JPH10204555A - Production of grain refiner for casting aluminum alloy - Google Patents

Production of grain refiner for casting aluminum alloy

Info

Publication number
JPH10204555A
JPH10204555A JP1773197A JP1773197A JPH10204555A JP H10204555 A JPH10204555 A JP H10204555A JP 1773197 A JP1773197 A JP 1773197A JP 1773197 A JP1773197 A JP 1773197A JP H10204555 A JPH10204555 A JP H10204555A
Authority
JP
Japan
Prior art keywords
particles
aluminum
alloy
grain refiner
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1773197A
Other languages
Japanese (ja)
Inventor
Kazuaki Sato
和明 佐藤
Tetsuya Nukami
哲也 額見
Yukio Okochi
幸男 大河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1773197A priority Critical patent/JPH10204555A/en
Publication of JPH10204555A publication Critical patent/JPH10204555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grain refiner functioning, without requiring holding time, as solidification nuclei immediately after addition to a molten to produce a grain refining effect, capable of easily preparing grains of fine grain size increased in a grain refining effect, and excellent in dispersibility into the molten metal. SOLUTION: The grain refiner has a composition containing heterogeneous solidification nuclei grains acting as solidification nuclei at the time of casting of a casting aluminum alloy and having the balance essentially aluminum. This grain refiner can be produced by solidifying a molten aluminum alloy, containing at least titanium in an amount of >10 to <40wt.% as a constituent of the heterogeneous solidification nuclei grains, by liquisol quenching into a solid solution, applying heat treatment to this solid solution, and forming at least titanium aluminide grains as the heterogeneous solidification nuclei grains by precipitation from a solid phase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウム鋳造
合金の結晶粒微細化剤の製造方法に関し、より詳しく
は、アルミニウム鋳造合金の鋳造時に凝固核として作用
する異質凝固核粒子を含有し残部が実質的にアルミニウ
ムから成る結晶粒微細化剤の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain refiner for an aluminum casting alloy, and more particularly to a method for producing an aluminum casting alloy, which comprises foreign solidification nucleus particles which act as solidification nuclei during casting of an aluminum casting alloy, with the balance being substantially the same. The present invention relates to a method for producing a grain refiner comprising aluminum.

【0002】[0002]

【従来の技術】アルミニウム鋳造合金においては、機械
的特性や鋳造性を向上させるために、鋳造時に溶湯中へ
結晶粒微細化剤を添加することが広く行われている。結
晶粒微細化剤としては、特表平2−504404号公報
に開示されたAl−Ti系母合金が知られている。この
微細化剤による微細化方法は、鋳造時にAl溶湯に特定
組成のAl−Ti系母合金を添加すると共に特定量の炭
素や窒素を添加することにより、溶湯中でチタンと炭素
あるいは窒素との共働作用によりチタンアルミナイド
(Al3 Ti)やチタンカーボナイトライド(TiC
N)系の化合物から成る異質凝固核粒子を液相から析出
させ、これを核として微細結晶を晶出させることにより
鋳造組織の結晶粒を微細化するものである。また、結晶
粒微細化剤としてAl−Ti−B系母合金を用いる方法
も知られている。
2. Description of the Related Art In cast aluminum alloys, it is widely used to add a grain refiner to molten metal during casting in order to improve mechanical properties and castability. As a crystal grain refiner, an Al-Ti base alloy disclosed in Japanese Patent Application Laid-Open No. 2-504404 is known. This refining method using a refining agent involves adding an Al-Ti-based master alloy having a specific composition to a molten Al at the time of casting, and adding a specific amount of carbon or nitrogen to the molten aluminum. Titanium aluminide (Al 3 Ti) or titanium carbonitride (TiC)
Heterogeneous solidification nucleus particles composed of an N) -based compound are precipitated from a liquid phase, and the nuclei are used as nuclei to crystallize fine crystals, thereby refining the crystal grains of the cast structure. A method using an Al-Ti-B-based master alloy as a crystal grain refiner is also known.

【0003】このような母合金型の微細化剤は、鋳造時
にAl溶湯中でAl3 Ti,TiCN,TiC,TiB
2 等の異質凝固核粒子を液相から析出させる必要があ
る。したがって、微細化作用を発現させるためには微細
化剤の添加後、溶湯中で凝固核粒子が生成して安定な粒
子となるまでに一定の保持時間(contact time)を必要
とする。一般に、この保持時間は10〜15分程度が最
適とされている。保持時間がこの最適時間を超えると、
凝固核粒子と溶湯との過反応により粒子表面に別の生成
物が形成したり、粒子同士の凝集が起きてしまい、保持
時間の経過と共に粒子の微細化効果が失われていく。
[0003] Such a master alloy type refining agent is prepared by casting Al 3 Ti, TiCN, TiC, TiB in an Al melt at the time of casting.
It is necessary to precipitate heterogeneous coagulation nucleus particles such as 2 from the liquid phase. Therefore, in order to exhibit a refining effect, a certain holding time (contact time) is required after the addition of the refining agent until solidified nucleus particles are generated in the molten metal to become stable particles. Generally, the holding time is optimally about 10 to 15 minutes. If the retention time exceeds this optimal time,
Due to the overreaction between the solidified nucleus particles and the molten metal, another product is formed on the surface of the particles, or the particles are aggregated, and the effect of reducing the size of the particles is lost as the retention time elapses.

【0004】また、一般に異質凝固核粒子が微細である
ほど結晶粒微細化効果が高くなるが、上記従来の母合金
を用いた方法では、溶湯中での液相からの析出反応を制
御することは実際上極めて困難であるため、凝固核粒子
の粒径を制御することは現実には望めない。更に、結晶
粒微細化剤の添加によるアルミニウム鋳造合金本来の組
成への影響をできるだけ小さくする意味から、また溶湯
に均一に添加し易くする意味から、添加量はできるだけ
少ない方が望ましく、そのためには微細化剤が凝固核粒
子構成成分をできるだけ高濃度で含有する方が望まし
い。しかし、従来のAl−Ti系母合金では溶解温度お
よび重力偏析の制約からTi含有量は15wt%程度が上
限であり、実用的には10wt%程度が上限である。
[0004] In general, the finer the heterogeneous solidification nucleus particles, the higher the crystal grain refining effect. However, in the method using the conventional master alloy, it is necessary to control the precipitation reaction from the liquid phase in the molten metal. In practice, it is extremely difficult to control the particle size of the solidified nucleus particles. Further, from the viewpoint of minimizing the influence of the addition of the grain refiner on the original composition of the aluminum casting alloy, and from the viewpoint of facilitating uniform addition to the molten metal, the addition amount is desirably as small as possible. It is desirable that the refining agent contains the constituent components of the coagulation nucleus particles at a concentration as high as possible. However, in the conventional Al-Ti base alloy, the upper limit of the Ti content is about 15% by weight, and practically the upper limit is about 10% by weight due to restrictions of the melting temperature and gravity segregation.

