JP2008208028A5 - - Google Patents

Download PDF

Info

Publication number
JP2008208028A5
JP2008208028A5 JP2008133579A JP2008133579A JP2008208028A5 JP 2008208028 A5 JP2008208028 A5 JP 2008208028A5 JP 2008133579 A JP2008133579 A JP 2008133579A JP 2008133579 A JP2008133579 A JP 2008133579A JP 2008208028 A5 JP2008208028 A5 JP 2008208028A5
Authority
JP
Japan
Prior art keywords
binder phase
cbn
standard deviation
powder
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008133579A
Other languages
Japanese (ja)
Other versions
JP2008208028A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2008133579A priority Critical patent/JP2008208028A/en
Priority claimed from JP2008133579A external-priority patent/JP2008208028A/en
Publication of JP2008208028A publication Critical patent/JP2008208028A/en
Publication of JP2008208028A5 publication Critical patent/JP2008208028A5/ja
Pending legal-status Critical Current

Links

Description

切削工具とその製造方法Cutting tool and manufacturing method thereof

本発明は立方晶窒化硼素(cBN)焼結体を備える切削工具とその製造方法に関するものである。特に、耐摩耗性および耐欠損性が改良された切削工具に関するものである。 The present invention relates to a cutting tool including a cubic boron nitride (cBN) sintered body and a method for manufacturing the cutting tool . In particular, wear resistance and chipping resistance is relates again and again by cutting Engineering improved.

cBNはダイヤモンドに次ぐ高硬度物質であり、cBN基焼結体は種々の切削工具、耐摩耗部品、耐衝撃部品などに使用されている。   cBN is a high-hardness substance next to diamond, and cBN-based sintered bodies are used for various cutting tools, wear-resistant parts, impact-resistant parts and the like.

この種の焼結体では硬度と強度の両立が難しく、この両立を目的とした技術を開示する文献として、下記の特許文献が挙げられる。   With this type of sintered body, it is difficult to achieve both hardness and strength, and the following patent document is cited as a document disclosing a technique for achieving this compatibility.

特公昭62-25630号公報Japanese Patent Publication No.62-25630 特公昭62-25631号公報Japanese Patent Publication No.62-25631 特開平5-186272号公報JP 5-186272 A

しかし、上記の各技術においても、硬度と強度の両立という点で必ずしも十分ではない。例えば、上記の焼結体をバイトに用いた場合、逃げ面摩耗とクレーター摩耗によって刃先が鋭角になり、この刃先が欠損しやすく、その結果、工具寿命が安定しないという問題があった。   However, each of the above technologies is not always sufficient in terms of both hardness and strength. For example, when the above-mentioned sintered body is used for a cutting tool, there is a problem that the cutting edge becomes sharp due to flank wear and crater wear, and the cutting edge tends to be lost, resulting in unstable tool life.

従って、本発明の主目的は、耐クレーター性および強度を最適化することにより、耐欠損性に優れた切削工具とその製造方法を提供することにある。 Accordingly, a main object of the present invention is to provide a cutting tool having excellent fracture resistance and a method for producing the same by optimizing crater resistance and strength.

本発明切削工具はcBN粒子を結合相で焼結した焼結体を備える切削工具である。この結合相は二次元的に見て連続した構成となっている。また、この結合相は周期律表4a,5a,6a族遷移金属の炭化物,窒化物,炭窒化物,硼化物、Alの窒化物,硼化物,酸化物、Fe,Co,Niの少なくとも1種の炭化物,窒化物,炭窒化物,硼化物、およびこれらの相互固溶体よりなる群から選択される1種以上を含む。cBNの含有率は、体積%で45−70%とし、cBN粒子の平均粒度は、2以上6μm以下とする。さらに、結合相厚みの平均値は1.5μm以下で、その標準偏差は0.9以下である。そして、この工具は、150m/min以上の速度で切削加工するための工具である。但し、本発明の切削工具は、前記結合層の厚みを20点以上測定した場合に、標準偏差の収束点に至る測定点数での前記標準偏差が0.9超であり、前記収束点に至らない測定点数での標準偏差が0.9以下となる切削工具を除く。なおcBN粒子の平均粒度とは、累積体積%が50%となる粒径のことをいう。 The cutting tool of the present invention is a cutting tool including a sintered body obtained by sintering cBN particles with a binder phase. This bonded phase has a continuous structure in two dimensions. In addition, this bonded phase is at least one of carbides, nitrides, carbonitrides, borides, Al nitrides, borides, oxides, Fe, Co, and Ni of the transition metal groups 4a, 5a, and 6a. 1 or more selected from the group consisting of carbides, nitrides, carbonitrides, borides, and their mutual solid solutions. The content of cBN is 45% to 70% by volume, and the average particle size of the cBN particles is 2 to 6 μm. Furthermore, the average value of the binder phase thickness is 1.5 μm or less, and its standard deviation is 0.9 or less. And this tool is a tool for cutting at a speed of 150 m / min or more. However, in the cutting tool of the present invention, when the thickness of the bonding layer is measured at 20 points or more, the standard deviation at the number of measurement points reaching the convergence point of the standard deviation is more than 0.9, and the convergence point is reached. Excluding cutting tools with a standard deviation of 0.9 or less at no measurement points. Note that the average particle size of the cBN particles means a particle size at which the cumulative volume% is 50%.

