JP6200297B2 - 位置特定方法およびプログラム - Google Patents

位置特定方法およびプログラム Download PDF

Info

Publication number
JP6200297B2
JP6200297B2 JP2013241277A JP2013241277A JP6200297B2 JP 6200297 B2 JP6200297 B2 JP 6200297B2 JP 2013241277 A JP2013241277 A JP 2013241277A JP 2013241277 A JP2013241277 A JP 2013241277A JP 6200297 B2 JP6200297 B2 JP 6200297B2
Authority
JP
Japan
Prior art keywords
flying object
aircraft
time
deriving
relative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013241277A
Other languages
English (en)
Other versions
JP2015102352A (ja
Inventor
伸英 高橋
伸英 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2013241277A priority Critical patent/JP6200297B2/ja
Publication of JP2015102352A publication Critical patent/JP2015102352A/ja
Application granted granted Critical
Publication of JP6200297B2 publication Critical patent/JP6200297B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

本発明は、航空機(自機)以外の飛翔体(誘導飛翔体等)の位置を特定する位置特定方法、および、そのプログラムに関する。
様々な外的から自己を防衛するため、飛翔体(誘導飛翔体等)による外部からの攻撃に備えるとともに、飛翔体を迎撃すべく、その位置(基準位置からの方向および距離)を迅速かつ正確に特定する必要がある。しかし、地上に配備されたレーダでは、周囲の地形等によって飛翔体の発見が遅れるおそれがある。また、偵察衛星を通じて飛翔体の発射を監視することも考えられるが、衛星の打ち上げや維持・管理には多大なコストを要する。
そこで、偵察衛星の代わりに、比較的長時間滞空する航空機に監視機能を設け、航空機に飛翔体の位置を特定させることが考えられる。また、そのような用途には無人航空機が適している。
航空機において飛翔体の位置を特定するには、飛翔体の相対方向と相対距離との両情報を導出しなければならない。このうち相対距離は、アクティブなレーザー測距装置を用いて導出可能であるが、消費電力、占有体積および質量が増大する問題があり、特に、これらに制限のある無人航空機に搭載するのは難しい。また、パッシブな可視カメラまたは赤外線カメラを複数用い、ステレオ法に基づいて相対距離を測定することもできるが、これも、レーザー測距装置同様、複数のカメラによる消費電力、占有体積および質量の増大が問題となる。
ここで、地上の移動体においては、1のカメラ(単眼カメラ)によるモーションステレオの手法を用い、異なる2つの時刻における静止体の相対方向の変化と自己装置の移動距離とに基づいて、その静止体の相対距離を導出する技術が開示されている(例えば、特許文献1、2)。
特開平5−61546号公報 特開2012−52884号公報
しかし、特許文献1の技術は、相対距離の測定対象が静止体なので、飛翔体のような移動体との相対距離の導出には適用できない。また、特許文献2の技術は、一見移動体との相対距離を導出しているようにみえるが、移動体の接地点と同一の距離となる静止点の相対距離を測定しているに過ぎず、また、空中には、移動体の接地点に相当する固定物が存在しないので、やはり、飛翔体のような移動体との相対距離を測定することは困難である。
そこで本発明は、このような課題に鑑み、空中を移動している飛翔体の位置を簡易な計算で迅速かつ的確に特定することが可能な、位置特定方法およびプログラムを提供することを目的としている。
上記課題を解決するために、航空機に設けられた演算装置を用いて、航空機以外の略円柱状の飛翔体の位置を特定する位置特定方法では、演算装置が、第1時刻における航空機に対する飛翔体の相対方向および画像中の飛翔体の進行方向を導出し、第1時刻における、航空機から飛翔体の相対方向に延長した第1仮想線と、飛翔体の進行方向とを含む仮想平面を導出し、第2時刻における航空機に対する飛翔体の相対方向を導出し、第2時刻における、航空機から飛翔体の相対方向に延長した第2仮想線を導出し、仮想平面と第2仮想線との交点を、第2時刻における飛翔体が存在する位置として特定することを特徴とする。