【0005】このように母合金型の結晶粒微細化剤には
種々の問題があるため、TiC粒子等の異質凝固核粒子
を粉末として直接溶湯に添加する試みを行われている
が、微粒子になるほど溶湯中での分散性(攪拌性)が悪
くなる上、微粒子粉末の作製および取扱い自体も困難に
なるため、結晶粒微細化効果の向上には限界がある。
[0005] As described above, there are various problems with the master alloy type grain refiner, and attempts have been made to directly add foreign solidified nucleus particles such as TiC particles as a powder to a molten metal. The dispersibility (stirring property) in the molten metal becomes worse, and the production and handling of the fine particle powder itself becomes difficult. Therefore, there is a limit to the improvement of the crystal grain refining effect.

【0006】[0006]

【発明が解決しようとする課題】本発明は、溶湯中への
添加後に保持時間を必要とせずに直ちに凝固核として機
能して結晶粒微細化効果を発現し、かつ結晶粒微細化効
果の高い微細な粒径の異質凝固核粒子を容易に作製で
き、溶湯中への分散性も優れた結晶粒微細化剤を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention provides a crystal grain refining effect by functioning as a solidification nucleus immediately without adding a holding time after addition to a molten metal, and has a high crystal grain refining effect. An object of the present invention is to provide a crystal grain refining agent which can easily produce heterogeneous solidification nucleus particles having a fine particle diameter and has excellent dispersibility in a molten metal.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の結晶粒微細化剤の製造方法は、アルミニ
ウム鋳造合金の鋳造時に凝固核として作用する異質凝固
核粒子を含有し残部が実質的にアルミニウムから成る結
晶粒微細化剤の製造方法であって、上記異質凝固核粒子
の構成成分として少なくともチタンを含有するアルミニ
ウム合金溶湯を液体急冷法により凝固させて固溶体と
し、この固溶体を熱処理し固相からの析出により上記異
質凝固核粒子として少なくともチタンアルミナイド粒子
を生成させることを特徴とする。
In order to achieve the above object, a method for producing a grain refining agent of the present invention comprises a method of manufacturing a cast aluminum alloy, comprising the steps of: Is a method for producing a grain refiner substantially consisting of aluminum, wherein an aluminum alloy melt containing at least titanium as a component of the heterogeneous solidification nucleus particles is solidified by a liquid quenching method to form a solid solution. It is characterized by producing at least titanium aluminide particles as the above-mentioned heterogeneous solidification nucleus particles by heat treatment and precipitation from a solid phase.

【0008】本発明の方法により製造した結晶粒微細化
剤は、アルミニウムマトリクス中に異質凝固核粒子が分
散した形のアルミニウム合金であるので、アルミニウム
鋳造合金の溶湯中へ添加するとマトリクスのアルミニウ
ムが溶湯中に容易に溶解すると共に、このアルミニウム
マトリクス中に既に分散粒子として存在していた異質凝
固核粒子が直ちに溶湯中へ分散して凝固核粒子として機
能するため、従来の母合金型の結晶粒微細化剤のように
溶湯中添加後の凝固核粒子生成のための保持時間を必要
としない。また、従来粉末として添加した場合に不可避
であった溶湯中への微粒子の分散性低下の問題もない。
更に、本発明の方法においては、液体急冷法で急冷凝固
させることにより異質凝固核粒子の構成成分をアルミニ
ウムマトリクス中に強制的に固溶させるので、従来の母
合金型の結晶粒微細化剤では不可避であった溶解温度お
よび重力偏析からの制約が大幅に緩和されるため、従来
は達成できなかった高濃度で凝固核構成成分を含有させ
ることができる。また、固溶体を熱処理して固相からの
析出により異質凝固核粒子を生成させるので、単に熱処
理条件(基本的には温度および時間)の設定により析出
粒子の粒径を制御して望ましい微粒子を容易に得ること
ができる。
The grain refiner produced by the method of the present invention is an aluminum alloy in which heterogeneous solidification nucleus particles are dispersed in an aluminum matrix. Therefore, when it is added to a molten aluminum casting alloy, the aluminum in the matrix becomes molten. In addition to dissolving easily in the aluminum matrix, the heterogeneous solidified nucleus particles already existing as dispersed particles in the aluminum matrix are immediately dispersed in the molten metal and function as solidified nucleus particles. Unlike the agent, a holding time for forming solidified nucleus particles after addition in the melt is not required. Further, there is no problem that the dispersibility of the fine particles in the molten metal is reduced, which is inevitable when the powder is added as a conventional powder.
Furthermore, in the method of the present invention, the components of the heterogeneous solidification nucleus particles are forcibly dissolved in an aluminum matrix by rapid solidification by a liquid quenching method. Since the inevitable restrictions from the dissolution temperature and gravity segregation are greatly reduced, the solidification nucleus constituent component can be contained at a high concentration which could not be achieved conventionally. In addition, since the solid solution is heat-treated to generate heterogeneous coagulated nucleus particles by precipitation from the solid phase, the particle size of the precipitated particles can be easily controlled by simply setting the heat treatment conditions (basically temperature and time). Can be obtained.

