body (15) having an outer diameter of 10 mm, an inner diameter of 7 mm, and a height of 7.6 mm surrounded by foil (13), and shown in Table 2 Sintering was performed under each condition.

得られたcBN焼結体を走査型電子顕微鏡で観察したところ、本発明のcBN焼結体21〜31(実施例21〜31)は、比較例のcBN焼結体11〜13(比較例11〜13)と比較すると、平均粒径が30μm以下の微粒子で構成され、しかも、cBN粒子間で強固な直接結合を有する緻密なcBN焼結体が形成されていた。
表2に、製造された各cBN焼結体におけるcBNの平均粒径を示す。
When the obtained cBN sintered compact was observed with the scanning electron microscope, the cBN sintered compacts 21-31 (Examples 21-31) of this invention were the cBN sintered compacts 11-13 of the comparative example (comparative example 11). Compared with ˜13), a dense cBN sintered body composed of fine particles having an average particle size of 30 μm or less and having a strong direct bond between the cBN particles was formed.
Table 2 shows the average particle size of cBN in each manufactured cBN sintered body.

Figure 0005613970
Figure 0005613970

上記のとおり、本発明のcBN合成方法およびcBNを原料粉末とするcBN焼結体の製造方法によれば、金属触媒として、Nを溶解する作用を有するCr,Moと、金属触媒の溶融温度を低下させる作用を有するVと、cBN核発生・成長の促進・助長作用を有するAlと、残部はBを溶解する作用を有するFe,Co,Niからなる合金粉末あるいは混合粉末を用いることによって、従来よりも低圧力範囲(最低圧力4GPa)、低温度範囲(1200〜1700℃)で微粒(平均粒径30μm以下)のcBNを合成することができ、また、上記金属触媒と同一成分組成の焼結助剤を用いた焼結により、cBN粒子間で強固な直接結合を有し、緻密な微粒組織を備えたBN焼結体を製造することができる。   As described above, according to the cBN synthesis method of the present invention and the cBN sintered body production method using cBN as a raw material powder, Cr, Mo having an action of dissolving N as a metal catalyst, and the melting temperature of the metal catalyst are set. By using an alloy powder or mixed powder composed of Fe, Co, and Ni having an action of lowering V, Al having an action of promoting and promoting cBN nucleation / growth, and the balance of B being dissolved, It is possible to synthesize fine particles (average particle size of 30 μm or less) of cBN in a lower pressure range (minimum pressure 4 GPa) and lower temperature range (1200 to 1700 ° C.), and sintering with the same component composition as the metal catalyst. By sintering using an auxiliary agent, a BN sintered body having a strong direct bond between cBN particles and having a dense fine grain structure can be produced.

1,11 :グラファイトヒーター
2 :Mo箔
3 :金属触媒
4 :hBN原料
5,15 :NaCl−10質量%ZrO成形体
12 :cBN+焼結助剤(=金属触媒)の混合物
13 :Mo箔
14 :WC/Co合金基板
DESCRIPTION OF SYMBOLS 1,11: Graphite heater 2: Mo foil 3: Metal catalyst 4: hBN raw material 5, 15: NaCl-10 mass% ZrO 2 compact 12: Mixture of cBN + sintering aid (= metal catalyst) 13: Mo foil 14 : WC / Co alloy substrate

Claims (2)