上記課題を解決するために、航空機に設けられた演算装置を用いて、航空機以外の略円柱状の飛翔体の位置を特定する位置特定方法では、演算装置が、第1時刻における航空機に対する飛翔体の相対方向および画像中の飛翔体の進行方向を導出し、第1時刻における、航空機から飛翔体の相対方向に延長した第1仮想線を起点に、飛翔体の進行方向に基づいて、飛翔体の進行領域を表す仮想立体領域を導出し、第2時刻における航空機に対する飛翔体の相対方向を導出し、第2時刻における、航空機から飛翔体の相対方向に延長した第2仮想線を導出し、第2仮想線のうち仮想立体領域と重なる部分線を、第2時刻における飛翔体が存在する位置として特定することを特徴とする。
上記課題を解決するために、本発明のプログラムは、航空機に設けられた演算装置に、第1時刻における航空機に対する略円柱状の飛翔体の相対方向および画像中の飛翔体の進行方向を導出する工程と、第1時刻における、航空機から飛翔体の相対方向に延長した第1仮想線と、飛翔体の進行方向とを含む仮想平面を導出する工程と、第2時刻における航空機に対する飛翔体の相対方向を導出する工程と、第2時刻における、航空機から飛翔体の相対方向に延長した第2仮想線を導出する工程と、仮想平面と第2仮想線との交点を、第2時刻における飛翔体が存在する位置として特定する工程と、を実行させる。
上記課題を解決するために、本発明の他のプログラムは、航空機に設けられた演算装置に、第1時刻における航空機に対する略円柱状の飛翔体の相対方向および画像中の飛翔体の進行方向を導出する工程と、第1時刻における、航空機から飛翔体の相対方向に延長した第1仮想線を起点に、飛翔体の進行方向に基づいて、飛翔体の進行領域を表す仮想立体領域を導出する工程と、第2時刻における航空機に対する飛翔体の相対方向を導出する工程と、第2時刻における、航空機から飛翔体の相対方向に延長した第2仮想線を導出する工程と、第2仮想線のうち仮想立体領域と重なる部分線を、第2時刻における飛翔体が存在する位置として特定する工程と、を実行させる。
本発明によれば、空中を移動している飛翔体の位置を簡易な計算で迅速かつ的確に特定することが可能となる。
航空機と飛翔体との飛行態様を説明するための説明図である。 航空機において飛翔体を撮像した画像を示す説明図である。 航空機の概略的な構成を示す機能ブロック図である。 第1の実施形態における位置特定方法の処理の流れを示したフローチャートである。 位置特定方法による処理の具体的な動作を説明するための説明図である。 位置特定方法による処理の具体的な動作を説明するための説明図である。 位置特定方法による処理の具体的な動作を説明するための説明図である。 第2の実施形態における位置特定方法の処理の流れを示したフローチャートである。 位置特定方法による処理の具体的な動作を説明するための説明図である。 位置特定方法による処理の具体的な動作を説明するための説明図である。
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
図1は、航空機100と飛翔体Mとの飛行態様を説明するための説明図であり、図2は、航空機100において飛翔体Mを撮像した画像を示す説明図である。航空機(例えば無人航空機)100および飛翔体(例えば誘導飛翔体)Mは、空中を飛行できるように設計された移動体であり、それぞれに課せられた目的に応じて空中を移動する。例えば、図1に示した任意の第1時刻において位置(a)にあった航空機100と飛翔体Mとは、それぞれ実線矢印で示す方向に移動し、第2時刻においてそれぞれ位置(b)に到達する。したがって、航空機100から飛翔体Mを観察した場合、その相対位置、すなわち、相対方向と相対距離とが異なることとなる。
相対方向および相対距離のうち相対方向については、図2に示すように、可視カメラまたは赤外線カメラで撮像した画像128に飛翔体Mが含まれていれば、撮像方向と画像128中の位置によって容易に求めることができる。図1の例では、第1時刻において、破線で示した矢印の相対方向に飛翔体Mが位置しており、第2時刻において、一点鎖線で示した矢印の相対方向に飛翔体Mが位置している。
一方、相対距離は、相対方向ほど容易に求めることができない。図1の例では、第1時刻において、破線で示した矢印上のいずれかの位置に飛翔体Mが存在していることは特定できるが、その矢印上の具体的な位置を特定できないので、結果的に相対距離を導出することができない。同様に、第2時刻において、一点鎖線で示した矢印上のいずれかの位置に飛翔体Mが存在していることは特定できるが、その矢印上の具体的な位置を特定できないので、やはり相対距離を導出することができない。また、相対距離は、レーザー測距装置やステレオカメラによって導出可能であるが、長時間滞空する無人飛行機では消費電力、占有体積および質量が制限され、安易に搭載するのは困難である。ここで、モーションステレオの手法を用いることも考えられるが、移動体において他の移動体を特定する手法は確立されていない。