【0009】[0009]

【発明の実施の形態】本発明の方法においては、異質凝
固核粒子の構成成分を含有するアルミニウム合金溶湯を
液体急冷法により凝固させて固溶体とする。この固溶体
は通常、薄肉のストリップ状あるいはリボン状である。
液体急冷させるアルミニウム合金溶湯に異質凝固核粒子
の構成成分としてチタンを10wt%以上含有させること
が望ましい。既に説明したように、従来の母合金型で
は、溶解温度や重力偏析の制約からチタン含有量は10
wt%が実用上の上限であったため、高濃度化に限界があ
った。本発明はこのような従来の制約を超えてチタンを
10wt%を超える高濃度で含有させることにより微細化
剤の添加量を少なくできるので、鋳造合金本来の組成へ
の影響を極めて少なくすることができ、また鋳造合金溶
湯への均一添加が容易になる。一方、異質凝固核構成成
分の含有量は多いほど微細化効果は大きくなるが、同時
に溶融状態での粘性が高くなり、液体急冷法で薄肉のス
トリップあるいはリボンを安定して形成できなくなる。
この観点から、液体急冷させるアルミニウム合金溶湯の
チタン含有量は40wt%未満とすることが望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method of the present invention, a molten aluminum alloy containing constituents of foreign solidified nucleus particles is solidified by a liquid quenching method to form a solid solution. This solid solution is usually in the form of a thin strip or ribbon.
It is desirable that the molten aluminum alloy to be rapidly quenched contains 10 wt% or more of titanium as a constituent component of the foreign solidified nucleus particles. As described above, in the conventional master alloy type, the titanium content is 10% due to restrictions on the melting temperature and gravity segregation.
Since wt% was the upper limit for practical use, there was a limit in increasing the concentration. The present invention can reduce the amount of the refiner by adding titanium at a high concentration of more than 10% by weight, exceeding the conventional restriction, so that the influence on the original composition of the cast alloy can be extremely reduced. And uniform addition to the cast alloy melt is facilitated. On the other hand, as the content of the heterogeneous coagulation nucleus component increases, the refining effect increases, but at the same time, the viscosity in the molten state increases, and it becomes impossible to form a thin strip or ribbon stably by the liquid quenching method.
From this viewpoint, it is desirable that the titanium content of the aluminum alloy melt to be quenched by liquid is less than 40 wt%.

【0010】液体急冷させるアルミニウム合金溶湯は、
上記含有量のチタンの他、異質凝固核粒子の構成成分と
して8wt%以下のボロンおよび10wt%以下の炭素のう
ちの少なくとも1種を更に含有することが望ましい。液
体急冷法により得られた固溶体が異質凝固核粒子の構成
成分としてチタンのみを含有する場合、熱処理により異
質凝固核粒子としてチタンアルミナイド(Al3 Ti)
粒子が生成しアルミニウム鋳造合金の結晶粒微細化効果
が得られる。チタンの他に、上記含有量の範囲でボロン
(B)あるいは炭素(C)を更に含有させると、結晶粒
微細化効果が更に向上する。その理由は未だ完全に解明
するには至っていないが、チタンの他にボロンあるいは
炭素が存在すると、固溶体の熱処理によってAl3 Ti
粒子の他にチタンボライド(TiB2 )あるいは炭化チ
タン(TiC)の粒子も生成して、共に異質凝固核粒子
として有効に作用するためであろうと推察される。
[0010] The aluminum alloy melt to be quenched by liquid is
In addition to titanium having the above-mentioned content, it is desirable to further contain at least one of 8 wt% or less of boron and 10 wt% or less of carbon as a constituent component of the foreign solidified nucleus particles. When the solid solution obtained by the liquid quenching method contains only titanium as a component of the heterogeneous solidification nucleus particles, titanium aluminide (Al 3 Ti) is formed as the heterogeneous solidification nucleus particles by heat treatment.
Particles are generated, and the effect of refining the crystal grains of the aluminum casting alloy can be obtained. When boron (B) or carbon (C) is further contained in the above content range in addition to titanium, the crystal grain refinement effect is further improved. Although the reason has not been completely elucidated yet, if boron or carbon is present in addition to titanium, the heat treatment of the solid solution causes Al 3 Ti
It is presumed that, in addition to the particles, particles of titanium boride (TiB 2 ) or titanium carbide (TiC) are also generated, and both of them effectively act as heterogeneous coagulation nucleus particles.

【0011】また、TiB2 粒子およびTiC粒子はア
ルミニウム鋳造合金溶湯中での安定性がAl3 Ti粒子
に比べて高い。例えばTiC粒子は溶湯中に1時間程度
保持しても成長も消滅もせずに存続する。これは凝固核
としての作用が極めて安定して持続することを意味す
る。Al3 Ti粒子はアルミニウム鋳造合金溶湯中に保
持すると数分で分解し消滅する。ただし、本発明の結晶
粒微細化剤は添加後直ちに異質凝固核粒子が機能するの
で、添加後数分以内に鋳造を行うことにより十分に微細
化効果が得られる。しかし、添加から鋳造までに時間的
な余裕がある方が、実操業上はなお好ましい。
The stability of TiB 2 particles and TiC particles in a molten aluminum alloy is higher than that of Al 3 Ti particles. For example, even if the TiC particles are kept in the molten metal for about one hour, they do not grow or disappear and remain. This means that the action as a coagulation nucleus is maintained extremely stably. The Al 3 Ti particles decompose and disappear within a few minutes when held in the molten aluminum casting alloy. However, since the heterogeneous coagulation nucleus particles function immediately after the addition of the grain refiner of the present invention, a sufficient refining effect can be obtained by performing casting within several minutes after the addition. However, it is still more preferable in practical operation that there is sufficient time from addition to casting.

【0012】上記の観点から、液体急冷させるアルミニ
ウム合金溶湯中にTiに加えてBおよびCのうちの少な
くとも1種を規定範囲内の含有量で含有させ、固溶体の
熱処理によりAl3 Ti粒子以外にTiB2 粒子および
TiC粒子の少なくとも1種を生成させることが好まし
い。BおよびCはかなりの少量でも上記の効果が認めら
れるので、これらの含有量の下限は特に定めない。Bお
よびCの含有量は多いほど結晶粒微細化の向上効果が大
きくなるが、Tiの場合と同様に、余り多量になると溶
融状態での粘性が高くなって、液体急冷法で薄肉のスト
リップあるいはリボンを安定して形成できなくなる。こ
の観点から、液体急冷させるアルミニウム合金溶湯のB
含有量は8wt%以下、C含有量は10wt%以下とするこ
とが望ましい。
[0012] In view of the above, at least one of the aluminum alloy molten metal in addition to Ti B and C to the liquid quenching is contained at a content within the specified range, in addition to Al 3 Ti particles by heat treatment of a solid solution Preferably, at least one of TiB 2 particles and TiC particles is generated. Since the above-mentioned effects are observed even when B and C are considerably small, the lower limits of the contents thereof are not particularly defined. The higher the content of B and C, the greater the effect of improving the grain refinement. However, as in the case of Ti, if the content is too large, the viscosity in the molten state becomes high. The ribbon cannot be formed stably. From this point of view, B of the aluminum alloy
It is desirable that the content be 8 wt% or less and the C content be 10 wt% or less.

