HUE034865T2 - Lencse alakú léghajó és kapcsolódó vezérlések - Google Patents

Lencse alakú léghajó és kapcsolódó vezérlések Download PDF

Info

Publication number
HUE034865T2
HUE034865T2 HUE12171556A HUE12171556A HUE034865T2 HU E034865 T2 HUE034865 T2 HU E034865T2 HU E12171556 A HUE12171556 A HU E12171556A HU E12171556 A HUE12171556 A HU E12171556A HU E034865 T2 HUE034865 T2 HU E034865T2
Authority
HU
Hungary
Prior art keywords
airship
energy source
control
rotation
source
Prior art date
Application number
HUE12171556A
Other languages
English (en)
Inventor
Pierre Balaskovic
Original Assignee
Lta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lta Corp filed Critical Lta Corp
Publication of HUE034865T2 publication Critical patent/HUE034865T2/hu

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/06Rigid airships; Semi-rigid airships
    • B64B1/24Arrangement of propulsion plant
    • B64B1/30Arrangement of propellers
    • B64B1/34Arrangement of propellers of lifting propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/06Rigid airships; Semi-rigid airships
    • B64B1/36Arrangement of jet reaction apparatus for propulsion or directional control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/04Initiating means actuated personally
    • B64C13/042Initiating means actuated personally operated by hand
    • B64C13/0421Initiating means actuated personally operated by hand control sticks for primary flight controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D43/00Arrangements or adaptations of instruments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Toys (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Mechanical Control Devices (AREA)

