JP5850372B2 - Grain refiner for casting and method for producing the same - Google Patents

Grain refiner for casting and method for producing the same Download PDF

Info

Publication number
JP5850372B2
JP5850372B2 JP2012554746A JP2012554746A JP5850372B2 JP 5850372 B2 JP5850372 B2 JP 5850372B2 JP 2012554746 A JP2012554746 A JP 2012554746A JP 2012554746 A JP2012554746 A JP 2012554746A JP 5850372 B2 JP5850372 B2 JP 5850372B2
Authority
JP
Japan
Prior art keywords
crystal grain
casting
intermetallic compound
grain refiner
refining agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012554746A
Other languages
Japanese (ja)
Other versions
JPWO2012102162A1 (en
Inventor
渡辺 義見
義見 渡辺
佐藤 尚
尚 佐藤
雄大 松岡
雄大 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2012554746A priority Critical patent/JP5850372B2/en
Publication of JPWO2012102162A1 publication Critical patent/JPWO2012102162A1/en
Application granted granted Critical
Publication of JP5850372B2 publication Critical patent/JP5850372B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、鋳造用結晶粒微細化剤およびその製造方法に関するものである。   The present invention relates to a crystal grain refiner for casting and a method for producing the same.

金属および合金の代表的な加工法の一つに溶融加工法がある。溶融加工法には、複雑で滑らかな形状の製品が作製可能であることや、加工困難なあらゆる金属および合金に適用できるといった利点がある。凝固は溶融加工法において最も重要な相変化である。凝固には核生成を伴い、均質核形成と不均質核形成とがある。不均質核の添加により凝固組織すなわち鋳造組織の微細化が図られる。ここで、材料組織の微細化は、種々ある材料の強化法の一つであり、延性・靭性を損なわず材を強化する方法として知られている。多結晶体の降伏応力σと結晶粒径dの間には、数式(1)に示すホール・ペッチの関係が成立することが知られている。One typical processing method for metals and alloys is the melt processing method. The melt processing method has an advantage that a product having a complicated and smooth shape can be produced and can be applied to any metal and alloy which are difficult to process. Solidification is the most important phase change in melt processing. Solidification involves nucleation and includes homogeneous and heterogeneous nucleation. By adding heterogeneous nuclei, the solidified structure, that is, the cast structure can be refined. Here, the refinement of the material structure is one of various material strengthening methods, and is known as a method for strengthening a material without impairing ductility and toughness. It is known that the hole-petch relationship shown in Formula (1) is established between the yield stress σ y of the polycrystalline body and the crystal grain size d.

式中、σは転位運動に対する摩擦応力、kはホール・ペッチ係数と呼ばれ、どちらも材料によって異なる定数である。凝固において有効な不均質核となるためには、不均質核物質と鋳造材との界面エネルギーが小さい必要がある。非特許文献1によると、不均質核物質と鋳造材の結晶格子の低指数面における1方向の原子配列の不整合度δにより異質核物質の有効性が議論できるとしている。この不整合度δは次の数式(2)で表される。 In the equation, σ 0 is called a frictional stress with respect to dislocation motion, and k is a Hall-Petch coefficient, both of which are constants depending on the material. In order to become an inhomogeneous nucleus effective in solidification, the interface energy between the heterogeneous nucleus material and the cast material needs to be small. According to Non-Patent Document 1, the effectiveness of heterogeneous nuclear material can be discussed by the degree of inconsistency δ of atomic arrangement in one direction on the low index plane of the crystal lattice of the cast material and the heterogeneous nuclear material. This inconsistency δ is expressed by the following formula (2).

ここで、aは不均質核物質の低指数面の格子定数、aは鋳造材の低指数面の格子定数である。δが小さいほど原子配列の整合性がよく、界面エネルギーが小さい。この値が10%以下であると不均質核として有効に働く。 Here, a is the lattice constant of the low index surface of the heterogeneous nuclear material, and a 0 is the lattice constant of the low index surface of the cast material. The smaller δ, the better the alignment of the atomic arrangement and the lower the interfacial energy. When this value is 10% or less, it works effectively as a heterogeneous nucleus.

アルミ結晶の不均質核になりうる物質として、AlTi,TiBおよびAlZrなどが知られており、Al−Ti合金やAl−Ti−X(X=B,C)合金が結晶粒微細化剤として、鋳造アルミの製造現場で使用されている(例えば、特許文献1、2参照)。ここで、金属間化合物であるAlTiおよびAlZrはそれぞれD022構造およびD023構造を有する。Al 3 Ti, TiB 2 and Al 3 Zr are known as substances that can be heterogeneous nuclei of aluminum crystals, and Al—Ti alloys and Al—Ti—X (X = B, C) alloys have crystal grains. As a micronizing agent, it is used at the production site of cast aluminum (for example, refer to Patent Documents 1 and 2). Here, Al 3 Ti and Al 3 Zr which are intermetallic compounds have a D0 22 structure and a D0 23 structure, respectively.

これらの物質のうち、特にD022構造のAlTiの結晶粒微細化剤としての役割が重要視されている。図1の(a)および(b)に示すように、純AlおよびD022構造のAlTi の格子定数は、それぞれ0.40496nmおよび0.384nmであり、不整合度δの値は5%程度である。Among these materials, especially the role of the grain refiner of Al 3 Ti of the D0 22 structures are important. As shown in FIG. 1 (a) and (b), the lattice constants of the Al 3 Ti of pure Al and D0 22 structures are respectively 0.40496nm and 0.384 nm, the value of the mismatch δ 5% Degree.

また、結晶粒微細化能は結晶粒微細化剤中の不均質核の個数に依存する。特許文献1には、巨大ひずみ加工を結晶粒微細化剤に施すことにより、不均質核の個数が制御でき、結晶粒微細化能が向上することが示されている。   Further, the crystal grain refining ability depends on the number of heterogeneous nuclei in the crystal grain refiner. Patent Document 1 shows that the number of heterogeneous nuclei can be controlled and the crystal grain refinement ability is improved by applying giant strain processing to the crystal grain refiner.

ところで、D022構造金属間化合物は図1(b)に示すように結晶の対称性が悪い。このため、添加元素を加えて対称性の良いL1構造(図1(c))へと変化させる研究が盛んに行われてきた(例えば、非特許文献2、3、4参照)。その結果、種々の格子常数を有するL1構造金属間化合物が見いだされている。しかし残念ながら、このようにして得られたL1構造金属間化合物の実用化は行われていない。これは、凝固時にポアが出来てしまい、引張延性がでないためである。バルク状態でL1構造金属間化合物を使おうとしても、想定されるほど強度がない。By the way, the D0 22 structure intermetallic compound has poor crystal symmetry as shown in FIG. Therefore, good symmetry L1 2 structure by adding an additional element is studied to change to (FIG. 1 (c)) has been actively (e.g., see Non-Patent Documents 2, 3, and 4). As a result, L12 two- structure intermetallic compounds having various lattice constants have been found. Unfortunately, practical application of the L1 2 structure intermetallic compound thus obtained is not performed. This is because pores are formed during solidification and tensile ductility is not achieved. Even attempts to use L1 2 structure intermetallic compound in bulk, without strength enough to be assumed.