従来の切削工具のcBN焼結体(cBN粒子が平均粒度2〜6μm)は結合相厚みの標準偏差が0.9を越えている。すなわち、結合相の厚みのばらつきが大きく、結合相だけで大きな体積を占める部分がある。この部分は焼結体中で強度が弱い部分(欠陥)であるので亀裂の進展がしやすく、工具の耐欠損性が十分でない。 The cBN sintered body of a conventional cutting tool (cBN particles have an average particle size of 2 to 6 μm) has a standard deviation of the binder phase thickness exceeding 0.9. That is, there is a large variation in the thickness of the binder phase, and there is a portion occupying a large volume only with the binder phase. Since this part is a weak part (defect) in the sintered body, the crack is likely to progress, and the fracture resistance of the tool is not sufficient.

高速切削では刃先が高温となるため材料強度が低下する。また、クレーター摩耗が発達し、刃先形状が鋭利になることも刃先の強度を低下させる。このような状態で刃先に負荷される衝撃により、クレーター摩耗の生じた部分に切れ刃と平行に亀裂が発生し、この亀裂が断続の衝撃により進展して欠損に至ると推定される。   In high-speed cutting, the cutting edge becomes hot and the material strength decreases. In addition, crater wear develops and the shape of the cutting edge becomes sharp, which also reduces the strength of the cutting edge. Due to the impact applied to the blade edge in such a state, it is presumed that a crack is generated in parallel with the cutting edge in the portion where crater wear has occurred, and this crack develops due to intermittent impact and leads to a defect.

そこで、本発明切削工具では結合相厚みのバラツキを従来の焼結体より小さくすることで、欠陥となる部分を少なくし、耐欠損性の改善を図っている。結合相の平均厚みとその標準偏差が上記の1.5μm、0.9μmを越えると、結合相だけで大きな体積を占める部分が増え、耐欠損性の改善効果が少ない。また、結合相の平均厚みの下限は、結合相としての機能を発揮するため、0.2μm程度が好ましい。さらに、cBN粒子の平均粒径が2μm未満では、粒子の耐熱性が劣りクレーター摩耗が発達しやすくなって耐欠損性が劣り、6μmを越えると切削時の衝撃に対して耐欠損性が劣るため、cBN粒子の粒度は2−6μmが適している。 Therefore, in the cutting tool of the present invention, the variation in the binder phase thickness is made smaller than that of the conventional sintered body, so that the number of defective portions is reduced and the fracture resistance is improved. When the average thickness and standard deviation of the binder phase exceed the above 1.5 μm and 0.9 μm, the binder phase alone occupies a large volume, and the effect of improving the fracture resistance is small. Moreover, since the minimum of the average thickness of a binder phase exhibits the function as a binder phase, about 0.2 micrometer is preferable. Furthermore, if the average particle size of the cBN particles is less than 2 μm, the heat resistance of the particles is poor and crater wear tends to develop, resulting in poor fracture resistance. If it exceeds 6 μm, the fracture resistance is inferior to the impact during cutting. The particle size of cBN particles is suitably 2-6 μm.

本発明切削工具を得るには、cBNに結合相材料を被覆したり、特殊な方法で原料を混合する。結合相材料の被覆は、焼結前に、化学蒸着法(CVD法)や物理蒸着法(PVD法)、無電解めっき法、あるいは機械的混合時の圧縮せん断力、摩擦力、衝撃力に誘起されたメカノケミカル的な反応を利用する方法が挙げられる。特殊な混合方法については、超音波混合法または分散材を用いたボールミル法が最適である。 In order to obtain the cutting tool of the present invention, the binder phase material is coated on cBN, or raw materials are mixed by a special method. The coating of the binder phase material is induced by chemical vapor deposition (CVD), physical vapor deposition (PVD), electroless plating, or compressive shear force, friction force, and impact force during mechanical mixing before sintering. And a method utilizing a mechanochemical reaction. As a special mixing method, an ultrasonic mixing method or a ball mill method using a dispersing material is optimal.

なお、本発明切削工具を得るための焼結工程には、プラズマ焼結装置、ホットプレス装置または超高圧焼結装置などが利用できる。 In addition, a plasma sintering apparatus, a hot press apparatus, or an ultrahigh pressure sintering apparatus can be used for the sintering process for obtaining the cutting tool of the present invention.

本発明によれば、cBN焼結体における結合相の厚みのばらつきを小さくすることで、耐摩耗性および耐欠損性に優れた切削工具を得ることができる。 According to the present invention, it is possible to obtain a cutting tool excellent in wear resistance and fracture resistance by reducing the variation in the thickness of the binder phase in the cBN sintered body.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

