JPH10182242A - High hardness and high toughness sintered compact - Google Patents

High hardness and high toughness sintered compact

Info

Publication number
JPH10182242A
JPH10182242A JP9271311A JP27131197A JPH10182242A JP H10182242 A JPH10182242 A JP H10182242A JP 9271311 A JP9271311 A JP 9271311A JP 27131197 A JP27131197 A JP 27131197A JP H10182242 A JPH10182242 A JP H10182242A
Authority
JP
Japan
Prior art keywords
boron nitride
sintered body
binder
group
pressure phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9271311A
Other languages
Japanese (ja)
Inventor
Tomohiro Fukaya
朋弘 深谷
Tetsuo Nakai
哲男 中井
Junichi Shiraishi
順一 白石
Akira Kukino
暁 久木野
Shinya Kamisaka
伸哉 上坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9271311A priority Critical patent/JPH10182242A/en
Priority to CA 2219638 priority patent/CA2219638C/en
Publication of JPH10182242A publication Critical patent/JPH10182242A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62836Nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62842Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9692Acid, alkali or halogen resistance

Abstract

PROBLEM TO BE SOLVED: To obtain a sintered compact for a cutting tool having improved wear and chipping resistance by sintering high pressure phase type boron nitride powder coated with a binder. SOLUTION: This sintered compact consists of high pressure phase type boron nitride coated beforehand with a group IVa, Va or VIa element, Al, Si, an iron family element or their intermetallic compd. in 5-300nm average thickness, a bonding phase selected from among nitrides, carbides, borides and oxides of groups IVa, Va and VIa element, their solid solns., Al compds., Al and iron family metals and inevitable impurities. In an arbitrary region contg. at least 100 pieces high pressure phase type boron nitride grains, the number of grains coming in contact with other high pressure phase type boron nitride grains is 20 to <50%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、一般に焼結体に
関するものであり、より特定的には、耐摩耗性および耐
欠損性が改良された、切削工具、フライス工具およびエ
ンドミル等に代表される切削工具用の高圧相型窒化硼素
基高硬度高靱性焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a sintered body, and more specifically, to a cutting tool, a milling tool, an end mill, and the like having improved wear resistance and chipping resistance. The present invention relates to a high-pressure phase-type boron nitride-based high hardness and toughness sintered body for cutting tools.

【0002】[0002]

【従来の技術】cBN(立方晶型窒化硼素)に代表され
る高圧相型窒化硼素は、ダイヤモンドに次ぐ高硬度物質
であり、さらにダイヤモンドと比較して、鉄系材料との
反応性が低いため、cBN焼結体は種々の切削工具に使
用されている。
2. Description of the Related Art High-pressure phase boron nitride represented by cBN (cubic boron nitride) is a hard material next to diamond, and has a lower reactivity with iron-based materials than diamond. And cBN sintered bodies are used for various cutting tools.

【0003】また、高硬度でかつ高靱性である材料は、
切削工具用に限らず、たとえば摺動部に設けられる耐摩
部品や防御壁に用いられる耐衝撃部品など、さまざまな
用途において切望されている。
[0003] Materials having high hardness and high toughness include:
Not only for cutting tools but also for various applications such as wear-resistant parts provided on sliding parts and impact-resistant parts used for defense walls.

【0004】cBNは、ダイヤモンドと並び典型的な難
焼結性材料であり、かつ高圧安定相であるため、cBN
粒子のみを焼結するためには、2000℃以上、8GP
a以上という極限的な焼結条件が要求され、1400
℃、4GPa程度の工業的な焼結条件では、cBN粒子
同士に結合は生じない。
[0004] cBN is a typical hard-to-sinter material along with diamond and is a high-pressure stable phase.
In order to sinter particles only, the temperature must be 2000 ° C or higher and 8GP
a sintering conditions of 1400 or more are required.
Under industrial sintering conditions of about 4 ° C. and 4 ° C., no bonding occurs between the cBN particles.

【0005】一方、cBN粒子と結合相からなる焼結体
は、上記の工業的な焼結条件において、cBN粒子と結
合相の粒界で反応を生じるため、cBN粒子の保持力に
優れたcBN焼結体を得ることができる。
[0005] On the other hand, a sintered body composed of cBN particles and a binder phase reacts at the grain boundary between the cBN particles and the binder phase under the above-mentioned industrial sintering conditions. A sintered body can be obtained.

【0006】しかしながら、従来のcBN焼結体は、c
BN粉末と結合材粉末とを混合、焼結したものであり、
cBN粒子と結合材の混合状態が完全には均質ではなか
ったため、焼結体の一部の領域においてcBN粒子同士
が直接に接触したり、cBN粒子と反応を生じにくい結
合相とが接触しており、焼結を生じていない部分が存在
していた。そのため、耐摩耗性や耐欠損性が劣るという
問題点があった。
[0006] However, the conventional cBN sintered body is
BN powder and binder powder are mixed and sintered,
Since the mixed state of the cBN particles and the binder was not completely homogeneous, the cBN particles came into direct contact with each other in a part of the sintered body, or the cBN particles came into contact with a binder phase that did not easily react with the cBN particles. There was a portion where sintering did not occur. Therefore, there is a problem that the wear resistance and the fracture resistance are inferior.