【0013】本発明の方法においては、液体急冷により
形成した固溶体中に結晶粒微細化作用を有するAl3
i等の粒子を析出させるために、固溶体を350〜55
0℃の範囲の温度で熱処理する。以下に、添付図面を参
照して、実施例により本発明を更に詳細に説明する。
In the method of the present invention, the solid solution formed by quenching the liquid is made of Al 3 T having a crystal grain refining action.
In order to precipitate particles such as i,
Heat treatment at a temperature in the range of 0 ° C. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

【0014】[0014]

〔結晶粒微細化剤の作製〕(Preparation of grain refiner)

(1) 液体急冷法によるリボンの作製 表1に微細化剤組成として表示した組成のアルミニウム
合金をアーク溶解により溶製し、鋳造してインゴットを
作製した。
(1) Preparation of ribbon by liquid quenching method An aluminum alloy having a composition indicated as a refining agent composition in Table 1 was melted by arc melting and cast to prepare an ingot.

【0015】各インゴットの組成は、表1に示したよう
に、実施例1〜6の全てにおいて本発明の望ましい範囲
内の含有量でTiを含有し、更にTi以外に実施例2は
Bを、実施例3および5はCをそれぞれ本発明の望まし
い範囲内の含有量で含有する。比較例2のインゴットは
Ti含有量が本発明の望ましい範囲より多く、比較例3
のインゴットはTi含有量を本発明の望ましい範囲より
少い。
As shown in Table 1, the composition of each ingot contains Ti in a content within a desirable range of the present invention in all of Examples 1 to 6, and in addition to Ti, Example 2 contains B in addition to Ti. , Examples 3 and 5 each contain C at a content within the desirable range of the present invention. The ingot of Comparative Example 2 had a Ti content higher than the desirable range of the present invention, and Comparative Example 3
The ingots have a Ti content less than the desired range of the present invention.

【0016】これらのインゴットを図1に示す単ロール
式液体急冷装置に供して、幅1〜2mm、厚さ10〜2
0μmのアルミニウム合金薄帯(リボン)を得た。ただ
し、比較例2は本発明の望ましい範囲より多い40wt%
のTiを含有していたため溶湯の粘性が高くなり、本実
施例で用いた液体急冷装置では良好なリボンを作製する
ことができなかった。
These ingots were subjected to a single-roll type liquid quenching apparatus shown in FIG. 1 to obtain a width of 1 to 2 mm and a thickness of 10 to 2 mm.
An aluminum alloy ribbon (ribbon) of 0 μm was obtained. However, Comparative Example 2 was 40 wt%, which was more than the desirable range of the present invention.
, The viscosity of the molten metal was increased, and the liquid quenching apparatus used in this example could not produce a good ribbon.

【0017】得られた急冷凝固状態のリボンについてX
線回折(XRD)を行った結果、Al3 Ti(実施例1
〜6,比較例3)、TiC(実施例3,5)、TiB2
(実施例2)を含有することが分かった。一方、透過電
子顕微鏡による組織観察では2μm程度以下のAl3
i粒子のみが観察され、TiC粒子もTiB2 粒子も観
察されなかった。この結果から、液体急冷後のリボンに
はTi、C、Bが未固溶の化合物粒子として存在する
が、その量は少なく、その粒径は極めて微細になってい
るものと考えられる。したがって、急冷凝固状態のリボ
ンは実質的に固溶体と考えて差し支えないので、本明細
書においては固溶体と呼ぶ。
The obtained rapidly solidified ribbon is represented by X
As a result of X-ray diffraction (XRD), Al 3 Ti (Example 1)
-6, Comparative Example 3), TiC (Examples 3, 5), TiB 2
(Example 2) was found to be contained. On the other hand, observation of the structure with a transmission electron microscope shows that Al 3 T
Only i particles were observed, and neither TiC particles nor TiB 2 particles were observed. From this result, it is considered that Ti, C, and B exist as undissolved compound particles in the ribbon after the liquid quenching, but the amount is small and the particle size is extremely fine. Therefore, the ribbon in the rapidly solidified state may be considered to be substantially a solid solution, and is referred to as a solid solution in this specification.

【0018】(2) 析出熱処理 上記の液体急冷により得られたリボンを、電気炉内でA
rガス雰囲気中にて5℃/分の昇温速度で450℃まで
加熱し、Alマトリクス中にAl3 Ti粒子等の異質凝
固核粒子を均一に析出させた。示差走査熱量(DSC)
分析の結果、析出反応に対応すると考えられる発熱反応
はいずれの試料においても昇温過程の360℃付近で開
始し550℃付近で終了することが分かった。一旦36
0℃まで昇温すれば析出反応を起こさせることができる
ので、熱処理温度は350℃〜550℃の範囲であれば
良い。
(2) Precipitation heat treatment The ribbon obtained by the above-mentioned liquid quenching is subjected to A in an electric furnace.
The mixture was heated to 450 ° C. at a rate of 5 ° C./min in an r gas atmosphere to uniformly precipitate heterogeneous solidification nucleus particles such as Al 3 Ti particles in an Al matrix. Differential scanning calorimetry (DSC)
As a result of the analysis, it was found that the exothermic reaction considered to correspond to the precipitation reaction started around 360 ° C. in the heating process and ended around 550 ° C. in any of the samples. Once 36
If the temperature is raised to 0 ° C., a precipitation reaction can be caused, so that the heat treatment temperature may be in the range of 350 ° C. to 550 ° C.