本実施形態では、位置を特定すべき移動体として、比較的移動、旋回自在な航空機ではなく、誘導飛翔体等の飛翔体Mを想定している。飛翔体Mは、加速度の急な変動を伴うことなく直線に近い軌道で飛行し、その姿勢や加速方向から短時間で移動できる領域を推定できるので、本願発明者は、かかる点に着目して、簡易な計算で飛翔体Mの位置を迅速かつ的確に特定できることを見出した。以下、このような飛翔体Mの位置を特定可能な航空機100の構成および位置特定方法の具体的な処理(工程)を詳述する。
(航空機100)
図3は、航空機100の概略的な構成を示す機能ブロック図である。航空機100は、情報取得ユニット110と、演算装置112と、飛行機構114とを含んで構成される。ここでは、本実施形態に必要な構成のみを説明し、本実施形態に関係のない構成については説明を省略する。
情報取得ユニット110は、通信部110a、センサ110b、撮像部110c等を含む。通信部110aは、放送型自動従属監視(ADS−B:Automatic Dependent Surveillance-Broadcast)等のデータリンク手法を用い、飛行中または陸上(船上)において、地上設備との通信を行い、飛行経路等、飛行に必要な情報を取得する。センサ110bは、飛行制御に必要な、飛行位置(経度、緯度、高度を含む)、機体速度、機体姿勢、機体が受ける風力、風向、機体周囲の気圧、温度、湿度等の現在の飛行状態を検出する。撮像部110cは、1の可視カメラまたは赤外線カメラで構成され、航空機100に搭載されたジンバル(Gimbal)を通じてアジマス(azimuth)方位に360度回転自在に設置される。したがって、撮像部110cは、航空機100周囲の全方向に亘って監視することが可能である。ただし、撮像部110cは、複数の可視カメラまたは赤外線カメラで、航空機100周囲の全方向に亘って監視する機構で構成することもできる。
演算装置112は、中央処理装置(CPU)、プログラム等が格納されたROM、ワークエリアとしてのRAM等を含む半導体集積回路で構成され、航空機100全体を管理および制御する。
飛行機構114は、内燃機関(例えばジェットエンジンやレシプロエンジン)を有し、推進力により固定翼周りに揚力を生じさせることで機体を移動させる。ただし、揚力を生じさせる機構は、かかる場合に限らず、回転翼機(ヘリコプター)のように、内燃機関によって回転翼を回転させて揚力を生じさせ、機体を大気中に浮上させた状態に維持する機構で構成することもできる。
上述したように、本実施形態では、飛翔体Mが直線に近い軌道で飛行する特性を利用し、その姿勢や加速方向から短時間で移動できる領域を推定することで、飛翔体Mの位置を特定する。かかる目的を実現すべく、演算装置112は、中央処理装置、ROM、RAMと協働して、飛翔体検出部120、幾何導出部122、位置特定部124として機能する。具体的に、飛翔体検出部120は、撮像部110cで撮像された画像128を通じて飛翔体Mを検出し、飛翔体Mの航空機100に対する相対方向や飛翔体Mの姿勢を導出する。幾何導出部122は、飛翔体検出部120が導出した飛翔体Mの相対方向や飛翔体Mの姿勢に基づいて、飛翔体Mの位置を特定するのに必要な幾何学的な線、面、領域を導出する。位置特定部124は、幾何導出部122が導出した線、面、領域等に基づいて飛翔体Mが存在する位置を特定する。かかる各機能部による動作をフローチャートに沿って以下に詳述する。
(第1の実施形態:位置特定方法)
図4は、第1の実施形態における位置特定方法の処理(工程)の流れを示したフローチャートであり、図5〜図7は、位置特定方法による処理(工程)の具体的な動作を説明するための説明図である。以下、図4に従い、第1時刻に実行される第1飛翔体検出処理S1、第1幾何導出処理S2、第1時刻より後の第2時刻に実行される第2飛翔体検出処理S3、第2幾何導出処理S4、第1時刻および第2時刻に実行された処理結果を用いて行われる位置特定処理S5の順に説明する。
(第1飛翔体検出処理S1)
飛翔体検出部120は、第1時刻に撮像部110cで撮像された画像128を取得し、画像128中に飛翔体Mが存在するか否か判定する。仮に、図1に示すように、航空機100と飛翔体Mとが位置(a)にある第1時刻において飛翔体Mが画像128中に存在すると判定すれば、飛翔体検出部120は、その画像128が撮像された時点(第1時刻)の撮像部110cの撮像方向と、画像128中の飛翔体Mの位置に基づいて飛翔体Mの航空機100に対する相対方向を導出する。また、飛翔体検出部120は、飛翔体Mが画像128中に存在すると判定すれば、画像中の飛翔体Mの姿勢(どの方向を向いているか)を導出する。
そして、飛翔体検出部120は、ジンバルを通じて撮像部110cを回転させ、検出した飛翔体Mが常に画像128内に含まれるよう追尾制御を行う。
(第1幾何導出処理S2)