【0007】この問題を解決しようとしたものとして、
提案されている代表的なものに、特開昭58−5824
7号公報、特開昭58−60678号公報、特開平5−
186844号公報がある。
As an attempt to solve this problem,
A representative one proposed is disclosed in Japanese Patent Application Laid-Open No. 58-5824.
7, JP-A-58-60678, JP-A-5-
There is 186844 gazette.

【0008】[0008]

【発明が解決しようとする課題】特開昭58−5824
7号公報には、立方晶型窒化硼素にTi、Hf、Zrお
よびMoの1種以上の硼化物と炭化物とでなる結合相組
成で、かつ0.1〜2μmの平均厚さでなる該硼化物が
立方晶窒化硼素を包囲した組織になっている切削および
耐摩耗工具用高靱性窒化硼素基超高圧焼結材料が開示さ
れている。
Problems to be Solved by the Invention JP-A-58-5824
No. 7 discloses a cubic boron nitride having a binder phase composition comprising one or more borides and carbides of Ti, Hf, Zr and Mo, and having an average thickness of 0.1 to 2 μm. A high-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools in which the nitride has a structure surrounding cubic boron nitride is disclosed.

【0009】また、特開昭58−60678号公報に
は、立方晶型窒化硼素にTi、HfおよびSiの1種以
上の窒化物と炭化物とでなる結合相組成で、かつ0.1
〜2μmの平均厚さでなる該硼化物が立方晶窒化硼素を
包囲した組織になっている切削および耐摩耗工具用高靱
性窒化硼素基超高圧焼結材料が開示されている。
Japanese Patent Application Laid-Open No. 58-60678 discloses a cubic boron nitride having a binder phase composition comprising at least one nitride of at least one of Ti, Hf and Si and a carbide, and having a binder phase composition of 0.1%.
A high toughness boron nitride based ultra-high pressure sintered material for cutting and wear resistant tools wherein the boride having an average thickness of 〜2 μm surrounds cubic boron nitride is disclosed.

【0010】さらに、特開平5−186844号公報に
は、立方晶型窒化硼素/またはウルツ鉱型窒化硼素に4
a、5a、6a族金属、Al、Si、Fe、Ni、Co
の炭化物、窒化物、酸化物、硼化物、希土類金属の酸化
物、窒化物これらの相互固溶体、またはFe、Ni、C
oの少なくとも1種以上とでなる結合相組成で、0.5
〜90nmの平均厚さのTi、Hf、Zr、Mo、A
l、Siの窒化物、硼化物およびこれらの相互固溶体の
中の1種以上が立方晶窒化硼素および/またはウルツ鉱
型窒化硼素を包囲した組織になっている切削および耐摩
耗工具用高靱性窒化硼素基超高圧焼結材料が開示されて
いる。
Further, Japanese Patent Application Laid-Open No. Hei 5-186844 discloses that cubic boron nitride and / or wurtzite boron nitride
a, 5a, 6a group metals, Al, Si, Fe, Ni, Co
Carbides, nitrides, oxides, borides, oxides of rare earth metals, nitrides of these solid solutions, or Fe, Ni, C
a binder phase composition comprising at least one of
Ti, Hf, Zr, Mo, A with an average thickness of ~ 90 nm
1, high-toughness nitride for cutting and wear-resistant tools wherein at least one of nitrides, borides of Si and their mutual solid solutions has a structure surrounding cubic boron nitride and / or wurtzite boron nitride A boron based ultra high pressure sintering material is disclosed.

【0011】これらの公報に記載されている高圧相型窒
化硼素基焼結体は、高圧相型窒化硼素粒子を結合材で被
覆し、焼結することにより、従来の高圧相型窒化硼素基
焼結体における未焼結部分を低減することができ、耐摩
耗性と耐欠損性が向上するというものである。
The high-pressure phase-type boron nitride-based sintered body described in these publications is obtained by coating the high-pressure phase-type boron nitride particles with a binder and sintering the same. The unsintered portion in the compact can be reduced, and the wear resistance and fracture resistance are improved.

【0012】しかしながら、これらの焼結体は、 1.被覆結合材が脆性材料であるセラミックスであるこ
と、 2.セラミックスは熱および化学的に安定であり、高圧
相型窒化硼素との間に十分な反応を生じないことから、
被覆結合材と高圧相型窒化硼素粒子との密着強度が十分
ではないこと、 等により、被覆結合材以外の結合材との混合時や超高圧
焼結装置およびホットプレス装置による加圧時に被覆結
合材が高圧相型窒化硼素粒子から容易に欠損剥離を起こ
してしまい、これらの粉末を用いた高圧相型窒化硼素基
焼結体においても、高圧相型窒化硼素粒子同士の接触が
頻繁に生じるなどして焼結体組織の均質化は不十分であ
った。
However, these sintered bodies are: 1. The coating binder is a ceramic which is a brittle material; Since ceramics are thermally and chemically stable and do not react well with high pressure phase boron nitride,
Due to insufficient adhesion strength between the coated binder and the high-pressure phase-type boron nitride particles, etc., the coated binder is mixed when mixed with a binder other than the coated binder and when pressed by an ultra-high pressure sintering device and a hot press device. The material easily breaks off from the high-pressure phase-type boron nitride particles, and even in the high-pressure phase-type boron nitride-based sintered body using these powders, the high-pressure phase-type boron nitride particles frequently come into contact with each other. As a result, the homogenization of the sintered body structure was insufficient.