(実施例1)
76重量%のTiの窒化物、18重量%のAl、3重量%のCoおよび3重量%のNiを混合し、真空中で1200℃、30分熱処理をした化合物を粉砕し、結合相粉末を作製した。この結合相粉末は、XRD(X‐ray diffraction)ではTiN、Ti2AlN、TiAl3等のピークがみられた。この結合相粉末と平均粒径3μmのcBN粉末を、cBNの体積含有率が60体積%になるように表1に記載の方法で混合した。各混合法の詳細な条件は次の通りである。ここで、No.2において、cBNにTiNを被覆するのは、RFスパッタリングにより行った。被覆の平均厚みは50nmである。また、No.2の混合において分散材は用いていない。
(Example 1)
76% by weight of Ti nitride, 18% by weight of Al, 3% by weight of Co, and 3% by weight of Ni were mixed, and the compound that had been heat-treated in a vacuum at 1200 ° C. for 30 minutes was pulverized to obtain a binder phase powder. Produced. In this binder phase powder, peaks such as TiN, Ti 2 AlN, TiAl 3 and the like were observed by XRD (X-ray diffraction). This binder phase powder and cBN powder having an average particle size of 3 μm were mixed by the method shown in Table 1 so that the volume content of cBN was 60% by volume. The detailed conditions of each mixing method are as follows. Here, no. In step 2, cBN was coated with TiN by RF sputtering. The average thickness of the coating is 50 nm. No. No dispersing material is used in the mixing of the two.

超音波混合法→エチルアルコール中にcBNと結合材の粉末を投入し、20kHzの超音波振動を付加して混合した。
BM法→ポットに直径10mmのボールとcBN粉末および結合材粉末を入れ、250rpm、800分、エチルアルコール中で湿式混合を行った。
分散材→分散材としてポリビニルアルコールを2重量%添加した。
Ultrasonic mixing method--cBN and binder powder were put into ethyl alcohol, and 20 kHz ultrasonic vibration was added and mixed.
BM method-> A ball having a diameter of 10 mm, a cBN powder, and a binder powder were put in a pot, and wet mixing was performed in ethyl alcohol at 250 rpm for 800 minutes.
Dispersant → 2% by weight of polyvinyl alcohol was added as a dispersant.

Figure 2008208028
Figure 2008208028

そして、その混合粉末を5GPa、1300℃の超高圧、高温下で焼結した。得られた焼結体のXRDはどれもcBN、TiN、TiB2、AlB2、AlN、Al23、WCが観測された。 Then, the mixed powder was sintered under 5 GPa, 1300 ° C., ultrahigh pressure and high temperature. Any resulting XRD of the sintered body cBN, TiN, TiB 2, AlB 2, AlN, Al 2 O 3, WC were observed.

これら焼結体の組織を金属組織顕微鏡で1500倍にて撮影したところ、黒く見えるcBN粒子と白く見える結合相が観察された。この写真で任意の直線を引き、結合相厚みを測定した。この測定は、上記任意の直線における結合相の厚み、つまりcBN粒子間の距離を20点以上測定し、測定値の平均を求めることで行う。そして、各測定値から表1に記載の平均値と標準偏差を求めた。 When the structures of these sintered bodies were photographed with a metallographic microscope at a magnification of 1500, cBN particles that appeared black and a binder phase that appeared white were observed. In this photograph, an arbitrary straight line was drawn and the binder phase thickness was measured. This measurement is performed by measuring 20 or more points of the thickness of the binder phase on the arbitrary straight line, that is, the distance between the cBN particles, and obtaining the average of the measured values. And the average value and standard deviation of Table 1 were calculated | required from each measured value.

さらに、これら焼結体を切削工具に加工し、下記の条件で切削試験を実施し、欠損に至る工具寿命を測定したところ、表1に記載の結果が得られた。   Furthermore, when these sintered bodies were processed into cutting tools, a cutting test was carried out under the following conditions, and the tool life leading to chipping was measured, the results shown in Table 1 were obtained.

切削試験条件:
被削材:SCM415、HRC58−62、φ100mm×L300mmで長手方向にV形状の溝が6本付けられた形状。
工具形状:SNG432 NL−25*0.15−0.2
ホルダー:FN11R
切削条件:V=180m/min、d=0.3mm、f=0.15mm/rev、dry
Cutting test conditions:
Work material: SCM415, HRC58-62, φ100mm × L300mm, with 6 V-shaped grooves in the longitudinal direction.
Tool shape: SNG432 NL-25 * 0.15-0.2
Holder: FN11R
Cutting conditions: V = 180 m / min, d = 0.3 mm, f = 0.15 mm / rev, dry

この結果から明らかなように、結合相厚さの平均値が1.5μm以下、その標準偏差が0.9以下の場合に工具寿命が倍程度に向上していることがわかる。また、このような結合相厚さを有する焼結体を作製するには、結合相材料を混合する際に、超音波混合法または分散材を用いたボールミル法が好ましいことがわかる。また、cBN粒子に結合相を被覆する方法も有効である。   As is apparent from this result, the tool life is improved by about twice when the average value of the binder phase thickness is 1.5 μm or less and the standard deviation is 0.9 or less. It can also be seen that, in order to produce a sintered body having such a binder phase thickness, an ultrasonic mixing method or a ball mill method using a dispersing material is preferable when mixing binder phase materials. In addition, a method of coating the binder phase on the cBN particles is also effective.