特開2005−329459号公報JP 2005-329459 A 特開平10−317083号公報Japanese Patent Laid-Open No. 10-317083

Turnbull and Vonnegut, Ind. Eng. Chem., 1952.Turnbull and Vonnegut, Ind. Eng. Chem., 1952. Metal. Trans. A, Vol. 23A, 1992, 2963.Metal. Trans. A, Vol. 23A, 1992, 2963. Mater.Sci.Eng.A, Vol. A192/193, 1995, 92.Mater.Sci.Eng.A, Vol.A192 / 193, 1995, 92. 山口正治,金属,Vol.62, No.10, 1992, 2.Masaharu Yamaguchi, Metals, Vol.62, No.10, 1992, 2.

ところで、上述の通り、D022構造のAlTiの不整合度δの値は5%程度であり、もしも、これ以下の不整合度δを有する化合物が得られれば、より高性能の微細化添加剤となり得る。Incidentally, as described above, D0 22 value of mismatch [delta] of the Al 3 Ti of the structure is about 5%, if, as long give a compound having the same following mismatch [delta], more sophisticated refining Can be an additive.

さらに、アルミ合金の格子定数は純Alのそれとは異なるので、個々のアルミ合金に最適な微細化添加剤が存在するはずである。   Furthermore, since the lattice constant of an aluminum alloy is different from that of pure Al, there should be an optimum refinement additive for each individual aluminum alloy.

また、D022構造のAlTiは、図1(b)に示すように、a=0.384nm、c=0.8596nmであり、結晶面によって格子定数が異なるため、結晶面によって不整合度δの値が異なってしまう。したがって、D022構造のAlTiは、結晶面によって、不均質核としての働きが異なってしまう。Further, as shown in FIG. 1B, Al 3 Ti having a D0 22 structure has a = 0.384 nm and c = 0.8596 nm, and the lattice constant differs depending on the crystal plane. The value of δ will be different. Therefore, Al 3 Ti having a D0 22 structure has different functions as heterogeneous nuclei depending on crystal planes.

ちなみに、鋳造材の結晶粒微細化に及ぼすプロセス変数としては、溶湯温度、添加量の他、溶湯に結晶粒微細化剤を添加した後の保持時間がある。現在結晶粒微細化剤として使用されているAl−5質量%Ti−X(X=B,C)合金の溶湯への添加量は1質量%以下である。そのため、溶湯中のチタン濃度は0.05質量%以下となり、図2に示すようにこの濃度においてAlTi不均質核は平衡状態において溶湯中存在できない。しかし、保持時間を調整することにより、鋳造アルミの製造現場では非平衡状態での不均質核を利用している。このことを更に深く考察すると、結晶粒微細化剤自体も平衡な系でなくても良いことになる。すなわち、本来平衡状態にて安定存在できない金属間化合物でも不均質核に利用することが可能であるはずである。Incidentally, as process variables affecting the refinement of crystal grains of the cast material, there are a holding time after adding the crystal grain refining agent to the melt, in addition to the melt temperature and the addition amount. The amount of Al-5 mass% Ti-X (X = B, C) alloy currently used as a grain refiner is 1 mass% or less. Therefore, the titanium concentration in the molten metal is 0.05% by mass or less, and as shown in FIG. 2, Al 3 Ti heterogeneous nuclei cannot exist in the molten metal in an equilibrium state at this concentration. However, by adjusting the holding time, non-equilibrium nuclei in a non-equilibrium state are used at the cast aluminum manufacturing site. Considering this more deeply, the crystal grain refining agent itself may not be an equilibrium system. That is, it should be possible to use intermetallic compounds that cannot originally exist stably in an equilibrium state for heterogeneous nuclei.

本発明は上記点に鑑みて、現有の結晶粒微細化剤における不均質核と比較して、より不整合度δが小さいとともに、純AlあるいはAl合金に対し、限りなく不整合度δを小さくした不均質核を有する微細化添加剤およびその製造方法を提供することを目的とする。   In view of the above points, the present invention has a smaller incompatibility δ as compared with inhomogeneous nuclei in existing grain refiners, and infinitely less inconsistency δ than pure Al or Al alloys. It is an object of the present invention to provide a refined additive having a heterogeneous nucleus and a method for producing the same.

本発明は、上述のL1構造金属間化合物の研究とは全く異なる観点で、L1構造金属間化合物を取り扱うものである。The present invention is a completely different viewpoint from the study of the L1 2 structure intermetallic compound described above are those handling the L1 2 structure intermetallic compound.

すなわち、請求項1に記載の発明は、L1構造の下記式(1)で示される金属間化合物の粒子を、Alを主成分とする母相に分散させてなる固形状の鋳造用結晶粒微細化剤である。
(Al,Y)Z・・・(1)
(Yは、Cu、Fe、Ni、Zn、Pd、Cr、Mn、Co、Ag、Rh、Pt、AuおよびHfから選択されるいずれか1つであり、Zは、Ti、ZrおよびZnから選択されるいずれか1つである。)
この鋳造用結晶粒微細化剤としては、請求項2に記載の発明のように、式(1)のZがTiであるものとすることができ、例えば、請求項3、4、5に記載の発明のように、金属間化合物がAlCuTi、Al22FeTiまたはAl67NiTi25であるものとすることができる。
That is, according to the invention described in claim 1, L1 2 particles of the intermetallic compound represented by the following formula (1) of the structure, solid of the casting crystal grains is dispersed in the mother phase composed mainly of Al It is a fine agent.
(Al, Y) 3 Z (1)
(Y is any one selected from Cu, Fe, Ni, Zn, Pd, Cr, Mn, Co, Ag, Rh, Pt, Au and Hf, and Z is selected from Ti, Zr and Zn. Any one being.)
As the crystal grain refining agent for casting, as in the invention described in claim 2, Z in the formula (1) can be Ti. For example, in claim 3, 4, 5 As in the present invention, the intermetallic compound may be Al 5 CuTi 2 , Al 22 Fe 3 Ti 8 or Al 67 Ni 8 Ti 25 .

L1構造の式(1)のように、D022構造のAlTiにおけるAlの一部を他の元素に置き換えたり、D022構造のAlTiにおけるTiを他の元素に置き換えたりすることにより、金属間化合物の格子定数を変化させることが可能である。このため、金属間化合物の格子定数を、D022構造のAlTiと比較して、純Alの格子定数に近づけることが可能となるとともに、置き換える他の元素を選択することにより、個々のAl合金の格子定数に近づけることが可能である。L1 2 as in formula of structure (1), it or replace replace a part of Al in the Al 3 Ti of the D0 22 structures other elements, the Ti in the Al 3 Ti of the D0 22 structures other elements Thus, the lattice constant of the intermetallic compound can be changed. Therefore, the lattice constant of the intermetallic compound, as compared with Al 3 Ti of the D0 22 structures, it becomes possible to approach the lattice constant of pure Al, by selecting the other elements replacing individual Al It is possible to approach the lattice constant of the alloy.

これにより、現有の結晶粒微細化剤における不均質核と比較して、より不整合度δが小さいとともに、純AlあるいはAl合金に対し、限りなく不整合度δを小さくした微細化添加剤の提供が可能となる。   As a result, compared with the inhomogeneous nuclei in the existing grain refiner, the degree of inconsistency δ is smaller, and the refined additive that has an inconsistency δ that is infinitely smaller than that of pure Al or Al alloys. Provision is possible.