Description

(12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: B64B 1136 <2006 01> B64B 1134 <2006 01> 12.04.2017 Bulletin 2017/15 B64C 13104<2006 01> B64D 43100 <2006 01> B64B 1100 <2006·01) (21) Application number: 12171556.9 (22) Date of filing: 07.08.2008 (54) Lenticular Airship and Associated Controls
Linsenformiges Luftschiff und entsprechende Steuerungen Dirigeable lenticulaire et commandes associees (84) Designated Contracting States: (56) References cited: ATBEBGCHCYCZDEDKEEESFIFRGBGR DE-A1-102005 013 529 FR-A-2 830 838 HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT US-A-4 591 112 US-A- 5 906 335
ROSE SI SKTR
• FILOKTIMON REPOULIAS, EVANGELOS (30) Priority: 09.08.2007 US 935383 P PAPADOPOULOS: "Dynamically Feasible
Trajectory and Open-Loop Control Design for (43) Date of publication of application: Unmanned Airships", 2007 MEDITERRANEAN
19.09.2012 Bulletin 2012/38 CONFERENCE ON CONTROL AND AUTOMATION, 27 July 2007 (2007-07-27), - 29 (62) Document number(s) of the earlier application(s) in July 2007 (2007-07-29), XP002511581, Athens, accordance with Art. 76 EPC: Greece 08827387.5/2 173 613 · NAGABHUSHAN B L ETAL: "Directional control
of an advanced airship", AIAA
(73) Proprietor: LTA Corporation LIGHTER-THAN-AIR SYSTEMS TECHNOLOGY
New York, NY 10022 (US) CONFERENCE, 11TH, CLEARWATER BEACH,
FL, MAY 15-18,1995, TECHNICAL PAPERS (72) Inventor: Balaskovic, Pierre (A95-30317 07-01), WASHINGTON, DC,
91370 Verrieres le Buisson (FR) AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS, 1995,, 15 May 1995 (74) Representative: Finnegan Europe LLP (1995-05-15), pages 107-116, XP008100629, 16 Old Bailey
London EC4M 7EG (GB)
Description
TECHNICAL FIELD
[0001] The disclosure is related to lenticular airships. In particular, the disclosure relates to an airship and associated controls for providing enhanced maneuverability and operability.
BACKGROUND INFORMATION
[0002] Aerostatic lighter-than-air airships have seen substantial use since 1783 following the first successful manned flight of the Montgolfier brothers hotair balloon. Numerous improvements have been made since that time, but the design and concept of manned hot air balloons remains substantially similar Such designs may include a gondola for carrying an operator and passengers, a heating device (e.g., a propane torch), and a large envelope or bag affixed to the gondola and configured to be filled with air. The operator may then utilize the heating device to heat the air until the buoyant forces of the heated air exert sufficient force on the envelope to lift the balloon and an attached gondola. Navigation of such an airship has proven to be difficult, mainly due to wind currents and lack of propulsion units for directing the balloon.
[0003] To improve on the concept of lighter-than-air flight, some lighter-than-air airships have evolved to include propulsion units, navigational instruments, and flight controls. Such additions may enable an operator of such an airship to direct the thrust of the propulsion units in such a direction as to cause the airship to proceed as desired. Airships utilizing propulsion units and navigational instruments typically do not use hot air as a lifting gas (although hot air may be used), with many operators instead preferring lighter-than-air lifting gases such as hydrogen and helium. These airships may also include an envelope for retaining the tighter-than-air gas, a crew area, and a cargo area, among otherthings. The airships are typically streamlined in a blimp- or zeppelin-like shape (also known as "cigar" shaped), which, while providing reduced drag, may subject the airship to adverse aeronautic effects (e.g., weather cocking and reduced maneuverability).
[0004] Airships other than traditional hot air balloons may be divided into several classes of construction: rigid, semi-rigid, non-rigid, and hybrid type. Rigid airship typically possess rigid frames containing multiple, non-pres-surized gas cells or balloons to provide lift. Such airships generally do not depend on internal pressure of the gas cells to maintain their shape. Semi-rigid airships generally utilize some pressure within a gas envelope to maintain their shape, but may also have frames along a lower portion of the envelope for purposes of distributing suspension loads into the envelope and for allowing lower envelope pressures, among other things. Non-rigid airships typically utilize a pressure level in excess of the surrounding air pressure in order to retain their shape, and any load associated with cargo carrying devices is supported by the gas envelope and associated fabric. The commonly used blimp is an example of a non-rigid airship.
[0005] Hybrid airships may incorporate elements from other airship types, such as a frame for supporting loads and an envelope utilizing pressure associated with a lifting gas to maintain its shape. Hybrid airships also may combine characteristics of heavier-than-air airship (e.g., airplanes and helicopters) and lighter-than-air technology to generate additional lift and stability. It should be noted that many airships, when fully loaded with cargo and fuel, may be heavier than air and thus may use their propulsion system and shape to generate aerodynamic lift necessary to stay aloft. However, in the case of a hybrid airship, the weight of the airship and cargo may be substantially compensated for by lift generated by forces associated with a lifting gas such as, for example, helium. These forces may be exerted on the envelope, while supplementary lift may result from aerodynamic lift forces associated with the hull.
[0006] A lift force (i.e., buoyancy) associated with a lighter-than-air gas may depend on numerous factors, including ambient pressure and temperature, among other things. For example, at sea level, approximately one cubic meter of helium may balance approximately a mass of one kilogram. Therefore, an airship may include a correspondingly large envelope with which to maintain sufficient lifting gas to lift the mass of the airship. Airships configured for lifting heavy cargo may utilize an envelope sized as desired for the load to be lifted.
[0007] Hull design and streamlining of airships may provide additional lift once the airship is underway. For example, a lenticular airship may have a discus-like shape in circular planform where the diameter may be greater than an associated height. Therefore, the weight of an airship may be compensated by the aerodynamic lift of the hull and the forces associated with the lifting gas including, for example helium.
[0008] However, a lighter-than-airairship may present unique problems associated with aerodynamic stability, based on susceptibility to adverse aerodynamic forces. For example, traditional airships may typically exhibit low aerodynamic stability in the pitch axis. Lenticular shaped bodies may be aerodynamically less stable than either spherical or ellipsoidal shaped bodies. For example, the boundary layer airflow around the body may separate and create significant turbulence at locations well forward of the trailing edge. Therefore, systems and methods enhancing aerodynamic stability may be desirable.
[0009] Further, increasing flight controllability may be another challenging but important aspectfor lighter-than-air airship design. For example, the airship may be lifted by thrust forces generated by vertically-directed propulsion engines, and may move forward or backwards powered by thrust forces generated by horizontally-directed propulsion engines. In traditional airships flight control systems, however, propeller pitch has not been variably adjustable Therefore, the operator of such airships could not control a pitch angle and/or a lift force, among other things, associated with the airship through adjustment of propeller pitch. Further, vertically- and horizontally-directed propulsion engines have been separately controlled, without provision for coordination of these engines with horizontal and vertical stabilizer systems. Therefore, traditional airship controls have not provided maneuverability and response desired by operators. In addition, the operator may wish to know certain flight-related parameters during the flight without having to look away from the view ahead of the airship, to provide more effective control input. For example, the operator may desire an indication of the attitude of the airship to be viewable directly in line of sight (LoS) through a gondola canopy before providing pitch/roll control inputs to the airship. Accordingly, systems and methods for enhancing flight controllability including but not limited to, airship pitch and yaw control, coordination of one or more control systems, and/or indication of certain airship status parameters, may be desirable.
[0010] The present disclosure may be directed to addressing one or more of the desires discussed above utilizing various exemplary embodiments of an airship.
[0011] FR 2 830 838, which is considered to be the closest prior art, relates to an airship with a lenticular hull. The airship comprises a plurality of motors, a tailfin and a tail equipped with pivoting flaps. The motors are controlled by a control means that is operable by a pilot.
[0012] US 4,591,112 relates to a vectored thrust airship with four vertical lifting units. Rotation of the airship about its yaw axis is primarily achieved by applying a differential transverse cyclic pitch or a differential longitudinal cyclic pitch to the lifting units.
SUMMARY OF THE DISCLOSURE
[0013] In accordance with the invention, there is provided: a system for controlling yaw as recited by claim 1; and a method for controlling yaw as recited by claim 8.
[0014] In one aspect, the present disclosure isdirected to a system for controlling yaw associated with an airship. The system may include one or more vertical control surfaces associated with an airship, a first power source and a second power source, each configured to provide a thrust associated with an airship, and a yaw control configured to receive an input indicative of a desired yaw angle. The system may further include a controller communicatively connected to the yaw control, the one or more vertical control, surfaces, and the first and second power sources. The controller may be configured to receive an output signal from the yaw control corresponding to the desired yaw angle. The controller may be further configured to generate a control signal configured to modify a state associated with at least one of the one or more vertical control surfaces, the first power source, and the second power source, such that the airship sub stantially attains the desired yaw angle.
[0015] In another aspect, the present disclosure is directed to a method for controlling yaw associated with an airship including a first power source, a second power source, and a vertical control surface. The method may include receiving a signal indicative of a desired yaw angle for the airship and determining an operational state associated with the first power source, the second power source, and the vertical control surface. The method may further include modifying the operational state associated with the first power source, the second power source, and the vertical control surface to cause airship to attain the desired yaw angle.
[0016] In yet another aspect, the present disclosure is directed to a system for controlling yaw associated with a lenticular airship defining a periphery and a nose. The system may include a vertical control surface associated with an empennage of the lenticular airship, a first power source located on the periphery of the lenticular airship at a position 120 degrees from the nose and configured to provide a thrust associated with the lenticular airship, and a second power source, located on the periphery of the lenticular airship at a position negative 120 degrees from the nose and configured to provide a thrust associated with the lenticular airship. The system may further include a pedal actuated yaw control configured to receive an input indicative of a desired yaw angle. The system may also include a controller communicatively connected to the yaw control, the vertical control surface, and the first and second power sources. The controller may be configured to receive an output signal from the yaw control corresponding to the desired yaw angle. The controller may be further configured to generate a control signal configured to modify a state associated with at least one of the one for more vertical control surfaces, the first power source, and the second power source, such that the lenticular airship substantially attains the desired yaw angle.
[0017] According to a further aspect, the present disclosure is directed to a system for controlling a flight parameter associated with an airship. The system may include a frame, and a support structure slidably mounted to the frame and configured to provide support to an airship control and a slider output signal, indicative of an offset of the support structure from a predetermined neutral position of the frame. The system may further include a processor communicatively connected to the frame, the support structure, and airship control. The processor may be configured to receive the slider output signal, wherein the processor is configured to generate a control signal for modifying the flight parameter based on the slider output signal.
[0018] According to a further aspect, the present disclosure isdirected to a method for controlling at least one parameter associated with an airship. The method may include sliding a support structure upon a frame, the support structure being configured to provide a slider output signal indicative of an offset of the support structure from a predetermined neutral position and including a control. The method may further include receiving the slider output signal at a controller, and generating a control signal based on the slider output signal; and modifying a flight parameter associated with the airship via the control signal.
[0019] In yet another aspect, the present disclosure is directed to a system for controlling a propeller pitch associated with each of three or more propulsion assemblies associated with an airship. The system may include a control configured to receive an input from an operator indicative of a desired lift force. The system may further include a processor configured to receive a signal indicative of the desired lift force from the control and generate an output signal for causing a substantially similar modification to operation of each of the three of more propulsion assemblies, such that the desired lift force is substantially applied to the airship.
[0020] In yet another aspect, the present disclosure is directed to a method for controlling propeller pitch related to three or more propulsion assemblies associated with an airship. The method may include receiving an input from an operator indicative of a desired lift force, and modifying operation of the three or more propulsion assemblies, such that the desired lift force is substantially applied to the airship.
[0021] In yet another aspect, the present disclosure is directed to a system for controlling a lift force associated with an airship. The system may include three propulsion assemblies, each propulsion assembly including a variable pitch propeller, and a control configured to receive an input from an operator indicative of a desired lift force. The system may further include a processor communicatively connected to the three propulsion assemblies and the control. The processor may be configured to receive a signal indicative of the desired lift force from the control, and transmit a control signal to the three propulsion assemblies configured to cause each of the three propulsion assemblies to produce a substantially similar thrust vector.
[0022] In yet another aspect, the present disclosure is directed to a system for displaying attitude information associated with an airship. The system may include a first plurality of indicators arranged along a horizontal axis, and a second plurality of indicators arranged along a vertical axis. The system may include a processor configured to determine an attitude associated with the airship; and cause at least one indicator of the first plurality of indicators or the second plurality of indicators to respond based on the attitude.
[0023] In yet another aspect, the present disclosure is directed to a method for displaying attitude information associated with an airship. The method may include receiving a signal indicative of an attitude associated with the airships, and determining an attitude associated with the airship based on the signal. The method may further include causing at least one indicator of a first plurality of indicators and a second plurality of indicators to re spond according to the attitude.
[0024] In yet another aspect, the present disclosure is directed to a system four displaying attitude information associated with an airship. The system may include a sensor configured to sense an attitude associated with the airship and generate a corresponding sensor output, and a substantially transparent display. The system may further include a first plurality of indicators arranged along a horizontal axis of the display, and a second plurality of indicators arranged along a vertical axis of the display. The system may also include a processor configured to determine an attitude associated with the airship based on the sensor output, and cause at least one indicator of the first plurality of indicators or the second plurality of indicators to light according to the attitude.
BRIEF DESCRIPTION OF THE FIGURES
[0025]
Fig. 1 is a perspective schematic view of an exemplary embodiment of a lenticular airship (LA);
Fig. 2 is a schematic view highlighting an exemplary empennage and its exemplary horizontal control surfaces and vertical control surfaces;
Fig. 3A is a schematic, partial perspective view of an exemplary embodiment of a vertical propulsion assembly;
Fig. 3B is a schematic, partial perspective view of an exemplary embodiment of a thrust propulsion assembly;
Fig. 4A is a schematic, plan, bottom-side view of an exemplary embodiment of an arrangement of propulsion systems associated with an exemplary LA; Fig. 4B is a schematic, plan, bottom-side view of another exemplary embodiment of an arrangement of propulsion systems associated with an exemplary LA;
Fig. 5A is a schematic, partial perspective view of an exemplary gondola associated with an exemplary LA, showing an exemplary slider control and an exemplary collective pitch control;
Fig. 5B is another schematic, partial perspective view of an exemplary gondola associated with an exemplary LA, showing an exemplary slide-control and an exemplary collective pitch control;
Fig. 5C is another schematic, partial perspective view of an exemplary gondola associated with an exemplary LA, showing an exemplary slider control, an exemplary yaw control, and an exemplary attitude indicator;
Fig. 6 is a schematic, front-side view of an exemplary embodiment of an attitude indicator;
Fig. 7 is a block diagram of an exemplary embodiment of a flight computer;
Fig. 8 is a block diagram depicting an exemplary embodiment of a method for controlling yaw associated with an airship;
Fig. 9 is a block diagram depicting an exemplary embodiment of a method for controlling at least one parameter associated with an airship;
Fig. 10 is a block diagram depicting an exemplary embodiment of a method for controlling propeller pitch related to three or more propulsion assemblies, associated with an airship; and Fig. 11 is a block diagram depicting an exemplary embodiment of a method for displaying attitude information associated with an airship.
DETAILED DESCRIPTION
[0026] Fig. 1 illustrates one exemplary embodiment of a lenticular airship (LA) 10. LA 10 may be configured for vertical take-off and landing (VTOL) asvivell as navigation in three dimensions (e.g., X, Y, and Z planes). To facilitate such a flight, LA 10 may include a support structure 20, a hull 22, an empennage assembly 25, rear landing gear assemblies 377, a propulsion system including propulsion assemblies 31 , a gondola 35, one or more computers 600 (see, e.g., Fig. 7), and/or a front landing gear assembly 777. Throughout this discussion of various embodiments, the terms "airship" and "lenticular airship" may be used interchangeably to refer to various embodiments of LA 10. Further, the terms "front" and/or "fore" may be used to refer to areas within a hemisphere section of LA 10 closest to forward travel, and the term "rear" and/or "aft" may be used to refer to areas within a hemisphere section of LA 10 closest to the opposite direction of travel. Moreover, the term "tail" may be used to refer to a rear most point associated with hull 22, while the term "nose" may be used to refer to the forward most point within the front section of hull 22.
[0027] Support structure 20 may be configured to define a shape associated with LA 10, while providing support to numerous systems associated with LA 10. such systems may include, for example, hull 22, gondola 35, a cargo compartment (not shown), and/or propulsion assemblies 31 . Support structure 20 may be defined by one or more frame members interconnected to form adesired shape. For example, according to some embodiments, frame members at the bottom part of support structure 20 may form a bisected "H" configuration of built up graphite composite beams. For example, the frame members may be an assembly of 3-ply graphite fabric layers applied at 60 degree angles between each ply. These frame members mayjoin with asimilarly constructed rigid ring that defines the outer circumference of LA 10. The ring may be composed of a plurality of laid up composite structures that are joined together with a channel-shaped composite stiffener. Such an arrangement of the beams and the rigid ring frame may work together to carry static and dynamic loads in both compression and tension.
[0028] To maximize a lifting capacity associated with LA 10, it may be desirable to design and fabricate support structure 20 such that weight associated with support structure 20 is reduced or minimized while strength, and therefore resistance to aerodynamicforces, for example, is increased or maximized. In other words, maximizing a strength-to-weight ratio associated with support structure 20 may provide a more desirable configuration for LA 10. For example, one or more frame members may be constructed from light weight, but high strength, materials including, for example, a substantially carbon-based material (e.g., carbon fiber) and/or aluminum, among other things.
[0029] According to some embodiments, one or more frame members may be constructed, to include a carbon fiber/resin composite and honeycomb-carbon sandwich. The honeycomb-carbon sandwich may further include a carbon mousse or foam type material. In such an embodiment, individual frame members associated with support structure 20 may be fabricated in an appropriate size and shape for assembly within support structure 20. Such construction may lead to a desirable strength-to-weight ratio for support structure 20. In some embodiments, it may be desirable to fabricate support structure 20 such that an associated mass is less than, for example, 200 kilograms.
[0030] Hull 22 may include multiple layers/envelopes and/or may be of a semirigid construction. Further, hull 22 may be substantially oblate spheroid, or "lenticular" in shape. For example, the dimensions of an oblate spheroid shape may be approximately described by the representation A = B > C, where A is a length dimension (e.g., along roll axis 5); B is a width dimension (e.g., along pitch axis 6); and C is a height dimension (e.g., along yaw axis 7) of an object. In other worlds, an oblate spheroid may have an apparently circular planform with a height, (e.g., a polar diameter) less than the diameter of the circular planform (e.g., an equatorial diameter). For example, according to some embodiments, hull 22 may include dimensions as follows: A = 21 meters; B = 21 meters; and C = 7 meters. Dimensions associated with hull 22 may also define, at least in part, a volume of light-er-than-air gas that may be retained within hull 22. For example, using the dimensions given above for hull 22, an uncompressed internal volume associated with hull 22 may be approximately 1275 cubic meters. Note that these dimension are exemplary only and larger orsmaller dimensions may be implemented without departing from the scope of the present inventions. For example, hull 22 may include dimensions as follows, A = 105 meters; B = 105 meters, and C = 35 meters.
[0031] Hull 22 may be configured to retain a volume of lighter-than-air gas and may be fabricated such that, upon retention of the volume of gas, a substantially lenticular and/or oblate spheroid shape results. Therefore, hull 22 may include a first envelope sewn or otherwise assembled of fabric or material configured to retain a lighter-than-air gas and/or having a circular planform with a maximum thickness less than the diameter of the circular planform. In some embodiments, the first envelope may be fabricated from materials including, for example, alu- minized plastic, polyurethane, polyester, laminated latex, and any other material suitable for retaining a lighter-than-air gas. The first envelope may be fabricated from one or more polyester sheets and may be sewn or otherwise shaped such that retention of a volume of lighter-than-air gas causes first envelope 282 to assume the shape of an oblate spheroid.
[0032] The first envelope associated with hull 22 may be configured to be fastened to support structure 20 such that support structure 20 may provide support to hull 22. For example, the first envelope may be attached to the rim of the composite load ring to provide a continuous and smooth attachment of the upper fabric skin to LA 10. Such a design may eliminate stress concentrations caused by asymmetrical upward forces frequently encountered in conventional airship designs. In some embodiments, the fabric seams on LA 10 may run radially from the center of the helium dome to the rigid rim so that the seams can carry loads along their length.
[0033] Lighter-than-air lifting gasses for use within the first envelope of hull 22 may include, for example, helium, hydrogen, methane, and ammonia, among others The lift force potential of a lighter-than-air gas may depend on the density of the gas relative to the density of the surrounding air or other fluid (e.g., water). For example, the density of helium at 0 degrees Celsius and 101.325 kilo-Pascals may be approximately 0.1786 grams/liter, while the density of air at 0 degrees C and 101.325 kilo-Pascals may be approximately 1.29 g/L. Based on the lighter- than-air gas chosen, an internal volume of the first envelope associated with hull 22 may be selected such that a desired amount of lift force is generated by a volume of lighter-than-air gas.
[0034] According to some embodiments, the first envelope associated with hull 22 may be divided by a series of "walls" or dividing structures (not shown). These walls may create separated "compartments" that may each be filled individually with a lighter-than-air lifting gas. Such a configuration may mitigate the consequences of the failure of one or more compartments (e.g., a leak or tear in the fabric) such that LA 10 may still possess some aerostatic lift upon failure of one or more compartments. In some embodiments, each compartment may be in fluid communication with at leastoneothercompartment, and such walls may be fabricated from materials similar to those, used in fabrication of the first envelope, or, alternatively (or in addition), different materials may be used. For example, the "walls" may be constructed by a material that is sufficiently porous to allow the gas to slowly migrate between the separate cells to maintain an equal pressure.
[0035] One or more of the compartments within the first envelope may include one or more fill and/or relief valves (not shown) configured to allow filling of the first envelope, which may result in minimizing the risk of overinflation of the first envelope. Such valves may be designed to allow entry of a lighter-than-air gas as well as allowing a flow of lighter-than-air gas to flow out of the first envelope upon an internal pressure reaching a predetermined value (e.g., about 150 to about 400 Pascals).
[0036] In addition to aerostatic lift generated by retention of a lighter-than-air gas, hull 22 may be configured to generate at least some aerodynamic lift when placed in an airflow (e.g., LA 10 in motion and/or wind moving around hull 22) based on an associated angle of attack and airflow velocity relative to LA 10. For example, hull 22 may include a second envelope configured to conform substantially to a shape associated with the first envelope. The second envelope associated with hull 22 may, for example, substantially surround both top and bottom surfaces of the first envelope, or alternatively, the second envelope may be formed by two or more pierces of material, each substantially covering only a portion of the top and/or bottom surface of hull 22. For example, according to some embodiments, the second envelope may closely resemble the first envelope, but contain a slightly larger volume, such that the second envelope may substantially surround support structure 20 and the first envelope associated with hull 22.
[0037] The second envelope may include canvass, vinyl, and/or other suitably material that may be sewn or otherwise crafted into a suitable shape, which may possess a desired resistance to external stresses (e.g., tears, aerodynamic forces, etc.). In some embodiments, the second envelope may include a low drag and/or low weight fabric such as, for example, polyester, polyurethane, and/or DuPont™ Tedlar®, having a thermo plastic coating.
[0038] In addition to providing aerodynamic lift force transfer to support structure 20 and potential tear resistance, upon installation of the second envelope, a space may be created between the first envelope and the second onvelope, which may be utilized as a ballonetfor LA 10. For example, a ballonet may be used to compensate for differences in pressure between a lifting gas within the first envelope and the ambient air surrounding LA 10, as well as for the ballasting of an airship. The ballonet may therefore allow hull 22 to maintain its shape when ambient air pressure increases (e.g., when LA 10 descends). pressure compensation may be accomplished, for example, by pumping air into, or venting air out of, the ballonet as LA 10 ascends and descends, respectively. such pumping and venting of air may be accomplished via air pumps, venttabs, or othersuitable devices (e.g., action of the propulsion system 30) associated with hull 22.
[0039] Fig. 1 further illustrates various axes relative to the exemplary LA 10 for reference purposes. LA 10 may define a roll axis 5, a pitch axis 6, and a yaw axis 7. Roll axis 5 of LA 10 may correspond with an imaginary line running through hull 22 in a direction from, for example, empennage assembly 25 to gondola 35. Yaw axis 7 of LA 10 may correspond with an imaginary line running perpendicular to roll axis 5 through hull 22 in a direction from, for example, a bottom surface of hurl 22 to a top surface of hull 22. Pitch axis 6 may correspond to an imaginary line running perpendicular to both yaw and roll axes, such that pitch axis 6 runs through hull 22 from one side of LA 10 to the other side of LA 10. "Roll axis" and "X axis;" "pitch axis" and "Y axis;" and "yaw axis" and "Z axis" may be used interchangeably throughout this discussion to refer to the various axes associated with LA 10. One of ordinary skill in the art will recognize that the terms described in this paragraph are exemplary only and not intended to be limiting.
[0040] Yaw and pitch controls of LA 10 may determine the vertical and horizontal directions of propulsion, and ultimately determine the flight direction of LA 10.
[0041] Fig. 2 illustrates an exemplary empennage assembly 25. Empennage assembly 25 may be configured to provide stabilization and/or navigation functionality to LA 10. Empenriage assembly 25 may be operatively connected to support structure 20 (see Fig. 1) via brackets, mounts, and/or other suitable methods. For example, in some embodiments, empennage 25 may be mounted to a keel hoop 120, and a longitudinal support member 124 associated with support structure 20, utilizing empennage mount 345. As shown in Fig: 2, keel hoop 120 may be a substantially circular peripheral beam associated with support structure 20. Keel hoop 120 may include one or more frame sections with a defined radius of curvature that may be affixed to one another to form keel hoop 120 of a desired radius. In some embodiments, keel hoop 120 may have a diameter of, for example, approximately 21 meters. Longitudinal frame member 124 may be configured to extend in a longitudinal direction from a fore portion of keel hoop 120 to a rear portion of keel hoop 120. Longitudinal frame member 124 may meet keel hoop 120 substantially orthogonally and may be aligned at substantially a midway point associated with keel hoop 120. In other words, viewing keel hoop 120 in a two dimensional plane, longitudinal frame member 124 may intersect keel hoop 120 at relative positions of 0 degrees and 180 degrees. One of ordinary skill in the art will recognize that numerous other mounting configurations may be utilized and are intended to fall within the scope of the present disclosure.
[0042] According to some embodiments, empennage assembly 25 may include a vertical stabilizing member 310. Vertical stabilizing member 310 may be configured as an airfoil to provide LA 10 with stability and assistance in yaw/linear flight control. Vertical stabilizing member 310 may include a leading edge, a trailing edge, a pivot assembly, one or more spars, and one or more vertical control surfaces 350 (e.g., a rudder).
[0043] Vertical stabilizing member 310 may be pivotally affixed to a point on empennage assembly 25. During operation of LA 10, vertical stabilizing member 310 may be directed substantially upward from a mounting point of empennage assembly 25 to support structure 20 while the upper-most point of vertical stabilizing member 310 remains below or substantially at the same level as the uppermost point on the top surface of hull 22. Such a configuration may allow vertical stabilizing member 310 to maintain isotropy associated with LA 10. Under certain conditions (e.g., free air docking, high winds, etc.), vertical stabilizing member 310 may be configured to pivot about a pivot assembly within a vertical plane such that vertical stabilizing member 310 comes to rest in a horizontal or downward, vertical direction, and substantially between horizontal stabilizing members 315. Such an arrangement may further enable LA 10 to maximize isotropy relative to a vertical axis, thereby minimizing the effects of adverse aerodynamic forces, such as wind cocking with respect to vertical stabilizing member 310. In some embodiments consistent with the present disclosure, where hull 22 includes a thickness dimension of 7 meters and where empennage assembly 25 is mounted to keel hoop 120 and longitudinal frame member 124, vertical stabilizing member 310 may have a height dimension ranging from about 3 meters to about 4 meters.
[0044] Vertical stabilizing member 310 may include one or more spars (not shown) configured to define the planform of vertical stabilizing member 310 as well as provide support for a skin associated with vertical stabilizing member 310. The one or more spars may include a substantially carbon-based material, such as, for example, a carbon fiber honeycomb sandwich with a carbon fiber mousse. Each of the one or more spars may have openings (e.g., circular cutouts) at various locations, such that weight is minimized, with minimal compromise in strength. One of ordinary skill in the art will recognize that minimizing the number of spars used, while still ensuring desired structural support may allow for minimizing weight associated with vertical stabilizing member 310. Therefore, the one or more spars may be spaced along the span of vertical stabilizing member 310 at a desired interval configured to maximize support while minimizing weight.
[0045] A leading edge 322 may be utilized for defining an edge shape of vertical stabilizing member 310 as well as securing the spars prior to installation of a skin asso-ciatedwithverticalstabilizingmember310. Leading edge 322 may also include a substantially carbon-based material, such as a carbon fiber honeycomb sandwich with a carbon fiber mousse.
[0046] Leading edge 322 and the one or more spars may be aligned and fastened in place with a skin installed substantially encasing leading edge 322 and spars. The skin may include, for example, canvass, polyester, nylon, thermoplastics, and/or any other suitable material. The skin may be secured using adhesives, shrinkwrap methods, and/or any other suitable method for securing the skin to leading edge 322 and the one or more spars.