【0013】この発明は、上記のような問題点を解決す
るためになされたものであり、耐摩耗性および耐欠損性
が改良された、切削工具、フライス工具およびエンドミ
ル等に代表される切削工具用の高圧相型窒化硼素基高硬
度高強度焼結体を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has improved wear resistance and chipping resistance, such as cutting tools, milling tools and end mills. It is an object of the present invention to provide a high-pressure phase-type boron nitride-based high hardness and high strength sintered body for use.

【0014】[0014]

【課題を解決するための手段】この発明に係る高硬度高
靱性焼結体は、高圧相型窒化硼素と残部結合相と不可避
不純物からなる焼結体が、焼結前に予め結合材を被覆し
た高圧相型窒化硼素粉末を有した焼結体にかかる。被覆
結合材は、周期律表4a、5a、6a族元素、Al、S
i、鉄族元素およびこれらの金属間化合物の群から選択
される少なくとも1種以上を5〜300nmの平均厚さ
で被覆したものである。被覆結合材以外の結合材粉末
は、周期律表4a、5a、6a族元素、Siの窒化物、
炭化物、硼化物、酸化物ならびにこれらの固溶体、Al
化合物、Al、鉄族金属の群から選択される少なくとも
1種以上からなり、かつ当該焼結体を構成している高圧
相型窒化硼素粒子を少なくとも100個以上含有してい
る当該焼結体中の任意の領域において、他の高圧相型窒
化硼素粒子と接触している粒子数(以後、高圧相型窒化
硼素同士の接触率と表記する)が20%以上50%未満
であることを特徴とする。
According to the present invention, there is provided a high-hardness and high-toughness sintered body comprising a high-pressure phase-type boron nitride, a remaining binder phase and unavoidable impurities, which are coated with a binder before sintering. The present invention relates to a sintered body having the obtained high-pressure phase-type boron nitride powder. The coating binder is composed of elements of the periodic table 4a, 5a, 6a, Al, S
At least one selected from the group consisting of i, iron group elements, and these intermetallic compounds is coated with an average thickness of 5 to 300 nm. The binder powder other than the coated binder is composed of a periodic table 4a, 5a, 6a group element, Si nitride,
Carbides, borides, oxides and their solid solutions, Al
The sintered body is made of at least one selected from the group consisting of a compound, Al, and an iron group metal, and contains at least 100 high-pressure phase-type boron nitride particles constituting the sintered body. In any region, the number of particles in contact with other high-pressure phase-type boron nitride particles (hereinafter referred to as a contact ratio between high-pressure phase-type boron nitride) is 20% or more and less than 50%. I do.

【0015】この発明の好ましい実施態様によれば、上
記被覆結合材は、Ti、Zr、Hfの群から選択される
少なくとも1種とAlの金属間化合物である立方晶型窒
化硼素に、被覆結合材以外の結合材粉末である、Al、
Co、Ni、W、WCの群から選択される少なくとも1
種を溶浸しながら焼結したものである。
According to a preferred embodiment of the present invention, the above-mentioned coated binder is coated with cubic boron nitride which is an intermetallic compound of at least one selected from the group consisting of Ti, Zr and Hf and Al. Al, which is a binder powder other than the material
At least one selected from the group consisting of Co, Ni, W, and WC
Sintered while infiltrating the seed.

【0016】また、上記の高圧相型窒化硼素は立方晶型
窒化硼素であり、上記の被覆結合材は、Ti、Zr、H
fの群から選択される少なくとも1種とAlの金属間化
合物であって、上記の結合材粉末が、TiN、ZrN、
HfN、TiC、ZrC、HfC、TiAlNならびに
これらの固溶体、Al、Al化合物の群から選択される
少なくとも1種以上からなるものも好ましい。
The high-pressure phase-type boron nitride is cubic-type boron nitride, and the coating binder is Ti, Zr, H
an intermetallic compound of at least one selected from the group of f and Al, wherein the binder powder is TiN, ZrN,
It is also preferable to use at least one selected from the group consisting of HfN, TiC, ZrC, HfC, TiAlN, and a solid solution thereof, Al, and an Al compound.

【0017】Al単体で被覆するよりも、Ti、Zr、
Hfの相互作用により、よりcBNとの反応性が高まる
効果がある。
Rather than coating with Al alone, Ti, Zr,
The interaction of Hf has the effect of increasing the reactivity with cBN.