例えば、D022構造のAlTiに第三元素Yを加えた場合、図1の(c)に示すようなL1構造の(Al,Y)Ti金属間化合物になるが、このときの格子定数aおよび純Alに対する不整合度δは以下である。いずれの格子定数も、D022構造のAlTiと比較して、純Alの格子定数に近いことから、これらの金属間化合物は、D022構造のAlTiと比較して、より不整合度δの小さな不均質核であると言える。For example, if you make a third element Y Al 3 Ti of the D0 22 structures, the L1 2 structure as shown in (c) of FIG. 1 (Al, Y) becomes a 3 Ti intermetallic compound, in this case The degree of mismatch δ with respect to the lattice constant a and pure Al is as follows. Since these lattice constants are close to the lattice constant of pure Al as compared with Al 3 Ti of the D0 22 structure, these intermetallic compounds are more mismatched as compared with Al 3 Ti of the D0 22 structure. It can be said that it is a small heterogeneous nucleus of degree δ.

Y=Cu:AlCuTi,a=0.3927nm,δ=3.0
Y=Fe:Al22FeTi,a=0.393nm,δ=3.0
Y=Ni:Al67NiTi25,a=0.394nm,δ=2.7
Y=Zn:Al66ZnTi25,a=0.396nm,δ=2.2
また、本発明で用いるL1構造の金属間化合物は、例えば、図1(c)に示すように、全ての結晶面で格子定数が同じであり、全ての結晶面で不均質核として同じ働きを有する。
Y = Cu: Al 5 CuTi 2 , a = 0.3927 nm, δ = 3.0
Y = Fe: Al 22 Fe 3 Ti 8 , a = 0.393 nm, δ = 3.0
Y = Ni: Al 67 Ni 8 Ti 25 , a = 0.394 nm, δ = 2.7
Y = Zn: Al 66 Zn 9 Ti 25 , a = 0.396 nm, δ = 2.2
Also, intermetallic compounds L1 2 structure used in the present invention are, for example, as shown in FIG. 1 (c), a lattice constant in all crystal faces same, the same act as heterogeneous nuclei all crystal planes Have

上記した鋳造用結晶粒微細化剤は、放電プラズマ焼結法を用いて製造することができる。また、上記した鋳造用結晶粒微細化剤は、緻密な焼結体ではない半焼結状態であっても良い。   The above-mentioned crystal grain refiner for casting can be produced by using a discharge plasma sintering method. Moreover, the above-mentioned crystal grain refiner for casting may be in a semi-sintered state that is not a dense sintered body.

fcc構造のAlの結晶構造と格子定数を示す図である。It is a figure which shows the crystal structure and lattice constant of Al of fcc structure. D022構造のAlTiの結晶構造と格子定数を示す図である。It is a diagram showing an Al 3 Ti crystal structure and lattice constant of the D0 22 structures. L1構造の(Al,Y)Tiの結晶構造と格子定数を示す図である。L1 2 structure (Al, Y) is a diagram showing a crystal structure and lattice constant of 3 Ti. Al−Tiの2元系平衡状態図であって、Tiが0−30wt%の範囲を示す図である。It is a binary system equilibrium state diagram of Al-Ti, and is a diagram showing a range where Ti is 0-30 wt%. 実施例1の均質化処理後のAlCuTi試料のX線回折測定結果を示す図である。Is a diagram showing an X-ray diffraction measurement results of the Al 5 CuTi 2 samples after homogenization of Example 1. 実施例1のバルク状結晶粒微細化剤のX線回折測定結果を示す図である。FIG. 3 is a diagram showing the results of X-ray diffraction measurement of the bulk crystal grain refining agent of Example 1. 実施例1のバルク状結晶粒微細化剤の走査型電子顕微鏡写真を示す図である。2 is a scanning electron micrograph of the bulk crystal grain refining agent of Example 1. FIG. 図5Aの模式図である。It is a schematic diagram of FIG. 5A. 比較例1のAl鋳造材の断面を示す走査型電子顕微鏡写真である。3 is a scanning electron micrograph showing a cross section of an Al cast material of Comparative Example 1. FIG. 図6A中の領域A1の模式図である。It is a schematic diagram of area | region A1 in FIG. 6A. 実施例1のAl鋳造材の断面を示す走査型電子顕微鏡写真である。2 is a scanning electron micrograph showing a cross section of an Al cast material of Example 1. FIG. 図7A中の領域A2の模式図である。It is a schematic diagram of area | region A2 in FIG. 7A. 実施例1〜12におけるAl鋳造材の平均結晶粒径を示す図である。It is a figure which shows the average crystal grain diameter of Al cast material in Examples 1-12. 実施例9のAl鋳造材の断面を示す走査型電子顕微鏡写真である。10 is a scanning electron micrograph showing a cross section of an Al cast material of Example 9. FIG. 図9A中の領域A3の模式図である。It is a schematic diagram of area | region A3 in FIG. 9A.

本発明は、不整合度の小さい不均質核物質を含む結晶粒微細化剤を提供するものである。ここで、不均質核物質は、5以下、好ましくは4以下の値の不整合度を持つ。   The present invention provides a grain refining agent containing a heterogeneous nuclear material with a low degree of inconsistency. Here, the heterogeneous nuclear material has a degree of inconsistency of 5 or less, preferably 4 or less.

この結晶粒微細化剤は、不均質核物質としてのL1構造の式(1)で示される金属間化合物の粒子を、Alを主成分とする母相に分散させてなる固形状のものである。The grain refiner, the particles of the intermetallic compound represented by the formula L1 2 structure as a heterogeneous nuclear material (1), Al those solid form obtained by dispersing the matrix composed mainly of is there.

この金属間化合物は、本来Alと平衡状態にて安定に存在できないものである。この金属間化合物としては、L1構造(Al,Y)TiやL1構造(Al,Y)Zが挙げられ、具体的には、AlCuZr:a=0.404nm、AlHfZn:a=0.4033nm、AlNiZr:a=0.406nmや表1に示すものがあり、これらはAlの格子定数0.40496nmに近い。This intermetallic compound cannot originally exist stably in an equilibrium state with Al. Examples of the intermetallic compound include L1 2 structure (Al, Y) 3 Ti and L1 2 structure (Al, Y) 3 Z. Specifically, Al 5 CuZr 2 : a = 0.404 nm, Al 2 There are HfZn: a = 0.4033 nm, Al 5 NiZr 2 : a = 0.406 nm and those shown in Table 1, which are close to the lattice constant of 0.40496 nm of Al.

なお、本発明で用いる金属間化合物は、好ましくは、本来Alと平衡状態にて安定に存在できないものであるが、D022構造のAlTiと比較して、より不整合度δの小さな不均質核となりうるものであれば、Alと平衡状態にて安定に存在できるものでも良い。 Note that the intermetallic compound used in the present invention are preferably those which can not exist stably in the original Al equilibrium, as compared with Al 3 Ti of the D0 22 structures, small non more mismatch δ As long as it can be a homogeneous nucleus, it can be stably present in an equilibrium state with Al.

Alを主成分とする母相とは、Alを成分として最も多く含み、純AlもしくはAl合金を成分とする母相を意味する。鋳造材の組成変動を抑制するという観点では、母相は鋳造材の成分と同じであることが好ましい。すなわち、純Al鋳造材の製造では、母相を純Alとし、Al合金鋳造材の製造では、母相を鋳造材の成分と同じAl合金とすることが好ましい。   The parent phase containing Al as the main component means a parent phase containing Al as the most component and containing pure Al or an Al alloy as a component. From the viewpoint of suppressing fluctuations in the composition of the cast material, the parent phase is preferably the same as the components of the cast material. That is, in the production of a pure Al cast material, the parent phase is preferably pure Al, and in the production of an Al alloy cast material, the parent phase is preferably the same Al alloy as the components of the cast material.