幾何導出部122は、航空機(自機)100を基準として、飛翔体Mが存在するであろう実空間を、例えば、GPS(Global Positioning System)座標系を用いて仮想的に表した図5のような仮想空間130を構成し、航空機100の実位置を仮想空間130に映した航空機100の仮想位置(a)から、飛翔体検出部120が導出した飛翔体Mの相対方向に線を延長して第1仮想線132を形成する。
ここでは、図2を参照して理解できるように、1の画像128からは、相対方向を特定できても相対距離を特定できない。ただし、航空機100から飛翔体Mに延長した第1仮想線132上のいずれかの位置に飛翔体Mが存在していることは把握できる。そこで、本実施形態では、まず、第1時刻において飛翔体Mが存在している可能性がある領域を第1仮想線132上に制限する。
続いて、幾何導出部122は、飛翔体Mの姿勢に基づき飛翔体Mの進行方向134を推定する。次に、幾何導出部122は、上記第1仮想線132と進行方向134とを含む仮想平面136を導出する。
上述したように、飛翔体Mが、第1時刻に第1仮想線132上のいずれに存在するのか把握することはできない。しかし、飛翔体Mはその姿勢が示す方向へ加速することが想定されるため、飛翔体Mが移動する可能性がある領域は、第1仮想線132を進行方向134にシフトして形成される仮想平面136内であると特定できる。ここでは、第1時刻に取得した情報の演算結果として、飛翔体Mが移動するであろう領域を第1仮想線132上に制限している。
(第2飛翔体検出処理S3)
飛翔体検出部120は、第1時刻から予め定められた所定時間経過した第2時刻に撮像部110cで撮像された画像(当然飛翔体Mが含まれる)128を取得する。飛翔体検出部120は、その画像128が撮像された時点の撮像部110cの撮像方向と、画像中の飛翔体Mの位置に基づいて飛翔体Mの航空機100に対する相対方向を導出する。
(第2幾何導出処理S4)
幾何導出部122は、航空機100の実位置を、図6に示す仮想空間130に映した航空機100の仮想位置(b)から、飛翔体検出部120が導出した飛翔体Mの相対方向に線を延長して第2仮想線138を形成する。ここでは、第2時刻において飛翔体Mが存在している可能性がある領域を第2仮想線138上に制限している。
(位置特定処理S5)
位置特定部124は、図7に示す仮想空間130における仮想平面136と第2仮想線138との交点を、第2時刻において飛翔体Mが存在する位置140として特定する。
上述したように、第1時刻における飛翔体Mの相対方向と姿勢によって、飛翔体Mが第1時刻以降に移動する領域を仮想平面136上に制限することができる。そして、第2時刻における飛翔体Mの相対方向によって、飛翔体Mが存在している可能性がある領域を第2仮想線138上に制限することができる。したがって、その仮想平面136と第2仮想線138との交点が第2時刻における飛翔体Mが存在する位置となる。
また、位置特定部124は、飛翔体Mが存在する位置140を特定すると、第1時刻における航空機100の仮想位置(a)と第2時刻における航空機100の仮想位置(b)との差分(航空機100の移動距離)と、各仮想位置(a)および仮想位置(b)からの飛翔体Mが存在する位置140の相対角とから、ステレオ法に基づいて、航空機100と飛翔体Mとの相対距離を求めることができる。
ところで、本実施形態の位置特定方法では、航空機100が、飛翔体Mの進行方向134に垂直な面を、飛翔体Mの航路を中心とした円の接線方向に飛行することで、飛翔体Mの位置の特定精度を高めることができる。したがって、飛翔体Mが垂直に近い航路を進行することが多い場合、航空機100は、その飛翔体Mが発射されるであろう地域を水平に周回または接線方向に往復しながら監視するのが望ましい。
また、上述した位置特定方法は、1度実施するだけで、第2時刻における飛翔体Mが存在する位置を特定できるが、飛翔体Mの位置を連続的に取得し、その軌跡を導出する場合、位置特定方法を繰り返し実施(収束演算)するとよい。この場合、第2時刻における第2飛翔体検出処理S3において飛翔体Mの相対方向のみならず飛翔体Mの姿勢も導出し、それを次回の位置特定方法における第1時刻の情報として扱い、順次情報を流用するのが望ましい。
以上説明した第1の実施形態の位置特定方法により、空中を移動している飛翔体Mの位置を簡易な計算で迅速かつ的確に特定することが可能となる。
(第2の実施形態:位置特定方法)
上述した実施形態では、第1時刻における飛翔体Mの姿勢から、飛翔体Mが1方向に飛行すると仮定して仮想平面136を導出し、その仮想平面136と第2仮想線138との交点を飛翔体Mが存在する位置140とした。しかし、実際には、飛翔体Mの進行方向が、飛翔体Mの姿勢に基づく進行方向134からずれるおそれがある。そこで、第2の実施形態では、飛翔体Mが進行方向134からずれて飛行しても、的確に飛翔体Mの位置を特定する方法を説明する。