【0018】[0018]

【発明の実施の形態】本発明の焼結体は、高圧相型窒化
硼素の表面に、化学蒸着法(CVD法)や物理蒸着法
(PVD法)、無電解めっき法、機械的混合法(たとえ
ばメカノフージョン等)等によって結合材を被覆した高
圧相型窒化硼素粉末を用いて、従来のプラズマ焼結装
置、ホットプレス装置、超高圧焼結装置により焼結する
ことができる。被覆結合材以外の結合材については、焼
結中にin situ で溶浸させたり、ボールミル法などに代
表される従来の粉末冶金法によって、結合材被覆高圧相
型窒化硼素粉末と混合後、上記の方法で焼結することが
できる。
BEST MODE FOR CARRYING OUT THE INVENTION The sintered body of the present invention is formed on a surface of high-pressure phase-type boron nitride by chemical vapor deposition (CVD), physical vapor deposition (PVD), electroless plating, mechanical mixing ( Using a high-pressure phase-type boron nitride powder coated with a binder by, for example, mechanofusion or the like, sintering can be performed by a conventional plasma sintering apparatus, hot press apparatus, or ultra-high pressure sintering apparatus. The binder other than the coated binder is infiltrated in situ during sintering or mixed with the binder-coated high-pressure phase-type boron nitride powder by a conventional powder metallurgy method such as a ball mill method. And sintering.

【0019】以下、この発明の実施例を、具体的数値を
用いて説明する。
Hereinafter, embodiments of the present invention will be described using specific numerical values.

【0020】[0020]

【実施例】実施例1 平均粒度が15μmであるcBN粉末と各種金属間化合
物粉末を、PEG(ポリエチレングリール)、PAMA
(ポリアルキルメタアクリレート)およびエチルアルコ
ールの混合溶液中で、遊星ミルを用いて、乾燥させなが
ら湿式混合を行なった。
EXAMPLES Example 1 cBN powder having an average particle size of 15 μm and various intermetallic compound powders were mixed with PEG (polyethylene glycol) and PAMA.
In a mixed solution of (polyalkyl methacrylate) and ethyl alcohol, wet mixing was performed while drying using a planetary mill.

【0021】この乾燥した混合粉末を、真空炉を用いて
10-5Torr、1200℃、1時間の条件で真空加熱
処理を行なった、熱処理後の粉末表面をEPMAで観察
したところ、cBN粉末上に均一に各種金属間化合物が
被覆されていることがわかった。
The dried mixed powder was subjected to a vacuum heat treatment in a vacuum furnace at 10 -5 Torr at 1200 ° C. for 1 hour. The powder surface after the heat treatment was observed by EPMA. It was found that various intermetallic compounds were uniformly coated.

【0022】次に、この被覆cBN粉末と結合材粉末
を、Al板を仕込んだMo製カプセルに充填した後、ベ
ルト型超高圧装置によって、5.2GPa、1480℃
の条件で、Al溶液を溶浸させながら20分間焼結し
た。比較のため、結合材を被覆していない同組成の出発
原料を用いたcBN焼結体についても作製した。
Next, the coated cBN powder and the binder powder were filled into a Mo capsule filled with an Al plate, and then 5.2 GPa and 1480 ° C. were applied by a belt type ultra-high pressure device.
Under the conditions described above, sintering was performed for 20 minutes while infiltrating the Al solution. For comparison, a cBN sintered body using a starting material having the same composition and not coated with a binder was also manufactured.

【0023】焼結後、超硬性容器を回収後研削により除
去し、この焼結体をX線解析、SEM、TEM、EDX
およびビーム系φ45nmのFE−AESにより分析を
行ない、この焼結体の組成と組織を分析した。cBN粒
子同士の接触率については、FE−AESの面分析像か
ら判断した。作製した焼結体の詳細を表1に示す。
After sintering, the superhard container is recovered and removed by grinding, and the sintered body is subjected to X-ray analysis, SEM, TEM, EDX
Analysis was performed by FE-AES with a beam system of φ45 nm, and the composition and structure of the sintered body were analyzed. The contact ratio between cBN particles was determined from a FE-AES surface analysis image. Table 1 shows details of the manufactured sintered bodies.

【0024】[0024]

【表1】 [Table 1]

【0025】この焼結体から、長さ6mm、幅3mm、
厚さ0.5〜0.55mmの測定試験片を切出し、4m
mスパンの条件で抗折力(強度)を測定した。
From this sintered body, a length of 6 mm, a width of 3 mm,
Cut out a test specimen 0.5 to 0.55 mm thick, 4 m
The bending strength (strength) was measured under the condition of m span.

【0026】さらに、切削用焼結体チップ(ISO規
格:SNMG120808)を作製し、次の条件で切削
テストを行なった。
Further, a sintered body chip for cutting (ISO standard: SNMG120808) was prepared, and a cutting test was performed under the following conditions.

【0027】 被削材:硬度HRC60のSKH51材の丸棒 切削速度:V80m/min、切込0.3mm、送り
0.15mm/rev.、湿式で30分 切削テストの結果を表2に示す。
Work material: Round bar of SKH51 material with hardness HRC60 Cutting speed: V80 m / min, depth of cut 0.3 mm, feed 0.15 mm / rev. Table 2 shows the results of a 30 minute wet cutting test.