粉末状のL1構造の式(1)に示される金属間化合物の粒子を直接溶湯に添加しても、濡れ性の関係から浮いてしまう。そこで、本発明の結晶粒微細化剤は、L1構造の式(1)で示される金属間化合物の粒子を母相に分散させた固体構造(バルク)を採用する。これにより、結晶粒微細化剤を溶湯に添加した際に、L1構造の式(1)に示される金属間化合物を、溶湯中に分散させて不均質核として有効に機能させることができる。Even if particles of the intermetallic compound represented by the formula (1) having a powdery L1 2 structure are directly added to the molten metal, the particles float from the wettability relationship. Therefore, grain refiner of the invention, the particles of the intermetallic compound of the formula (1) of the L1 2 structure employing a solid structure dispersed in the mother phase (bulk). Thus, upon addition of grain refiner to the molten metal, L1 an intermetallic compound represented by 2 structure formula (1) can function effectively as a heterogeneous nucleus is dispersed in the melt.

また、結晶粒微細化剤全体に対する金属間化合物の粒子の体積分率が大きすぎると、結晶粒微細化剤を溶湯に添加した際に、金属間化合物の粒子を分散させることができず、体積分率が小さすぎると、結晶粒微細化剤を多量に添加しなければならず、産業上好ましくない。そこで、金属間化合物の粒子は、結晶粒微細化剤全体に対する体積分率が5〜40%であることが好ましい。   Also, if the volume fraction of the intermetallic compound particles relative to the entire crystal grain refining agent is too large, the intermetallic compound particles cannot be dispersed when the crystal grain refining agent is added to the melt, and the volume If the fraction is too small, a large amount of crystal grain refining agent must be added, which is not industrially preferable. Therefore, the intermetallic compound particles preferably have a volume fraction of 5 to 40% with respect to the whole crystal grain refining agent.

また、AlとL1構造(Al,Y)Ti等の式(1)に示される金属間化合物とは平衡に存在し得ないために、この金属間化合物の粒子をAlに分散させたバルクを製造しようとすると、この金属間化合物が分解しない条件である低温かつ短時間での焼結が必要となる。Further, Al and L1 2 structure (Al, Y) 3 to the intermetallic compound represented by formula (1), such as Ti can not exist in equilibrium, bulk dispersed particles of the intermetallic compound in the Al If it is going to manufacture this, the sintering in low temperature and a short time which is the conditions which this intermetallic compound does not decompose | disassemble is needed.

これに対して、放電プラズマ焼結法(SPS)は低温短時間での焼結が可能なため、非平衡な系においてもバルク化が可能である。そこで、金属間化合物の粉末と母相の粉末とを混合して成形体を形成した後、この成形体をSPSにより焼結させることで、鋳造用結晶粒微細化剤を製造することができる。   In contrast, the spark plasma sintering method (SPS) can be sintered at a low temperature in a short time, and therefore can be bulked even in a non-equilibrium system. Therefore, after forming the compact by mixing the powder of the intermetallic compound and the powder of the parent phase, the compact is sintered by SPS, thereby producing a crystal grain refining agent for casting.

また、一般的に、SPS以外の焼結法で、低温かつ短時間で焼成すると、得られる焼結材の機械的強度が低くなってしまうが、焼結材料自身の機械的強度は問題ではないため、半焼結状態でも結晶粒微細化剤に供することができる。このため、SPSを用いなくても、ホットプレス法,熱間静水圧成形あるいは冷間静水圧成形後の常圧焼結等の焼結法を用いて鋳造用結晶粒微細化剤を製造することもできる。なお、「半焼結状態」とは、充填率が70〜90%のものを意味する。「充填率」は、光学顕微鏡による組織写真から、画像解析により気孔の面積分率を測定し、それを100%より差し引くことで算出される。また、熱間静水圧成形とは、高温・高圧のガスを媒体として、被処理物を等方的に圧縮して緻密化する技術を、冷間静水圧成形とゴム型に粉体を充填して、静水圧を印加して成形する方法をさす。   In general, when sintered at a low temperature in a short time by a sintering method other than SPS, the mechanical strength of the obtained sintered material is lowered, but the mechanical strength of the sintered material itself is not a problem. Therefore, it can be used for the grain refiner even in a semi-sintered state. For this reason, a grain refiner for casting is produced using a sintering method such as hot pressing, hot isostatic pressing, or normal pressure sintering after cold isostatic pressing without using SPS. You can also. The “semi-sintered state” means that the filling rate is 70 to 90%. The “filling rate” is calculated by measuring the area fraction of pores by image analysis from a structure photograph taken with an optical microscope and subtracting it from 100%. Hot isostatic pressing is a technique in which high-temperature and high-pressure gas is used as a medium to compress and densify the object to be processed. Cold isostatic pressing and filling a rubber mold with powder. The method of forming by applying hydrostatic pressure.

上記した鋳造用結晶粒微細化剤を純AlもしくはAl合金の溶湯中に添加し、この溶湯を鋳型に注湯することで、純AlもしくはAl合金鋳造材を製造することで、純Al鋳造材やAl合金鋳造材の組織は微細化・均一化される。このとき、後述する実施例1〜10からわかるように、保持時間を調整することで、鋳造材の結晶粒の微細化の最適化が可能となる。   By adding the above crystal grain refiner for casting to a melt of pure Al or Al alloy and pouring this melt into a mold, a pure Al or Al alloy cast material is produced, thereby producing a pure Al cast material. And the structure of Al alloy cast material is refined and made uniform. At this time, as can be seen from Examples 1 to 10 described later, it is possible to optimize the refinement of the crystal grains of the cast material by adjusting the holding time.

(実施例1)
実施例1では、L1構造の金属間化合物の中でも比較的平衡状態図上で広い組成域を持つAlCuTiを試料として選択し作製するが、これが不均質核物質を規定するものではない。試料原料には、バルク状のAl−40質量%Cu合金、粉末状の純Alおよび純Tiを用いるが、これが原材料を規定するものではない。これらをアルゴン雰囲気中でアーク溶解し、バルク状の試料を作製した。アーク溶解の際、均質性を確保するため、各原料が溶け合った後に最低7回の溶解を行った。
Example 1
In Example 1, Al 5 CuTi 2 having a relatively wide composition range in the L1 2 structure intermetallic compound is selected and prepared as a sample, but this does not define the heterogeneous nuclear material. . As the sample raw material, bulk Al-40 mass% Cu alloy, powdered pure Al and pure Ti are used, but this does not define the raw material. These were arc melted in an argon atmosphere to prepare a bulk sample. In order to ensure homogeneity during arc melting, melting was performed at least 7 times after the raw materials were melted together.

次に、アーク溶解ままの試料を直方体に切り出した。その後、アルミナ板に乗せ、赤外線ゴールドイメージ炉の均熱帯の中央に配置し、真空中1100℃、1時間で均質化処理を施した。   Next, the sample as arc melted was cut into a rectangular parallelepiped. After that, it was placed on an alumina plate, placed in the middle of the soaking zone of an infrared gold image furnace, and homogenized in vacuum at 1100 ° C. for 1 hour.