【0019】各試料について熱処理後の組織を透過電子
顕微鏡(TEM)により観察した。観察された組織の例
を図2および図3に示す。図2は、Al−20wt%Ti
の組成を有する表1中の実施例1の微細化剤の組織を示
し、Alマトリクス中に粒径0.2μm程度およびそれ
以下のAl3 Ti粒子のみが均一に分散していることが
分かる。図3は、Al−20wt%Ti−6wt%Cの組成
を有する実施例3の微細化剤の組織を示し、粒径1〜2
μm程度の比較的大きい粒子と、それよりも遙に微細な
粒径0.1μmオーダーの粒子とが、均一に分散してい
ることが分かる。各粒径毎に粒子の組成を同定すること
はできなかったが、比較的大きい粒子はTiC粒子であ
り、微細な粒子はAl3 Ti粒子であろうと推察され
る。
The structure of each sample after the heat treatment was observed by a transmission electron microscope (TEM). Examples of the observed tissue are shown in FIGS. FIG. 2 shows Al-20 wt% Ti
Table 1 shows the structure of the refiner of Example 1 in Table 1 and it can be seen that only Al 3 Ti particles having a particle size of about 0.2 μm or less are uniformly dispersed in the Al matrix. FIG. 3 shows the structure of the refiner of Example 3 having a composition of Al-20 wt% Ti-6 wt% C, wherein the particle size is 1-2.
It can be seen that relatively large particles of about μm and much finer particles having a diameter of the order of 0.1 μm are uniformly dispersed. Although the composition of the particles could not be identified for each particle size, it is presumed that relatively large particles would be TiC particles and fine particles would be Al 3 Ti particles.

【0020】(3) 鋳造 上記にて作製した結晶粒微細化剤を用いて、Al−4.
5wt%Cuの組成を有するアルミニウム鋳造合金の鋳造
を行った。図4に示したように、Al−4.5wt%Cu
合金を黒鉛坩堝内にて730℃に加熱して溶解し、結晶
粒微細化剤を添加し、攪拌用ペダルで3分間攪拌した
後、図5に示す実効キャビティー形状のステンレス鋼製
金型中に鋳造した。各微細化剤の添加量は、鋳造後の合
金組成においてTi含有量が全て0.15wt%に統一さ
れるように設定した。得られた鋳造材の中心を通る断面
(図5のハッチング面)で鋳造組織を光学顕微鏡にて観
察し、結晶粒径を測定した。
(3) Casting Al-4.
An aluminum casting alloy having a composition of 5 wt% Cu was cast. As shown in FIG. 4, Al-4.5 wt% Cu
The alloy was heated and melted at 730 ° C. in a graphite crucible, a grain refiner was added, and the mixture was stirred for 3 minutes with a stirring pedal, and then placed in a stainless steel mold having an effective cavity shape shown in FIG. Cast into. The addition amount of each refining agent was set so that the Ti content in the alloy composition after casting was all unified to 0.15 wt%. The cast structure was observed with an optical microscope on a cross section (hatched surface in FIG. 5) passing through the center of the obtained cast material, and the crystal grain size was measured.

【0021】表1の右端の欄に記載したように、微細化
材無添加の場合(比較例1)に結晶粒径は1.50mm
であったのに対して、本発明の結晶粒微細化剤を添加し
たことにより0.05〜0.11mmと顕著に微細化さ
れた。図6に、微細化剤無添加の場合(比較例1)の鋳
造組織を示し、図7に、本発明によるAl−20wt%T
i−6wt%Cの微細化剤を添加した場合(実施例3)の
鋳造組織を示す。
As shown in the rightmost column of Table 1, the crystal grain size was 1.50 mm when no refiner was added (Comparative Example 1).
In contrast, the addition of the grain refiner of the present invention significantly reduced the size to 0.05 to 0.11 mm. FIG. 6 shows a cast structure in the case where no refiner was added (Comparative Example 1), and FIG. 7 shows Al-20 wt% T according to the present invention.
The casting structure in the case of adding a refiner of i-6 wt% C (Example 3) is shown.

【0022】この微細化効果は微細化剤のTi濃度が高
い程向上する傾向があり、またCあるいはBの同時添加
により更に微細化効果が向上することが分かる。上記の
ように鋳造材のTi含有量は0.15wt%に統一した。
例えば、実施例1と実施例4を対比すると、微細化剤の
Ti濃度としては後者が高いが、いずれの実施例でも異
質凝固核粒子として存在するのはAl3 Ti粒子のみで
あり、同等の粒径のAl3 Ti粒子が同じ量だけAl−
4.5wt%Cu合金溶湯中に添加されたと考えられる。
それにも係わらず、実施例1に比べてTi濃度の高い実
施例4の微細化剤の方が高い微細化効果が得られてい
る。これは、Ti濃度の低い実施例1の微細化剤は、T
i濃度の高い実施例4と同量のTiを溶湯に供給するに
は微細化剤としての添加量が多くなるため、微細化剤添
加対象であるAl−4.5wt%Cu合金本来の組成に及
ぼす影響がより大きくなると共に、溶湯中での希釈性お
よび攪拌性が相対的に低下するためであろうと考えられ
る。
It can be seen that this refining effect tends to increase as the Ti concentration of the refining agent increases, and that the refining effect is further improved by the simultaneous addition of C or B. As described above, the Ti content of the cast material was unified to 0.15 wt%.
For example, when Example 1 and Example 4 are compared, the latter is higher as the Ti concentration of the refining agent, but in any of the examples, only the Al 3 Ti particles exist as heterogeneous coagulation nucleus particles, The same amount of Al 3 Ti particles
It is considered that it was added to the 4.5 wt% Cu alloy melt.
Nevertheless, the refining agent of Example 4 having a higher Ti concentration than Example 1 has a higher refining effect. This is because the refining agent of Example 1 having a low Ti concentration is T
In order to supply the same amount of Ti as in Example 4 having a high i-concentration to the molten metal, the addition amount as a refining agent increases, so that the original composition of the Al-4.5 wt% Cu alloy to which the refining agent is added is added. It is considered that the effect is larger and the dilutability and the stirring property in the molten metal are relatively reduced.