【0028】[0028]

【表2】 [Table 2]

【0029】実施例2 RFスパッタリングPVD装置を用いて、平均粒度が
0.5μmである高圧相型窒化硼素粉末に表3に示した
ように、各種金属、金属間化合物、AlB2、TiB2
およびAlNを被覆した。この際、炉内の真空度を10
-4Torrとした後、Arガスを導入して、10-3To
rrの雰囲気に保持し、300℃まで加熱しながら、電
力5KW、周波数15MHz、10時間の条件で被覆し
た。
Example 2 As shown in Table 3, various kinds of metals, intermetallic compounds, AlB2 and TiB2 were applied to a high-pressure phase-type boron nitride powder having an average particle size of 0.5 μm using an RF sputtering PVD apparatus.
And AlN. At this time, the degree of vacuum in the furnace was set at 10
-4 Torr, Ar gas was introduced, and 10 -3 Torr
The coating was performed under the conditions of electric power of 5 KW, frequency of 15 MHz, and 10 hours while being heated to 300 ° C. while being kept in an atmosphere of rr.

【0030】次に、この被覆高圧相型窒化硼素粉末と結
合材粉末を表3の構成になるように配合された混合粉末
をボールミルの後、実施例1と同様にして、ベルト型超
高圧装置によって、4.5GPa、1300℃の条件で
10分間焼結した。ただし、溶浸は行なわなかった。比
較のため、結合材を被覆していない出発原料を用いたc
BN焼結体についてもいくつか作製した。
Next, the mixed powder obtained by mixing the coated high-pressure phase-type boron nitride powder and the binder powder so as to have the composition shown in Table 3 was subjected to a ball mill, and then a belt type ultra-high pressure apparatus was prepared in the same manner as in Example 1. Sintering at 4.5 GPa and 1300 ° C. for 10 minutes. However, no infiltration was performed. For comparison, c using starting material not coated with binder
Some BN sintered bodies were also produced.

【0031】実施例1と同様にして、作製した焼結体の
組成と組織の分析を行なった結果を表3に示す。
Table 3 shows the results of analysis of the composition and structure of the manufactured sintered body in the same manner as in Example 1.

【0032】[0032]

【表3】 [Table 3]

【0033】さらに、実施例1と同様にして、抗折力
(強度)の測定および下記の条件での切削評価を行なっ
た。
Further, in the same manner as in Example 1, the bending strength (strength) was measured and the cutting evaluation was performed under the following conditions.

【0034】チップ:SNGN120808 外周6箇所にV字形状の溝を有する浸炭焼入れした硬度
HRC60のSCM420H 切削速度:V150m/min、切込0.2mm、送り
0.1mm/rev.、乾式 切削テストの結果を表4に示す。
Tip: SNGN120808 SCM420H of hardness HRC60 having V-shaped grooves at six locations on the outer periphery Cutting speed: V150 m / min, depth of cut 0.2 mm, feed 0.1 mm / rev. Table 4 shows the results of the dry cutting test.

【0035】[0035]

【表4】 [Table 4]

【0036】実施例3 RFスパッタリングPVD装置を用いて、平均粒度が1
0μmであるcBN粉末にAlを被覆した。この際、炉
内の真空度を10-4Torrとしながら、Arガスを導
入して、10-3Torrの雰囲気に保持して、200℃
まで加熱しながら、電力5kw、周波数12MHz、3
00分の条件で被覆した。
Example 3 The average particle size was 1 using an RF sputtering PVD apparatus.
Al was coated on 0 μm cBN powder. At this time, Ar gas was introduced while maintaining the degree of vacuum in the furnace at 10 −4 Torr, and the atmosphere was maintained at 10 −3 Torr, and the temperature was reduced to 200 ° C.
5kw power, 12MHz frequency, 3
The coating was performed under the condition of 00 minutes.

【0037】この混合粉末を回収後、粉末表面をTEM
で観察したところ、cBN粉末にAlが平均層圧150
nmで均質に被覆されていることがわかった。
After recovering the mixed powder, the surface of the powder was examined by TEM.
As a result, the cBN powder was found to contain Al at an average layer pressure of 150.
It was found that the coating was uniform in nm.

【0038】次に、この結合材を被覆したcBN粉末を
Al板を仕込んだMo製カプセルに充填し、ベルト型超
高圧装置によって4.8GPa、1450℃の条件で、
15分間焼結した。比較のため、結合材を被覆していな
い同組成の出発原料を用いたcBN焼結体についても作
製した。
Next, the cBN powder coated with the binder was filled into a Mo capsule filled with an Al plate, and was then subjected to 4.8 GPa and 1450 ° C. using a belt type ultra-high pressure device.
Sintered for 15 minutes. For comparison, a cBN sintered body using a starting material having the same composition and not coated with a binder was also manufactured.

【0039】焼結後、Mo製カプセルを回収後、研削に
より除去し、この焼結体をX線解析、ICP、TEMお
よびAESにより分析を行ない、この焼結体の組成と組
織を分析した。作製した焼結体の詳細を表5に示す。
After sintering, the Mo capsules were collected, removed by grinding, and the sintered body was analyzed by X-ray analysis, ICP, TEM, and AES to analyze the composition and structure of the sintered body. Table 5 shows details of the manufactured sintered bodies.