作製したAlCuTiに対し、結晶構造および組織についての評価を行った。アーク溶解ままの試料中には第二相が観察されたものの、均質化処理後には観察されないことから、均質化処理によって原子が十分拡散したと考えられる。試料の一部を切り出しハンマーで粉砕した後に、X線回折を用いて結晶構造についての評価を行った。図3に、均質化処理後の試料のX線回折の測定結果を示す。図のようにAlCuTiのピークパターンを示している。この結果から格子定数を算出すると、a=0.3917nmであり、文献値とほぼ一致する。 The produced Al 5 CuTi 2 was evaluated for its crystal structure and structure. Although the second phase was observed in the sample as arc-melted, but not observed after the homogenization treatment, it is considered that the atoms were sufficiently diffused by the homogenization treatment. A part of the sample was cut out and ground with a hammer, and then the crystal structure was evaluated using X-ray diffraction. In FIG. 3, the measurement result of the X-ray diffraction of the sample after a homogenization process is shown. As shown in the figure, the peak pattern of Al 5 CuTi 2 is shown. When the lattice constant is calculated from this result, a = 0.3917 nm, which is almost the same as the literature value.

作製したL1構造金属間化合物AlCuTiをAl溶湯中で不均質核として作用させるためには、粉末状にして粒子径を小さくしなければならない。しかし、粉末状のAlCuTiをAl溶湯中に直接添加しても、濡れ性の関係から浮いてしまうため、粉末状のAlCuTiが分散されない可能性が大きい。そこで、放電プラズマ焼結法を用いてAl母相中にAlCuTi粒子を分散させた結晶粒微細化剤を作製した。In order for the produced L1 2 structure intermetallic compound Al 5 CuTi 2 to act as an inhomogeneous nucleus in the molten Al, it must be powdered to reduce the particle size. However, even if powdered Al 5 CuTi 2 is added directly to the molten Al, it floats from the wettability relationship, so there is a high possibility that the powdered Al 5 CuTi 2 will not be dispersed. Therefore, a crystal grain refining agent in which Al 5 CuTi 2 particles are dispersed in an Al matrix is prepared using a discharge plasma sintering method.

まず、作製したバルク状のAlCuTiをハンマーで粉砕し、150μmと75μmのふるいを用いて粒径が75μm〜150μmとなる粉末を作製した。そして、作製したAlCuTiの粉末の体積分率が10%となるように粉末状の純Alと混合して成形体を形成し、小型放電プラズマ焼結装置(住友石炭鉱業株式会社、ドクターシンターシリーズ、SPS−515S)を用いて、成形体を焼結して、バルク状の微細化剤を作製した。この時、成形圧力は45MPa、昇温速度は100毎分℃、焼結温度は500℃、保持時間は5分とした。First, the produced bulk Al 5 CuTi 2 was pulverized with a hammer, and a powder having a particle size of 75 μm to 150 μm was produced using 150 μm and 75 μm sieves. A compact is formed by mixing with powdered pure Al so that the volume fraction of the produced Al 5 CuTi 2 powder is 10%, and a small discharge plasma sintering apparatus (Sumitomo Coal Mining Co., Ltd., Doctor Using a Sinter series, SPS-515S), the compact was sintered to produce a bulk refiner. At this time, the molding pressure was 45 MPa, the heating rate was 100 ° C. per minute, the sintering temperature was 500 ° C., and the holding time was 5 minutes.

作製したバルク状結晶粒微細化剤のX線回折の測定結果を図4に示す。体積率が90%を占めるAlのピークパターンが強く出ているが、AlCuTiのピークパターンも明確に出ている。この結果から、AlCuTiが反応せずに残っていることが確認できる。The measurement result of the X-ray diffraction of the produced bulk crystal grain refiner is shown in FIG. A peak pattern of Al occupying 90% of the volume ratio is strong, but a peak pattern of Al 5 CuTi 2 is also clearly shown. From this result, it can be confirmed that Al 5 CuTi 2 remains without reacting.

この試料を切断し、#100から#4000までのエミリー紙を用いて湿式研磨を行った後、SEMにて観察を行った。結果を図5A、Bに示す。なお、図5Bは図5Aの模式図である。これらの図のように試料中において粉末化したAlCuTi粒子が残っていることが観察できる。また、はっきりとした界面が観察できることから、AlCuTi粒子はAl母相と反応していないこともわかる。This sample was cut, wet-polished using Emily paper from # 100 to # 4000, and then observed with an SEM. The results are shown in FIGS. FIG. 5B is a schematic diagram of FIG. 5A. As shown in these figures, it can be observed that Al 5 CuTi 2 particles powdered remain in the sample. Further, since a clear interface can be observed, it can be seen that the Al 5 CuTi 2 particles do not react with the Al matrix.

このように、焼結を低温・短時間で行うことにより、Al鋳造材の不均質核となるL1構造金属間化合物AlCuTiが反応せずに試料中に残り、L1構造金属間化合物AlCuTi不均質核を有する結晶粒微細化剤の作製が可能となった。Thus, by sintering at a low temperature and in a short time, the L1 2 structure intermetallic compound Al 5 CuTi 2 that becomes an inhomogeneous nucleus of the Al cast material remains in the sample without reacting, and between the L1 2 structure metals. It became possible to produce a crystal grain refining agent having a compound Al 5 CuTi 2 heterogeneous nucleus.

次に、製造した結晶粒微細化剤を使用して鋳造実験を行った。初めに、純Alインゴット148.8gを750℃でるつぼ内にて溶解し、微細化剤を1.2g(添加量0.8質量%)添加した。本実験における微細化剤の添加量は、Al−Ti二元系における包晶組成である0.12質量%に比べ、Ti濃度が十分低い値となるよう設定した。また、結晶粒微細化剤添加直後は30秒間撹拌し、その後の保持時間は0秒とした。   Next, a casting experiment was performed using the produced crystal grain refining agent. First, 148.8 g of pure Al ingot was dissolved in a crucible at 750 ° C., and 1.2 g (addition amount 0.8% by mass) of a micronizing agent was added. The addition amount of the micronizing agent in this experiment was set so that the Ti concentration would be a sufficiently low value compared to 0.12% by mass, which is the peritectic composition in the Al—Ti binary system. Further, immediately after the addition of the crystal grain refining agent, the mixture was stirred for 30 seconds, and the subsequent holding time was 0 second.

また、比較例1として、純Alインゴット148.8gを750℃でるつぼ内にて溶解し、純Alを1.2g添加することで同様の実験を行った。その後、Al鋳造材の底面から5mmの部分で切断し、その上面を観察面とした。エメリー紙#80から#4000までの湿式研磨を行い、1μmのアルミナを使用したバフ研磨を行った。その後、10%フッ化水素酸水溶液を用いて90秒間エッチングを施した。   As Comparative Example 1, 148.8 g of pure Al ingot was dissolved in a crucible at 750 ° C., and a similar experiment was performed by adding 1.2 g of pure Al. Then, it cut | disconnected in the 5 mm part from the bottom face of Al cast material, and made the upper surface the observation surface. Wet polishing from emery paper # 80 to # 4000 was performed, and buffing using 1 μm alumina was performed. Thereafter, etching was performed for 90 seconds using a 10% hydrofluoric acid aqueous solution.