【0023】Al3 Ti粒子とTiC粒子およびTiB
2 粒子との相互作用については明らかでないが、微細化
剤がTiのみを含有する実施例1に比べて、微細化剤が
Tiの他にCあるいはBを更に含有する実施例2、3、
5では微細化効果が明らかに向上している。Tiに加え
てCあるいはBが存在した場合、TiCあるいはTiB
2 が直接異質凝固核粒子として作用する可能性の他に、
TiC、TiB2 またはC、BがAl3 Tiの核生成を
促進する可能性も考えられる。
Al 3 Ti particles, TiC particles and TiB
2 Although the interaction with the particles is not clear, Examples 2 and 3, in which the refiner further contains C or B in addition to Ti as compared with Example 1 in which the refiner only contains Ti,
In No. 5, the miniaturization effect is clearly improved. If C or B exists in addition to Ti, TiC or TiB
In addition to the possibility that 2 directly acts as a foreign coagulation core particle,
It is also conceivable that TiC, TiB 2 or C, B may promote nucleation of Al 3 Ti.

【0024】微細化剤のTi含有量は多いほど結晶粒微
細化効果が高まるが、同時に合金としての融点が上昇し
て溶融状態での粘性が高くなるため、Ti含有量が余り
多くなると液体急冷法によるリボン作製が困難になる。
本実施例において行った液体急冷法の範囲では、Ti濃
度を40wt%Tiにした比較例2ではリボン形成ができ
なかった。逆に、微細化剤のTi濃度が低くなると、高
い微細化効果を得ようとすれば微細化剤の添加量が多く
なるため、上述のように鋳造合金本来の組成に対する影
響が大きくなり、希釈性・攪拌性も低下し、それだけ微
細化効果が低下してしまう。微細化剤のTi濃度を10
wt%にした比較例3では、鋳造合金溶湯中への溶解性が
悪くなり、一部未溶解で残ってしまった。これらの理由
で、本発明の結晶粒微細化剤においては、Ti含有量を
10wt%を超え40wt%未満とすることが望ましい。
As the Ti content of the refining agent increases, the effect of refining the crystal grains increases, but at the same time, the melting point of the alloy increases and the viscosity in the molten state increases. It becomes difficult to produce ribbons by the method.
In the range of the liquid quenching method performed in this example, the ribbon could not be formed in Comparative Example 2 in which the Ti concentration was 40 wt% Ti. Conversely, when the Ti concentration of the refining agent is reduced, the amount of the refining agent added increases in order to obtain a high refining effect. The properties and agitation properties are also reduced, and the miniaturization effect is reduced accordingly. Ti concentration of refining agent is 10
In Comparative Example 3 in which the content was wt%, the solubility in the molten cast alloy was poor, and a part thereof remained unmelted. For these reasons, in the grain refiner of the present invention, it is desirable that the Ti content be more than 10 wt% and less than 40 wt%.

【0025】CおよびBは、本発明者が実験を行った範
囲では少量の添加でもTiとの共存により上記のように
結晶粒微細化効果を高める作用が認められ、特に含有量
に下限を定める理由は見当たらない。CおよびBの含有
量上限はTi含有量の上限についてと同じ理由で設定し
た。なお、現時点で市販の微細化剤のなかで最も効果的
であるとされている母合金型微細化剤(例えばKB Alloy
社製Al-5Ti-1B 微細化剤)を用いて、前記(3) と同じ条
件でAl−4.5wt%Cu鋳造合金の鋳造を行った結
果、鋳造組織の平均結晶粒径は0.12mmであった。
これは、表1に示した実施例のうち最も微細化効果の低
い実施例6の0.11mmよりも若干劣る。本発明によ
れば、実施例1〜5の0.05〜0.08mmで示され
るように、従来の市販微細化剤を遙かに凌ぐ高い微細化
効果が得られることが分かる。
As for C and B, the effect of increasing the crystal grain refining effect is recognized as described above by coexistence with Ti even in a small amount in the range where the present inventors have conducted experiments, and the lower limit is particularly set for the content. There is no reason. The upper limits of the contents of C and B were set for the same reason as the upper limit of the Ti content. In addition, a mother alloy type refining agent (for example, KB Alloy
As a result of casting an Al-4.5 wt% Cu casting alloy under the same conditions as in the above (3) using an Al-5Ti-1B refining agent manufactured by Co., Ltd., the average grain size of the cast structure was 0.12 mm. Met.
This is slightly inferior to the 0.11 mm of Example 6 having the lowest miniaturization effect among the examples shown in Table 1. According to the present invention, as shown by 0.05 to 0.08 mm in Examples 1 to 5, it can be seen that a high refining effect far exceeding the conventional commercial refining agent can be obtained.

【0026】また、本発明の結晶粒微細化剤は、分散強
化剤としても極めて有効である。すなわち、本発明の微
細化剤を添加して鋳造した鋳造材は、Al合金マトリク
ス中に微細かつ均一に分散した異質凝固核粒子が強化粒
子として機能する分散強化型Al合金である。この強化
粒子は、従来の母合金型微細化剤や粉末添加によりAl
合金中に導入できる粒子よりも格段に微細な粒子とする
ことができるので、分散強化作用も従来に比べて大幅に
高めることができる。
The grain refiner of the present invention is also very effective as a dispersion enhancer. That is, the cast material cast by adding the refiner of the present invention is a dispersion-strengthened Al alloy in which heterogeneous solidification nucleus particles finely and uniformly dispersed in an Al alloy matrix function as reinforcing particles. The reinforcing particles are made of Al by the addition of a conventional master alloy type refiner or powder.
Since the particles can be made much finer than the particles that can be introduced into the alloy, the dispersion strengthening action can be greatly increased as compared with the conventional case.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】以上説明したように、本発明によれば、
溶湯中への添加後に保持時間を必要とせずに直ちに凝固
核として機能して結晶粒微細化効果を発現し、かつ結晶
粒微細化効果の高い微細な粒径の異質凝固核粒子を容易
に作製でき、溶湯中への分散性も優れた結晶粒微細化剤
が提供される。
As described above, according to the present invention,
It functions as a solidification nucleus immediately without requiring a holding time after being added to the molten metal, expresses the effect of crystal grain refinement, and easily produces heterogeneous solidified nucleus particles having a fine grain size with a high crystal grain refinement effect. The present invention provides a crystal grain refining agent which is excellent in dispersibility in a molten metal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、単ロール式液体急冷装置を示す斜視図
である。
FIG. 1 is a perspective view showing a single-roll type liquid quenching device.