[0047] For example, in some embodiments, a canvass material may be applied over the one or more spars and leading edge 322 then secured using an adhesive and/or other suitable fastener. The canvass material may then be coated with a polyurethane and/or thermoplastic material to further increase strength and adhesion to the one or more spars and leading edge 322.
[0048] Vertical stabilizing member 310 may also in- elude one or more vertical control surfaces 350 configured to manipulate airflow around vertical stabilizing member 310 for purposes of controlling LA 10. For example, vertical stabilizing member310 may include a rudder configured to exert a side force on vertical stabilizing member 310 and thereby, on empennage mount 345 and hull 22. Such a side force may be used to generate a yawing motion about yaw axis 7 of LA 10, which may be useful for compensating aerodynamic forces during flight. Vertical control surfaces 350 may be operatively connected to vertical stabilizing member 310 (e.g., via hinges) and may be communicatively connected to systems associated with gondola 35 (e.g., yaw controls) or other suitable locations and systems. For example, communication may be established mechanically (e.g., cables) and/or electronically (e.g., wires and servo motors and/or light signals) with gondola 35 or other suitable locations (e.g., remote control).
[0049] Horizontal stabilizing members 315 associated with empennage assemble 25 may be configured as airfoils and may provide horizontal stability and assistance in pitch control of LA 10, among other things. Horizontal stabilizing members 315 may include a leading edge, a trailing edge, one or more spars, and one or more horizontal control surfaces 360 (e.g., elevators).
[0050] In some embodiments, horizontal stabilizing members 315 may be mounted on a lower side of hull 22 in an anhedral (also known as negative or inverse dihedral) configuration. In other words, horizontal stabilizing members 315 may extend away from vertical stabilizing member 310 at a downward angle relative to roll axis 5. The anhedral configuration of horizontal stabilizing members 315 may allow horizontal stabilizing members 315 to act as ground and landing support for a rear section of LA 10. Alternatively, horizontal stabilizing members 315 may be mounted in a dihedral or other suitable configuration.
[0051] According to some embodiments, horizontal stabilizing members 315 may be operatively affixed to empennage mount 345 and/or vertical stabilizing member 310. Linder certain conditions (e.g., free air docking, high winds, etc.) horizontal stabilizing members 315 may be configured to allow vertical stabilizing member 310 to pivot within a vertical plane, such that vertical stabilizing member 310 comes to rest substantially between horizontal stabilizing members 315.
[0052] In some embodiments, a span (i.e., tip-to-tip measurement) associated with horizontal stabilizing members 315 may be approximately 10 to 20 meters across, depending on a desired size of hull 22. In some embodiments, a span associated with horizontal stabilizing members 315 may be, for example, approximately 14.5 meters. One of ordinary skill in the art will recognize that such a span may be larger or smaller depending on characteristics of a particular embodiment. For example, a ratio of hull diameter to span may be in a range of between approximately 1.6:1 and 1 :1.
[0053] Horizontal stabilizing members 315 may in clude one or more spars (not shown) configured to define the planform of horizontal stabilizing members 315 as well as provide support for a skin associated with horizontal stabilizing members 315. The one or more spars may include a substantially carbon-based material, such as a carbon fiber honeycomb sandwich with a carbon fiber mousse. Each of the one or more spars may have openings (e.g., circular cutouts) at various locations, such that weight is minimized with minimal compromise in strength. One of ordinary skill in the art will recognize that minimizing the number of spars used, while still ensuring desired structural support may allow for minimizing weight associated with horizontal stabilizing members 315. Therefore, spars may be spaced along the span of horizontal stabilizing members 315 at a desired interval configured to maximize support while minimizing weight.
[0054] A leading edge 352 may be utilized for defining an edge shape of horizontal stabilizing members 315 as well as securing each spar prior to installation of a skin associated with horizontal stabilizing members 315. Leading edge 352 may also include a substantially carbon-based material, such as a carbon fiber honeycomb sandwich with a carbon fiber mousse to obtain a desirable strength-to-weight ratio. Once leading edge 352 and the one or more spars have been aligned and fastened in place, a skin may be installed substantially encasing leading edge 352 and the one or more spars. Skin materials may include, for example, canvass, polyester, nylon, thermoplastics, and/or any other suitable material. The skin may be secured using adhesives, shrink wrap methods, and/orany other suitable method. For exam pie, in some embodiments, a canvass material may be applied over the one or more spars and leading edge 352 and secured using an adhesive, and/or other suitable fastener. The canvass material may then be coated with a polyurethane and/or thermoplastic material to further increase strength and adhesion to spars and leading edge 352.
[0055] Horizontal stabilizing members 315 may also include one or more horizontal control surfaces 360 (e.g., elevators) configured to manipulate airflow around horizontal stabilizing members 315 to accomplish a desired effect. For example, horizontal stabilizing members 315 may include elevators configured to exert a pitching force (i. e., up or down force), and/or a rolling force on horizontal stabilizing members 315. A pitching force may be used to cause motion of LA 10 about pitch axis 6, while a rolling force may be used to cause motion of LA 10 about roll axis. 5. Horizontal control surfaces 360 may be operatively connected to horizontal stabilizing members 315 (e.g., via hinges) and may be mechanically (e.g., via cables) and/or electronically (e.g., via wires and servo motors and/or light signals) controlled from gondola 35 or other suitable location (e.g., remote control).
[0056] Figs. 3A and 3B illustrate two exemplary embodiments of propulsion assemblies 31. For example, as shown in Fig. 3A, propulsion assemblies 31 may include a power source 410, a power conversion unit 415, a pro- pulsion unit mount 430, and/or a fuel source (e.g., a tank) (not shown). Power source 410 may include, for example, electric motors, liquid fuel motors, gas turbine engines, and/or any suitable power source configured to generate rotational power. Power source 410 may further include variable-speed and/or reversible type motors that may be run in either direction (e.g., rotated clockwise or counterclockwise) and/or at varying rotational speeds based on control signals (e.g., signals from computer 600, shown in Fig. 7). Power source 410 may be powered by batteries, solar energy, gasoline, diesel fuel, natural gas, methane, and/or any other suitable fuel source. In some embodiments, for example, power source 410 may include a Mini 2 and/or a Mini 3 motor manufactured by Simonini Flying, Via per Marano, 4303, 41010 - San Dal-mazio di Serramazzoni (MO), Italy.
[0057] According to some embodiments, propulsion assemblies 31 may include a power conversion unit 415 configured to convert the rotational energy of power source 410 into a thrust force suitable for acting on LA 10. For example, power conversion unit 415 may include an airfoil or other device that when rotated may generate an airflow or thrust. For example, power conversion unit 415 may be arranged as an axial fan (e.g., propeller), a centrifugal fan, and/or a tangential fan. Such exemplary fan arrangements may be suited to transforming rotational energy produced by power source 410 into a thrust force useful for manipulating LA 10, among other things. Alternatively, where a power source such as a gas turbine engine is utilized, thrust may be provided without use of power conversion unlit 415. One of ordinary skill in the art will recognize that numerous configurations may be utilized without departing from the scope of the present disclosure.
[0058] Power conversion unit 415 may be adjustable such that an angle of attack of power conversion unit 415 may be modified. This may allow for modification to thrust intensity and direction based on the angle of attack associated with power conversion unit 415. For example, where power conversion unit 415 is configured as an adjustable airfoil (e.g., variable-pitch propellers), power conversion unit 415 may be rotated through 90 degrees to accomplish a complete thrust reversal. Power conversion unit415may be configured with, for example, vanes, ports, and/or other devices, such that a thrust generated by power conversion unit 415 may be modified and directed in a desired direction. Alternatively (or in addition), direction of thrust associated with power conversion unit 415 may be accomplished via manipulation of propulsion unit mount 430.
[0059] As shown in Fig. 3A, for example, propulsion unit mount 430 may be operatively connected to support structure 20 (see Fig. 1) and may be configured to hold a power source 410 securely, such thatforces associated with propulsion assemblies 31 may be transferred to support structure 20. For example, propulsion unit mount 430 may include fastening points 455 (Figs. 3A and 3B) designed to meet with a fastening location on keel hoop 120, horizontal stabilizing members 315, lateral frame member (not shown), and/or any other suitable location. Such locations may include structural reinforcement for assistance in resisting forces associated with propulsion assemblies 31 (e.g., thrust forces.). Additionally, propulsion unit mount 430 may include a series of fastening points designed to match fastening points on a particular power source 410. One of ordinary skill in the art will recognize that an array of fasteners may be used for securing fastening points to obtain a desired connection between propulsion unit mount 430 and a fastening location.
[0060] According to some embodiments, propulsion unit mount 430 may include pivot assemblies configured to allow a rotation of propulsion assemblies 31 about one or more axes (e.g., axes 465 and 470) in response to a control signal provided by, for example, computer 600 (see, e.g., Fig. 7). Pivot assemblies may include worm gears, bevel gears, bearings, motors, and/or other devices that mary facilitate controlled rotation about one or more axes of propulsion assemblies 31. In such embodiments, an electric motor may be configured to cause rotation of an associated worm gear and the rotation of worm gear may then cause rotation of propulsion mount gear, thereby rotating propulsion mount 430.
[0061] Alternatively, in some embodiments, propulsion assemblies 31 may be mounted such that minimal rotation or pivoting may be enabled (e.g., substantially fixed) as shown in Fig. 3B. Such a configuration may be utilized for one or more of propulsion assemblies 31, as desired.
[0062] Figs. 4A and 4B illustrate exemplary configurations (viewed from the bottom of LA 10) of a propulsion system associated with LA 10 consistent with the present disclosure. Propulsion assemblies 31 associated with LA 10 may be configured to provide a propulsive force (e.g., thrust), directed in a particular direction (i.e., a thrustvec-tor), and configured to generate motion (e.g., horizontal motion and/or vertical motion), counteract a motive force (e.g., wind forces), and/or other manipulation of LA 10 (e.g., yaw control). For example, propulsion assemblies 31 may enable yaw, pitch, and roll control as well as providing thrust for horizontal and vertical motion. Such functionality may depend on placement and power associated with propulsion assemblies 31.
[0063] Functions associated with propulsion system 30 may be divided among a plurality of propulsion assemblies 31 (e.g., 5 propulsion assemblies 31). For example, propulsion assemblies 31 may be utilized for providing a lift force for a vertical take-off such that the forces of the lighter-than-air gas within the first envelope of hull 22 are assisted in lifting by a thrust force associated with the propulsion assemblies 31. Alternatively (or in addition), propulsion assemblers 31 may be utilized for providing a downward force for a landing maneuver such that the forces of the lighter-than-air gas within the first envelope of hull 22 are counteracted by a thrust force associated with the propulsion assemblies 31. In addition, horizontal thrust forces may also be provided by propulsion assemblies 31 for purposes of generating horizontal motion (e.g., translation with respect to the ground) associated with LA 10.
[0064] It may be desirable to utilize propulsion assemblies 31 for controlling or assisting in control ofyaw, pitch, and roll associated with LA 10. In some embodiments, LA 10 may include one or more lift propulsion assemblies, such as those shown at Fig. 3A, configured to provide vertical lifting thrust, and one or more horizontal propulsion assemblies, such as those shown at Fig. 3B1 configured to provide horizontal propulsion thrust. These vertical and horizontal propulsion assemblies may be controlled by the operator in a coordinated manner to balance the vertical lifting component, horizontal direction, and angle of LA 10.
[0065] For example, as shown in Fig. 4A, propulsion system 30 may include a fore propulsion assembly 532 operatively affixed to a fore section of keel hoop 120 (see Fig. 1) and substantially parallel to and/or on roll axis 5 of LA 10. In addition to fore propulsion assembly 532, propulsion system 30 may include a starboard propulsion assembly 533 operatively affixed to keel hoop 120 at approximately 120 degrees relative to roll axis 5 of LA 10 and a port propulsion assembly 534 operatively affixed to keel hoop 120 at approximately negative 120 degrees (e.g., positive 240 degrees) relative to roll axis 5 of LA 10. Such a configuration may enable control ofyaw, pitch, and roll associated with LA 10. For example, where it is desired to cause a yawing movement of LA 10, fore propulsion assembly 532 may be rotated or pivoted such that a thrust vector associated with fore propulsion assembly 532 is directed parallel to pitch axis 6 and to the right or left relative to hull 22, based on the desired yaw. Upon operation of fore propulsion assembly 532, LA 10 may be caused to yaw in reaction to the directed thrust associated with fore propulsion assembly 532.
[0066] In other exemplary embodiments, for example, where it is desired to cause a pitching motion associated with LA 10, fore propulsion assembly 532 may be rotated such that a thrust force associated with fore propulsion assembly 532 may be directed parallel to yaw axis and toward the ground (i.e., down) or toward the sky (i.e., up), based on the desired pitch. Upon operation of fore propulsion assembly 532, LA 10 may then be caused to pitch in reaction to the directed thrust associated with fore propulsion assembly 532.
[0067] According to still other embodiments, for example, where it is desired to cause a rolling motion associated with LA 10, starboard propulsion assembly 533 may be rotated such that a thrust force associated with starboard propulsion assembly 533 may be directed parallel to yaw axis 7 and toward the ground (i.e., down) or toward the sky (i.e., up) based on the desired roll. Additionally, or alternatively, port propulsion assembly 534 may be rotated such that a thrust force associated with port propulsion assembly 534 may be directed in a direction opposite from the direction of the thrust force associated with starboard propulsion assembly 533. Upon operation of starboard propulsion assembly 533 and port propulsion assembly 534, LA 10 may then be caused to roll in reaction to the directed thrusts. One of ordinary skill in the art will recognize that similar results may be achieved using different combinations and rotations of propulsion assemblies 31 without departing from the scope of the present disclosure. Further, one of ordinary skill in the art will recognize that starboard propulsion assembly 533 and port propulsion assembly 534 may, in some embodiments, be fixed (i.e., not rotatable) in a position so as to direct thrust substantially parallel to yaw axis 7.
[0068] Fore, starboard, and port propulsion assemblies 532,533, and 534 may also be configured to provide thrust forces for generating forward or reverse motion of LA 10. For example, starboard propulsion unit 533 may be mounted to propulsion mount 430 (see Fig. 3A) and configured to pivotfrom a position in which an associated thrust force is directed in a downward direction (i.e., toward the ground) to a position in which the associated thrust force is directed substantially parallel to roll axis 5 and toward the rear of LA 10. This may allow starboard propulsion, unit 533 to provide additional thrust to supplement thrusters. Alternatively, starboard propulsion unit 534 may be rotated from a position in which an associated thrust force is directed substantially parallel to roll axis 5 and toward the rear of LA 10, to a position where the associated thrust force is directed along pitch axis 6 such that an adverse wind force may be counteracted.
[0069] In some embodiments, fore, starboard, and port propulsion assemblies 532,533, and 534 may be mounted high up on keel hoop 120. Such a mounting structure may provide several advantages over ones that mount the propulsion assemblies much lower. For example, it may present little safety concern to inadvertent injury to ground personnel or damage to ground equipment. The noise levels of the propulsion assemblies as perceived inside LA 10 may be lower compared to those mounted on the sides of gondola 35. The mounting locations of, port propulsion assemblies 532, 533, and 534 may also allow the propellers to operate in free stream air mostly unimpeded by the proximity of hull 22.
[0070] In addition to fore, starboard, and port propulsion assemblies 532, 533, and 534, respectively, propulsion system 30 may include one or more starboard thrusters 541 and one or more port thruster 542 (see Fig. 4B) configured to provide horizontal thrust forces to LA 10. Starboard and port thrusters 541 and 542 may be mounted to keel hoop 120, lateral frame members (not shown), horizontal stabilizing members 315, or any other suitable location associated with LA 10. Starboard and port thrusters 541 and 542 may be mounted using an operative propulsion unit mount 430 similar to that described above, or, alternatively, starboard and port thrusters 541 and 542 may be mounted such that minimal rotation or pivoting may be enabled (e.g., substantially fixed) as shown in Fig. 3B. For exam pie, starboard and port thrusters 541 and 542 may be mounted to keel hoop 120 at an aft location on either side of vertical stabilizing member 310 (e.g., at approximately 160 degrees and negative 160 degrees, as shown in Fig. 4B). In some embodiments, starboard and port thrusters 541 and 542 may be substantially co-located with starboard and port propulsion assemblies 533 and 534 as described above (e.g., positive 120degreesand negative 120degrees). Insuch embodiments, propulsion unit mounts 430 associated with starboard and port propulsion assemblies 533 and 534 may include additional fastening points such that propulsion unit mounts 430 associated with starboard and port thrusters 541 and 542 may be operatively connected to one another. Alternatively, propulsion unit mounts 430 associated with starboard and port thrusters 541 and 542 may be operatively connected to substantially similarfastening points on support structure 20 as fastening points connected to propulsion unit mounts 430 associated with starboard and port propulsion assemblies 533 and 534.
[0071] In some embodiments, thrust from starboard and port thrusters 541 and 542 may be directed along a path substantially parallel to roll axis 5. Such a configuration may enable thrust forces associated with starboard and port thrusters 541 and 542 to drive LA 10 in a forward or reverse direction based on the thrust direction, as well as provide forces about yaw axis 7, among others. For example, starboard thruster 541 may be caused to generate a greater thrust force than port thruster 542. Upon such occurrence, LA 10 may be cause to rotate about yaw axis 7. Similarly, port thruster 542 may be caused to generate a greater thrust force than starboard thruster 541, causing similar rotation about yaw axis 7.
[0072] In some embodiments, thrust from starboard and port thrusters 541 and 542 may be configurable based on a position of associated propulsion unit mount 430. One of ordinary skill in the art will recognize that additional configurations for starboard and port thrusters 541 and 542 may be utilized without departing from the scope of this disclosure.
[0073] Note that in the following disclosure, power conversion units 415 are discussed as comprising propellers (i.e., axial fans). While the systems and methods described herein are applicable to power conversion units 415 comprising variable pitch propellers, one of skill in the art will recognize that other power conversion units may also be implemented (e.g., centrifugal fan) without departing from the scope of the present invention. Any power source/power conversion unit configured to generate variable thrust may be controlled through systems and methods of the present disclosure.
[0074] Fig. 5A is a schematic, partial perspective view of an exemplary gondola 35 associated with LA 10. Gondola 35 may include, among other things, a computer 600 (see, e.g., Fig. 7), one or more operator interfaces, and/or ballast (not shown). Gondola 35 may be positioned to allow the static equilibrium of LA 10 to be maintained. For example, gondola 35 may be configured to be mounted at a location on longitudinal frame member 124 (see Fig. 1) such that a static equilibrium associated with LA 10 may be maintained. Gondola 35 may be mounted, for example, at a location along roll axis 5, such that a moment about pitch axis 6 associated with the mass of gondola 35 substantially counteracts a moment about pitch axis 6 associated with the mass of empennage assembly 25. Gondola 35 may be mounted at a location along pitch axis 6 such that no moment about roll axis 5 results from the mass of gondola 35. Alternatively, and based on factors related to aerodynamics, among others, moments associated with gondola 35 and empennage assembly 25 about pitch axis 6 may be adjusted to provide desired aerodynamic characteristics. One of ordinary skill in the art will recognize that numerous adjustments may be made as desired without departing from the scope of the present disclosure.
[0075] Gondola 35 may seat the operator and at least one passenger, and may carry additional items (e.g., alignment ballast). Gondola 35 may include one or more operator interfaces configured to provide a location for an operator or other individual to perform tasks associated with flying LA 10. For example, as shown in Fig. 5A, gondola 35 may include a slider control 210, a collective pitch control 221, and navigation instruments 230, among other things (e.g., seating, etc.).
[0076] Slider control 210 may be mounted in a runner and may be configured to control trim and to maneuver horizontally. Consistent with the current disclosure, a runner may be a device in or on which another component slides or moves, such as, for example, frame 211. Collective pitch control 221 may be mounted to a chassis associated with gondola 35 and be configured to control vertical flight and lift, among other things. Slider control 210 and collective pitch control 221 may be configured to provide an operator of LA 10 with controls enabling control of LA 10 during taxiing, flight, and landing. Slider control 210 and collective pitch control 221 may be communicatively connected to computer 600, vertical and horizontal control surfaces 350 and 360 (Fig. 2), propulsion assemblies 31, and other systems as desired (Fig. 1). Further, slider control 210 and collective pitch control 221 may receive inputs indicative of desired navigation functions (e.g., turn, yaw, pitch, lift, etc.) from an operator and provide such inputs to computer 600, vertical and/or horizontal control surfaces 350 and 360, propulsion assemblies 31, or other suitable systems configured to cause LA 10 to be manipulated as desired by the operator.
[0077] According to some embodiments, gondola 35 may include a P1 position for an operator and a P2 position fora passenger and/or operator. Slider control 210 may be positioned in the center of gondola 35 between the P1 and P2 positions. Slider control 210 may include, among other things, a frame 211, a sliding support controller 212, and a joystick 213 affixed to sliding support controller 212. Frame 211 and sliding support controller 212 may be configured to allow sliding of sliding support controller 212 upon frame 211. In some embodiments, frame 211 may bye configured to provide an output in- dicative of an offset of sliding support controller 212 from a predetermined neutral position. For example, the neutral position may be a position of sliding support controller 212 that corresponds to an idle throttle associated with propulsion assemblies 31 (e.g., starboard and port thrusters, 541 and 542 (Figs. 4A and 4B), respectively) and/or a substantially neutral propeller pitch associated with the propulsion assemblies 31. In such an example, upon forward or backward movement of sliding support controller 212, propeller pitch and/or throttle may be adjusted for various propulsion assemblies 31 (e.g., starboard and port thrusters, 541 and 542, respectively) to a setting configured to obtain thrust to advance in a desired direction or slow down.
[0078] Sliding support controller 212 may further include a central armrest 214 slidably connected to frame 211. For example, the upper and side surfaces of central armrest 214 located between the P1 and P2 seats may slide forward and backward along frame 211. Upon the sliding of central armrest 214, frame 211 may provide a signal to computer 600, indicating an offset from a neutral position associated with sliding support controller 212. In some embodiments, sliding support controller 212 may include other support type structures (e.g., a head rest).
[0079] As shown in Fig. 5A, joystick 213 may be installed on one end of sliding support controller 212 located between the P1 and P2 positions. Joystick 213 may move with central armrest 214 as central armrest 214 slides forward and backward along frame 211. For example, an operator in the P1 position may use his right hand to control joystick 213 and may also slide his right arm forward or backward to control sliding support controller 212. Similarly, an operator in the P2 position may perform such operations using his left hand and arm on joystick 213 and sliding support controller 212, respectively.
[0080] Among otherthings, slider control 210 may control a propeller pitch associated with propulsion assemblies 31 (e.g., fore propulsion assembly 532, starboard propulsion assembly 533, port propulsion assembly 534, starboard thruster 541, and port thruster 542) and/or power source power settings (e.g., throttle). According to some embodiments, the pitch of the propellers associated with the propulsion assemblies 31 may be controlled by sliding of sliding support controller 212. The sliding control via slider control 210 may allow the operator to keep his hands and/or feet on the primary controls, while still enabling him to change propulsive forces associated with LA 10 (e.g., modifying propeller pitch associated with propulsion assemblies 31. to cause movement of LA 10 forward or backward).
[0081] In some embodiments, sliding support controlled 212 may have a neutral position corresponding to throttle idle and a neutral, or substantially neutral, propeller pitch associated with propulsion assemblies 31. An offsetfrom the neutral position associated with sliding support controller 212 may correspond to a predetermined value for a control signal. Such values may be stored in a lookup table orother associated data structure related to computer 600. The control signal may be configured to cause a modification to flight parameters associated with LA 10 based on the value. In some embodiments, the flight parameters may include a velocity associated with LA 10. In such embodiments, the control signal may be similar to a throttle control and be configured to cause a modification to at least one of a propeller pitch and a power source output associated with one or more propulsion assemblies 31. In some embodiments, the control signal may be a pitch control signal, and may cause the modification of horizontal control surfaces 360 and/orone or more propulsion assemblies 31 associated with LA 10 to affect a modification in position of LA 10 about pitch axis 6. The correspondence and ratio of interaction between such components can be determined and set before each flight, or alternatively may be predetermined prior to or during construction of LA 10.
[0082] For example, sliding support controller 212 may be communicatively connected to a propulsion propeller pitch control system of LA 10. Upon movement of sliding support controller 212, the offset associated with sliding support controller 212 may be communicated to the propulsion propeller pitch control system and the propeller pitch and/or power source power output may be changed proportionally to the amount of offset and the predetermined ratio. In such an example, upon movement of sliding support controller 212, the propeller pitch may increase and/or the throttle may open to a setting configured to obtain thrust to advance in a desired direction. Similarly, backward movement of sliding support controller 212 may put the propellers into reverse pitch and/or adjust the throttle accordingly, which may allow LA 10 to slow down and, if desired, to move in a direction aft of LA 10. One of skill in the art will recognize that the proportional control provided by slider control 210 may be implemented using any number of devices, such as a digital proportional controller.
[0083] According to some embodiments, joystick 213 may be mounted on sliding support controller 212. Joystick 213 may be angularly movable around a first axis, a second axis, and any combination of positions between the first and second axes. For example, joystick 213 may be moved perpendicular to the first axis perpendicular to the second axis, or at various angles to each axis. Movement of joystick 213 around the first axis may control a pitch motion of LA 10, whereas movement of joystick 213 around the second axis may control a roll motion of LA 10. In other words, when joystick 213 is moved around the first axis, propulsion assemblies 31 may operate in conjunction with horizontal control surfaces 360 to cause a modification in pitch of LA 10 about pitch axis 6. When joystick 213 is moved around the second axis, propulsion assemblies 31 may be actuated accordingly to cause a modification in roll of LA 10 about roll axis 5. In some embodiments, horizontal control surfaces 360 may also be actuated in conjunction with, or separately from, propulsion assemblies to cause a modification in roll of LA 10 about roll axis 5. One of ordinary skill in the art will recognize that various combinations of elements associated with LA 10 may be implemented to cause the desired pitch and/or roll response. In addition, by virtue of its position on sliding support controller 212, joystick 213 may also assist in control of forward and/or backward (e.g., slowing) motions of LA 10 by controlling starboard and port thrusters 541 and 542, among other things.
[0084] Figure 5A also shows an exemplary collective pitch control 221, which may include, for example, one or more collective pitch levers 220 and lock button 223. Collective pitch levers 220 may be located at a left side of the P1 seat and/or at a right side of the P2 seat (not shown). Collective pitch control levers 220 may be cross-connected, or alternatively may operate independently.
[0085] Collective pitch control 221 may operate to substantially synchronize pitch between multiple propulsion assemblies 31. For example, collective pitch lever 220 may be operated variably to control a propeller pitch associated with all three peripheral powersources(i.e.,fore propulsion assembly 532, starboard propulsion assembly 533, and port propulsion assembly 534 (see Figs. 4A and 4B)), which may thereby provide variable, controllable lift. Such controllable lift may be useful for achieving substantially level flight, vertical takeoff, and landing, among others. This capability also may be provided by, among other things, variations in the propeller pitch, power output of the peripheral power sources, and operation of one or more control surfaces.
[0086] In some embodiments, the handle of collective pitch lever 220 may be provided with a locking mechanism to enable a "set it and forget it" type functionality. In some embodiments, such functionality may be implemented via a twist grip facility, which may allow an operator to achieve stable level flight and then to twist the lock on to hold the collective function at the desired degree of propeller pitch. Alternatively, locking may be accomplished via a lock button 223, such that upon achieving a desired position for collective pitch lever 220, lock button 223 may be depressed and collective pitch lever 220 locked in place. Upon depressing lock button 223 a second time, collective pitch lever 220 may be released from its position. Providing such functionality may reduce operatorworkload and/or fatigue when there may be little or no need to exert effort continuously on collective pitch lever 220 (e.g., in straight and level flight).
[0087] Fig. 5B is another schematic, partial perspective view of exemplary gondola 35 associated with LA 10, viewed from the P2 position. Fig. 5B shows slider control 210 and collective pitch control 221 at the leftside of the P1 seat.
[0088] Fig. 5C is a schematic, partial perspective view of gondola 35 associated with LA 10, viewed from the P1 position. Figure 5C also shows exemplary navigation instruments 230 associated with LA 10. Navigation instruments 230 may include analog instruments (e.g., altimeter, airspeed indicator, radios, etc.), digital instruments, and/or may include one or more mufti-function displays (MFD). MFDs may include any avionics display providing displays of multiple functions, such as a primary-function display (PFD). As is well-known to those skilled in the art, an MFD may include a CRT display, a plasma display, an LCD display, a touch sensitive display, and/or any other type of electronic display device. Computer 600 may be linked to navigation instruments 230 and/or other systems associated with LA 10.
[0089] LA 10 may further include a yaw control 241 (see Fig. 5C) configured to control motion aboutyaw axis 7 of LA 10. Yaw control 241 may be configured to provide a signal computer 600 which may, in turn, cause propulsion assemblies and control surfaces associated with LA 10 to operate substantially in tandem to substantially achieve a desired yaw angle about yaw axis 7. Yaw control 241 may include, for example, pivoting pedal actuators 240 and 242 in gondola 35 as shown in Fig. 5C, configured to receive an input from an operator indicative of a desired yaw angle associated with LA 10. In some embodiments, pivoting pedal actuators 240 and 242 may be rudder pedals. One of ordinary skill in the art will recognize that the yaw control may include other suitable input devices, such as, for example, a yoke.
[0090] Yaw control 241 , may be actuated, for example, via pivoting pedal actuators 240 and 242 affixed to a rudder bar (not shown), and/or any other similar devices. Forces about yaw axis 7 may be generated through use of one or more control surfaces (e.g., vertical control surface 350 and horizontal control surface 360) and/or the propulsive power sources (e.g., fore propulsion assembly 532, starboard propulsion assembly 533, port propulsion assembly 534, starboard thruster 541 , and port thruster 542). For example, during a combined control between power sources and control surfaces, pivoting pedal actuators 240 and 242 may be communicatively connected to computer 600 associated with LA 10. Computer 600 may further be communicatively connected to one or more vertical control surfaces associated with LA 10 and/or the propulsive power sources configured to provide a thrust force for LA 10. Such connection may enable, for example, vertical control surface 350 to act substantially in tandem with starboard and port thrusters 541 and 542 to cause LA 10 to assume a desired yaw angle about yaw axis 7. Further, such connections may enable horizontal control surfaces 360 to operate substantially in tandem with starboard propulsion assembly 533 and port propulsion assembly 534 to cause LA 10 to assume a desired pitch and/or roll angle about pitch axis 6 and/or roll axis 5, respectively.