(実施例2)
75重量%のTiの窒化物、22重量%のAl、2重量%のCoおよび1重量%のNiを混合し、真空中で1240℃、32分熱処理をした化合物を粉砕し、結合相粉末を作製した。XRDではTiN、Ti2AlN、TiAl3等のピークがみられた。この結合相粉末と平均粒径4.8μmのcBN粉末を、cBNの体積含有率が65%になるように超音波混合法と分散材を用いないボールミル(BM)法で混合した。各混合法の詳細な条件は次の通りである。
(Example 2)
75% by weight of Ti nitride, 22% by weight of Al, 2% by weight of Co, and 1% by weight of Ni were mixed, and the compound that had been heat-treated in vacuum at 1240 ° C. for 32 minutes was pulverized to obtain a binder phase powder. Produced. XRD showed peaks of TiN, Ti 2 AlN, TiAl 3 and the like. This binder phase powder and cBN powder having an average particle size of 4.8 μm were mixed by an ultrasonic mixing method and a ball mill (BM) method without using a dispersing agent so that the volume content of cBN was 65%. The detailed conditions of each mixing method are as follows.

超音波混合法→アセトン中にcBNと結合材の粉末を投入し、25kHzの超音波振動を付加して混合した。
BM法→ポットに直径10mmのボールとcBN粉末および結合材粉末を入れ、200rpm、600分、エチルアルコール中で湿式混合を行った。
Ultrasonic mixing method-> cBN and binder powder were put into acetone and mixed by adding ultrasonic vibration of 25 kHz.
BM method-> A ball having a diameter of 10 mm, a cBN powder, and a binder powder were put in a pot, and wet mixing was performed in ethyl alcohol at 200 rpm for 600 minutes.

そして、この粉末を4.85GPa、1310℃の超高圧、高温下で焼結した。得られた焼結体のXRDはどれもcBN、TiN、TiB2、AlB2、AlN、Al23、WCが観察された。これら焼結体の組織を下記の方法で観察した。なお、下記の各方法において、結合相厚みの測定方法は実施例1と同様である。
1)金属組織顕微鏡にて1500倍で写真撮影したところ、黒く見えるcBN粒子と白く見える結合相が観察された。この写真で任意の直線を引き、結合相厚みを測定した。
Then, this powder was sintered at 4.85 GPa, an ultrahigh pressure of 1310 ° C., and a high temperature. Any resulting XRD of the sintered body cBN, TiN, TiB 2, AlB 2, AlN, Al 2 O 3, WC were observed. The structure of these sintered bodies was observed by the following method. In each of the following methods, the method for measuring the binder phase thickness is the same as in Example 1.
1) When photographed with a metallographic microscope at a magnification of 1500, cBN particles that look black and a binder phase that looks white were observed. In this photograph, an arbitrary straight line was drawn and the binder phase thickness was measured.

2)SEM(Scanning Electron Microscope)にて3000倍で写真撮影したところ、cBN粒子と結合相が観察された。この写真で任意の直線を引き、結合相厚みを測定した。   2) When a photograph was taken with a scanning electron microscope (SEM) at a magnification of 3000, cBN particles and a binder phase were observed. In this photograph, an arbitrary straight line was drawn and the binder phase thickness was measured.

3)TEM(Transmission Electron Microscope)にて10000倍で写真撮影したところ、cBN粒子と結合相が観察された。この写真で任意の直線を引き、結合相厚みを測定した。   3) When a photograph was taken with a TEM (Transmission Electron Microscope) at a magnification of 10,000, cBN particles and a binder phase were observed. In this photograph, an arbitrary straight line was drawn and the binder phase thickness was measured.

4)オージェ(Auger Electron Spectroscopy)にて10000倍で写真撮影したところ、cBN粒子と結合相が観察された。この写真で任意の直線を引き、結合相厚みを測定した。   4) When a photograph was taken at a magnification of 10,000 with Auger Electron Spectroscopy, cBN particles and a binder phase were observed. In this photograph, an arbitrary straight line was drawn and the binder phase thickness was measured.

5)金属組織顕微鏡にて1500倍で撮影したところ、黒く見えるcBN粒子と白く見える結合相が観察された。これを画像解析し、cBN粒子にあたる黒くみえる粒子の面積比率がcBNの体積含有率と等しくなるように二値化し、結合相に相当する部分を特定し、結合相厚みを測定した。   5) When photographed at 1500 times with a metallographic microscope, cBN particles that look black and a binder phase that looks white are observed. This was image-analyzed, binarized so that the area ratio of black particles corresponding to cBN particles was equal to the volume content of cBN, the portion corresponding to the binder phase was identified, and the binder phase thickness was measured.

6)金属組織顕微鏡にて1000倍で撮影したところ、黒く見えるcBN粒子と白く見える結合相が観察された。これを画像解析し、任意の直線上の輝度を測定したところ周期性が見られた。ある輝度で暗い部分(cBN粒子に当たるところ)と明るい部分(結合相に当たるところ)にわけた場合、その比率がcBNの体積含有率と等しくなるように輝度を決定し、明るい部分の長さを結合相厚みとした。   6) When photographed at 1000 times with a metallographic microscope, cBN particles appearing black and a binder phase appearing white were observed. Image analysis of this and measurement of luminance on an arbitrary straight line showed periodicity. When it is divided into a dark part (where it hits cBN particles) and a bright part (where it hits the binder phase) at a certain brightness, the brightness is determined so that the ratio is equal to the volume content of cBN, and the length of the bright part is combined. The phase thickness was taken.