【0040】[0040]

【表5】 [Table 5]

【0041】また、比較のために、市販のcBN焼結体
についても調査した。次に、この焼結体から、長さ6m
m、幅3mm、厚さ0.4〜0.45mmである四角形
状にした当該焼結体を、密閉容器中で、濃度60〜65
%の硝酸を2倍希釈したもの40mlと、濃度45〜5
0%のフッ化水素酸10mlを混合したフッ硝酸によ
り、140℃で3時間の溶解処理を行なった。その後、
この測定試験片を用いて、4mmスパンの条件で抗折力
を測定した。このとき、溶解処理を施す前の抗折力につ
いても測定した。抗折力の結果を表6に示す。
For comparison, a commercially available cBN sintered body was also investigated. Next, from this sintered body, a length of 6 m
m, a width of 3 mm, and a thickness of 0.4 to 0.45 mm.
% Nitric acid (40 ml) diluted twice and a concentration of 45 to 5
Dissolution treatment was performed at 140 ° C. for 3 hours with hydrofluoric / nitric acid mixed with 10% of 0% hydrofluoric acid. afterwards,
Using this measurement test piece, the transverse rupture strength was measured under a condition of 4 mm span. At this time, the bending strength before the dissolution treatment was also measured. Table 6 shows the results of the transverse rupture force.

【0042】[0042]

【表6】 [Table 6]

【0043】さらに、主面形状が四角形の切削用焼結体
チップ(ISO規格:SNMG120812)を形成
し、次の条件で切削テストを行なった。
Further, a sintered chip for cutting having a square main surface (ISO standard: SNMG120812) was formed, and a cutting test was performed under the following conditions.

【0044】被削材:外周2箇所にV字形状の2つの溝
を有する、硬度HB180のFCD450の丸棒 切削速度:V200m/min、切込0.5mm、送り
0.2mm/rev.、湿式 切削テストの結果を図1に示す。
Work material: round bar of FCD450 having hardness HB180 having two V-shaped grooves at two outer circumferences Cutting speed: V200 m / min, depth of cut 0.5 mm, feed 0.2 mm / rev. FIG. 1 shows the results of the wet cutting test.

【0045】本発明のcBN焼結体のみ、溶解処理後
に、ばらばらとなったが、それ以外のcBN焼結体は、
いずれもハンドリングを行なうのに十分な強度(抗折
力)を有していた。
Although only the cBN sintered body of the present invention was separated after the melting treatment, the other cBN sintered bodies were:
All had sufficient strength (flexural strength) for handling.

【0046】この原因としては、本発明以外のcBN焼
結体では、cBN粒子同士が直接的に接触している部分
が多いため、cBN以外の成分を溶解することができる
フッ硝酸が焼結体内部まで浸透しきれなかったためと推
定される。
The reason for this is that, in many cBN sintered bodies other than the present invention, the cBN particles are in direct contact with each other in many parts, so that hydrofluoric nitric acid, which can dissolve components other than cBN, is used. It is presumed that it could not penetrate all the way inside.