図8は、第2の実施形態における位置特定方法の処理(工程)の流れを示したフローチャートであり、図9および図10は、位置特定方法による処理(工程)の具体的な動作を説明するための説明図である。以下、図8に従い、第1時刻に実行される第1飛翔体検出処理S1、第1幾何導出処理S6、第1時刻より後の第2時刻に実行される第2飛翔体検出処理S3、第2幾何導出処理S4、第1時刻および第2時刻に実行された処理結果を用いて行われる位置特定処理S7の順に説明する。ただし、第1の実施形態における処理として既に述べた第1飛翔体検出処理S1、第2飛翔体検出処理S3、第2幾何導出処理S4は、実質的に処理が等しいので重複説明を簡略化し、ここでは、処理が異なる第1幾何導出処理S6、位置特定処理S7を主に説明する。
(第1飛翔体検出処理S1)
飛翔体検出部120は、第1時刻に撮像部110cで撮像された画像128を取得し、画像128中に飛翔体Mが存在するか否か判定する。飛翔体Mが画像128中に存在すると判定すれば、飛翔体検出部120は、飛翔体Mの相対方向および姿勢を導出する。そして、飛翔体検出部120は、検出した飛翔体Mが常に画像128内に含まれるよう追尾制御を行う。
(第1幾何導出処理S6)
幾何導出部122は、航空機(自機)100を基準として、飛翔体Mが存在するであろう空間を仮想的に表した図9のような仮想空間130を構成し、第1の実施形態同様、仮想空間130における航空機100の仮想位置(a)から、飛翔体検出部120が導出した飛翔体Mの相対方向に線を延長して第1仮想線132を形成する。
続いて、幾何導出部122は、飛翔体Mの姿勢に基づき飛翔体Mの進行方向を推定する。このとき、幾何導出部122は、飛翔体Mの進行方向が、飛翔体Mの姿勢に基づく進行方向134からずれることを想定して、飛翔体Mの進行方向に幅を持たせ、図9に円錐で示すように進行領域150として設定する。かかる進行領域150は、飛翔体Mの質量と推進力とを推定できれば、所定の運動方程式を用いて容易に導出することができる。次に、幾何導出部122は、上記第1仮想線132を起点に、飛翔体Mの進行領域150を重ね仮想立体領域152を導出する。ここでは、説明の便宜上、5つの円錐のみ記載しているが、第1仮想線132上の全ての点に飛翔体Mが存在する可能性があるので、そのような円錐を全て重ねると、図9の如く、略三角錐の厚みのある領域(仮想立体領域152)が形成される。なお、飛翔体Mの姿勢そのものが分からない場合でも、対象とする飛翔体Mの種別や特性、例えば、飛翔体Mが誘導飛翔体であれば、進行方向を推定し、仮想立体領域152を形成することができる。
(第2飛翔体検出処理S3)
飛翔体検出部120は、第2時刻に撮像部110cで撮像された画像128を取得し、飛翔体Mの相対方向を導出する。
(第2幾何導出処理S4)
幾何導出部122は、航空機100の仮想位置(b)から、飛翔体検出部120が導出した飛翔体Mの相対方向に線を延長して第2仮想線138を形成する。
(位置特定処理S7)
位置特定部124は、図10に示す仮想空間130における、第2仮想線138のうち仮想立体領域152と重なる部分線154を、第2時刻における飛翔体Mが存在する位置として特定する。
上述したように、第1時刻における飛翔体Mの相対方向と姿勢によって、飛翔体Mが第1時刻以降に移動する領域を仮想立体領域152に制限することができる。そして、第2時刻における飛翔体Mの相対方向によって、飛翔体Mが存在している可能性がある領域を第2仮想線138上に制限することができる。したがって、その仮想立体領域152と第2仮想線138とが重なる部分線154が第2時刻における飛翔体Mが存在する位置となる。また、第1の実施形態同様、飛翔体Mの位置を連続的に取得し、位置特定方法を繰り返し実施(収束演算)することで、導出された部分線154の推移から飛翔体Mの軌跡および位置を特定することができる。
このように、第2の実施形態においても、第1の実施形態同様、位置特定方法により、空中を移動している飛翔体Mの位置を簡易な計算で迅速かつ的確に特定することが可能となる。
また、上述した演算装置112に第1飛翔体検出処理S1、第1幾何導出処理S2、S6、第2飛翔体検出処理S3、第2幾何導出処理S4、位置特定処理S5、S7を実行させるプログラムが提供される。ここで、プログラムは、任意の言語や記述方法にて記述されたデータ処理手段をいう。また、当該プログラムを記録した、コンピュータで読み取り可能なフレキシブルディスク、光磁気ディスク、ROM、EPROM、EEPROM、CD、DVD、BD等の記憶媒体も提供される。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
また、上述した位置特定方法は、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はなく、並列的あるいはサブルーチンによる処理を含んでもよい。
本発明は、航空機(自機)以外の飛翔体(誘導飛翔体等)の位置を特定する位置特定方法、および、そのプログラムに利用することができる。
M 飛翔体
100 航空機
120 飛翔体検出部
122 幾何導出部
124 位置特定部
132 第1仮想線
134 進行方向
136 仮想平面
138 第2仮想線
150 進行領域
152 仮想立体領域
154 部分線