このようにして測定した結合相厚みの平均値と標準偏差を計算したところ表2のようになった。   The average value and the standard deviation of the binder phase thickness thus measured were calculated as shown in Table 2.

Figure 2008208028
Figure 2008208028

これら焼結体を切削工具に加工し、下記の条件で切削試験を実施し、欠損に至る工具寿命を測定したところ、超音波混合法の焼結体は約20分、ボールミル法の焼結体は約5分で欠損した。従って、分散材を用いないボールミル法よりも超音波混合法により結合相材料を混合することが好ましいことがわかる。   When these sintered bodies are processed into cutting tools, a cutting test is performed under the following conditions, and the tool life leading to fracture is measured, the sintered body of the ultrasonic mixing method is about 20 minutes, the sintered body of the ball mill method Was lost in about 5 minutes. Therefore, it can be seen that it is preferable to mix the binder phase material by the ultrasonic mixing method rather than the ball mill method without using the dispersing material.

切削試験条件:
被削材:SCM420、HRC59−61、φ100mm×L300mmで長手方向にV形状の溝が8本付けられた形状。
工具形状:SNG432 NL−25*0.15−0.2
ホルダー:FN11R
切削条件:V=150m/min、d=0.25mm、f=0.11mm/rev、dry
Cutting test conditions:
Work material: SCM420, HRC59-61, φ100mm × L300mm, with 8 V-shaped grooves in the longitudinal direction.
Tool shape: SNG432 NL-25 * 0.15-0.2
Holder: FN11R
Cutting conditions: V = 150 m / min, d = 0.25 mm, f = 0.11 mm / rev, dry

(実施例3)
80重量%のTiの窒化物と20重量%のAlを混合し、真空中で1200℃、30分熱処理をした化合物を粉砕し、結合相粉末を作製した。この粉末はXRDではTiN、Ti2AlN、TiAl3等のピークがみられた。この結合相粉末を平均粒径3.5μmのcBN粉末にcBNの体積含有率が表3に記載の割合となるように被覆した。被覆はRFスパッタリングPVD装置を用いて行った。この被覆粉末をTEMで観察したところ、cBN粉末にTiNが平均層厚50nmでほぼ均質に被覆されていることがわかった。このTiN被覆cBN粒子および前記結合相粉末をボールミルで分散材を用いずに混合した。BM法による混合は、ポットに直径10mmのボールとcBN粉末および結合材粉末を入れ、260rpm、650分、アセトン中で湿式混合により行った。そして、この混合粉末を4.8GPa、1350℃の超高圧、高温下で焼結した。得られた焼結体のXRDはどれもcBN、TiN、TiB2、AlB2、AlN、Al23、WCが観測された。
(Example 3)
80% by weight of Ti nitride and 20% by weight of Al were mixed, and the compound which had been heat-treated at 1200 ° C. for 30 minutes in a vacuum was pulverized to produce a binder phase powder. This powder showed peaks of TiN, Ti 2 AlN, TiAl 3 and the like by XRD. The binder phase powder was coated on a cBN powder having an average particle size of 3.5 μm so that the volume content of cBN was in the ratio shown in Table 3. The coating was performed using an RF sputtering PVD apparatus. When this coated powder was observed by TEM, it was found that TiBN was coated almost uniformly with an average layer thickness of 50 nm on the cBN powder. The TiN-coated cBN particles and the binder phase powder were mixed with a ball mill without using a dispersing agent. The mixing by the BM method was performed by wet mixing in acetone at 260 rpm for 650 minutes with a 10 mm diameter ball, cBN powder and binder powder placed in a pot. The mixed powder was sintered at 4.8 GPa, 1350 ° C. under high pressure and high temperature. Any resulting XRD of the sintered body cBN, TiN, TiB 2, AlB 2, AlN, Al 2 O 3, WC were observed.

Figure 2008208028
Figure 2008208028

これら焼結体の組織を金属組織顕微鏡にて1500倍で撮影したところ、黒く見えるcBN粒子と白く見える結合相が観察された。また、この写真で任意の直線を引き、結合相厚みを測定したところ、表3に示す平均値と標準偏差が得られた。   When the structures of these sintered bodies were photographed with a metallographic microscope at a magnification of 1500, cBN particles that appeared black and a binder phase that appeared white were observed. Moreover, when arbitrary straight lines were drawn in this photograph and the binder phase thickness was measured, the average values and standard deviations shown in Table 3 were obtained.

さらに、これら焼結体を切削工具に加工し、下記の条件で切削試験を実施し、欠損に至る工具寿命を測定した。その結果も表3に示す。   Furthermore, these sintered bodies were processed into cutting tools, a cutting test was carried out under the following conditions, and the tool life leading to chipping was measured. The results are also shown in Table 3.

切削試験条件:
被削材:SCM415、HRC58−62、φ100mm×L300mmで長手方向にV形状の溝が6本付けられた形状。
工具形状:SNG432 NL−25*0.15−0.2
ホルダー:FN11R
切削条件:V=160m/min、d=0.2mm、f=0.13mm/rev、dry
Cutting test conditions:
Work material: SCM415, HRC58-62, φ100mm × L300mm, with 6 V-shaped grooves in the longitudinal direction.
Tool shape: SNG432 NL-25 * 0.15-0.2
Holder: FN11R
Cutting conditions: V = 160 m / min, d = 0.2 mm, f = 0.13 mm / rev, dry

これらの結果からcBNの含有率は45から70体積%が好ましいことがわかる。特に、60から70体積%において好結果となっている。   From these results, it is understood that the content of cBN is preferably 45 to 70% by volume. In particular, good results are obtained at 60 to 70% by volume.