【0047】すなわち、本発明の焼結体では、cBN粒
子の外周がフッ硝酸に溶解される結合相成分で覆われて
いるため、溶解処理を行なうと、粉末状に崩れてしまっ
たものと推定される。
That is, in the sintered body of the present invention, since the outer periphery of the cBN particles is covered with the binder phase component dissolved in the hydrofluoric nitric acid, it is presumed that the cBN particles have been disintegrated into a powder form by the dissolution treatment. Is done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】切削テストの結果を示す図である。FIG. 1 is a diagram showing the results of a cutting test.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久木野 暁 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 (72)発明者 上坂 伸哉 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akira Kugino 1-1-1, Koyo Kita, Itami City, Hyogo Prefecture Inside Itami Works, Sumitomo Electric Industries, Ltd. (72) Inventor Shinya Uesaka 1-1, Koyo Kita Kita, Itami City, Hyogo Prefecture No. 1 Sumitomo Electric Industries, Ltd. Itami Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高圧相型窒化硼素と残部結合相と不可避
不純物からなる焼結体が、焼結前に予め結合材を被覆し
た高圧相型窒化硼素粉末を有した焼結体であって、 被覆結合材が、周期律表4a、5a、6a族元素、A
l、Si、鉄族元素およびこれらの金属間化合物の群か
ら選択される少なくとも1種以上を5〜300nmの平
均厚さで被覆したものであり、 被覆結合材以外の結合材粉末が周期律表4a、5a、6
a族元素、Siの窒化物、炭化物、硼化物、酸化物なら
びにこれらの固溶体、Al化合物、Al、鉄族金属の群
から選択される少なくとも1種以上からなり、 かつ当該焼結体を構成している高圧相型窒化硼素粒子を
少なくとも100個以上含有している当該焼結体中の任
意の領域において、他の高圧相型窒化硼素粒子と接触し
ている粒子数が20%以上50%未満であることを特徴
とする高硬度高靱性焼結体。
1. A sintered body comprising a high-pressure phase-type boron nitride, a residual binder phase and an unavoidable impurity is a sintered body having a high-pressure phase-type boron nitride powder coated with a binder before sintering, The coated binder is made of a periodic table 4a, 5a, 6a group element, A
1, at least one selected from the group consisting of iron, iron group elements and intermetallic compounds thereof, coated with an average thickness of 5 to 300 nm. 4a, 5a, 6
the sintered body comprises at least one element selected from the group consisting of group a elements, Si nitrides, carbides, borides, oxides, and solid solutions thereof, Al compounds, Al, and iron group metals; 20% or more and less than 50% of particles in contact with other high-pressure phase-type boron nitride particles in an arbitrary region in the sintered body containing at least 100 high-pressure phase-type boron nitride particles. A high-hardness, high-toughness sintered body characterized in that:
【請求項2】 焼結体中におけるcBN粒子の含有率
が、体積%で80%以上99.9%以下である、請求項
1に記載の高硬度高靱性焼結体。
2. The high hardness and high toughness sintered body according to claim 1, wherein the content of cBN particles in the sintered body is 80% or more and 99.9% or less by volume%.
【請求項3】 cBN粒子の平均粒径が20μm以下で
あって、長さ6mm、幅3mm、厚さ0.4〜0.45
mmである四角形状にした当該焼結体を、密閉容器中
で、濃度60〜65%の硝酸を2倍希釈したもの40m
lと、濃度45〜50%のフッ化水素酸10mlを混合
したフッ硝酸により、120〜150℃で、3〜5時間
の溶解処理を行なった測定試験片を用いて、4mmスパ
ンの条件で測定される抗折力が20kgf/mm2 以下
である、請求項2に記載の高硬度高靱性焼結体。
3. The average particle size of the cBN particles is 20 μm or less, the length is 6 mm, the width is 3 mm, and the thickness is 0.4 to 0.45.
mm, a 2-fold dilution of nitric acid having a concentration of 60 to 65% in a closed container.
and 4 to 50% hydrofluoric acid mixed with 10 ml of hydrofluoric acid at 120 to 150 ° C. for 3 to 5 hours. transverse rupture strength is 20 kgf / mm 2 or less, high hardness, high toughness sintered body according to claim 2 which is.
【請求項4】 前記被覆結合材が、Ti、Zr、Hfの
群から選択される少なくとも1種とAlの金属間化合物
である立方晶型窒化硼素に、被覆結合材以外の結合材粉
末である、Al、Co、Ni、W、WCの群から選択さ
れる少なくとも1種を溶浸しながら焼結したものであ
る、請求項1に記載の高硬度高靱性焼結体。
4. The coating binder is a cubic boron nitride which is an intermetallic compound of at least one selected from the group consisting of Ti, Zr and Hf and Al, and a binder powder other than the coating binder. The high hardness and high toughness sintered body according to claim 1, wherein at least one selected from the group consisting of Al, Co, Ni, W and WC is sintered while infiltrating.
【請求項5】 前記高圧相型窒化硼素が立方晶型窒化硼
素であり、 前記被覆結合材が、Ti、Zr、Hfの群から選択され
る少なくとも1種とAlの金属間化合物であって、 前記結合材粉末が、TiN、ZrN、HfN、TiC、
ZrC、HfC、TiAlNならびにこれらの固溶体、
Al、Al化合物の群から選択される少なくとも1種以
上からなる、請求項1に記載の高硬度高靱性焼結体。
5. The high-pressure phase-type boron nitride is cubic boron nitride, and the coating binder is an intermetallic compound of at least one selected from the group consisting of Ti, Zr and Hf and Al, The binder powder is TiN, ZrN, HfN, TiC,
ZrC, HfC, TiAlN and solid solutions thereof,
The high-hardness and high-toughness sintered body according to claim 1, comprising at least one selected from the group consisting of Al and an Al compound.
JP9271311A 1996-10-31 1997-10-03 High hardness and high toughness sintered compact Pending JPH10182242A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9271311A JPH10182242A (en) 1996-10-31 1997-10-03 High hardness and high toughness sintered compact
CA 2219638 CA2219638C (en) 1996-10-31 1997-10-28 Hard and tough sintered body for a cutting tool

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29035996 1996-10-31
JP8-290359 1996-10-31
JP9271311A JPH10182242A (en) 1996-10-31 1997-10-03 High hardness and high toughness sintered compact

Publications (1)

Publication Number Publication Date
JPH10182242A true JPH10182242A (en) 1998-07-07

Family

ID=26549643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9271311A Pending JPH10182242A (en) 1996-10-31 1997-10-03 High hardness and high toughness sintered compact

Country Status (2)

Country Link
JP (1) JPH10182242A (en)
CA (1) CA2219638C (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144131A (en) * 2000-11-09 2002-05-21 Gn Tool Kk Ball end mill
JP2002144132A (en) * 2001-01-26 2002-05-21 Gn Tool Kk Ball end mill
EP1547990A2 (en) 2003-12-25 2005-06-29 Sumitomo Electric Hardmetal Corp. High-strength, highly thermally conductive sintered compact of cubic boron nitride
WO2007010670A1 (en) * 2005-07-15 2007-01-25 Sumitomo Electric Hardmetal Corp. Composite sintered compact
WO2007145071A1 (en) 2006-06-12 2007-12-21 Sumitomo Electric Hardmetal Corp. Composite sinter
WO2008093577A1 (en) 2007-01-30 2008-08-07 Sumitomo Electric Hardmetal Corp. Sintered composite material
WO2014065131A1 (en) * 2012-10-26 2014-05-01 住友電工ハードメタル株式会社 Cubic boron nitride sintered body, and method for producing same
WO2014156625A1 (en) * 2013-03-29 2014-10-02 住友電工ハードメタル株式会社 Method for manufacturing cubic boron nitride sintered body, and cubic boron nitride sintered body