[0091] In some embodiments, pivoting pedal actuators 240 and/or a rudder bar (not shown) may function as yaw control 241 by receiving an input from an operator indicative of a desired yaw angle (e.g., via pedal deflection). Computer 600 may be configured to receive an output signal from pivoting pedal actuators 240 and 242 as a result of the operator input, and cause the vertical control surfaces and/or the propulsive power sources to operate either independently or in tandem, such that LA 10 sub- stantially assumes the desired yaw angle.
[0092] LA 10 may further include a flight information display system for displaying various information associated with LA 10. According to some embodiments, the flight information display system may include a series of position sensors, which may be installed at various locations (e.g., in hull 22 of LA 10). These sensors may be configured to sense various parameters, such as for example, a position, velocity, and acceleration, among others associated with LA 10. These sensors may further generate an output corresponding to the sensed parameters. The flight information display system may be communicatively connected to computer 600 as shown in Fig. 7, which may include a processor. The processor may be configured to receive the sensor output and determine an attitude associated with LA 10 based on the sensor output. The processor may be communicatively connected with an attitude indicator 250, such that attitude indicator 250 may display attitude information associated with LA 10. For example, as shown in Fig. 6, which is a schematic, front-side view of an exemplary attitude indicator 250, exemplary attitude indicator 250 may be configured as a heads-up display (FIUD) device located in a position of gondola 35 such that an operator may easily monitor various information associated with LA 10 without diverting attention from space in front of LA 10. For example, attitude indicator 250 may be located on the top of navigation instruments 230 (Fig. 5C). In some embodiments, attitude indicator 250 may be substantially transparent and include a plurality of indicators (e.g., LEDs, lamps, etc.) configured to display various information related to flight of LA 10, such as, an attitude of LA 10 and/or a velocity of LA 10, among other things.
[0093] For example, as shown in Fig. 6, a first plurality of indicators 251-257 may be arranged as a substantially straight line along a horizontal axis, with a second plurality of indicators 258-260 and 261-263, arranged as a substantially straight line along a vertical axis, and intersecting at indicator 254, thereby forming a cross. Attitude indicator 250 may be communicatively connected to computer 600, with each indicator configured to indicate attitude associated with LA 10. At least one indicator of the first plurality of indicators and/or the second plurality of indicators may respond (e.g., light up) according to the determination. The indicators may be arranged in any suitable configuration, which may provide as operator with an indication of the attitude of LA 10 and/or other information during maneuvers.
[0094] In some embodiments, indicator 254 atthe center may be white, the next indicator in any direction (i.e., indicators 253, 255 in the horizontal direction, and indicators 260, 261 in the vertical direction) may be green, the next indicator (i.e., indicators 252,256 in the horizontal direction, and indicators 259,262 in the vertical direction) may be amber, and those at the extremes (i.e., indicators 251,257 in the horizontal direction, and indicators 258, 263 in the vertical direction) may be red. The colors are exemplary only. In such embodiments, while LA 10 is in a neutral flight attitude (i.e., straight and level), only the central white indicator 254 may be illuminated. As the pitch angle of LA 10 declines, for example, indicator 261 below the central indicator 254 may light up in a green color. If the pitch continues to decline, indicator 262 may light up in an amber color. If the pitch angle continues declining, the final indicator 263 may light up in a red color. A similar arrangement of indicators may be set up for the pitch-up movement, the pitch-down movement, and port- and starboard-roll of LA 10. Alternatively, the indicators may actuate in an inverse direction from that previously described. For example, as a pitch angle of LA 10 decreases, indicator 260 may respond. As the pitch angle further decreases, indicators 259 and 258 may respond, indicating that the pitch of the aircraft has decreased to a predetermined amount. One of ordinary skill in the art will recognize that variations of the described schemes are possible without departing from the spirit of the present disclosure.
[0095] Attitude indicator 250 may provide the operator with a general guide during the flight. For example, it may allow the operatorto keep his eyes on the area surrounding LA 10 while, at the same time, being constantly updated with data concerning LA 10’s attitude (e.g., pitch and roll angles).
[0096] According to some embodiments, propulsion assemblies 31 and control surfaces, among other things, may be controlled by computer 600. Fig. 7 is a block diagram of an exemplary embodiment of a computer 600 consistent with the present disclosure. For example, as shown in Fig. 7, computer 600 may include a processor 605, a disk 610, an input device 615, an MFD 620, an optional external device 625, and/or interface 630. Computer 600 may include more or fewer components as desired. In this exemplary embodiment, processor 605 includes, a CPU 635, which is connected to a random access memory (RAM) unit 640, a display memory unit 645, a video interface controller (VIC) unit 650, and an input/output (I/O) unit 655. The processor 605 may also include other components.
[0097] In this exemplary embodiment, disk 610, input device 615, MFD 620, optional external device 625, and interface 630 may be connected to processor 605 via I/O unit 655. Further, disk 610 may contain data structures and/or other information that may be processed by processor 605 and displayed on MFD 620. Input device 615 may include mechanisms by which a user and/or system associated with LA 10 may access computer 600. Optional external, device 625 may allow computer 600 to manipulate other devices via control signals. For example, a fly-by-wire or fly-by-light system may be included, allowing control signals to be sent to optional external devices, including, for example, servo motors associated with propulsion unit mounts 430 and/or control surfaces associated with horizontal and vertical stabilizing member 310 and 315. "Control signals," as used herein, may mean any analog, digital, and/or signals in other formats configured to cause operation of an element related to LA 10 (e.g., a signal configured to cause operation ofone or more control surfaces associated with LA 10). "Fly-by-wire," as used herein, means a control system wherein control signals may be passed in electronic form over an electrically conductive material (e.g., copper wire). According to some embodiments, such a system may include a computer 600 between the operator controls and the final control actuator or surface, which may modify the inputs of the operator in accordance with predefined software programs. "Fly-by-light," as used herein, means a control system where control signals are transmitted similarly to fly-by-wire (i.e., including a computer 600), but wherein the control signals may be transmitted via light over a light conducting material (e.g., fiber optics).
[0098] According to some embodiments, interface 630 may allow computer 600 to send and/or receive information other than by input device 615. For example, computer 600 may receive signals indicative of control information from flight controls 720, a remote control, position sensors associated with LA 10, and/or any other suitable device. Computer 600 may then process such commands and transmit appropriate control signals to various systems associated with LA 10 (e.g., propulsion system 30, vertical and horizontal control surfaces 350 and 360, etc.). Computer 600 may also receive weather and/or ambient condition information from sensors associated with LA 10 (e.g., altimeters, navigation radios, pitot tubes, etc.) and utilize such information for generating control signals associated with operating LA 10 (e.g., signals related to trim, yaw, and/or other adjustments).
[0099] Consistent with the present disclosure, computer 600 may receive an input related to a desired yaw angle from yaw control 241 , joystick 213, or any other suitable input devices associated with LA 10. Computer 600 may further receive a signal indicative of a desired modification to one or more of the parameters associated with LA 10 (e.g., velocity, thrust vector, etc.), for example, from slider control 210. For example, the signal may correspond to the offset of slider control 210 relative to a neutral position. In addition, computer 600 may also receive a pitch control signal from collective pitch control 221 , indicative of the desired lift force.
[0100] According to some embodiments, computer 600 may include software, data structures, and/or systems enabling other functionality. For example, computer 600 may include software allowing for automatic pilot control of LA 10. Automatic pilot control may include any functions configured to automatically maintain a preset course and/or perform other navigation functions independent of an operator of LA 10 (e.g., stabilizing LA 10, preventing undesirable maneuvers, automatic landing, etc.). For example, computer 600 may receive information from an operator of LA 10 including a flight plan and/or destination information. Computer 600 may use such information in conjunction with autopilot software for determining appropriate commands to propulsion units and control surfaces for purposes of navigating LA 10 according to the information provided.
[0101] Consistent with the present disclosure, computer 600 may also include software allowing for flight control, based on signals received from input devices associated with LA 10. For example, computer 600 may include functions and data enabling receipt of a signal from yaw control 241, determination of related values, and generation of a control signal configured to modify propulsion assemblies 31 and/or control surfaces, based on the desired yaw angle. An exemplary method for controlling yaw will be described in more detail in connection with Fig. 7. As another example, computer 600 may also include software to perform parameter controls associated with LA 10, based on the received offset signal associated with slider control 210. An exemplary method for parameter control will be described in more detail in connection with Fig. 9. In yet another example, computer 600 may include functions and data structures configured to determine a desired lift force associated with LA 10 based on a received pitch control signal from collective pitch control 221. An exemplary method for propeller pitch controlling will be described in more detail in connection with Fig. 10. In yet another example, computer and/or other components may be operably coupled to processor 605 via I/O unit 655. According to some embodiments, no computer may be used, or more than one computer may be used for redundancy. These configurations are merely exemplary, and other implementations will fall within the scope of the present disclosure.
[0102] Fig. 8 is a block diagram 900 depicting an exemplary method for controlling yaw associated with LA 10. As described above, an operator may provide an input related to a desired yaw angle to be obtained by LA 10 to computer 600 (step 905). Such an input may be provided via yaw control 241 (e.g., yaw pedal actuators 240), joystick 213, or any other suitable method. Upon receiving information related to the desired yaw angle (step 910), computer 600 may determine a current state of, among others, LA 10, propulsion assemblies 31 , and controls surfaces (e.g., vertical and horizontal control surfaces 350 and 360, respectively) (step 915). The current state may include a velocity of LA 10, propeller pitch of one or more propulsion assemblies 31 (e.g., starboard thruster 541 and port thruster 542), and/or an angle associated with vertical control surface 350. For example, computer 600 may determine that starboard thruster 541 and port thruster 542 are operating at substantially the same power output and at substantially the same propeller pitch. Further computer 600 may determine that an angle associated with vertical control surface is substantially zero. Based on the yaw angle desired, computer 600 may generate a control signal configured to modify propulsion assemblies 31 (e.g., starboard thruster 541 and port thruster 542) and/or control surfaces (e.g., vertical control surface 350) (step 920). For example, computer 600 may utilize a lookup table or other reference to determine values corresponding to the desired yaw angle, and subsequently generate a signal configured to cause a modification to a propeller pitch and a power output associated with starboard thruster 541 , such that a thrust vector associated with starboard thruster 541 is substantially greaterthan that associated with port thruster 542. Further, computer 600 may generate a control signal configured to cause vertical control surface 350 to pivot to the left. Computer 600 may transmit such signals via an electrical transmission system, electro-mechanical transmission system, or other suitable system (e.g., fly-by-light). Further, one of ordinary skill in the art will recognize that computer 600 may generate a signal configured to operate any of the systems associated with LA 10 such that the desired yaw angle is achieved.
[0103] Fig. 9 is a block diagram 1000 depicting an exemplary method for controlling at least one parameter associated with LA 10. An operator of LA 10 may utilize slider control 210 for providing an indication of a desired modification to one or more parameters associated with LA 10 (step 1005). For example, an operator of LA 10 may desire greater forward airspeed and may therefore slide slider control 210 forward of a predetermined neutral position, indicating a desire for additional forward airspeed. Computer 600 may then determine the level of desired modification based on a signal from slider control 210(step 1010). For example, where an operator slides slider control 210 to a position a short distance from a predetermined neutral position, computer 600 may determine that the desired modification is proportionally small to the offset of slider control 210 from the predetermined neutral position. Computer 600 may utilize a lookup table or other reference to determine values related to the offset and subsequently generate a control signal configured to cause a power output associated with starboard thruster 541. and port thruster 542 to increase to a level determined to cause the desired modification (step 1020). Upon receiving such a control signal, starboard and port thrusters 541 and 542, respectively, may respond substantially simultaneously to provide the desired power increase (step 1025). As noted above, in addition to modifying the power output of propulsion assemblies 31 the control signal may also modify propeller pitch of power conversion units 415 associated with propulsion assemblies 31. One of ordinary skill in the art will recognize that while the previous description concerned primarily propeller based propulsion assemblies, other propulsion assemblies are contemplated. For example, based on input to slider control 210, computer 600 may modify operational parameters of a jet gas-turbine engine or other suitable propulsion assembly.
[0104] Fig. 10 is a block diagram 1100 depicting an exemplary method for controlling propeller pitch related to three or more propulsion assemblies associated with LA 10. An operator of LA 10 may actuate collective pitch control 221 (e.g., using collective pitch lever 220) to indicate a desired lift force associated with LA 10 (step 1105). For example, an operator of LA 10 desiring a greater lift force associated with LA 10 may pull collective pitch lever 220 to cause collective pitch lever 220 to pivot in an upward direction. The operator may continue to actuate collective pitch lever 220 until the operator has determined that a desired lift has been achieved. In some embodiments, the operator may subsequently lock collective pitch lever 220 once the desired lift has been achieved via lock button 223 or other suitable method (e.g., twist lock). As an operator actuates collective pitch control 221, computer 600 may determine a desired lift force based on the deflection and/or other attribute associated with collective pitch lever 220 (step 1110). For example, computer 600 may receive a signal indicating a deflection associated with collective pitch lever 220, and may subsequently use a lookup table or other data structure for purposes of determining values for a control signal. Upon determining the values, computer 600 may generate a control signal configured to cause propeller pitch and/or power source output for each of fore, starboard, and port propulsion assemblies 532,533, and 534 to substantially synchronize for purposes of providing the desired lift force (i.e., thrust vector) (step 1120). Note, such a thrust vector may be oriented to cause positive or negative lift.
[0105] Fig. 11 is a block diagram 1200 depicting an exemplary method for displaying attitude information associated with LA 10. As noted above, LA 10 may include one or more position sensors configured to sense attitude of LA 10 (i.e., inclination of roll, pitch, and yaw axes 5, 6, 7, respectively, of LA 10 relative to the ground), among otherthings. Computer 600 may receive such information from position sensors or other suitable devices (step 1205). Based on such information, computer 600 may determine an attitude associated with LA 10 (step 1210). Computer 600 may then cause various indicators on attitude indicator 250 to respond (step 1220). For example, where the attitude associated with LA 10 is determined to be substantially nose down, computer 600 may cause indicators 261,262, and 263 to respond (e.g., light up). Further, if the attitude is both nose down and rolling to the left, computer 600 may cause indicators 253, 252, and 251 to respond (e.g., light up). One of ordinary skill in the art will recognize that numerous such configurations are possible based on the determined attitude and that the description herein is intended as exemplary only.
[0106] Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. For example, LA 10 may include a platform or other cargo carrying structure configured to suspend communications equipment (e.g., satellite relay/receiver, cell tower, etc.) over a particular location. Because LA 10 may utilize, for example, associated control surfaces, propulsion assemblies 31 , and its oblate spheroid shape to remain suspended and substantially stationary over a given location, LA 10 may operate as a communications outpost in desired areas. Further, based on numerous characteristics of LA 10, other functions, including, but not limited to, construction lifting, transportation (e.g., passenger carriage and/or tourism), satellite communications, display (e.g., advertising), recreation, military or other reconnaissance/surveillance (e.g., for border patrol), disaster relief support, scientific studies, etc. may be performed utilizing LA 10. Such functions may be performed by remotely controlling and/or utilizing manned flights of LA 10.
[0107] It is intended that the specification and examples be considered as exemplary only, with a true scope of the invention being indicated by the following claims.
Claims 1. A lenticular airship comprising a system for controlling yaw, the system comprising: one or more vertical control surfaces (350), which preferably comprises a rudder, associated with the airship; a first power source (533) and a second powersource (534), each configured to provide an independently variable thrust associated with the airship; a yaw control (241) e.g. a pedal actuator (240, 242), configured to receive an input indicative of a desired yaw angle, characterised in that a controller (600) is communicatively connected to the yaw control (241), the one or more vertical control surfaces (350), and the first and second power sources (533, 534), that the first and second power sources (533, 534) are independently pivotable to vary the direction of the thrust produced by them, that the first power source (533) is located at a position 120 degrees from the nose of the airship and the second powersource (534) is located at a position negative 120 degrees from the nose of the airship and that the controller is configured to receive an output signal from the yaw control (241) corresponding to the desired yaw angle and to generate a control signal configured to modify a state associated with the one or more vertical control surfaces (350), the first powersource (533) and the second power source (534), such that the airship substantially attains the desired yaw angle. 2. The lenticular airship of claim 1, wherein the yaw control comprises two pivoting pedal actuators (240, 242) located at a position in a gondola (35) associated with the airship so as to be accessible by the feet of an operator. 3. The lenticular airship of claim 1, wherein the one or more control surfaces comprise a rudder (350) op-erably coupled to an empennage (25) associated with the airship. 4. The lenticular airship of claim 3, wherein the rudder (350) is configured to pivot in a right direction or a left direction relative to a centerline of the airship. 5. The lenticular airship of claim 4, wherein the control signal is configured to cause the rudder to pivot in the left direction or the right direction. 6. The lenticular airship of claim 1, wherein the control signal is configured to increase the thrust from the first power source and reduce the thrust from the second power source or to increase the thrust from the second powersource and reduce the thrust from the first power source. 7. The lenticular airship of claim 1, wherein the controller is further configured to: receive information indicative of current characteristics related to the current flight of the airship; compare the current characteristics with a predetermined set of preferred characteristics; and automatically generate the control signal based on the comparison. 8. A method for controlling yaw associated with a lenticular airship including a first power source (533), a second power source (534), and a vertical control surface (350), the method comprising: receiving, from a yaw control, a signal indicative of a desired yaw angle for the airship, characterized in that the first power source (533) is located at a position 120 degrees from the nose of the airship and the second power source (534) is located at a position negative 120 degrees from the nose of the airship and that the method includes determining an operational state associated with the first power source (533) and the second power source (534) and the vertical control surface (350) and modifying the operational state associated with the first power source, the second powersource and the vertical control surface to cause the airship to attain the desired yaw angle. 9. The method of claim 8, further comprising actuating one or more pedals (240, 242) associated with the yaw control to indicate the desired yaw angle. 10. The method of claim 8, wherein the modifying comprises providing a control signal based on the operational state associated with the first power source (533), the second powersource (534), and the vertical control surface (350), and the desired yaw angle. 11. The method of claim 10, wherein the modifying the operational state associated with the vertical control surface (350) comprises pivoting a rudder, preferably in relation to an empennage associated with the airship. 12. The method of claim 11, wherein the pivoting is performed in a right direction or a left direction relative to a centerline of the airship, based on the desired yaw angle. 13. The method of claim 12, wherein the control signal is configured to cause the rudder to pivot in the left direction or in the right direction. 14. The method ofdaim 8, wherein the modifying further comprises modifying a thrust associated with the first power source (533) and modifying a thrust associated with the second power source (534), for instance increasing the thrust from the first power source and reducing the thrust from the second power source or increasing the thrust from the second power source and reducing the thrust from the first power source. 15. The method of claim 8, further comprising: receiving information indicative of a current characteristic related to a current flightof the airship; comparing the current characteristics with a predetermined set of preferred characteristics; and automatically gener-ating a control signal based on the comparison.
Patentansprüche 1. Linsenförmiges Luftschiff, umfassend ein System zum Steuern von Gierung, das System umfassend: eine oder mehr vertikale Steuerflächen (350), die bevorzugt ein Ruder umfassen, das mit dem LuftschifF verbunden ist; eine erste Energiequelle (533) und eine zweite Energiequelle (534), jede konfiguriert zum Bereitstellen eines unabhängig variablen Schubs in Verbindung mit dem Luftschiff; eine Gierungssteuerung (241), z. B. einen Pedalaktor (240, 242), konfiguriert zum Empfangen eines indikativen Eingangs für einen gewünschten Gierungswinkel, dadurch gekennzeichnet, dass ein Controller (600) kommunikativ mit der Gierungssteuerung (241), den ein oder mehr vertikalen Steuerflächen (350) und der ersten und zweiten Energiequelle (533, 534) verbunden ist, dass die erste und zweite Energiequelle (533, 534) unabhängig schwenkbar sind, um die Richtung des von diesen erzeugten Schubs zu ändern, dass sich die erste Energiequelle (533) an einer Position in einem Winkel von 120 Grad zur Nase des Luftschiffs und die zweite Energiequelle (534) an einer Position in einem Winkel von negativen 120 Grad von der Nase des Luftschiffs befinden, und dass der Controller zum Empfangen eines Ausgangssignals von der Gierungssteuerung (241) entsprechend dem gewünschten Gierungswinkel und zum Erzeugen eines Steuersignals, konfiguriert zum Modifizieren eines Zustands in Verbindung mit den ein oder mehr Steuerflächen (350), der ersten Energiequelle (533) und der zweiten Energiequelle (534), konfiguriert ist, so dass das Luftschiff im Wesentlichen den gewünschten Gierungswinkel erreicht. 2. Linsenförmiges Luftschiff nach Anspruch 1, wobei die Gierungssteuerung zwei schwenkbare Pedalaktoren (240, 242) umfasst, die sich an einer Position in einer Gondel (35) in Verbindung mit dem Luftschiff befinden, so dass sie für die Füße einer Bedienperson zugänglich sind. 3. Linsenförmiges Luftschiff nach Anspruch 1, wobei die eine oder mehr Steuerflächen ein Ruder (350) umfassen, das funktionell an ein Leitwerk (25) in Verbindung mit dem LuftschifF gekoppelt ist. 4. Linsenförmiges Luftschiff nach Anspruch 3, wobei das Ruder (350) dazu konfiguriert ist, in eine rechte Richtung oder eine linke Richtung relativ zur Mittellinie des Luftschiffs zu schwenken. 5. Linsenförmiges Luftschiff nach Anspruch 4, wobei das Steuersignal dazu konfiguriert ist, das Ruderda-zu zu bringen, in die linke Richtung oder die rechte Richtung zu schwenken. 6. Linsenförmiges Luftschiff nach Anspruch 1, wobei das Steuersignal dazu konfiguriert ist, den Schub von der ersten Energiequelle zu erhöhen und den Schub von der zweiten Energiequelle zu reduzieren, oder den Schub von der zweiten Energiequelle zu erhöhen und den Schub von der ersten Energiequelle zu reduzieren. 7. Linsenförmiges LuftschifF nach Anspruch 1, wobei der Controller ferner für Folgendes konfiguriert ist: das Empfangen von indikativen Informationen von aktuellen Charakteristika in Bezug auf den aktuellen Flug des Luftschiffs; das Vergleichen der aktuellen Charakteristika mit einer vorbestimmten Menge an bevorzugten Charakteristika; und das automatische Erzeugen des Steuersignals basierend auf dem Vergleich. 8. Verfahren zum Steuern von Gierung in Verbindung mit einem linsenförmigen Luftschiff mit einer ersten Energiequelle (533), einer zweiten Energiequelle (534) und einer vertikalen Steuerfläche (350), das Verfahren umfassend: das Empfangen, von einer Gierungssteuerung, eines indikativen Signals für einen gewünschten Gierungswinkel für das Luftschiff, dadurch gekennzeichnet, dass sich die erste Energiequelle (533) an einer Position in einem Winkel von 120 Grad zur Nase des Luftschiffs und die zweite Energiequelle (534) an einer Position in einem Winkel von negativen 120 Grad zur Nase des Luftschiffs befinden und dass das Verfahren das Bestimmen eines Betriebszustands in Verbindung mit der ersten Energiequelle (533) und der zweiten Energiequelle (534) und der vertikalen Steuerfläche (350), und das Modifizieren des Betriebszustands in Verbindung mit der ersten Energiequelle, der zweiten Energiequelle und der vertikalen Steuerfläche, so dass das Luftschiff den gewünschten Gierungswinkel erreicht. 9. Verfahren nach Anspruch 8, ferner umfassend das Betätigen von ein oder mehr Pedalen (240, 242) in Verbindung mit der Gierungssteuerung, um den gewünschten Gierungswinkel anzuzeigen. 10. Verfahren nach Anspruch 8, wobei das Modifizieren das Bereitstellen eines Steuersignals basierend auf dem Betriebszustand in Verbindung mit der ersten Energiequelle (533), der zweiten Energiequelle (534) und dervertikalen Steuerfläche (350) und dem gewünschten Gierungswinkel umfasst. 11. Verfahren nach Anspruch 10, wobei das Modifizieren des Betriebszustands in Verbindung mit der vertikalen Steuerfläche (350) das Schwenken eines Ruders, bevorzugt in Bezug auf ein mit dem Luftschiff verbundenen Leitwerk, umfasst. 12. Verfahren nach Anspruch 11, wobei das Schwenken in einer rechten Richtung oder einer linken Richtung relativ zu einer Mittellinie des LuftschifFs, basierend auf dem gewünschten Gierungswinkel erfolgt. 13. Verfahren nach Anspruch 12, wobei das Steuersignal dazu konfiguriert ist, das Ruder dazu zu bringen, in die linke Richtung oder in die rechte Richtung zu schwenken. 14. Verfahren nach Anspruch 8, wobei das Modifizieren ferner das Modifizieren eines Schubs in Verbindung mit der ersten Energiequelle (533) und das Modifizieren eines Schubs in Verbindung mit der zweiten Energiequelle (534) umfasst, zum Beispiel das Erhöhen des Schubs von der ersten Energiequelle und das Reduzieren des Schubs von der zweiten Energiequelle, oder das Erhöhen des Schubs von der zweiten Energiequelle und das Reduzieren des Schubs von der ersten Energiequelle. 15. Verfahren nach Anspruch 8, ferner umfassend: das Empfangen von indikativen Informationen einer aktuellen Charakteristik in Bezug auf einen aktuellen Flug des Luftschiffs; das Vergleichen der aktuellen Charakteristika mit einer vorbestimmten Menge an bevorzugten Charakteristika; und das automatische Erzeugen eines Steuersignals basierend auf dem Vergleich.
Revendications 1. Dirigeable lenticulaire comprenant un système de commande de lacet, le système comprenant : une ou plusieurs surfaces de commande verticales (350), qui comprennent de préférence une gouverne de direction, associées au dirigeable ; une première source de puissance (533) et une seconde source de puissance (534), chacune étant conçue pourfour- nir une poussée indépendamment variable associée au dirigeable ; une commande de lacet (241), par exemple un actionneurà pédale (240, 242), conçue pour recevoir une entrée indiquant un angle de lacet souhaité, caractérisé en ce qu’un organe de commande (600) est connecté de manière à pouvoir communiquer avec la commande de lacet (241), avec la ou les surfaces de commande verticales (350) et avec les première et seconde sources de puissance (533, 534), en ce que les première et seconde sources de puissance (533, 534) peuvent pivoter indépendamment de façon à modifier la direction de la poussée produite par ces dernières, en ce que la première source de puissance (533) est située à une position à 120 degrés du nezdu dirigeable et la seconde source de puissance (534) est située à une position négative à 120 degrés du nez du dirigeable et en ce que l’organe de commande est conçu pour recevoir un signal de sortie de la commande de lacet (241) correspondant à l’angle de lacet souhaité et pour générer un signal de commande conçu pour modifier un état associé à la ou aux surfaces de commande verticales (350), à la première source de puissance (533) et à la seconde source de puissance (534), de sorte que le dirigeable atteigne sensiblement l’angle de lacet souhaité. 2. Dirigeable lenticulaire selon la revendication 1, dans lequel la commande de lacet comprend deux action-neurs pivotants à pédale (240,242) situés à une certaine position dans une nacelle (35) associée au dirigeable de façon à pouvoir être accessibles aux pieds d’un opérateur. 3. Dirigeable lenticulaire selon la revendication 1, dans lequel la ou les surfaces de commande comprennent une gouverne de direction (350) couplée de manière fonctionnelle à un empennage (25) associé au dirigeable. 4. Dirigeable lenticulaire selon la revendication 3, dans lequel la gouverne de direction (350) est conçue pour pivoter dans un sens vers la droite ou dans un sens vers la gauche par rapport à un axe longitudinal du dirigeable. 5. Dirigeable lenticulaire selon la revendication 4, dans lequel le signal de commande est conçu pour amener la gouverne de direction à pivoter dans le sens vers la gauche ou dans le sens vers la droite. 6. Dirigeable lenticulaire selon la revendication 1, dans lequel le signal de commande est conçu pour augmenter la poussée de la première source de puissance et réduire la poussée de la seconde source de puissance ou pour augmenter la poussée de la seconde source de puissance et réduire la poussée de la première source de puissance. 7. Dirigeable lenticulaire selon la revendication 1, dans lequel l’organe de commande est en outre conçu pour : recevoir des informations indiquant des caractéristiques courantes associées au vol courant du dirigeable ; comparer les caractéristiques courantes à un ensemble prédéterminé de caractéristiques préférées ; et générer automatiquement le signal de commande sur la base de la comparaison. 8. Procédé de commande de lacet associé à un dirigeable lenticulaire comprenant une première source de puissance (533), une seconde source de puissance (534) et une surface de commande verticale (350), le procédé consistant à : recevoir, d’une commande de lacet, un signal indiquant un angle de lacet souhaité pour le dirigeable, caractérisé en ce que la première source de puissance (533) est située à une position à 120 degrés du nez du dirigeable et la seconde source de puissance (534) est située aune position négative à 120 degrés du nez du dirigeable et en ce que le procédé consiste à déterminer un état fonctionnel associé à la première source de puissance (533) et à la seconde source de puissance (534) et à la surface de commande verticale (350) et à modifier l’état fonctionnel associé à la première source de puissance, à la seconde source de puissance et à la surface de commande verticale pour amener le dirigeable à atteindre l’angle de lacet souhaité. 9. Procédé selon la revendication 8, consistant en outre à actionner une ou plusieurs pédales (240, 242) associées à la corn mande de lacet pour indiquer l’angle de lacet souhaité. 10. Procédé selon la revendication 8, dans lequel la modification consiste à fournir un signal de commande basé sur l’état fonctionnel associé à la première source de puissance (533), à la seconde source de puissance (534) et à la surface de commande verticale (350), et sur l’angle de lacet souhaité. 11. Procédé selon la revendication 10, dans lequel la modification de l’état fonctionnel associé à la surface de commande verticale (350) consiste à pivoter une gouverne de direction, de préférence en liaison avec un empennage associé au dirigeable. 12. Procédé selon la revendication 11, dans lequel le pivotement est effectué dans un sens vers la droite ou dans un sens vers la gauche par rapport à un axe longitudinal du dirigeable, sur la base de l’angle de lacet souhaité. 13. Procédé selon la revendication 12, dans lequel le signal de commande est conçu pour amener la gouverne de direction à pivoter dans le sens vers la gauche ou dans le sens vers la droite. 14. Procédé selon la revendication 8, dans lequel la modification consiste en outre à modifier une poussée associée à la première source de puissance (533) et à modifier une poussée associée à la seconde source de puissance (534), par exemple à augmenter la poussée de la première source de puissance et réduire la poussée de la seconde source de puissance ou à augmenter la poussée de la seconde source de puissance et réduire la poussée de la première source de puissance. 15. Procédé selon la revendication 8, consistant en outre à : recevoir des informations indiquant une caractéristique courante associée au vol courant du dirigeable ; comparer les caractéristiques courantes à un ensemble prédéterminé de caractéristiques préférées ; et générer automatiquement un signal de commande sur la base de la comparaison.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims ail liability in this regard.
Patent documents cited in the description • FR 2830838 [0011] · US 4591112 A [0012]

Claims (12)

  1. LENCSE ALAKÚ LÉGHAJÓ ÉS KAPCSOLÓDÓ VEZÉRLÉSEK Szabadalmi igénypontok
    1, Lencse alakú léghajói amely magában foglal egy -rendszert- az elfordulás vezérlésére, ahol a rendszer magában, foglalja a következőkéi; egy vagy több függőleges vezérlő felületet (350), amely előnyösen magában foglal egy oldalkarmányt-(angolul: ,,ruddefv), amely a léghajóhoz, kapcsolódik; egy első energiaforrást (533i és egy második energiaforrást (534), amelyek közül mindegyik úgy van kialakítva, hogy rendelkezésre álljon egv egymástól függetlenül változtatható toíoerö, amely a léghajóhoz kapcsolódik; egy elfordulás vezérlőt (241), például egy pedáíos működtető szerkezetet (240, 242), amely úgy van kialakítva, hogy legyen fogadva (véve) egy bemeneti jel, amely által egy kívánt elfordulási szög van jelezve, azzal jellemezve, hogy egy vezérlő (600) kommunikációra alkalmas módon van összekapcsolva az elfordulás vezérlőve! (241 ), az egv vagy több függőleges vezérlő felülettel (3S0) és az első és második energiaforrásokkal (533, 534), azzal, hogy az első és második energiaforrások (533, 534) egymástól függetlenül elfordíthatok, hogy legyen változtatva az általuk előállított lolóerönek az iránya, azzal, hogy az első energiaforrás (533) egy olyan -pozícióban helyezkedik eh amely 120 fokra található a léghajónak az orrától (120 fokos szögben található ahhoz képest), és a második energiaforrás (534) egv olyan pozícióban helyezkedik el, amely negatív 120 fokra található a léghajónak az orrától (negatív 120 fokos szögben található ahhoz képest), és azzal, hog> a vezérlő úgy van kialakítva, hogy legyen fogadva (véve) egy kimeneti jel az elfordulás uvérlóiői (241), amely megfelel a kívánt elfordulási szögnek, és legyen generálva egy vezérlő jel, amely úgy van kialakítva, hogy legyen módosítva egy állapot, amely az egy vagy több függőleges vezérlő felülettel (350), az első energiaforrással (533) és a második energiaforrással (534) kapcsolatos, oly módon, hogy a léghajó lényegében eléri a kívánt elfordulási szöget,
  2. 2, Lencse alakú léghajó az I. igénypont szerint, ahol az elfordulás vezérlő magában foglal két elforduló pedáíos működtető szerkezetet (240, 242), amely egy bizonyos pozícióban található egy gondolában (35), amely a léghajóhoz kapcsolódik oly módon, hogy legyen hozzáféiheíó egy ke/dó széna. Ívnek a lábai számára,
  3. 3, Lencse alakú léghajó az I, igénypont szerint, ahol az egy vagy több vezérlő felület magában foglal egy oidalkormányi (350), amely működőképesen össze van kapcsolva egy kormányfelület-szerkezetiel (farokresz-szerkezettel angolul: „empennage’b (25), amely a léghajóhoz kapcsolódik,
  4. 4, Lencse alakú léghajó a 3. igénypont szerint, ahol az oldalkormány· (350) úgy van kialakítva, hogy elforduljon egy jobb irányban vagy egy bal irányban a léghajó egy középvonalához viszonyt iva.
  5. 5, Lenese alakú léghajó a 4, igénypont szerint, ahol a vezérlő jel úgy van kialakítva, hogy legyen előidézve az oldalkonnánynak. az elfordulása a bal irányban vagy a jobb irányban, 6« Lencse alakú léghajó az 1. igénypont szerint, ahol a vezérlő jel úgy van kialakítva, hogy legyen növelve az első energiaforrásból származó toíóerö és legyen csökkentve a második energiaforrásból származó tolóéra, vagy legyen növelve a második energiaforrásból származó toióerö és legyen csökkentve az első energiaforrásból származó tolóerő.
  6. 7. Lencse alakú léghajó az 1, igénypont szerint, ahol a vezérlő továbbá úgy van kialakítva, hogy; információk legyenek fogadva (véve), amelyek aktuális jellemzőket jeleznek, amelyek a léghajó által végzett aktuális repülésre vonatkoznak; az aktuális jellemzők legyenek összehasonlítva előnyös jellemzők egy előre meghatározott halmazával; és a vezérlőjel automatikusan legyen generálva az összehasonlítás alapján.
  7. 8. Eljárás az elfordulás vezérlésére, amely egy lencse alakú léghajóhoz kapcsolódik, amely magában foglal egy első energiaforrást (533), egy második energiaforrást (534) és egy függőleges vezérlő felületet (350), ahol az eljárás magában foglalja a kővetkezőket: egy elfordulás vezérlőtől egy jel fogadása (vétele), amely által egy kívánt elfordulási szög van jelezve a léghajónak, azzal jellemezve, hogy az első energiaforrás (533) egy olyan pozícióban helyezkedik el, amely 120 fokra található a léghajónak az orrától (120 fokos szögben található ahhoz képest), és a második energiaforrás (534) egy olyan pozícióban helyezkedik eh amely negatív 120 tokra található a léghajónak az orrától (negatív 120 fokos szögben található ahhoz képest), és azzal, hogy az eljárás magában foglalja a következőket: egy működési állapotnak a meghatározása, amely az első energiaforrással (533) és a második energiaforrással (534) és a függőleges vezérlő felülettel (350) kapcsolatos, és a működési állapotnak a módosítása, amely az első energiaforrással, a második energiaforrással és a függőleges vezérlő felülettel kapcsolatos, hogy legyen előidézve az, hogy a léghajó elérje a kívánt elfordulási szöget, | 9, Eljárás a 8., igénypont szerint, amely továbbá magában foglalja egv vagy több pedálnak (240, 242) a működtetését, amely az elfordulás vezérlőhöz kapcsolódik, hogy legyen jelezve a kívánt elfordulási szög.
  8. 10. Eljárás a 8. igénypont szerint, ahol a módosítás magában foglalja egy vezérlő jel rendelkezésre állítását az első energiaforrással (533), a második energiaforrással (534) és a függőleges vezérlő felülettel (350) kapcsolatos működési állapot és a: .kívánt elfordulási szög alapján, 1J. Eljárás a 10. igénypont szerint, ahol a működési állapotnak a módosítása, amely a függőleges vezérlő felülettel (350) kapcsolatos, magában foglalja egy oldalkormánynak az elfordulását, amely előnyösen kapcsolatban van egv kormányiélülebszerkezettel (farokrészv-szerkezettel, angolul: „empennage”), amely a léghajóhoz kapcsolódik.
  9. 12, Eljárás a Π. igénypont szerint, ahol az elfordulás egy jobb irányban vagy egy bal irányban van teljesítve a léghajó egy középvonalához viszonyúvá, a kívánt elfordulási szög alapján,
  10. 13, Eljárás a 12. igénypont szerint, ahol a vezérlő jel ügy van kialakítva, hogy legyen előidézve az oklaíkormánynak az elfordulása a bal irányban vagy a jobb irányban.
  11. 14, Eljárás a 8. igénypont szerint, ahol a módosítás továbbá magában foglalja egy tolóerőnek a módosításét, amely az első energiaforráshoz. (533) kapcsolódik, és egy tolóerőnek a módosítását, amely a második energiaforráshoz (534) kapcsolódik, például az első energiaforrásból származó tolöerönek a növelését és a második energiaforrásból származó íolóerönek a csökkentését, vagy a második energiaforrásból származó adóerőnek a növelését és az első energiaforrásból származó íolóerönek a csökkentését.
  12. 15, Eljárás a 8. igénypont szerint, amely továbbá magában foglalja a következőket: információk fogadása (vétele), amelyek egy aktuális jellemzőt jeleznek, amely egy a léghajó által végzett aktuális repülésre vonatkozik) az aktuális jellemzők összehasonlítása előnyös jellemzők egy előre meghatározott halmazával; és egy vezérlő jel automatikus generálása az összehasonlítás alapján.
HUE12171556A 2007-08-09 2008-08-07 Lencse alakú léghajó és kapcsolódó vezérlések HUE034865T2 (hu)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US93538307P 2007-08-09 2007-08-09

Publications (1)

Publication Number Publication Date
HUE034865T2 true HUE034865T2 (hu) 2018-03-28

Family

ID=40208729

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE12171556A HUE034865T2 (hu) 2007-08-09 2008-08-07 Lencse alakú léghajó és kapcsolódó vezérlések

Country Status (17)

Country Link
US (4) US8297550B2 (hu)
EP (4) EP2173613B1 (hu)
CN (4) CN102765474B (hu)
AU (1) AU2008287518B2 (hu)
CA (3) CA2693379C (hu)
CY (1) CY1119307T1 (hu)
DK (2) DK2511173T3 (hu)
EA (2) EA033922B1 (hu)
ES (3) ES2465622T3 (hu)
HK (1) HK1140988A1 (hu)
HR (1) HRP20170914T1 (hu)
HU (1) HUE034865T2 (hu)
LT (1) LT2500261T (hu)
PL (1) PL2500261T3 (hu)
PT (1) PT2500261T (hu)
SI (1) SI2500261T1 (hu)
WO (1) WO2009023114A2 (hu)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2500261T3 (pl) * 2007-08-09 2017-09-29 Lta Corp Soczewkowaty sterowiec i powiązane środki sterujące
US8931739B1 (en) * 2009-12-08 2015-01-13 The Boeing Company Aircraft having inflatable fuselage
US8727280B1 (en) 2009-12-08 2014-05-20 The Boeing Company Inflatable airfoil system having reduced radar and infrared observability
EP2340994B1 (en) * 2009-12-30 2012-02-08 AGUSTAWESTLAND S.p.A. Helicopter control stick support assembly
WO2012080847A2 (en) * 2010-07-20 2012-06-21 Paul Wilke Improved helicopter with two or more rotor heads
US8596570B1 (en) * 2011-02-22 2013-12-03 David Carambat Aircraft vehicle centrifugal fan apparatus
EP2691295B1 (en) 2011-03-31 2015-02-18 LTA Corporation Airship including aerodynamic structures
EP2739527B1 (en) * 2011-08-04 2017-10-25 Silicis Technologies Inc. Autonomous intelligence surveillance reconnaissance and payload delivery system with fluid filling system
FR2991295B1 (fr) * 2012-06-04 2015-02-27 Eurocopter France Aeronef a grande visibilite
US9139287B2 (en) * 2012-06-26 2015-09-22 Hamilton Sundstrand Corporation Propeller blade with carbon foam spar core
US8976043B2 (en) * 2012-08-20 2015-03-10 Textron Innovations, Inc. Illuminated sidestick controller, such as an illuminated sidestick controller for use in aircraft
US9845141B2 (en) 2012-12-07 2017-12-19 Raven Industries, Inc. Atmospheric balloon system
US9193480B2 (en) * 2012-12-07 2015-11-24 Raven Industries, Inc. High altitude balloon system
US8812176B1 (en) * 2012-12-31 2014-08-19 Google Inc. Collapsible envelope for descent of balloon with envelope still attached
US20140379178A1 (en) * 2013-06-24 2014-12-25 Honeywell International Inc. System and method for fine positioning of vtol stare point
US9856007B2 (en) * 2013-06-27 2018-01-02 Egan Airships, Inc. Hybrid VTOL vehicle
US9428257B2 (en) 2013-09-18 2016-08-30 William Edmund Nelson Extended endurance air vehicle
CN103970149B (zh) * 2014-04-15 2016-06-29 北京控制工程研究所 一种二维矢量调节机构的转角控制方法
CN105197222B (zh) * 2014-06-19 2017-07-11 宿迁学院 一种采用仿生原理减少飞行器失控后危害的补救装置
US9828107B1 (en) * 2014-08-25 2017-11-28 Stc.Unm Redundant component and intelligent computerized control system for multi-rotor VTOL aircraft
CN104656656A (zh) * 2014-12-01 2015-05-27 江西洪都航空工业集团有限责任公司 一种基于特征结构配置的变稳控制方法
CN104436682A (zh) * 2014-12-31 2015-03-25 长沙湘毅田信息咨询有限公司 一种自动感应飞碟
US20160221661A1 (en) 2015-02-02 2016-08-04 Derek Lee Bohannon Tendon sleeve for high-altitude balloon and system for making the same
US11001378B2 (en) 2016-08-08 2021-05-11 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
US10464668B2 (en) 2015-09-02 2019-11-05 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
WO2017065858A2 (en) 2015-09-02 2017-04-20 Jetoptera, Inc. Ejector and airfoil configurations
CN106608350B (zh) * 2015-10-22 2024-03-15 深圳光启合众科技有限公司 多旋翼飞行器
US10367447B2 (en) * 2015-12-16 2019-07-30 Skycom Corporation Lighter-than-air aircraft and method to reduce leakage within a flexible bladder
CN106249668A (zh) * 2016-10-08 2016-12-21 北京航空航天大学 用于微型阵列推进装置的设备参数调控方法和装置
CN106338985A (zh) * 2016-10-26 2017-01-18 李露青 控制器参数的调整方法和装置
USD808329S1 (en) * 2017-01-18 2018-01-23 Aurora Flight Sciences Corporation Lenticular aircraft
JP7155174B2 (ja) 2017-06-27 2022-10-18 ジェトプテラ、インコーポレイテッド 航空機の垂直離着陸システムの構成
CN108549400B (zh) * 2018-05-28 2021-08-03 浙江工业大学 基于对数增强型双幂次趋近律和快速终端滑模面的四旋翼飞行器自适应控制方法
US11591074B1 (en) * 2018-11-28 2023-02-28 Zunum Aero, Inc. System and methods for designing and building regional hybrid-to-electric systems and methods for designing and optimizing regional hybrid-to-electric aircraft
US11097839B2 (en) * 2019-10-09 2021-08-24 Kitty Hawk Corporation Hybrid power systems for different modes of flight
WO2021102441A1 (en) 2019-11-22 2021-05-27 Zsm Holdings Llc Systems and methods for optimization of packaging large irregular payloads for shipment by air vehicles
US11702191B1 (en) * 2022-10-30 2023-07-18 Archer Aviation, Inc. Systems and methods for controlling an electric vertical take-off and landing aircraft

Family Cites Families (256)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE210003C (hu)
US459112A (en) 1891-09-08 Tire-heater
US1027590A (en) 1910-06-03 1912-05-28 Ernst Bucher Dirigible airship.
US1261005A (en) 1912-10-09 1918-04-02 Edwin O Barstow Method of separating volatile constituents.
US1350211A (en) 1920-04-26 1920-08-17 Jr David Corson Sea-dirigible
US1944467A (en) 1931-10-29 1934-01-23 Elmore E Sabin Gas bag envelope for aircraft
US2013673A (en) * 1933-04-12 1935-09-10 Sias Frederick Ralph Airplane engine synchronizing device
US2286014A (en) * 1941-01-28 1942-06-09 Stanley S Lieberman Airplane angle indicator
US2379355A (en) 1942-06-05 1945-06-26 Alice P Brownrigg Propelled aerodynamic body
US2935275A (en) 1955-10-20 1960-05-03 Leonard W Grayson Disc shaped aircraft
US3337845A (en) * 1965-02-26 1967-08-22 Gerald E Hart Heads-up display for pilots
US3432120A (en) 1966-05-20 1969-03-11 Efrain Guerrero Aircraft
US3395877A (en) 1966-09-26 1968-08-06 Schjeldahl Co G T Aerodynamic site marker balloon
US3477168A (en) 1967-03-20 1969-11-11 James E Trodglen Jr Internal combustion engine powered flying toys
US3529283A (en) * 1967-11-14 1970-09-15 Collins Radio Co Aircraft flight director instrument
USRE28454E (en) 1967-12-04 1975-06-17 Airship
US3580636A (en) 1970-01-14 1971-05-25 Us Air Force Dual side arm controller
US3976265A (en) 1973-05-07 1976-08-24 All American Industries, Inc. Semibuoyant composite aircraft
DE2348085A1 (de) 1973-09-25 1975-04-10 Karl Heinz Schwindt Verfahren und vorrichtung zur gleichzeitigen erzeugung von klimatisierter luft und von trinkwasser
US3970270A (en) 1974-11-11 1976-07-20 Pittet Jr Rene E Low speed aircraft
US3946364A (en) * 1975-01-08 1976-03-23 Eldec Corporation Method and apparatus for sensing, storing, and graphically displaying over-temperature conditions of jet engines
US3971533A (en) 1975-02-25 1976-07-27 Slater Saul I Convertible airship
US4591112A (en) * 1975-09-09 1986-05-27 Piasecki Aircraft Corporation Vectored thrust airship
CA1054124A (en) 1975-09-09 1979-05-08 Frank N. Piasecki Vectored thrust airship
JPS52145999A (en) 1976-05-29 1977-12-05 Masaaki Kusano Variable sweepback aerofoil
US4149688A (en) * 1976-10-01 1979-04-17 Aereon Corporation Lifting body aircraft for V/STOL service
IT1115749B (it) 1977-11-17 1986-02-03 Pirelli Perfezionamento ai pannelli pr lo sfruttamento dell'energia solare
US4298175A (en) 1979-03-21 1981-11-03 Textron Inc. Airplane wing and undercarriage construction
GB2055728B (en) 1979-08-10 1983-03-09 Boothroyd M W Airships
US4326681A (en) 1979-09-20 1982-04-27 Fredrick Eshoo Non-rigid airship
US4269375A (en) 1979-10-31 1981-05-26 Hickey John J Hybrid annular airship
US4461436A (en) 1979-11-26 1984-07-24 Gene Messina Gyro stabilized flying saucer model
US4420808A (en) * 1980-04-01 1983-12-13 United Technologies Corporation Multi-axis force stick, self-trimmed aircraft flight control system
USD274999S (en) 1982-03-01 1984-08-07 Reeves Leo P Circular wing aircraft
SE431433B (sv) * 1982-06-01 1984-02-06 Saab Scania Ab Spakenhet med flera funktioner
USD280194S (en) 1983-02-28 1985-08-20 Bothe Hans J Aircraft
US4583094A (en) * 1983-04-28 1986-04-15 Rockwell International Corporation Solid state attitude director indicator
US4598890A (en) * 1983-08-01 1986-07-08 The Boeing Company Avionic control system
DE3508101A1 (de) 1985-03-07 1986-09-11 Hans Jürgen 5475 Burgbrohl Bothe Hybrid-flugzeug
US4685640A (en) 1985-05-06 1987-08-11 Hystar Aerospace Development Corporation Air vehicle
USD307884S (en) 1986-02-17 1990-05-15 Hystar Aerospace Development Corporation Air vehicle
GB2197276B (en) 1986-09-26 1990-04-04 Airship Ind Improvements in airships
USD307131S (en) 1986-10-29 1990-04-10 Hystar Aerospace Development Corporation Air vehicle
USD309887S (en) 1986-10-29 1990-08-14 Hystar Aerospace Development Corporation Air vehicle
SU1485575A1 (ru) * 1987-01-30 2004-03-10 А.А. Белавский Устройство для управления рулем направления летательного аппарата
US4915792A (en) 1987-02-11 1990-04-10 Sten Zeilon Process for separating a volatile component from a mixture
FR2611775A1 (fr) 1987-02-26 1988-09-09 Phenol Eng Procede pour le transport aerien de batiments preconstruits
US5096141A (en) 1987-03-27 1992-03-17 Schley Heinz K Aircrane
GB8711352D0 (en) 1987-05-14 1987-07-15 Woodville Polymer Eng Aircraft-landing equipment
US4793204A (en) * 1987-11-25 1988-12-27 Douglas Components Corporation Tilt and telescope steering column having a single control
BE1002132A5 (fr) 1987-12-04 1990-07-24 Brussels Consulting Group S A Aerostat dirigeable.
USD305418S (en) 1987-12-20 1990-01-09 Airship Developments Australia Pty. Ltd. Gondola for an airship
JPH0619965Y2 (ja) 1988-01-22 1994-05-25 サンデン株式会社 熱交換器
US4914976A (en) 1988-04-13 1990-04-10 Honeywell Inc. Five and six degree of freedom hand controllers
US4901948A (en) 1988-11-04 1990-02-20 Panos Peter M Control system for jet propelled vehicle
US5090637A (en) * 1989-04-14 1992-02-25 Haunschild Willard M Helium purification system for lighter-than-air aircraft
RU2028249C1 (ru) 1989-09-26 1995-02-09 Ишков Юрий Григорьевич Привязной аэростат
RU2009073C1 (ru) 1989-12-19 1994-03-15 Володар Иванович Бирюлев Аэростатический комбинированный летательный аппарат
CA2113989C (en) 1990-09-27 1999-02-02 Hakan Colting Airship and method for controlling its flight
JPH04169397A (ja) 1990-10-31 1992-06-17 Sosuke Omiya 飛行船
RU1799335C (ru) 1991-02-06 1993-02-28 .Бйрюлев Мотоплан
GB9104996D0 (en) 1991-03-08 1992-06-17 British Aerospace Twist throttle
DE69212838T2 (de) 1991-09-09 1997-03-06 Av-Intel Inc., Nepean, Ontario Starrluftschiffe
US5170963A (en) 1991-09-24 1992-12-15 August H. Beck Foundation Company VTOL aircraft
US5281960A (en) * 1991-11-19 1994-01-25 Silhouette Technology, Inc. Helmet mounted display
EP0619792B1 (en) 1992-01-10 1996-12-11 Buoyant Copter, Inc. Hybrid aircraft
CA2137278A1 (en) 1992-06-03 1993-12-09 Egon Gelhard Airstrip for the transport of goods and passengers
US5351911A (en) 1993-01-06 1994-10-04 Neumayr George A Vertical takeoff and landing (VTOL) flying disc
GB2275036B (en) 1993-02-16 1997-06-25 Roman Stoklosinski Balloon/airship
US5516060A (en) 1993-03-29 1996-05-14 Mcdonnell; William R. Vertical take off and landing and horizontal flight aircraft
DE4318985C2 (de) 1993-06-08 1999-01-07 Zeppelin Luftschiffbau Lande- und Verankerungsvorrichtung für ein Luftschiff
US5368256A (en) 1993-08-19 1994-11-29 Lockheed Corporation Propulsion system for a lighter-than-air vehicle
US5333817A (en) 1993-11-22 1994-08-02 Lockheed Corporation Ballonet system for a lighter-than-air vehicle
US5755402A (en) 1994-01-03 1998-05-26 Henry; Roy Discoid airship
UA10870A (uk) 1994-01-24 1996-12-25 Юрій Леонідовіч Сідорюк Дисколіт
US5449129A (en) 1994-02-18 1995-09-12 Lockheed Corporation Propulsion system for a lighter-than-air vehicle
CN2188544Y (zh) 1994-04-09 1995-02-01 卢杲 飞碟
RU2111147C1 (ru) 1994-05-24 1998-05-20 Юрий Григорьевич Ишков Воздушно-космическая транспортная система
RU2114027C1 (ru) 1994-05-26 1998-06-27 Юрий Григорьевич Ишков Полужесткий управляемый аэростатический летательный аппарат
RU2111146C1 (ru) 1994-05-26 1998-05-20 Юрий Григорьевич Ишков Высотный управляемый аэростатический летательный аппарат
FR2725803B1 (fr) * 1994-10-18 1997-01-03 Sextant Avionique Dispositif optoelectronique d'assistance au pilotage d'un aeronef
RU2070136C1 (ru) 1994-11-03 1996-12-10 Юрий Григорьевич Ишков Полужесткий управляемый аэростатический летательный аппарат с корпусом изменяемой формы
US5558687A (en) 1994-12-30 1996-09-24 Corning Incorporated Vertical, packed-bed, film evaporator for halide-free, silicon-containing compounds
US6019312A (en) 1995-01-26 2000-02-01 Blenn; Jesse Airship tail fin construction for improved control
US5540172A (en) 1995-03-16 1996-07-30 Mmc Compliance Engineering, Inc. Apparatus for performing external surface work on underside of ship hull
US5614897A (en) * 1995-03-29 1997-03-25 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Aircraft flight instrument displays
DE19613090B4 (de) 1995-04-05 2005-09-29 Luftschiffbau Zeppelin Gmbh Träger für ein Luftschiff
US5906335A (en) * 1995-05-23 1999-05-25 Thompson; Mark N. Flight direction control system for blimps
US5713536A (en) 1995-06-02 1998-02-03 Tcom, L.P. Aerostat single ballonet system
US5823468A (en) * 1995-10-24 1998-10-20 Bothe; Hans-Jurgen Hybrid aircraft
RU2092381C1 (ru) 1995-10-31 1997-10-10 Акционерное общество закрытого типа "Тюменьэкотранс" Гибридный дирижабль конструкции а.и.филимонова
RU2098318C1 (ru) 1995-11-24 1997-12-10 Юрий Григорьевич Ишков Управляемый аэростатический летательный аппарат-кран
US5820080A (en) * 1996-03-14 1998-10-13 Trimble Navigation Limited Precision equivalent landing system using gps and an altimeter
DE19625297A1 (de) 1996-06-25 1998-01-08 Cargolifter Ag Verfahren zum gezielten Absetzen oder Aufnehmen von Gütern und Personen aus Luftfahrzeugen
RU2114765C1 (ru) 1996-12-24 1998-07-10 Юрий Григорьевич Ишков Комбинированный летательный аппарат
DE19700182A1 (de) 1997-01-04 1998-07-09 Industrieanlagen Betriebsges Luftfahrzeug mit einem im wesentlichen als aerostatischem Auftriebskörper ausgebildeten Rumpf
DE19745893A1 (de) 1997-01-16 1999-04-22 Fritz Peter Prof Dr Schaefer Kreuzfahrt-Luftschiff mit Ankereinrichtung und Helium-Verflüssigungsanlage
AU8374098A (en) 1997-06-18 1999-01-04 Gas Research Institute Flat-plate absorbers and evaporators for absorption coolers
US5948023A (en) * 1997-06-19 1999-09-07 Sikorsky Aircraft Corporation Monitoring and/or control system for a dual-engine helicopter for one engine inoperative flight operations
RU2111027C1 (ru) 1997-06-20 1998-05-20 Открытое акционерное общество "Электростальский химико-механический завод" Респиратор
DE19744581A1 (de) 1997-10-04 1999-04-15 Bock Juergen Dipl Phys Sphärisches Luftschiff mit schalenförmiger Gondel
US6670304B2 (en) 1998-03-09 2003-12-30 Honeywell International Inc. Enhanced functionalized carbon molecular sieves for simultaneous CO2 and water removal from air
FR2775949B1 (fr) * 1998-03-11 2000-04-21 Centre Nat Etd Spatiales Aerostat libre a rotation permanente mobile en translation radiale par rapport a l'air atmospherique
IL124978A (en) 1998-06-17 2003-01-12 Watertech M A S Ltd Method and apparatus for extracting water from atmospheric air
DE19827664C1 (de) 1998-06-22 2000-02-10 Ingolf Schaefer Einrichtung zum gezielten Absetzen oder Aufnehmen von Gütern aus Luftfahrzeugen
USD418804S (en) 1998-06-22 2000-01-11 Lockheed Martin Corporation Partially buoyant aerial vehicle
EP1092060B1 (en) 1998-07-01 2003-08-20 Institute of Paper Science and Technology, Inc. Process for removing water from fibrous web using oscillatory flow-reversing impingement gas
US6307527B1 (en) * 1998-07-27 2001-10-23 John S. Youngquist LED display assembly
US6427943B2 (en) 1998-10-07 2002-08-06 Fuji Jukogyo Kabushiki Kaisha Stratospheric airship
USD424508S (en) 1998-10-09 2000-05-09 Airship Management Services, Inc. Airship
US6156102A (en) 1998-11-10 2000-12-05 Fantom Technologies Inc. Method and apparatus for recovering water from air
IT1310008B1 (it) 1999-02-16 2002-02-05 Siro Vasco Cecchi Aeromobile munito di un corpo voluminoso generante una spintaaereostatica, ma di per se piu' pesante del volume di aria spostata
RU2141911C1 (ru) 1999-03-25 1999-11-27 Ишков Юрий Григорьевич Комбинированный полужесткий управляемый летательный аппарат легче воздуха
US6302944B1 (en) 1999-04-23 2001-10-16 Stuart Alfred Hoenig Apparatus for extracting water vapor from air
US6010093A (en) 1999-04-28 2000-01-04 Paulson; Allen E. High altitude airship system
US6164589A (en) 1999-05-17 2000-12-26 Lockheed Martin Corporation Centerline landing gear for aerocraft
AU4567900A (en) 1999-05-28 2000-12-18 Uti Holding + Management Ag Lighter-than-air airship and method for controlling said airship
US6311925B1 (en) 1999-06-10 2001-11-06 Ohio Airships, Inc. Airship and method for transporting cargo
US6633801B1 (en) * 1999-10-20 2003-10-14 Stanley H. Durlacher Method and apparatus for providing information to pilots
US6453684B1 (en) 2001-03-12 2002-09-24 Sandia Corporation Method and apparatus for extracting water from air
US6511525B2 (en) 1999-11-12 2003-01-28 Sandia Corporation Method and apparatus for extracting water from air using a desiccant
US6230503B1 (en) 1999-11-12 2001-05-15 Sandia Corporation Method and apparatus for extracting water from air
FR2802172B1 (fr) 1999-12-09 2002-04-19 Marc Senepart Dispositif d'enceinte variable pour dirigeable
US6293493B1 (en) 1999-12-21 2001-09-25 Lockheed Martin Corporation Pressure stabilized gasbag for a partially buoyant vehicle
US6315242B1 (en) 1999-12-21 2001-11-13 Lockheed Martin Corporation Propulsion system for a semi-buoyant vehicle with an aerodynamic
US6196498B1 (en) 1999-12-21 2001-03-06 Lockheed Martin Corporation Semi-buoyant vehicle with aerodynamic lift capability
UA32397A (uk) 2000-02-04 2000-12-15 Михайло Євменович Бабкін Аеростатичний апарат
ATE254220T1 (de) 2000-02-21 2003-11-15 Dil Sham Ventures Apparat zur gewinnung von trinkwasser aus umgebungsluft
DE10011319C2 (de) 2000-02-23 2002-01-24 Cargolifter Ag Luftschiff sowie Verfahren zur Nickwinkeltrimmung von Luftschiffen
US20020014555A1 (en) 2000-02-23 2002-02-07 Tim Smith Method for altitude control and/or pitch angle control of airships, and an airship having a device for altitude control and/or pitch angle trimming
US6811113B1 (en) * 2000-03-10 2004-11-02 Sky Calypso, Inc. Internet linked environmental data collection system and method
US7043934B2 (en) 2000-05-01 2006-05-16 University Of Maryland, College Park Device for collecting water from air
US6513752B2 (en) * 2000-05-22 2003-02-04 Cartercopters, L.L.C. Hovering gyro aircraft
DE60109611T2 (de) 2000-06-05 2006-02-02 Advanced Technologies Group Ltd., Bedford Hybridluftfahrzeug
US6574979B2 (en) 2000-07-27 2003-06-10 Fakieh Research & Development Production of potable water and freshwater needs for human, animal and plants from hot and humid air
US6302357B1 (en) 2000-08-28 2001-10-16 Lockheed Martin Corporation Pressure stabilized inflated air transport vehicle
US6360549B1 (en) 2001-03-12 2002-03-26 Sandia Corporation Method and apparatus for extracting water from air
GB2366274A (en) 2000-08-31 2002-03-06 Edmund Peter Gortowski A compact, economic and manoeuverable aircraft
FR2813663B1 (fr) 2000-09-04 2002-12-20 Didier Costes Echangeur de chaleur utilisant des plaques alveolaires extrudees
FR2815336B1 (fr) 2000-10-16 2002-12-13 Didier Costes Appareil de dessalement d'eau utilisant un cycle a air humide
US6383727B1 (en) 2000-11-03 2002-05-07 Eastman Kodak Company Method and system for processing photographic material which includes water recovery from humid air for re-use in the processing
US20020109045A1 (en) 2000-11-21 2002-08-15 Cargolifter, Inc. Spherical LTA cargo transport system
DE10058072B4 (de) 2000-11-23 2004-05-27 Cargolifter Ag I.Ins. Vorrichtung zur Aufhängung einer an einer Trageeinrichtung hängenden Last
US7216069B2 (en) * 2001-01-19 2007-05-08 Honeywell International, Inc. Simulated visual glideslope indicator on aircraft display
US6577929B2 (en) * 2001-01-26 2003-06-10 The Charles Stark Draper Laboratory, Inc. Miniature attitude sensing suite
US6609945B2 (en) * 2001-02-08 2003-08-26 Plexus, Inc. Radio-controlled toy blimp with infrared beam weapons for staging a gun battle
JP3933409B2 (ja) * 2001-03-29 2007-06-20 株式会社ジェイテクト 舵取装置
DE10120232A1 (de) 2001-04-19 2002-10-31 Cargolifter Ag Luftfahrzeug leichter als Luft
DE10121854C1 (de) 2001-05-04 2002-11-21 Cargolifter Ag Verfahren zum Anmasten von Luftschiffen
US6648272B1 (en) 2001-06-28 2003-11-18 Keith L. Kothmann Airship
US6702229B2 (en) * 2001-08-08 2004-03-09 Norman G. Anderson Method, apparatus and article to display flight information
DE10139877A1 (de) 2001-08-10 2003-02-27 Cargolifter Ag Anordnung zur Steuerung von Luftfahrzeugen leichter als Luft
US6650407B2 (en) * 2001-09-04 2003-11-18 Rosemount Aerospace Inc. Wide field scanning laser obstacle awareness system
US6892118B1 (en) * 2001-09-13 2005-05-10 Honeywell International Inc. Pictographic mode awareness display for aircraft
DE20115193U1 (de) 2001-09-14 2002-01-17 Kuenkler Hermann Luftfahrzeug mit einem im unteren Rumpfbereich vorgesehenen Frachtraum
DE10148589B4 (de) 2001-09-25 2013-09-05 Cl Cargolifter Gmbh & Co. Kgaa Verfahren und Anordnung zum Lastaustausch für nicht gelandete Luftfahrzeuge
DE20116152U1 (de) 2001-09-25 2002-02-14 Cargolifter Ag Arbeitskorb für ein Hebezeug
DE10148590A1 (de) 2001-09-25 2003-04-10 Cargolifter Ag Vorrichtung und Verfahren zum Handhaben großflächiger symmetrischer Teile
FR2830838B1 (fr) * 2001-10-12 2004-01-09 Airstar Dirigeable semi-rigide a carene maintenue en conformation par une poche de gaz porteur comprimee par un coussin d'air
US6499309B1 (en) 2001-10-29 2002-12-31 Lucky Star Enterprise & Co., Ltd. Water supply system by condensing air humidity
GB2382808A (en) 2001-12-05 2003-06-11 Advanced Technologies Group Lt Lighter-than-air aircraft with air cushion landing gear
DE10164062A1 (de) 2001-12-24 2003-07-03 Cargolifter Ag I Ins Anordnung zur Verankerung und Sicherung von Luftschiffen
DE10164067A1 (de) 2001-12-24 2003-07-03 Cargolifter Ag I Ins Anordnung zur Be- und Entladung von verankerten Luftschiffen
DE10201133A1 (de) 2002-01-08 2003-07-10 Cargolifter Ag I Ins Anordnung von Leistungsgeneratoren für Luftfahrzeuge leichter als Luft
DE10210541A1 (de) 2002-03-07 2003-09-18 Cargolifter Ag I Ins Verfahren und Anordnung zur Messung von Spannungen an elastisch verformbaren Flächen
DE20204023U1 (de) 2002-03-07 2002-07-18 Cargolifter Ag Handschuh, insbesondere Arbeitshandschuh für Höhenarbeiten
DE10210542A1 (de) 2002-03-07 2003-09-18 Cargolifter Ag I Ins Fernsteuerbarer Kameraträger
DE10210540B4 (de) 2002-03-07 2013-04-18 Cl Cargolifter Gmbh & Co. Kgaa Seilgeführter Auftriebskörper, insbesondere zum Umsetzen von Lasten
DE10216480A1 (de) 2002-04-13 2003-10-30 Cargolifter Ag I Ins Schutzanordnung für seilgestützte Arbeitsverfahren
US20040007644A1 (en) * 2002-04-25 2004-01-15 Airscooter Corporation Rotor craft
WO2003097451A1 (de) 2002-05-21 2003-11-27 Cargolifter Ag Verfahren zur gewinnung von ballast aus dem abgas von verbrennungskraftmaschinen an bord von luftschiffen
WO2003097450A1 (en) 2002-05-21 2003-11-27 Viktor Glibovytch Abelyants Air transportation apparatus
US6565037B1 (en) 2002-06-04 2003-05-20 Tonkovich Gregory P Hybrid aircraft and methods of flying
US6735500B2 (en) * 2002-06-10 2004-05-11 The Boeing Company Method, system, and computer program product for tactile cueing flight control
DE10226868A1 (de) 2002-06-12 2003-12-24 Cargolifter Ag I Ins Lasttransporter, insbesondere Bodenfahrzeug
DE10228048A1 (de) 2002-06-24 2004-01-22 Cargolifter Ag I.Ins. Luftfahrzeug leichter als Luft
US7055777B2 (en) 2002-06-25 2006-06-06 21St Century Airships Inc. Airship and method of operation
US6960243B1 (en) 2002-07-23 2005-11-01 Nanopore, Inc. Production of drinking water from air
UA55928A (uk) 2002-07-23 2003-04-15 Національний Авіаційний Університет Комбінований аеростатичний літальний апарат
FR2844035B1 (fr) 2002-09-03 2004-10-22 Agence Spatiale Europeenne Procede et systeme d'extraction et de rejet de la vapeur d'eau contenue dans l'air d'un vehicule spatial
US20040059474A1 (en) * 2002-09-20 2004-03-25 Boorman Daniel J. Apparatuses and methods for displaying autoflight information
DE10252910A1 (de) 2002-11-12 2004-05-19 Cargolifter Ag I.Ins. Antrieb für Luftfahrzeuge, insbesondere leichter als Luft
DE10252895A1 (de) 2002-11-12 2004-05-19 Cargolifter Ag I.Ins. Verfahren und Anordnung zur Abscheidung von Partikeln aus der Luft
DE10252896A1 (de) 2002-11-12 2004-05-27 Cargolifter Ag I.Ins. Vorrichtung zum Wenden von großflächigen unsymmetrischen Teilen
DE10252909B4 (de) 2002-11-12 2011-03-03 Cargolifter Ag Anordnung zum Blitzschutz membraner Strukturen von Luftfahrzeugen
DE10252911A1 (de) 2002-11-12 2004-05-19 Cargolifter Ag I.Ins. Ankermast mit Kopplungsvorrichtung für Luftfahrzeuge leichter als Luft
DE10252908A1 (de) 2002-11-12 2004-05-27 Cargolifter Ag I.Ins. Anordnung von Ballast-Wassertanks auf Lastrahmen in LTA-Luftfahrzeugen
US7223151B2 (en) 2003-02-14 2007-05-29 Lloyd Randall Anderson Rigid ballon
US6659838B1 (en) 2003-02-14 2003-12-09 Lloyd R. Anderson Rigid helium balloons
US20070102570A1 (en) 2003-02-24 2007-05-10 Luffman Charles R Aircraft
US6885313B2 (en) * 2003-03-26 2005-04-26 Honeywell International Inc. Graphical display for aircraft navigation
EP1613530A2 (en) 2003-04-04 2006-01-11 Charles Raymond Luffman Airship
GB0308184D0 (en) 2003-04-09 2003-05-14 Harvison Eric J Docking guidance
FR2853895A1 (fr) 2003-04-17 2004-10-22 Didier Costes Distillateur d'eau salee a plaques continues et etages de pression
WO2004106649A1 (de) 2003-05-26 2004-12-09 Logos-Innovationen Gmbh Vorrichtung zur gewinnung von wasser aus atmosphärischer luft
FR2856654B1 (fr) 2003-06-24 2007-02-23 Airstar Aerostat equipe d'une enveloppe gonflable a volume de sustension ajustable
FI20031095A (fi) 2003-07-22 2005-01-23 Kari Johannes Kirjavainen Virtausohjattu lento- ja pintaliitolaite
RU2250122C1 (ru) 2003-09-03 2005-04-20 Биккужин Фарит Фасхитдинович Пожарный дирижабль
US7469857B2 (en) 2003-09-09 2008-12-30 University Of Massachusetts System and method for altitude control
US6955715B1 (en) 2003-10-14 2005-10-18 Tittle Nicolas D Water-based air filter system
US7303166B2 (en) 2003-11-04 2007-12-04 Daniel Geery Highly maneuverable powered airship
US7000410B2 (en) 2003-11-12 2006-02-21 Ecotek International, Inc. Apparatus and method for producing water from air
RU37568U1 (ru) 2003-12-25 2004-04-27 Маянц Денис Борисович Информационный стенд
RU40822U1 (ru) 2004-01-05 2004-09-27 Закрытое акционерное общество "Курский завод "Аккумулятор" Устройство для дозревания пластин свинцово-кислотных аккумуляторов
RU2249536C1 (ru) 2004-01-29 2005-04-10 Ишков Юрий Григорьевич Полужесткий управляемый аэростатический летательный аппарат с изменяемой конфигурацией корпуса
US7306654B2 (en) 2004-01-30 2007-12-11 Ronald King Method and apparatus for recovering water from atmospheric air
ES2275370B1 (es) * 2004-03-05 2008-05-01 Industria Helicat Y Alas Giratorias, S.L. Metodo de operacion de una aeronave convertible.
JP4328660B2 (ja) * 2004-04-15 2009-09-09 富士重工業株式会社 航空機の自動離陸装置、自動着陸装置及び自動離着陸装置並びに航空機の自動離陸方法、自動着陸方法及び自動離着陸方法
US7137592B2 (en) 2004-05-24 2006-11-21 The Boeing Company High-aspect ratio hybrid airship
US7185848B2 (en) 2004-06-21 2007-03-06 Ltas Holdings, Llc Mass transfer system for stabilizing an airship and other vehicles subject to pitch and roll moments
US7472863B2 (en) 2004-07-09 2009-01-06 Steve Pak Sky hopper
GB2418405B (en) * 2004-09-23 2010-03-10 Paul Vincenzi Rotorcraft
US7156342B2 (en) 2004-09-27 2007-01-02 Ltas Holdings, Llc Systems for actively controlling the aerostatic lift of an airship
GB0426944D0 (en) 2004-12-08 2005-01-12 Airbus Uk Ltd A trussed structure
US7159817B2 (en) 2005-01-13 2007-01-09 Vandermey Timothy Vertical take-off and landing (VTOL) aircraft with distributed thrust and control
US7108228B1 (en) 2005-02-02 2006-09-19 Manfred Marshall Hydrogen-fueled spacecraft
US20060284002A1 (en) 2005-02-08 2006-12-21 Kurt Stephens Unmanned Urban Aerial Vehicle
DE102005013529A1 (de) * 2005-03-23 2007-06-14 Dolezal, Horst, Dipl.-Ing. (FH) Scheibenförmiges Luftschiff (Flugscheibe)
US7946528B2 (en) * 2005-04-15 2011-05-24 Urban Aeronautics, Ltd. Flight control system especially suited for VTOL vehicles
US7306187B2 (en) 2005-05-17 2007-12-11 Lockheed Martin Corporation Inflatable endurance unmanned aerial vehicle
US7251945B2 (en) 2005-06-06 2007-08-07 Hamilton Sandstrand Corporation Water-from-air system using desiccant wheel and exhaust
US7478535B2 (en) 2005-06-09 2009-01-20 Turner Jr J Glenn System, and associated method, for recovering water from air
US20070018034A1 (en) * 2005-07-12 2007-01-25 Dickau John E Thrust vectoring
US7490794B2 (en) 2005-09-21 2009-02-17 Ltas Holdings, Llc Airship having a central fairing to act as a stall strip and to reduce lift
US7552893B2 (en) * 2005-09-28 2009-06-30 21St Century Airship Technologies Inc. Airship & method of operation
US7500637B2 (en) 2005-09-30 2009-03-10 Lockheed Martin Corporation Airship with lifting gas cell system
US7421320B2 (en) * 2005-10-06 2008-09-02 The Boeing Company Methods and apparatus for implementing mid-value selection functions for dual dissimlar processing modules
US20070102571A1 (en) 2005-10-20 2007-05-10 Colting Hokan S Airship for lifting heavy loads & methods of operation
US7384454B2 (en) 2005-11-03 2008-06-10 Hamilton Sundstrand Corporation Combined water-from-air and water-from-exhaust system
US7601208B2 (en) 2005-11-07 2009-10-13 Hamilton Sundstrand Corporation Water-from-air using liquid desiccant and vehicle exhaust
US8152092B2 (en) 2005-12-06 2012-04-10 Delcon Deutsche Luftfahrt Consult Gmbh Aerial transporter
FR2896495A1 (fr) 2006-01-24 2007-07-27 Didier Costes Distillateur d'eau de mer a plaques continues et etagement de pression
US7624943B2 (en) * 2006-03-22 2009-12-01 The Boeing Company Multi-mode unmanned and manned vehicle systems and methods
US7500638B2 (en) 2006-06-24 2009-03-10 Colvin Jr Charles Roy Heavy lift airship
US20080011900A1 (en) * 2006-07-15 2008-01-17 Javier Quintana Apparatus and method to control the flight dynamics in a lighter-than-air airship
US20080035787A1 (en) 2006-08-08 2008-02-14 Thompson Mark N Lighter-than-air gas handling system and method
ES2464568T3 (es) 2006-10-20 2014-06-03 Lta Corporation Aeronave lenticular
JP4895324B2 (ja) * 2006-11-27 2012-03-14 日本精機株式会社 ヘッドアップディスプレイ装置
EP2121439B1 (en) * 2007-02-16 2012-11-14 Donald Orval Shaw Modular flying vehicle
USD583294S1 (en) 2007-03-07 2008-12-23 Lta Corporation Airship
GB2447411A (en) 2007-03-14 2008-09-17 Stuart John Burrell Mobile Condensing Unit
US7873445B2 (en) * 2007-03-26 2011-01-18 Bell Helicopter Textron, Inc. Governor for a rotor with a variable maximum collective pitch
USD577100S1 (en) 2007-04-24 2008-09-16 Airconcepts, Inc. Air diffusing and water misting apparatus
US7931231B2 (en) * 2007-05-18 2011-04-26 Sikorsky Aircraft Corporation Engine anticipation for rotary-wing aircraft
FR2916421B1 (fr) * 2007-05-22 2010-04-23 Eurocopter France Systeme de commande d'un giravion.
US7759275B2 (en) 2007-07-10 2010-07-20 Hamilton Sundstrand Corporation Sorbent system for water removal from air
PL2500261T3 (pl) * 2007-08-09 2017-09-29 Lta Corp Soczewkowaty sterowiec i powiązane środki sterujące
US7760438B1 (en) 2007-09-11 2010-07-20 The United States Of America As Represented By The Secretary Of The Navy Air-to-water de-anamorphoser and method of air-to-water de-anamorphosis
US7825830B2 (en) * 2007-10-26 2010-11-02 Joyner Danny C Simplified self-powered attitude survival indicator
WO2009066073A1 (en) * 2007-11-21 2009-05-28 Qinetiq Limited Aircraft
US8286909B2 (en) 2008-02-08 2012-10-16 Stratocomm Corporation Boundary layer propulsion airship with related system and method
US20090272841A1 (en) 2008-05-05 2009-11-05 Sinsabaugh Steven L Albedo-derived airship power system
WO2009139093A1 (ja) * 2008-05-16 2009-11-19 シャープ株式会社 バックライトユニットおよび液晶表示装置
TWM353895U (en) 2008-10-02 2009-04-01 man-ji Wu Airship
US8336810B2 (en) 2008-10-29 2012-12-25 Rinaldo Brutoco System, method and apparatus for widespread commercialization of hydrogen as a carbon-free alternative fuel source
KR100974484B1 (ko) 2009-10-28 2010-08-10 한국지질자원연구원 자력탐사용 휴대용 무인비행선 및 이를 이용한 자력탐사 시스템

Also Published As

Publication number Publication date
CA2924142C (en) 2020-01-07
CN101778759A (zh) 2010-07-14
ES2465622T3 (es) 2014-06-06
CN102765474B (zh) 2016-01-20
AU2008287518A1 (en) 2009-02-19
CN102774498A (zh) 2012-11-14
US8297550B2 (en) 2012-10-30
EP2173613B1 (en) 2014-02-26
EA033922B1 (ru) 2019-12-10
PT2500261T (pt) 2017-07-06
HK1140988A1 (en) 2010-10-29
US20140070050A1 (en) 2014-03-13
DK2500261T3 (en) 2017-07-17
EP2500261B1 (en) 2017-04-12
EP2500261A1 (en) 2012-09-19
CN102774499B (zh) 2015-11-18
US20100320314A1 (en) 2010-12-23
EA201070249A1 (ru) 2010-10-29
EP2511173A1 (en) 2012-10-17
SI2500261T1 (sl) 2017-09-29
CA2693379A1 (en) 2009-02-19
WO2009023114A8 (en) 2009-05-22
EP2173613A2 (en) 2010-04-14
ES2629480T3 (es) 2017-08-10
DK2511173T3 (en) 2016-05-17
US8616503B2 (en) 2013-12-31
CN102774498B (zh) 2015-11-11
CA2924142A1 (en) 2009-02-19
LT2500261T (lt) 2017-08-10
EP2500262A1 (en) 2012-09-19
AU2008287518B2 (en) 2013-10-24
CA3062083A1 (en) 2009-02-19
CA2693379C (en) 2016-05-31
HRP20170914T1 (hr) 2017-09-22
EP2511173B1 (en) 2016-02-03
CY1119307T1 (el) 2018-02-14
WO2009023114A3 (en) 2009-07-02
US20130043353A1 (en) 2013-02-21
EA024007B1 (ru) 2016-08-31
CN102774499A (zh) 2012-11-14
US9840318B2 (en) 2017-12-12
EA201592284A1 (ru) 2016-11-30
US20180155001A1 (en) 2018-06-07
WO2009023114A2 (en) 2009-02-19
ES2570556T3 (es) 2016-05-19
CN102765474A (zh) 2012-11-07
CN101778759B (zh) 2014-10-15
PL2500261T3 (pl) 2017-09-29

Similar Documents

Publication Publication Date Title
US20180155001A1 (en) Lenticular airship and associated controls
US8418952B2 (en) Lenticular airship
AU2013257494B2 (en) Lenticular Airship and Associated Controls
AU2012200617B2 (en) Lenticular airship