Claims (4)

  1. 航空機に設けられた演算装置を用いて、該航空機以外の略円柱状の飛翔体の位置を特定する位置特定方法であって、
    前記演算装置が、
    第1時刻における前記航空機に対する前記飛翔体の相対方向および画像中の該飛翔体の進行方向を導出し、
    第1時刻における、前記航空機から前記飛翔体の相対方向に延長した第1仮想線と、該飛翔体の進行方向とを含む仮想平面を導出し、
    第2時刻における前記航空機に対する前記飛翔体の相対方向を導出し、
    第2時刻における、前記航空機から前記飛翔体の相対方向に延長した第2仮想線を導出し、
    前記仮想平面と前記第2仮想線との交点を、前記第2時刻における前記飛翔体が存在する位置として特定することを特徴とする位置特定方法。
  2. 航空機に設けられた演算装置を用いて、該航空機以外の略円柱状の飛翔体の位置を特定する位置特定方法であって、
    前記演算装置が、
    第1時刻における前記航空機に対する前記飛翔体の相対方向および画像中の該飛翔体の進行方向を導出し、
    第1時刻における、前記航空機から前記飛翔体の相対方向に延長した第1仮想線を起点に、該飛翔体の進行方向に基づいて、該飛翔体の進行領域を表す仮想立体領域を導出し、
    第2時刻における前記航空機に対する前記飛翔体の相対方向を導出し、
    第2時刻における、前記航空機から前記飛翔体の相対方向に延長した第2仮想線を導出し、
    前記第2仮想線のうち前記仮想立体領域と重なる部分線を、前記第2時刻における前記飛翔体が存在する位置として特定することを特徴とする位置特定方法。
  3. 航空機に設けられた演算装置に、
    第1時刻における前記航空機に対する略円柱状の飛翔体の相対方向および画像中の該飛翔体の進行方向を導出する工程と、
    第1時刻における、前記航空機から前記飛翔体の相対方向に延長した第1仮想線と、該飛翔体の進行方向とを含む仮想平面を導出する工程と、
    第2時刻における前記航空機に対する前記飛翔体の相対方向を導出する工程と、
    第2時刻における、前記航空機から前記飛翔体の相対方向に延長した第2仮想線を導出する工程と、
    前記仮想平面と前記第2仮想線との交点を、前記第2時刻における前記飛翔体が存在する位置として特定する工程と、
    を実行させるためのプログラム。
  4. 航空機に設けられた演算装置に、
    第1時刻における前記航空機に対する略円柱状の飛翔体の相対方向および画像中の該飛翔体の進行方向を導出する工程と、
    第1時刻における、前記航空機から前記飛翔体の相対方向に延長した第1仮想線を起点に、該飛翔体の進行方向に基づいて、該飛翔体の進行領域を表す仮想立体領域を導出する工程と、
    第2時刻における前記航空機に対する前記飛翔体の相対方向を導出する工程と、
    第2時刻における、前記航空機から前記飛翔体の相対方向に延長した第2仮想線を導出する工程と、
    前記第2仮想線のうち前記仮想立体領域と重なる部分線を、前記第2時刻における前記飛翔体が存在する位置として特定する工程と、
    を実行させるためのプログラム。
JP2013241277A 2013-11-21 2013-11-21 位置特定方法およびプログラム Active JP6200297B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013241277A JP6200297B2 (ja) 2013-11-21 2013-11-21 位置特定方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013241277A JP6200297B2 (ja) 2013-11-21 2013-11-21 位置特定方法およびプログラム