【図2】図2は、本発明により固溶体を熱処理して作製
した結晶粒微細化剤(Al−20wt%Ti)の組織を示
す顕微鏡写真(TEM写真)である。
FIG. 2 is a micrograph (TEM photograph) showing the structure of a crystal grain refiner (Al-20 wt% Ti) produced by heat-treating a solid solution according to the present invention.

【図3】図3は、本発明により固溶体を熱処理して作製
した結晶粒微細化剤(Al−20wt%Ti−6wt%C)
の組織を示す顕微鏡写真(TEM写真)である。
FIG. 3 is a grain refiner (Al-20 wt% Ti-6 wt% C) prepared by heat-treating a solid solution according to the present invention.
5 is a micrograph (TEM photograph) showing the structure of Example 1.

【図4】図4は、アルミニウム鋳造合金の溶湯に結晶粒
微細化剤を添加し攪拌する装置を示す断面図である。
FIG. 4 is a sectional view showing an apparatus for adding a crystal grain refiner to a molten aluminum casting alloy and stirring the molten metal.

【図5】図5は、アルミニウム鋳造合金の鋳造材の形状
を示す斜視図(透視図)である。
FIG. 5 is a perspective view (perspective view) showing the shape of a cast material of an aluminum casting alloy.

【図6】図6は、微細化剤を添加せずに鋳造したAl−
4.5Cu合金の鋳造組織を示す顕微鏡写真(光学顕微
鏡写真)である。
FIG. 6 shows Al-casted without adding a refining agent.
It is a microscope photograph (optical microscope photograph) which shows the cast structure of a 4.5Cu alloy.

【図7】図7に、本発明によるAl−20wt%Ti−6
wt%Cの微細化剤を添加して鋳造したAl−4.5Cu
合金の鋳造組織を示す顕微鏡写真(光学顕微鏡写真)で
ある。
FIG. 7 shows Al-20 wt% Ti-6 according to the present invention.
Al-4.5Cu cast with the addition of a wt% C refiner
It is a microscope photograph (optical microscope photograph) which shows the casting structure of an alloy.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム鋳造合金の鋳造時に凝固核
として作用する異質凝固核粒子を含有し残部が実質的に
アルミニウムから成る結晶粒微細化剤の製造方法であっ
て、 上記異質凝固核粒子の構成成分として少なくともチタン
を含有するアルミニウム合金溶湯を液体急冷法により凝
固させて固溶体とし、この固溶体を熱処理し固相からの
析出により上記異質凝固核粒子として少なくともチタン
アルミナイド粒子を生成させることを特徴とするアルミ
ニウム鋳造合金の結晶粒微細化剤の製造方法。
1. A method for producing a grain refiner comprising foreign solidified nucleus particles which act as solidification nuclei during the casting of an aluminum casting alloy and the balance substantially consisting of aluminum, comprising: An aluminum alloy melt containing at least titanium as a component is solidified by a liquid quenching method to form a solid solution, and this solid solution is heat-treated to form at least titanium aluminide particles as the above-mentioned heterogeneous solidification nucleus particles by precipitation from a solid phase. A method for producing a grain refiner for cast aluminum alloy.
【請求項2】 上記アルミニウム合金溶湯が上記異質凝
固核粒子の構成成分として10wt%を超え40wt%未満
のチタンを含有し残部が実質的にアルミニウムから成る
ことを特徴とする請求項1記載のアルミニウム鋳造合金
の結晶粒微細化剤の製造方法。
2. The aluminum according to claim 1, wherein the molten aluminum alloy contains more than 10% by weight and less than 40% by weight of titanium as a component of the heterogeneous solidification nucleus particles, and the balance substantially consists of aluminum. A method for producing a grain refiner for a cast alloy.
【請求項3】 上記アルミニウム合金溶湯が上記異質凝
固核粒子の構成成分として上記チタンの他に8wt%以下
のボロンおよび10wt%以下の炭素のうちの少なくとも
1種を更に含有することを特徴とする請求項2記載のア
ルミニウム鋳造合金の結晶粒微細化剤の製造方法。
3. The molten aluminum alloy further comprises at least one of 8 wt% or less of boron and 10 wt% or less of carbon as a component of the heterogeneous solidification nucleus particles in addition to the titanium. A method for producing a grain refiner for an aluminum casting alloy according to claim 2.
【請求項4】 上記熱処理を温度350〜550℃で行
うことを特徴とする請求項1から3までのいずれか1項
記載のアルミニウム鋳造合金の結晶粒微細化剤の製造方
法。
4. The method for producing a grain refiner for an aluminum casting alloy according to claim 1, wherein the heat treatment is performed at a temperature of 350 to 550 ° C.
JP1773197A 1997-01-17 1997-01-17 Production of grain refiner for casting aluminum alloy Pending JPH10204555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1773197A JPH10204555A (en) 1997-01-17 1997-01-17 Production of grain refiner for casting aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1773197A JPH10204555A (en) 1997-01-17 1997-01-17 Production of grain refiner for casting aluminum alloy

Publications (1)

Publication Number Publication Date
JPH10204555A true JPH10204555A (en) 1998-08-04

Family

ID=11951907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1773197A Pending JPH10204555A (en) 1997-01-17 1997-01-17 Production of grain refiner for casting aluminum alloy

Country Status (1)