(実施例4)
種々の組成の結合相原料粉末を混合し、真空中で1230℃、32分熱処理をした化合物を粉砕し、結合相粉末を作製した。この結合相粉末と平均粒径4.1μmのcBN粉末をcBNの体積含有率が62%になるように分散材を用いたボールミル法で混合した。BM法による混合は、ポットに直径10mmのボールとcBN粉末および結合材粉末を入れ、190rpm、700分、アセトン中で湿式混合により行った。分散材はポリビニルアルコールである。そして、混合粉末を5.1GPa、1310℃の超高圧、高温下で焼結した。得られた焼結体のXRDには表4に記載の化合物のピークが観測された。
Example 4
The binder phase raw material powders having various compositions were mixed, and the compound heat treated in vacuum at 1230 ° C. for 32 minutes was pulverized to prepare binder phase powders. This binder phase powder and cBN powder having an average particle size of 4.1 μm were mixed by a ball mill method using a dispersing agent so that the volume content of cBN was 62%. Mixing by the BM method was carried out by placing a ball having a diameter of 10 mm, a cBN powder, and a binder powder in a pot and performing wet mixing in acetone at 190 rpm for 700 minutes. The dispersing material is polyvinyl alcohol. Then, the mixed powder was sintered at 5.1 GPa, ultrahigh pressure of 1310 ° C., and high temperature. The peaks of the compounds shown in Table 4 were observed in XRD of the obtained sintered body.

Figure 2008208028
Figure 2008208028

これら焼結体の組織を金属組織顕微鏡にて1000倍で観察したところ黒く見えるcBN粒子と白く見える結合相が観察された。この写真で任意の直線を引き、結合相厚みを測定したところ、表4に記載の平均値と標準偏差が得られた。   When the structures of these sintered bodies were observed with a metallographic microscope at a magnification of 1000, cBN particles that appeared black and a binder phase that appeared white were observed. When an arbitrary straight line was drawn in this photograph and the binder phase thickness was measured, the average values and standard deviations shown in Table 4 were obtained.

さらに、これら焼結体を切削工具に加工し、下記の条件で切削試験を実施し、欠損に至る工具寿命を測定したところ表4に記載の結果が得られた。   Furthermore, when these sintered bodies were processed into cutting tools, a cutting test was performed under the following conditions, and the tool life leading to fracture was measured, the results shown in Table 4 were obtained.

切削試験条件:
被削材:SCM415、HRC58−62、φ100mm×L300mmで長手方向にV形状の溝が6本付けられた形状。
工具形状:SNG432 NL−25*0.15−0.2
ホルダー:FN11R
切削条件:V=190m/min、d=0.15mm、f=0.11mm/rev、dry
Cutting test conditions:
Work material: SCM415, HRC58-62, φ100mm × L300mm, with 6 V-shaped grooves in the longitudinal direction.
Tool shape: SNG432 NL-25 * 0.15-0.2
Holder: FN11R
Cutting conditions: V = 190 m / min, d = 0.15 mm, f = 0.11 mm / lev, dry

これからわかるように、結合相として周期律表4a,5a,6a族遷移金属の炭化物,窒化物,炭窒化物,硼化物、Alの窒化物,硼化物,酸化物、Fe,Co,Niの少なくとも1種の炭化物,窒化物,炭窒化物,硼化物、およびこれらの相互固溶体よりなる群から選択される1種以上のものが良いことがわかる。   As can be seen, at least one of the periodic table 4a, 5a and 6a transition metal carbides, nitrides, carbonitrides, borides, Al nitrides, borides, oxides, Fe, Co, and Ni as the binder phase. It can be seen that one or more kinds selected from the group consisting of one kind of carbide, nitride, carbonitride, boride, and their mutual solid solution are good.

(実施例5)
70重量%のTiの窒化物、25重量%のAl、3重量%のCoおよび2重量%のNiを混合し、真空中で1250℃、25分熱処理をした化合物を粉砕し、結合相粉末を作製した。この粉末はXRDではTiN、Ti2AlN、TiAl3等のピークがみられた。この結合相粉末と表5に記載の平均粒径のcBN粉末をcBNの体積含有率が57%になるように超音波混合した粉末を4.9GPa、1320℃の超高圧、高温下で焼結した。超音波混合は、エチルアルコール中にcBNと結合材の粉末を投入し、23kHzの超音波振動を付加して行った。得られた焼結体のXRDはどれもcBN、TiN、TiB2、AlB2、AlN、Al23、WCが観察された。
(Example 5)
70% by weight of Ti nitride, 25% by weight of Al, 3% by weight of Co, and 2% by weight of Ni were mixed, and the compound which had been heat-treated in vacuum at 1250 ° C. for 25 minutes was pulverized to obtain a binder phase powder. Produced. This powder showed peaks of TiN, Ti 2 AlN, TiAl 3 and the like by XRD. The powder obtained by ultrasonically mixing the binder phase powder and the cBN powder having the average particle size shown in Table 5 so that the volume content of cBN is 57% is sintered at 4.9 GPa, 1320 ° C. under high pressure and high temperature. did. Ultrasonic mixing was performed by adding cBN and binder powder in ethyl alcohol and applying ultrasonic vibration of 23 kHz. Any resulting XRD of the sintered body cBN, TiN, TiB 2, AlB 2, AlN, Al 2 O 3, WC were observed.