図6Aに結晶粒微細化剤を使用しない比較例1、図7Aに結晶粒微細化剤を添加した実施例1の試料の断面写真を示す。また、図6B、図7Bにそれぞれ図6A、図7A中の領域A1、A2の模式図を示す。結晶粒微細化剤を添加しなかった試料においては、等軸晶や柱状晶を有する通常の凝固組織が観察される。一方、微細化剤を添加した試料の組織は、一部で柱状晶が見られるもののほぼ均一であり、全体的に微細化されていることがわかる。   FIG. 6A shows a cross-sectional photograph of the sample of Comparative Example 1 in which no crystal grain refining agent is used, and FIG. 7A shows a sample of Example 1 in which the crystal grain refining agent is added. FIGS. 6B and 7B show schematic diagrams of regions A1 and A2 in FIGS. 6A and 7A, respectively. In a sample to which no crystal grain refining agent was added, a normal solidified structure having equiaxed crystals and columnar crystals is observed. On the other hand, it can be seen that the structure of the sample to which the micronizing agent is added is almost uniform although columnar crystals are observed in part, and is refined as a whole.

また、柱状晶であった領域の結晶粒もほぼ等軸化されている。平均リニアインターセプト法を用いて平均粒子径の測定を行ったところ、結晶粒微細化剤を添加しなかった試料においては、結晶粒径が1353μmであったのに対し、結晶粒微細化剤を添加した試料においては、結晶粒径が851μmにまで微細化されていた。
(実施例2〜10)
実施例2〜5では、実施例1で製造した結晶粒微細化剤を使用しての鋳造実験において、結晶粒微細化剤添加直後に30秒間撹拌した後の保持時間を、それぞれ、120秒、210秒、300秒、600秒とした。その他の条件は実施例1と同様である。
In addition, the crystal grains in the region that was a columnar crystal are almost equiaxed. When the average particle size was measured using the average linear intercept method, the crystal grain size was 1353 μm in the sample to which the crystal grain refiner was not added, whereas the crystal grain refiner was added. In the sample, the crystal grain size was refined to 851 μm.
(Examples 2 to 10)
In Examples 2 to 5, in the casting experiment using the grain refiner produced in Example 1, the holding time after stirring for 30 seconds immediately after the addition of the grain refiner was 120 seconds, They were 210 seconds, 300 seconds, and 600 seconds. Other conditions are the same as in the first embodiment.

また、実施例6〜10では、実施例1での結晶粒微細化剤の製造において、AlCuTiの粉末の体積分率を20%に変更した。そして、製造した結晶粒微細化剤を使用して鋳造実験を行った。このとき微細化剤の添加量を0.4質量分率とし、結晶粒微細化剤添加直後に30秒間撹拌した後の保持時間を、それぞれ、0秒、210秒、300秒、480秒、600秒とした。その他の条件は実施例1と同様である。Moreover, in Examples 6-10, in the manufacture of the crystal grain refining agent in Example 1, the volume fraction of the Al 5 CuTi 2 powder was changed to 20%. And the casting experiment was done using the manufactured crystal grain refiner. At this time, the addition amount of the micronizing agent was 0.4 mass fraction, and the retention times after stirring for 30 seconds immediately after the addition of the crystal grain micronizing agent were 0 seconds, 210 seconds, 300 seconds, 480 seconds, and 600, respectively. Seconds. Other conditions are the same as in the first embodiment.

図8に、実施例2〜10におけるAl鋳造材の平均結晶粒径を示す。図8では実施例1や後述の実施例11、12の結果も示している。   In FIG. 8, the average crystal grain diameter of the Al casting material in Examples 2 to 10 is shown. FIG. 8 also shows the results of Example 1 and Examples 11 and 12 described later.

体積分率10%で保持時間が0秒よりも長い実施例2〜5においても、結晶粒径が微細化されたことがわかる。体積分率10%の場合では、保持時間300秒のとき、結晶粒径が最小の344μmであった。   It can be seen that also in Examples 2 to 5 in which the volume fraction was 10% and the retention time was longer than 0 seconds, the crystal grain size was refined. In the case of a volume fraction of 10%, the crystal grain size was a minimum of 344 μm when the holding time was 300 seconds.

体積分率20%である実施例6〜10においても、結晶粒径が微細化されたことがわかる。体積分率20%の場合では、実施例9の保持時間480秒のとき、結晶粒径が最小の439μmであった。   It can be seen that also in Examples 6 to 10 in which the volume fraction was 20%, the crystal grain size was refined. In the case of a volume fraction of 20%, when the retention time of Example 9 was 480 seconds, the crystal grain size was a minimum of 439 μm.

図9Aに実施例9の試料の断面写真を示し、図9Bに図9A中の領域A3の模式図を示す。実施例9の試料は、組織がほぼ均一であり、全体的に微細化されていることがわかる。
(実施例11、12)
アーク溶解によりAl22FeTiおよびAl67NiTi25を作製し、真空封入をした後、マッフル炉にてそれぞれ1200℃・24時間、1100℃・100時間で均質化処理を行った。
FIG. 9A shows a cross-sectional photograph of the sample of Example 9, and FIG. 9B shows a schematic diagram of a region A3 in FIG. 9A. It can be seen that the sample of Example 9 has a substantially uniform structure and is refined as a whole.
(Examples 11 and 12)
Al 22 Fe 3 Ti 8 and Al 67 Ni 8 Ti 25 were produced by arc melting, vacuum sealed, and homogenized at 1200 ° C. for 24 hours, 1100 ° C. for 100 hours, respectively.

実施例1と同様に、作製したバルク状のAl22FeTiおよびAl67NiTi25を粉砕し、75〜150μmの粉末に分級した。これを粉末状の純Al(99.9%)と体積分率10%で混合した後、SPSによって微細化剤を作製した。In the same manner as in Example 1, the produced bulk Al 22 Fe 3 Ti 8 and Al 67 Ni 8 Ti 25 were pulverized and classified into powders of 75 to 150 μm. This was mixed with powdered pure Al (99.9%) at a volume fraction of 10%, and then a finer was prepared by SPS.

次に、作製した微細化剤を用いて鋳造実験を行った。条件は実施例1と同様である。   Next, a casting experiment was performed using the produced finer. The conditions are the same as in Example 1.

実施例11、12の微細化剤を添加して作製したAl鋳造材は両方とも、ほぼ均一な組織となり、全体として微細化されていた。平均リニアインターセプト法を用いて平均粒子径の測定を行ったところ、図8に示すように、実施例11のAl22FeTiを異質核とする微細化剤を添加した場合、Al鋳造材のα―Al結晶粒径は642μmとなり、実施例12のAl67NiTi25の場合では260μmとなった。これらの結果より、Al22FeTiおよびAl67NiTi25を用いた微細化剤の結晶粒微細化性能が確認された。Both Al castings produced by adding the micronizing agents of Examples 11 and 12 had a substantially uniform structure and were refined as a whole. When the average particle diameter was measured using the average linear intercept method, as shown in FIG. 8, when the micronizing agent having Al 22 Fe 3 Ti 8 of Example 11 as a heterogeneous nucleus was added, the Al casting material The α-Al crystal grain size was 642 μm, and in the case of Al 67 Ni 8 Ti 25 of Example 12, it was 260 μm. From these results, the crystal grain refining performance of the refining agent using Al 22 Fe 3 Ti 8 and Al 67 Ni 8 Ti 25 was confirmed.