金属触媒の存在下、超高圧高温条件で六方晶窒化ホウ素から立方晶窒化ホウ素を合成する立方晶窒化ホウ素の合成方法において、上記金属触媒は、CrおよびMoのいずれか1種又は2種を含有し、かつ、Cr単独で含有の場合はCr:10〜55質量%、Mo単独で含有の場合はMo:10〜50質量%、CrとMoを共に含有する場合は(Cr+Mo):10〜50質量%の範囲内において含有するとともに、V:1〜50質量%、Al:1.5〜8質量%を含有し、残部はFe、NiおよびCoのいずれか1種又は2種以上の成分組成からなる合金粉末あるいは混合粉末であって、さらに、上記合成を、4GPa以上、1200〜1700℃で行うことを特徴とする立方晶窒化ホウ素の合成方法。   In the method for synthesizing cubic boron nitride in which cubic boron nitride is synthesized from hexagonal boron nitride under ultrahigh pressure and high temperature conditions in the presence of a metal catalyst, the metal catalyst contains one or two of Cr and Mo. And, when Cr is contained alone, Cr: 10 to 55% by mass, when Mo alone is contained, Mo: 10 to 50% by mass, and when both Cr and Mo are contained (Cr + Mo): 10 to 50 In addition to containing in the range of mass%, V: 1-50 mass%, Al: 1.5-8 mass%, the balance is any one or more component composition of Fe, Ni and Co A method for synthesizing cubic boron nitride, characterized in that the synthesis is performed at 4 GPa or more and 1200 to 1700 ° C. 立方晶窒化ホウ素を原料粉末とし、該原料粉末に焼結助剤を添加して焼結することからなる立方晶窒化ホウ素焼結体の製造方法において、上記焼結助剤として、CrおよびMoのいずれか1種又は2種を含有し、かつ、Cr単独で含有の場合はCr:10〜55質量%、Mo単独で含有の場合はMo:10〜50質量%、CrとMoを共に含有する場合は(Cr+Mo):10〜50質量%の範囲内において含有するとともに、V:1〜50質量%、Al:1.5〜8質量%を含有し、残部はFe、NiおよびCoのいずれか1種又は2種以上の成分組成からなる合金粉末あるいは混合粉末を、原料粉末に5〜20体積%添加して焼結することを特徴とする立方晶窒化ホウ素焼結体の製造方法。   In the method for producing a cubic boron nitride sintered body, comprising cubic boron nitride as a raw material powder, sintering by adding a sintering aid to the raw material powder, the above-mentioned sintering aids include Cr and Mo. In the case of containing either 1 type or 2 types and containing Cr alone, Cr: 10 to 55% by mass, when containing Mo alone, Mo: 10 to 50% by mass, containing both Cr and Mo In the case, (Cr + Mo): contained in the range of 10 to 50% by mass, V: 1 to 50% by mass, Al: 1.5 to 8% by mass, and the balance is any of Fe, Ni and Co A method for producing a cubic boron nitride sintered body, comprising adding 5 to 20% by volume of an alloy powder or mixed powder composed of one or more component compositions to a raw material powder and sintering.
JP2011074501A 2011-03-30 2011-03-30 Method for synthesizing cubic boron nitride and method for producing sintered cubic boron nitride Active JP5613970B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011074501A JP5613970B2 (en) 2011-03-30 2011-03-30 Method for synthesizing cubic boron nitride and method for producing sintered cubic boron nitride
CN201210043797.4A CN102731097B (en) 2011-03-30 2012-02-23 Synthesis method of cubic boron nitride and preparation method of cubic boron nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011074501A JP5613970B2 (en) 2011-03-30 2011-03-30 Method for synthesizing cubic boron nitride and method for producing sintered cubic boron nitride

Publications (2)

Publication Number Publication Date
JP2012206902A JP2012206902A (en) 2012-10-25
JP5613970B2 true JP5613970B2 (en) 2014-10-29

Family

ID=46987492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011074501A Active JP5613970B2 (en) 2011-03-30 2011-03-30 Method for synthesizing cubic boron nitride and method for producing sintered cubic boron nitride

Country Status (2)

Country Link
JP (1) JP5613970B2 (en)
CN (1) CN102731097B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5988430B2 (en) 2012-10-26 2016-09-07 住友電工ハードメタル株式会社 Cubic boron nitride sintered body and method for producing the same
JP6696242B2 (en) 2015-03-19 2020-05-20 三菱マテリアル株式会社 Drilling tip and drilling bit
WO2016148223A1 (en) * 2015-03-19 2016-09-22 三菱マテリアル株式会社 Drill tip and drill bit
CN108580912A (en) * 2018-06-12 2018-09-28 桂林特邦新材料有限公司 The adding method of metal adhesive when preparing PCBN compact
CN109264676A (en) * 2018-09-29 2019-01-25 河北工业大学 A kind of preparation method of the nitride porous boron fibre of cobalt-nickel alloy modification
CN111077175B (en) * 2019-12-31 2022-04-05 四川大学 Device and method for measuring solubility of crystal under high pressure
GB202001369D0 (en) * 2020-01-31 2020-03-18 Element Six Ltd Polycrystalline cubic boron nitride material