Figure 2008208028
Figure 2008208028

これら焼結体の組織を金属組織顕微鏡にて1500倍で撮影したところ黒く見えるcBN粒子と白く見える結合相が観察された。この写真で任意の直線を引き、結合相厚みを測定したところ、表5に記載の平均値と標準偏差が得られた。   When the structures of these sintered bodies were photographed with a metallographic microscope at a magnification of 1500, cBN particles that look black and a binder phase that looks white were observed. When an arbitrary straight line was drawn in this photograph and the binder phase thickness was measured, the average values and standard deviations shown in Table 5 were obtained.

さらに、これら焼結体を切削工具に加工し、下記の条件で切削試験を実施し、欠損に至る工具寿命を測定したところ表5に記載の結果が得られた。   Furthermore, when these sintered bodies were processed into cutting tools, a cutting test was performed under the following conditions, and the tool life leading to fracture was measured, the results shown in Table 5 were obtained.

切削試験条件:
被削材:SCM415、HRC58−62、φ100mm×L300mmで長手方向にV形状の溝が6本付けられた形状。
工具形状:SNG432 NL−25*0.15−0.2
ホルダー:FN11R
切削条件:V=170m/min、d=0.25mm、f=0.14mm/rev、dry
Cutting test conditions:
Work material: SCM415, HRC58-62, φ100mm × L300mm, with 6 V-shaped grooves in the longitudinal direction.
Tool shape: SNG432 NL-25 * 0.15-0.2
Holder: FN11R
Cutting conditions: V = 170 m / min, d = 0.25 mm, f = 0.14 mm / rev, dry

この結果から明らかなように、cBNの平均粒径が2.0から6.0μmの場合に欠損を抑制できていることがわかる。   As is clear from this result, it can be seen that defects can be suppressed when the average particle size of cBN is 2.0 to 6.0 μm.

本発明の切削工具は、硬度と強度の両立が求められる切削工具として好適に利用できる。 The cutting tool of the present invention can be suitably used as a cutting tool that requires both hardness and strength.

Claims (3)

cBN粒子を結合相で焼結した焼結体を備える切削工具であって、
前記結合相が二次元的に見て連続しており、
この結合相は、周期律表4a,5a,6a族遷移金属の炭化物,窒化物,炭窒化物,硼化物、Alの窒化物,硼化物,酸化物、Fe,Co,Niの少なくとも1種の炭化物,窒化物,炭窒化物,硼化物、およびこれらの相互固溶体よりなる群から選択される1種以上を含み、
cBNの含有率が体積%で45−70%で、
cBN粒子の平均粒度が2以上6μm以下であり、
結合相厚みの平均値が1.5μm以下で、その標準偏差が0.9以下であり、
この工具は、150m/min以上の速度で切削加工するための工具であることを特徴とする切削工具
但し、前記結合層の厚みを20点以上測定した場合に、標準偏差の収束点に至る測定点数での前記標準偏差が0.9超であり、前記収束点に至らない測定点数での標準偏差が0.9以下となる切削工具を除く。
A cutting tool comprising a sintered body obtained by sintering cBN particles in a binder phase,
The bonded phase is continuous in two dimensions,
This binder phase includes at least one of carbides, nitrides, carbonitrides, borides, Al nitrides, borides, oxides, Fe, Co, and Ni of the transition metal groups 4a, 5a, and 6a. Including one or more selected from the group consisting of carbides, nitrides, carbonitrides, borides, and their mutual solid solutions,
The cBN content is 45-70% by volume,
the average particle size of the cBN particles is 2 to 6 μm,
The average value of the binder phase thickness at 1.5μm or less state, and are a standard deviation of 0.9 or less,
Cutting tool The tool characterized by a tool der Rukoto for cutting at 150 meters / min or faster.
However, when the thickness of the bonding layer is measured at 20 points or more, the standard deviation at the number of measurement points reaching the convergence point of the standard deviation is more than 0.9, and the standard deviation at the number of measurement points not reaching the convergence point Excludes cutting tools with a 0.9 or less.
cBN粒子と結合相粉末とからなる原料粉末を以下のいずれかの方法で混合して得られたことを特徴とする請求項1に記載の切削工具。  2. The cutting tool according to claim 1, obtained by mixing raw material powder composed of cBN particles and binder phase powder by any of the following methods.
(1)超音波混合法  (1) Ultrasonic mixing method
(2)分散材を用いたボールミル法  (2) Ball mill method using dispersion material
(3)分散材を用いないボールミル法で、この原料粉末のcBN粒子を前記結合相材料が被覆された粒子とする方法  (3) A method in which the cBN particles of this raw material powder are coated with the binder phase material by a ball mill method without using a dispersing material.
cBN粒子の平均粒度が2以上6μm以下のcBN粒子と、周期律表4a,5a,6a族遷移金属の炭化物,窒化物,炭窒化物,硼化物、Alの窒化物,硼化物,酸化物、Fe,Co,Niの少なくとも1種の炭化物,窒化物,炭窒化物,硼化物、およびこれらの相互固溶体よりなる群から選択される1種以上の結合相粉末とを準備する工程と、  cBN particles having an average particle size of 2 to 6 μm, and carbides, nitrides, carbonitrides, borides, Al nitrides, borides, oxides of group 4a, 5a, and 6a transition metals in the periodic table, Providing at least one kind of binder phase powder selected from the group consisting of at least one carbide of Fe, Co, Ni, nitride, carbonitride, boride, and their mutual solid solution;
上記cBN粒子と結合相粉末とを以下のいずれかの方法でcBNの含有率が体積%で45−70%となるように混合する工程と、  Mixing the cBN particles and the binder phase powder by any of the following methods so that the cBN content is 45-70% by volume;
(1)超音波混合法  (1) Ultrasonic mixing method
(2)分散材を用いたボールミル法  (2) Ball mill method using dispersion material
(3)分散材を用いないボールミル法で、この原料粉末のcBN粒子を前記結合相材料が被覆された粒子とする方法  (3) A method in which the cBN particles of this raw material powder are coated with the binder phase material by a ball mill method without using a dispersing material.
混合された原料粉末を焼結して、結合相厚みの平均値を1.5μm以下、その標準偏差を0.9以下とし、150m/min以上の速度で切削加工するための工具を得る工程とを備えることを特徴とする切削工具の製造方法。  Sintering the mixed raw material powder, obtaining an average binder phase thickness of 1.5 μm or less, a standard deviation of 0.9 or less, and obtaining a tool for cutting at a speed of 150 m / min or more; A method for manufacturing a cutting tool, comprising:
但し、前記結合層の厚みを20点以上測定した場合に、標準偏差の収束点に至る測定点数での前記標準偏差が0.9超であり、前記収束点に至らない測定点数での標準偏差が0.9以下となる切削工具を除く。However, when the thickness of the bonding layer is measured at 20 points or more, the standard deviation at the number of measurement points reaching the convergence point of the standard deviation is more than 0.9, and the standard deviation at the number of measurement points not reaching the convergence point Excludes cutting tools with a 0.9 or less.
JP2008133579A 2008-05-21 2008-05-21 cBN SINTERED COMPACT Pending JP2008208028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008133579A JP2008208028A (en) 2008-05-21 2008-05-21 cBN SINTERED COMPACT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008133579A JP2008208028A (en) 2008-05-21 2008-05-21 cBN SINTERED COMPACT