以上の結果から、上記した各実施例の一連のプロセスを通して作製した結晶粒微細化剤を添加することによって、Al鋳造材の組織は微細化・均一化される。   From the above results, the structure of the Al cast material is refined and made uniform by adding the crystal grain refining agent produced through the series of processes of the above-described embodiments.

チタンはレアメタルであるが、本手法を用いれば、不均質核におけるチタンを他の元素の置き換えられる可能性があり、世界情勢に影響を受けない結晶粒微細化剤を提供できるようになった。また、本発明により非平衡な不均質核を自由に利用できるようになるため、アルミ系はもとより、鉄系、チタン系など全ての構造用金属材料に適用可能となる。   Titanium is a rare metal, but if this method is used, titanium in heterogeneous nuclei may be replaced by other elements, and it has become possible to provide a grain refiner that is not affected by the world situation. In addition, since the present invention makes it possible to freely use non-equilibrium heterogeneous nuclei, it can be applied to all structural metal materials such as iron-based and titanium-based materials as well as aluminum-based materials.

微細化能は結晶粒微細化剤中の不均質核の個数に依存する。特許文献1の発明により、巨大ひずみ加工を結晶粒微細化剤に施すことにより、不均質核の個数を制御できる。本発明でも、結晶粒微細化剤の実用化にあたってはこの技術を適用し、不均質核の個数を制御することが可能である。   The refinement ability depends on the number of heterogeneous nuclei in the grain refiner. According to the invention of Patent Document 1, the number of heterogeneous nuclei can be controlled by applying giant strain processing to the crystal grain refiner. Also in the present invention, this technique can be applied to put the crystal grain refining agent into practical use, and the number of heterogeneous nuclei can be controlled.

本発明により全ての鋳造材の強度向上が図られ、これにより輸送用機械の軽量化を通し、燃費向上が可能となる。また、発泡樹脂をはじめとした鋳物製金型に使用すれば、金型の薄肉化が図られ、加熱に要するエネルギーの削減が可能となり、二酸化炭素発生が抑制できる。   According to the present invention, the strength of all cast materials can be improved, and thereby the fuel consumption can be improved through the weight reduction of the transport machine. Further, when used in a casting mold including foamed resin, the mold can be thinned, energy required for heating can be reduced, and generation of carbon dioxide can be suppressed.

Claims (9)

L1構造の式(1)で示される金属間化合物の粒子を、Alを主成分とする母相に分散させてなる固形状の鋳造用結晶粒微細化剤。
(Al,Y)Z・・・(1)
(Yは、Cu、Fe、Ni、Zn、Pd、Cr、Mn、Co、Ag、Rh、Pt、AuおよびHfから選択されるいずれか1つであり、Zは、Ti、ZrおよびZnから選択されるいずれか1つである。)
Particles, solid-like casting grain refining agent comprising dispersed in the matrix phase mainly composed of Al intermetallic compound represented by the formula (1) of the L1 2 structure.
(Al, Y) 3 Z (1)
(Y is any one selected from Cu, Fe, Ni, Zn, Pd, Cr, Mn, Co, Ag, Rh, Pt, Au and Hf, and Z is selected from Ti, Zr and Zn. Any one being.)
前記ZはTiである請求項1に記載の鋳造用結晶粒微細化剤。   The grain refiner for casting according to claim 1, wherein Z is Ti. 前記金属間化合物はAlCuTiである請求項2に記載の鋳造用結晶粒微細化剤。The grain refiner for casting according to claim 2 , wherein the intermetallic compound is Al 5 CuTi 2 . 前記金属間化合物はAl22FeTiである請求項2に記載の鋳造用結晶粒微細化剤。The grain refiner for casting according to claim 2, wherein the intermetallic compound is Al 22 Fe 3 Ti 8 . 前記金属間化合物はAl67NiTi25である請求項2に記載の鋳造用結晶粒微細化剤。The grain refiner for casting according to claim 2, wherein the intermetallic compound is Al 67 Ni 8 Ti 25 . 前記粒子は、結晶粒微細化剤全体に対する体積分率が5〜40%である請求項1ないし5のいずれか1つに記載の鋳造用結晶粒微細化剤。   The crystal grain refiner for casting according to any one of claims 1 to 5, wherein the particles have a volume fraction of 5 to 40% with respect to the whole crystal grain refiner. 請求項1ないし6のいずれか1つに記載の鋳造用結晶粒微細化剤の製造方法であって、
前記金属間化合物の粉末と前記母相の粉末とを混合して成形体を形成した後、前記成形体を放電プラズマ焼結法により焼結させる鋳造用結晶粒微細化剤の製造方法。
A method for producing a crystal grain refining agent for casting according to any one of claims 1 to 6,
A method for producing a crystal grain refining agent for casting, wherein the powder of the intermetallic compound and the powder of the matrix phase are mixed to form a compact, and then the compact is sintered by a discharge plasma sintering method.
請求項1ないし6のいずれか1つに記載の鋳造用結晶粒微細化剤の製造方法であって、
前記金属間化合物の粉末と前記母相の粉末とを混合して成形体を形成した後、前記成形体を焼結させて半焼結状態とする鋳造用結晶粒微細化剤の製造方法。
A method for producing a crystal grain refining agent for casting according to any one of claims 1 to 6,
A method for producing a crystal grain refining agent for casting, wherein the powder of the intermetallic compound and the powder of the matrix phase are mixed to form a compact, and then the compact is sintered to a semi-sintered state.
請求項1ないし6のいずれか1つに記載の鋳造用結晶粒微細化剤を純AlもしくはAl合金の溶湯中に添加し、前記溶湯を鋳型に注湯する純AlもしくはAl合金鋳造材の製造方法。   Manufacturing of a pure Al or Al alloy casting material, wherein the crystal grain refiner for casting according to any one of claims 1 to 6 is added to a molten pure Al or Al alloy, and the molten metal is poured into a mold. Method.
JP2012554746A 2011-01-25 2012-01-19 Grain refiner for casting and method for producing the same Expired - Fee Related JP5850372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012554746A JP5850372B2 (en) 2011-01-25 2012-01-19 Grain refiner for casting and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011013269 2011-01-25
JP2011013269 2011-01-25
JP2012554746A JP5850372B2 (en) 2011-01-25 2012-01-19 Grain refiner for casting and method for producing the same
PCT/JP2012/051050 WO2012102162A1 (en) 2011-01-25 2012-01-19 Crystal grain refining agent for casting and method for producing the same

Publications (2)

Publication Number Publication Date
JPWO2012102162A1 JPWO2012102162A1 (en) 2014-06-30
JP5850372B2 true JP5850372B2 (en) 2016-02-03

Family

ID=46580734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012554746A Expired - Fee Related JP5850372B2 (en) 2011-01-25 2012-01-19 Grain refiner for casting and method for producing the same

Country Status (3)