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144131A (en) * 2000-11-09 2002-05-21 Gn Tool Kk Ball end mill
JP2002144132A (en) * 2001-01-26 2002-05-21 Gn Tool Kk Ball end mill
EP1547990A2 (en) 2003-12-25 2005-06-29 Sumitomo Electric Hardmetal Corp. High-strength, highly thermally conductive sintered compact of cubic boron nitride
US7081424B2 (en) 2003-12-25 2006-07-25 Sumitomo Electric Hardmetal Corp. High-strength, highly thermally conductive sintered compact of cubic boron nitride
KR101123490B1 (en) 2005-07-15 2012-03-23 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Composite sintered compact and cutting tool
WO2007010670A1 (en) * 2005-07-15 2007-01-25 Sumitomo Electric Hardmetal Corp. Composite sintered compact
JP5032318B2 (en) * 2005-07-15 2012-09-26 住友電工ハードメタル株式会社 Composite sintered body
JP5298372B2 (en) * 2006-06-12 2013-09-25 住友電工ハードメタル株式会社 Composite sintered body
WO2007145071A1 (en) 2006-06-12 2007-12-21 Sumitomo Electric Hardmetal Corp. Composite sinter
US8999023B2 (en) 2006-06-12 2015-04-07 Sumitomo Electric Hardmetal Corp. Composite sintered body
US10307829B2 (en) 2006-06-12 2019-06-04 Sumitomo Electric Hardmetal Corp. Composite sintered body
US8124553B2 (en) 2007-01-30 2012-02-28 Sumitomo Electric Hardmetal Corp. Composite sintered body
WO2008093577A1 (en) 2007-01-30 2008-08-07 Sumitomo Electric Hardmetal Corp. Sintered composite material
EP2108632B1 (en) * 2007-01-30 2017-05-10 Sumitomo Electric Hardmetal Corp. Sintered composite material
WO2014065131A1 (en) * 2012-10-26 2014-05-01 住友電工ハードメタル株式会社 Cubic boron nitride sintered body, and method for producing same
JP2014084268A (en) * 2012-10-26 2014-05-12 Sumitomo Electric Hardmetal Corp Cubic boron nitride sintered compact and method for producing the same
US9487449B2 (en) 2012-10-26 2016-11-08 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered body and method for manufacturing the same
WO2014156625A1 (en) * 2013-03-29 2014-10-02 住友電工ハードメタル株式会社 Method for manufacturing cubic boron nitride sintered body, and cubic boron nitride sintered body
JP2014198637A (en) * 2013-03-29 2014-10-23 住友電工ハードメタル株式会社 Method for producing cubic boron nitride sintered compact and cubic boron nitride sintered compact
US9522850B2 (en) 2013-03-29 2016-12-20 Sumitomo Electric Hardmetal Corp. Method for manufacturing cubic boron nitride sintered body, and cubic boron nitride sintered body

Also Published As

Publication number Publication date
CA2219638C (en) 2002-07-30
CA2219638A1 (en) 1998-04-30

Similar Documents

Publication Publication Date Title
KR100263594B1 (en) Hard and tough sintered body
EP0974566B1 (en) Cubic boron nitride sintered body
JP5614460B2 (en) cBN sintered body tool and coated cBN sintered body tool
JP4787387B2 (en) Cutting tool with excellent crater resistance and strength and method for producing the same
KR100459518B1 (en) High Pressure Phase Boron Nitride Sintered Body
JP6637664B2 (en) Cubic boron nitride sintered compact cutting tool
JPH0621313B2 (en) Sintered body for high hardness tool and manufacturing method thereof
JP2002226273A (en) Sintered compact
JP4065666B2 (en) High crater resistance High strength sintered body
JP4787388B2 (en) Cutting tool with excellent fracture resistance and manufacturing method thereof
JP2523452B2 (en) High strength cubic boron nitride sintered body
JPH10182242A (en) High hardness and high toughness sintered compact
JPH10218666A (en) High-pressure phase type boron nitride-based sintered compact
JP5092237B2 (en) cBN-based ultra-high pressure sintered body and method for producing the same
JP4887588B2 (en) Dispersion strengthened CBN-based sintered body and method for producing the same
JPH08239277A (en) Cubic boron nitride composite ceramic tool and production thereof
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JP2000226262A (en) High-hardness and high-strength sintered compact
JP2005194556A (en) Rare-earth-containing sintered alloy
JP3422028B2 (en) Boron nitride coated hard material and method for producing the same
KR960000556B1 (en) Centring tool material
JPH08197307A (en) Cutting tool made of cubic system boron nitride base superhigh pressure sintered material having high strength and high toughness
JP3411593B2 (en) Cubic boron nitride sintered body for cutting tools
JP2003175407A (en) Cutting tip made of cubic boron nitride-group extra-high sintered material having excellent chipping resistance
JP2003176177A (en) Cutting tip made of high pressure sintered cubic boron nitride having excellent chipping resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703