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22367998A Division JP4787387B2 (en) 1998-07-22 1998-07-22 Cutting tool with excellent crater resistance and strength and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008208028A JP2008208028A (en) 2008-09-11
JP2008208028A5 true JP2008208028A5 (en) 2008-10-23

Family

ID=39784661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008133579A Pending JP2008208028A (en) 2008-05-21 2008-05-21 cBN SINTERED COMPACT

Country Status (1)

Country Link
JP (1) JP2008208028A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2546010B1 (en) 2010-03-12 2016-12-21 Sumitomo Electric Hardmetal Corp. Sintered cubic boron nitride tool
EP3061738B1 (en) * 2013-10-22 2018-09-26 Tungaloy Corporation Cubic boron nitride sintered body and coated cubic boron nitride sintered body
GB201609672D0 (en) * 2016-06-02 2016-07-20 Element Six Uk Ltd Sintered polycrystalline cubic boron nitride material

Similar Documents

Publication Publication Date Title
JP4787387B2 (en) Cutting tool with excellent crater resistance and strength and method for producing the same
KR100333459B1 (en) cBN Sintered Body
JP5305056B1 (en) Cutting tool made of cubic boron nitride based sintered body
WO2011129422A1 (en) Coated sintered cbn
JP6032375B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
JP4787388B2 (en) Cutting tool with excellent fracture resistance and manufacturing method thereof
JP2008208027A5 (en)
JP2008208027A (en) cBN SINTERED COMPACT
JP2014214065A (en) Cubic boron nitride sintered compact and coated cubic boron nitride sintered compact
WO2015163059A1 (en) Surface-coated boron nitride sintered compact tool
JP2015044259A (en) Cubic crystal boron nitride sintered cutting tool excellent in defect resistance
JP4065666B2 (en) High crater resistance High strength sintered body
JP2011140415A (en) Sintered compact and cutting tool using the sintered compact
EP3109220B1 (en) Use of sintered body and cutting tool
JP2007084382A (en) Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, and cutting tool for quench-hardened steel comprising the same
JP2008208028A5 (en)
JP6344975B2 (en) Diamond composite sintered body and manufacturing method thereof
WO2016136531A1 (en) Sintered body and cutting tool
JP2008208028A (en) cBN SINTERED COMPACT
JP2004026555A (en) Cubic boron nitride-containing sintered compact and method for producing the same
JP6265097B2 (en) Sintered body, cutting tool using sintered body
JP2010228088A (en) Surface-coated cutting tool
JP2011140414A (en) Sintered compact and cutting tool using the sintered compact
KR20000047918A (en) Sintered Body Having High Hardness and High Strength
JP6365228B2 (en) Sintered body