Country Link
EP (1) EP2669028B1 (en)
JP (1) JP5850372B2 (en)
WO (1) WO2012102162A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6238403B2 (en) * 2013-11-07 2017-11-29 国立大学法人 名古屋工業大学 Grain refiner and process for producing the same
JP6637421B2 (en) * 2014-07-25 2020-01-29 国立大学法人 名古屋工業大学 Structure refiner for aluminum alloy castings
CN104439206B (en) * 2014-11-29 2017-02-22 山东大学 Application of silicon grain heterogeneous nucleation enhancer in promotion of nucleation of silicon grains in aluminum-silicon alloy melt
CN105648251A (en) * 2016-02-01 2016-06-08 东南大学 Preparation method of aluminum, lanthanum and boron grain refiner used for cast aluminum alloy
CN107419135B (en) * 2017-07-27 2018-09-25 济南大学 Zinc-aluminium-yttrium Master alloy refiners and its preparation method and application
JP6955254B2 (en) * 2017-08-23 2021-10-27 国立大学法人 名古屋工業大学 Crystal grain refiner for casting containing heterogeneous particles in high concentration and its manufacturing method
US20190062871A1 (en) * 2017-08-25 2019-02-28 The Boeing Company Tailoring high strength aluminum alloys for additive manufacturing through the use of grain refiners
CN109136599B (en) * 2018-10-08 2021-01-29 兰州理工大学 Preparation process of high-entropy alloy inoculated hypoeutectic aluminum-silicon alloy
JP7430514B2 (en) * 2019-11-05 2024-02-13 東邦チタニウム株式会社 Casting alloy, method for producing master alloy powder, and method for producing casting alloy
CN110951985B (en) * 2019-11-25 2021-05-11 河南科技大学 Preparation method of copper or copper alloy material and refining agent for refining
CN111020248B (en) * 2019-12-02 2020-12-18 上海航天精密机械研究所 Ag-Zr-Zn intermediate alloy and preparation method and application thereof
CN112301245A (en) * 2020-10-09 2021-02-02 济南大学 Modification treatment method for epsilon phase in zinc-copper alloy
CN113005321A (en) * 2021-02-10 2021-06-22 大连交通大学 Aluminum-zinc alloy vacuum melting purifying agent and preparation and use method thereof
CN112981162A (en) * 2021-02-10 2021-06-18 大连交通大学 6xxx series aluminum alloy melt purifying agent and use method thereof
CN112981161A (en) * 2021-02-10 2021-06-18 大连交通大学 Cesium iodate melt purifying agent for aluminum-silicon alloy vacuum melting and processing method thereof
CN113005311A (en) * 2021-02-10 2021-06-22 大连交通大学 5xxx series aluminum alloy melt purifying agent and preparation method thereof
TWI801846B (en) * 2021-04-21 2023-05-11 台灣雨虹有限公司 Unidirectional grain metals and its manufacturing process
CN115627391B (en) * 2022-09-29 2024-01-30 河北科技大学 Grain refiner for aluminum and aluminum alloy, and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204555A (en) * 1997-01-17 1998-08-04 Toyota Motor Corp Production of grain refiner for casting aluminum alloy
JP2005329459A (en) * 2004-05-20 2005-12-02 Ueda Seni Kagaku Shinkokai Crystal grain fining agent for casting and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4865666A (en) * 1987-10-14 1989-09-12 Martin Marietta Corporation Multicomponent, low density cubic L12 aluminides
JPH07188701A (en) * 1993-12-27 1995-07-25 Suzuki Motor Corp Al3ti dispersion strengthened aluminum alloy, its powder, and their production
JPH10317083A (en) 1997-05-13 1998-12-02 Kobe Steel Ltd Grain refiner for aluminum alloy
JP2001152263A (en) * 1999-11-18 2001-06-05 Ueda Seni Kagaku Shinkokai Hybrid functionally gradient material and its manufacturing method
JP2004346368A (en) * 2003-05-21 2004-12-09 Ngk Insulators Ltd Method for manufacturing composite material, and composite material
TR200504376A2 (en) * 2005-11-02 2008-05-21 T�B�Tak-T�Rk�Ye B�L�Msel Ve Tekn�K Ara�Tirma Kurumu A process for producing grain-reducing pre-alloys

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204555A (en) * 1997-01-17 1998-08-04 Toyota Motor Corp Production of grain refiner for casting aluminum alloy
JP2005329459A (en) * 2004-05-20 2005-12-02 Ueda Seni Kagaku Shinkokai Crystal grain fining agent for casting and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012017421; JOHNSON,M., BAECKERUD,L.: 'Nucleants in Grain Refined Aluminium after Addition of Ti- and B-containing Master Alloys' Zeitschrift fuer Metallkunde vol.83,No.11, 1992, p774-780, Carl Hanser Verlag *

Also Published As

Publication number Publication date
EP2669028B1 (en) 2019-07-17
JPWO2012102162A1 (en) 2014-06-30
EP2669028A4 (en) 2016-08-24
EP2669028A1 (en) 2013-12-04
WO2012102162A1 (en) 2012-08-02

Similar Documents

Publication Publication Date Title
JP5850372B2 (en) Grain refiner for casting and method for producing the same
JP4989636B2 (en) High strength ultrafine nanostructured aluminum and aluminum nitride or aluminum alloy and aluminum nitride composite manufacturing method
RU2329122C2 (en) Method of items production from metal alloys without melting
JP5826219B2 (en) Method for making a metal article having other additive components without melting
KR102468099B1 (en) Method for manufacturing copper alloy and copper alloy
JP5855565B2 (en) Titanium alloy mixed powder containing ceramics, densified titanium alloy material using the same, and method for producing the same
CN108421985B (en) Method for preparing oxide dispersion strengthening medium-entropy alloy
TWI431140B (en) Method for manufacturing sputtering standard materials for aluminum - based alloys
Gao et al. Electron beam melted TiC/high Nb–TiAl nanocomposite: Microstructure and mechanical property
WO2010077733A2 (en) Conversion process for heat treatable l12 aluminum alloys
JP6955254B2 (en) Crystal grain refiner for casting containing heterogeneous particles in high concentration and its manufacturing method
JP6262332B2 (en) Sputtering target made of Al-Te-Cu-Zr alloy and method for producing the same
TW201103999A (en) Method for manufacturing nickel alloy target
Kumar et al. Influence of ceramic particles on the microstructure and mechanical properties of SAC305 lead-free soldering material
JP6342916B2 (en) Method for producing Al / TiC nanocomposite material
Dash et al. Studies on synthesis of magnesium based metal matrix composites (MMCs)
JP2016094628A (en) Manufacturing method of intermetallic compound grain, crystal grain refining agent for cast aluminum using the same and manufacturing method therefor, manufacturing method of aluminum or aluminum alloy casting material using the same
JP2012214857A (en) Cu-Ga-BASED ALLOY POWDER WITH LOW OXYGEN CONTENT, Cu-Ga-BASED ALLOY TARGET MATERIAL, AND METHOD FOR PRODUCING THE TARGET MATERIAL
JP6238403B2 (en) Grain refiner and process for producing the same
JP2015071189A (en) CASTING Al GRAIN REFINING AGENT USING Al GRAIN AND Ti GRAIN AND CASTING PRODUCTION METHOD USING THE REFINING AGENT
Xia Bulk ultrafine and nanostructured materials from consolidation of particles by severe plastic deformation
JP2006009088A (en) Method for producing composite material with low thermal expansion, tabular composite, and parts for electronic equipment
JP4165850B2 (en) Plate-like tungsten carbide-containing powder and method for producing the same
RU2630159C2 (en) Composite material with metallic matrix and reinforcing nanoparticles and method of its manufacture
CN117385253A (en) MoNbVTaCr refractory high-entropy alloy and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151120

R150 Certificate of patent or registration of utility model

Ref document number: 5850372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees