HRP20200505T1 - Postupak i uređaj autonomne navigacije - Google Patents

Postupak i uređaj autonomne navigacije Download PDF

Info

Publication number
HRP20200505T1
HRP20200505T1 HRP20200505TT HRP20200505T HRP20200505T1 HR P20200505 T1 HRP20200505 T1 HR P20200505T1 HR P20200505T T HRP20200505T T HR P20200505TT HR P20200505 T HRP20200505 T HR P20200505T HR P20200505 T1 HRP20200505 T1 HR P20200505T1
Authority
HR
Croatia
Prior art keywords
inspection
waypoints
blade
waypoint
support
Prior art date
Application number
HRP20200505TT
Other languages
English (en)
Inventor
Pablo Francisco GHIGLINO NOVOA
Javier BARBADILLO AMOR
Francisco José COMÍN CABRERA
Oier PEÑAGARICANO MUÑOA
Original Assignee
Alerion Technologies, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alerion Technologies, S.L. filed Critical Alerion Technologies, S.L.
Publication of HRP20200505T1 publication Critical patent/HRP20200505T1/hr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Wind Motors (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Claims (7)

1. Postupak autonomne navigacije za praćenje objekata vjetroagregata, postupak uključuje: - kalibriranje senzora računalnog vida i LiDAR senzora postavljenog u bespilotnoj letjelici (1), - otkrivanje pomoću kalibriranog računalnog vida i LiDAR senzora barem jednog predmeta kojeg bi mogla pratiti bespilotna letjelica, otkriveni objekt je nosač (13) koja sadrži tri noža (11, 11'), svaki od tri noža (11, 11') ima četiri strane; - mjerenje pomoću LiDAR senzora skupa značajki otkrivenog nosača (13), skup izmjerenih značajki koji uključuje promjer (nD) nosača (13) i duljinu oštrice (bL) noževa (11, 11'); - procjenjivanje relativnog položaja bespilotne letjelice (1) u odnosu na otkriveni nosač (13); postupak naznačen time što nadalje uključuje: - zapovijedanje bespilotnoj letjelici (1) da dosegne ciljnu putnu točku koja pripada skupu putnih točaka koje određuju putanju koja uključuje: - kontrolnu putnu točku nosača koja je poravnata sa osi nosača (13) na unaprijed podešenoj udaljenosti od nosača (13), i - osam putnih točaka za pregled oštrica za svaki od tri noža (11, 11'), osam putnih točaka za pregled oštrica su četiri putne točke pregleda korijena i četiri putne točke pregleda vrha, svaka putna točka pregleda korijena odgovara putnoj točki pregleda na korijenu noževa (11, 11') za svaku od četiri strane, i svaku putnu točku pregleda vrha koja odgovara točki pregleda na vrhu noževa (11, 11') za svaku od četiri strane, i osam putnih točaka za pregled oštrica konfigurirano je kao kutovi trapeza prizme, s rombom kao paralelnim donjim i gornjim licima, gornje lice svih prizmi je kvadrat s dijagonalama jednakim dva puta preglednom udaljenosti na vrhu noževa (11, 11'), donje lice ima manju dijagonalu s istom dužinom i glavnu dijagonalu s dužinom dva puta preglednom udaljenosti u korijenu noževa (11, 11'), pri čemu se osam putnih točaka za pregled oštrica definira radijalno oko osi rotacije nosača (13) držeći udaljenost od osi rotacije prema svakoj putnoj točki pregleda korijena jednakoj izmjerenom promjeru (nD) i držanje udaljenosti od osi rotacije prema svakoj putnoj točki pregleda vrha jednakoj izmjerenoj dužini oštrica (bL); - jednom kada bespilotna letjelica (1) dosegne ciljnu putnu točku, podešavajući putanju redefiniranjem sljedeće ciljne putne točke iz skupa putnih točaka da bi se otkriveni objekt usredotočio na senzor računalnog vida.
2. Postupak prema zahtjevu 1, naznačen time što prilagođavanje putanje uključuje kartezijanske korekcije, i vodoravne i nadmorske visine, kontrolne putne točke nosača i koje se izvode jednako prema svim točkama pregleda oštrice kao prijevod.
3. Postupak prema zahtjevu 2, naznačen time što prilagođavanje putanje uključuje, jednom kad se primijene kartezijanske korekcije, korekcije usmjerenja kontrolne putne točke nosača i proširi na sve putne točke pregleda oštrice kao rotaciju razlike u kutu smjera oko okomite osi nosača (13).
4. Postupak prema bilo kojem od zahtjeva 1-3, naznačen time što prilagođavanje putanje uključuje normalne korekcije u putnim točkama pregleda oštrice koje se šire unutar odgovarajućeg donjeg i gornjeg lica prizme.
5. Postupak prema bilo kojem od zahtjeva 1-4, naznačen time što se redefiniranje sljedeće ciljne putne točke temelji na: - otkrivanju pomoću LiDAR senzora poravnanja sa osi nosača (13), - otkrivanju pomoću LiDAR senzora visine nosača (13), - otkrivanju pomoću senzora LiDAR mjesta vrha svakog noža (11, 11'), - definiranju relativne pregledne udaljenosti na temelju pregledne udaljenosti na vrhu noža (11, 11') i pregledne udaljenosti u korijenu noževa (11, 11').
6. Bespilotna letjelica (1) za praćenje objekata, sadrži najmanje LiDAR senzor i senzor računalnog vida, naznačen time što nadalje sadrži ugrađeno računalo konfigurirano za izvođenje postupka prema bilo kojem od zahtjeva 1-5.
7. Računalni programski proizvod koji sadrži sredstva programskog koda koja, kada se učita u ugrađeno računalo bespilotne letjelice (1), čine da navedena sredstva programskog koda izvrše postupak prema bilo kojem od zahtjeva 1-5.
HRP20200505TT 2017-09-06 2020-03-27 Postupak i uređaj autonomne navigacije HRP20200505T1 (hr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17382598.5A EP3454159B1 (en) 2017-09-06 2017-09-06 Method and device of autonomous navigation