Country Link
JP (1) JPH10204555A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329459A (en) * 2004-05-20 2005-12-02 Ueda Seni Kagaku Shinkokai Crystal grain fining agent for casting and its manufacturing method
WO2012102162A1 (en) * 2011-01-25 2012-08-02 国立大学法人名古屋工業大学 Crystal grain refining agent for casting and method for producing the same
CN102952957A (en) * 2011-08-25 2013-03-06 金刚 Grain refiner and application of grain refiner in aluminum alloy wheel hub
US8858697B2 (en) 2011-10-28 2014-10-14 General Electric Company Mold compositions
US8906292B2 (en) 2012-07-27 2014-12-09 General Electric Company Crucible and facecoat compositions
US8932518B2 (en) 2012-02-29 2015-01-13 General Electric Company Mold and facecoat compositions
CN104328292A (en) * 2014-10-22 2015-02-04 江苏大学 Composite refining and modifying agent capable of improving friction and wear properties of multi-element aluminum-silicon alloy
US8992824B2 (en) 2012-12-04 2015-03-31 General Electric Company Crucible and extrinsic facecoat compositions
US9011205B2 (en) 2012-02-15 2015-04-21 General Electric Company Titanium aluminide article with improved surface finish
KR20150126474A (en) * 2014-05-02 2015-11-12 현대자동차주식회사 High elastic aluminum alloy
US9192983B2 (en) 2013-11-26 2015-11-24 General Electric Company Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
US9511417B2 (en) 2013-11-26 2016-12-06 General Electric Company Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
US9592548B2 (en) 2013-01-29 2017-03-14 General Electric Company Calcium hexaluminate-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
US10391547B2 (en) 2014-06-04 2019-08-27 General Electric Company Casting mold of grading with silicon carbide
CN110373560A (en) * 2019-06-28 2019-10-25 东北大学 A kind of method of sheet billet continuous casting and rolling production high-performance aluminium alloy Strip
CN114761152A (en) * 2020-02-06 2022-07-15 株式会社Uacj Aluminum alloy ingot and method for producing same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691735B2 (en) * 2004-05-20 2011-06-01 国立大学法人 名古屋工業大学 Grain refiner for casting and method for producing the same
JP2005329459A (en) * 2004-05-20 2005-12-02 Ueda Seni Kagaku Shinkokai Crystal grain fining agent for casting and its manufacturing method
JP5850372B2 (en) * 2011-01-25 2016-02-03 国立大学法人 名古屋工業大学 Grain refiner for casting and method for producing the same
WO2012102162A1 (en) * 2011-01-25 2012-08-02 国立大学法人名古屋工業大学 Crystal grain refining agent for casting and method for producing the same
CN102952957A (en) * 2011-08-25 2013-03-06 金刚 Grain refiner and application of grain refiner in aluminum alloy wheel hub
US8858697B2 (en) 2011-10-28 2014-10-14 General Electric Company Mold compositions
US9011205B2 (en) 2012-02-15 2015-04-21 General Electric Company Titanium aluminide article with improved surface finish
US8932518B2 (en) 2012-02-29 2015-01-13 General Electric Company Mold and facecoat compositions
US9802243B2 (en) 2012-02-29 2017-10-31 General Electric Company Methods for casting titanium and titanium aluminide alloys
US8906292B2 (en) 2012-07-27 2014-12-09 General Electric Company Crucible and facecoat compositions
US9803923B2 (en) 2012-12-04 2017-10-31 General Electric Company Crucible and extrinsic facecoat compositions and methods for melting titanium and titanium aluminide alloys
US8992824B2 (en) 2012-12-04 2015-03-31 General Electric Company Crucible and extrinsic facecoat compositions
US9592548B2 (en) 2013-01-29 2017-03-14 General Electric Company Calcium hexaluminate-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
US9192983B2 (en) 2013-11-26 2015-11-24 General Electric Company Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
US9511417B2 (en) 2013-11-26 2016-12-06 General Electric Company Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
KR20150126474A (en) * 2014-05-02 2015-11-12 현대자동차주식회사 High elastic aluminum alloy
US10392681B2 (en) 2014-05-02 2019-08-27 Hyundai Motor Company High-elasticity aluminum alloy and method of manufacturing the same
US11066729B2 (en) 2014-05-02 2021-07-20 Hyundai Motor Company High-elasticity aluminum alloy and method of manufacturing the same
US10391547B2 (en) 2014-06-04 2019-08-27 General Electric Company Casting mold of grading with silicon carbide
CN104328292A (en) * 2014-10-22 2015-02-04 江苏大学 Composite refining and modifying agent capable of improving friction and wear properties of multi-element aluminum-silicon alloy
CN110373560A (en) * 2019-06-28 2019-10-25 东北大学 A kind of method of sheet billet continuous casting and rolling production high-performance aluminium alloy Strip
CN114761152A (en) * 2020-02-06 2022-07-15 株式会社Uacj Aluminum alloy ingot and method for producing same

Similar Documents

Publication Publication Date Title
US5701942A (en) Semi-solid metal processing method and a process for casting alloy billets suitable for that processing method
JP5405115B2 (en) Method for producing grain refined mother alloy
JPH10204555A (en) Production of grain refiner for casting aluminum alloy
US4748001A (en) Producing titanium carbide particles in metal matrix and method of using resulting product to grain refine
Guo et al. Modification of Mg2Si morphology in Mg–Si alloys with Bi
US6132532A (en) Aluminum alloys and method for their production
JP2007211310A (en) Raw material brass alloy for casting half-melted alloy
CN108772568A (en) A kind of preparation method of metal-base nanometer composite material powder for 3D printing
CN114606415A (en) Aluminum and aluminum alloy grain refiner, continuous rheological extrusion forming preparation method and application thereof
Birol Melt treatment of Al–Si foundry alloys with B and Sr additions
US4873054A (en) Third element additions to aluminum-titanium master alloys
JPS62133037A (en) Alloy for grain refining and its manufacture
JP2000104136A (en) Magnesium alloy having fine crystal grain and its production
JP2743720B2 (en) Method for producing TiB2 dispersed TiAl-based composite material
JPH10317083A (en) Grain refiner for aluminum alloy
JP3246363B2 (en) Forming method of semi-molten metal
JPH0471982B2 (en)
CN108384972B (en) Method for preparing combined refining alterant
CN110804704A (en) Preparation method of Al-Ti-B-Sr intermediate alloy and Al-Ti-B-Sr intermediate alloy
US5100488A (en) Third element additions to aluminum-titanium master alloys
GB2171723A (en) Producing an alloy containing titanium carbide
JPH0681068A (en) Method for casting heat resistant mg alloy
JP3216685B2 (en) Forming method of semi-molten metal
RU2788136C1 (en) Method for obtaining aluminum-scandium-hafnium ligature
CN1144886C (en) Process for solidifying and shaping AlTiC alloy wire as fining agent