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3768972A (en) * 1971-05-10 1973-10-30 Westinghouse Electric Corp Method of producing cubic boron nitride with aluminum containing catalyst
ZA724056B (en) * 1971-07-01 1973-03-28 Gen Electric Catalyst systems for synthesis of cubic boron nitride
US3918931A (en) * 1973-12-17 1975-11-11 Gen Electric Solution-precipitation process for manufacturing cubic boron nitride abrasive tools
JPS61168569A (en) * 1985-01-17 1986-07-30 昭和電工株式会社 Manufacture of cubic boron nitride sintered body
JP4787387B2 (en) * 1998-07-22 2011-10-05 住友電工ハードメタル株式会社 Cutting tool with excellent crater resistance and strength and method for producing the same
US6814775B2 (en) * 2002-06-26 2004-11-09 Diamond Innovations, Inc. Sintered compact for use in machining chemically reactive materials
US7524785B2 (en) * 2004-01-08 2009-04-28 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered body
KR101123490B1 (en) * 2005-07-15 2012-03-23 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Composite sintered compact and cutting tool
EP2039667B1 (en) * 2006-06-12 2011-10-12 Sumitomo Electric Hardmetal Corp. Composite sintered body
EP2099945B1 (en) * 2006-12-11 2014-06-11 Element Six Abrasives S.A. Cubic boron nitride compacts
JP5182582B2 (en) * 2008-12-09 2013-04-17 三菱マテリアル株式会社 Method for synthesizing cubic boron nitride and method for producing sintered cubic boron nitride
JP5332824B2 (en) * 2009-03-31 2013-11-06 ダイキン工業株式会社 Method for producing pentafluoroallyl chloride
JP5045953B2 (en) * 2009-03-31 2012-10-10 三菱マテリアル株式会社 Method for synthesizing cubic boron nitride and method for producing sintered cubic boron nitride

Also Published As

Publication number Publication date
CN102731097B (en) 2015-06-24
CN102731097A (en) 2012-10-17
JP2012206902A (en) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5613970B2 (en) Method for synthesizing cubic boron nitride and method for producing sintered cubic boron nitride
JP5427380B2 (en) Carbide composite material and manufacturing method thereof
JP4542799B2 (en) High strength and high wear resistance diamond sintered body and method for producing the same
JP5850372B2 (en) Grain refiner for casting and method for producing the same
WO2011152359A1 (en) Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same
JP2015110838A (en) Tungsten rhenium compound and composite and forming method of them
JP2016141609A (en) Cubic boron nitride polycrystalline material, cutting tool, abrasion-resistant tool, grinding tool, and production method of cubic boron nitride polycrystalline material
JPWO2008093577A1 (en) Composite sintered body
JP2007039329A (en) High content cbn-containing material, compact incorporating the same and method of making the same
JP5045953B2 (en) Method for synthesizing cubic boron nitride and method for producing sintered cubic boron nitride
JPWO2020090280A1 (en) Manufacturing method of cemented carbide, cutting tool and cemented carbide
Kwon et al. Highly toughened dense TiC–Ni composite by in situ decomposition of (Ti, Ni) C solid solution
JP5182582B2 (en) Method for synthesizing cubic boron nitride and method for producing sintered cubic boron nitride
Yang et al. Preparation and characterization of cBN-based composites from cBN-Ti3AlC2 mixtures
WO2015166730A1 (en) Composite sintered body
JP2019037992A (en) Crystal grain refining agent for casting containing heterogeneous nuclear grain at high concentration, and method for producing the same
JP2010208942A (en) High strength-high wear resistant diamond sintered body and method of producing the same
JPWO2013058338A1 (en) Nickel-based intermetallic compound composite sintered material and method for producing the same
JP2007126326A (en) Diamond sintered body
JP2011062742A (en) Rotary tool
Jimba et al. Effect of mechanically alloyed sintering aid on sinterability of TiB2
RU2347744C2 (en) Sintered diamond object with high strength and high wearing resistance and method of making it
JP2011098875A (en) Cubic boron nitride sintered compact
KR20060090937A (en) Method of tantalum carbide production for hard metals
JP2003020279A (en) Metallic ceramic sintered compact and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140824

R150 Certificate of patent or registration of utility model

Ref document number: 5613970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150