Publications (1)

Publication Number Publication Date
HRP20200505T1 true HRP20200505T1 (hr) 2020-10-02

Family

ID=59901461

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP20200505TT HRP20200505T1 (hr) 2017-09-06 2020-03-27 Postupak i uređaj autonomne navigacije

Country Status (9)

Country Link
US (1) US20200293045A1 (hr)
EP (1) EP3454159B1 (hr)
BR (1) BR112020004609B1 (hr)
DK (1) DK3454159T3 (hr)
ES (1) ES2778828T3 (hr)
HR (1) HRP20200505T1 (hr)
LT (1) LT3454159T (hr)
PT (1) PT3454159T (hr)
WO (1) WO2019048721A1 (hr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2577134B (en) 2018-09-10 2021-01-13 Perceptual Robotics Ltd Control and navigation systems
EP3850456B1 (en) * 2018-09-10 2024-05-08 Perceptual Robotics Limited Control and navigation systems, pose optimisation, mapping, and localisation techniques
CN111120220B (zh) * 2018-10-31 2021-05-28 北京金风科创风电设备有限公司 风力发电机组叶片视频监测的方法及系统
US11307581B2 (en) * 2019-02-28 2022-04-19 Rockwell Collins, Inc. Multispectrally enhanced synthetic vision database system and method
ES2796964B2 (es) * 2019-05-29 2021-11-17 Imfuture Integral Man Future Renewables S L Vehiculo aereo, procedimiento y sistema para la inspeccion de palas de aerogeneradores en movimiento
CN110282143B (zh) * 2019-06-14 2022-09-27 中国能源建设集团广东省电力设计研究院有限公司 一种海上风电场无人机巡检方法
US11022972B2 (en) * 2019-07-31 2021-06-01 Bell Textron Inc. Navigation system with camera assist
CN110794874B (zh) * 2019-10-11 2022-12-30 东南大学 一种定位误差约束下的飞行器航迹快速规划方法
CN110667847B (zh) * 2019-10-17 2020-08-18 安徽省徽腾智能交通科技有限公司泗县分公司 无人机智能化飞行高度控制平台
CN111880562A (zh) * 2020-07-16 2020-11-03 河南理工大学 一种基于激光雷达的无人机仿地飞行装置
CN112483330B (zh) * 2020-11-13 2021-09-10 江苏科技大学 一种匹配在役风力机状态的无人巡检轨迹程控方法
CN112346482B (zh) * 2020-11-25 2023-03-03 中国工程物理研究院总体工程研究所 飞行航线管理方法
CN112748121B (zh) * 2020-12-31 2022-10-25 天津大学 基于水工结构表面裂缝的无人机检测方法及装置
CN112797916A (zh) * 2020-12-31 2021-05-14 新拓三维技术(深圳)有限公司 基于追踪式自动化扫描检测系统、方法及可读存储介质
CN113109852B (zh) * 2021-03-11 2024-03-12 国网江西省电力有限公司电力科学研究院 一种无人机进狭窄空间的路径规划方法及装置
KR20220128787A (ko) * 2021-03-15 2022-09-22 현대자동차주식회사 라이다 센서를 이용한 객체 추적 방법 및 장치와, 이 방법을 실행하기 위한 프로그램을 기록한 기록 매체
CN113357082B (zh) * 2021-06-30 2024-01-02 华能国际电力股份有限公司广西清洁能源分公司 一种风电机组保护方法
CN114394236A (zh) * 2022-01-14 2022-04-26 北京华能新锐控制技术有限公司 风电叶片巡检用无人机
FR3132349A1 (fr) 2022-01-31 2023-08-04 Engie Procédé de navigation autonome d’un drone volant pour l’inspection d’une installation ou d’un ouvrage, le procédé étant basé sur la vision.
CN115294080B (zh) * 2022-08-15 2023-09-08 山东大学 一种公路裂缝自动开槽机器人及工作方法与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2527649T3 (da) 2011-05-25 2014-01-13 Siemens Ag Fremgangsmåde til inspektion af komponenter af en vindmølle
US9759200B2 (en) * 2014-07-18 2017-09-12 General Electric Company Wind tower and wind farm inspections via unmanned aircraft systems
EP3265885A4 (en) * 2015-03-03 2018-08-29 Prenav Inc. Scanning environments and tracking unmanned aerial vehicles
EP3353614A1 (en) * 2015-09-22 2018-08-01 Pro-Drone Lda. Autonomous inspection of elongated structures using unmanned aerial vehicles

Also Published As

Publication number Publication date
EP3454159A1 (en) 2019-03-13
BR112020004609B1 (pt) 2023-11-21
DK3454159T3 (da) 2020-04-06
ES2778828T3 (es) 2020-08-12
LT3454159T (lt) 2020-06-25
WO2019048721A1 (es) 2019-03-14
EP3454159B1 (en) 2020-01-01
PT3454159T (pt) 2020-03-11
US20200293045A1 (en) 2020-09-17
BR112020004609A2 (pt) 2020-10-13

Similar Documents

Publication Publication Date Title
HRP20200505T1 (hr) Postupak i uređaj autonomne navigacije
US11906622B2 (en) Crosswind speed measurement by optical measurement of scintillation
JP6224061B2 (ja) 水位測定システムおよび水位制御システム、並びに、これらを用いた水位測定方法および水位制御方法
ES2905881T3 (es) Método y dispositivo de funcionamiento de vehículo aéreo no tripulado
Hallermann et al. Unmanned aerial vehicles (UAV) for the assessment of existing structures
CN102955478B (zh) 无人机飞行控制方法及系统
CA2803810C (en) Display apparatus, control support system, and display method
Laiacker et al. Vision aided automatic landing system for fixed wing UAV
Bae et al. Flight attitudes and spray patterns of a roll-balanced agricultural unmanned helicopter
Kong et al. A ground-based optical system for autonomous landing of a fixed wing UAV
JP6580325B2 (ja) 航空機の対気速度算出システム
RU2017129088A (ru) Система контроля летательного аппарата
KR101549526B1 (ko) 지면 충돌방지 기능이 내장된 비행체 지면효과 시험장치
RU2016112889A (ru) Система управления дождеванием
JP2017222187A5 (ja) 経緯度誤差共有システム
CN105162042A (zh) 输电线路无人机单塔巡视路径规范控制方法
CN110989659A (zh) 一种无人机飞行控制方法及其装置
CN110989671A (zh) 一种基于无人机的输电线路及杆塔拍摄系统及方法
RU2016150173A (ru) Способы и системы посадки воздушного судна
US20180003932A1 (en) Imaging system
CN102821246B (zh) 一种摄像头联动控制方法及监控系统
EP3767417A1 (en) Method of performing an inspection and an airborne system therefore
WO2014096493A1 (es) Sistema de perfeccionamiento para pilotos de aeronaves que realizan fotografía aérea y procedimiento asociado a dicho sistema
RU2013107108A (ru) Способ управления траекторией летательного аппарата при заходе на посадку
DE102016110477A1 (de) Verfahren zum Positionieren eines insbesondere unbemannten Luftfahrzeuges mit Hilfe einer aktiven statischen Bodenstation sowie Luftfahrzeug und Bodenstation zur Durchführung des Verfahrens