Publications (2)

Publication Number Publication Date
JP2015102352A JP2015102352A (ja) 2015-06-04
JP6200297B2 true JP6200297B2 (ja) 2017-09-20

Family

ID=53378177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013241277A Active JP6200297B2 (ja) 2013-11-21 2013-11-21 位置特定方法およびプログラム

Country Status (1)

Country Link
JP (1) JP6200297B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6553994B2 (ja) * 2015-09-08 2019-07-31 株式会社Subaru 飛翔体位置算出システム、飛翔体位置算出方法及び飛翔体位置算出プログラム
JP6880857B2 (ja) * 2017-03-14 2021-06-02 富士通株式会社 位置推定方法、位置推定装置及び位置推定プログラム
JP6775541B2 (ja) 2018-04-03 2020-10-28 株式会社Subaru 位置計測方法及び位置計測システム
AU2018450426B2 (en) * 2018-11-21 2022-12-01 Guangzhou Xaircraft Technology Co., Ltd. Method and device for planning sample points for surveying and mapping, control terminal and storage medium
EP3875902B1 (en) * 2018-11-21 2024-02-21 Guangzhou Xaircraft Technology Co., Ltd Planning method and apparatus for surveying and mapping sampling points, control terminal and storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3959819B2 (ja) * 1998-01-20 2007-08-15 三菱電機株式会社 視軸制御装置
JP2001194098A (ja) * 1999-12-29 2001-07-17 Shimadzu Corp 距離計測システム
JP2002174499A (ja) * 2000-12-07 2002-06-21 Fuji Heavy Ind Ltd 目標未来位置推定方法及び目標未来位置推定装置
US20070127012A1 (en) * 2005-12-06 2007-06-07 Gyrocam Systems, Llc Rate-based range and geolocation

Also Published As

Publication number Publication date
JP2015102352A (ja) 2015-06-04

Similar Documents

Publication Publication Date Title
AU2022291653B2 (en) A backup navigation system for unmanned aerial vehicles
US12079013B2 (en) Systems and methods for taking, processing, retrieving, and displaying images from unmanned aerial vehicles
JP6200297B2 (ja) 位置特定方法およびプログラム
US10942041B2 (en) Chemosensing autonomy system for a vehicle
EP3077879B1 (en) Imaging method and apparatus
JP6526001B2 (ja) 送信機の場所を検出するシステム及び方法
Kong et al. A ground-based optical system for autonomous landing of a fixed wing UAV
US10853942B1 (en) Camera calibration in a mobile environment
JP6419986B2 (ja) 航空機の制御方法及び装置
US9382016B2 (en) Aircraft landing monitor
WO2018137133A1 (en) Systems and methods for radar control on unmanned movable platforms
EP3077760B1 (en) Payload delivery
JP2014149622A (ja) 自律飛行ロボット
US10565887B2 (en) Flight initiation proximity warning system
EP3077880B1 (en) Imaging method and apparatus
US20210055745A1 (en) Controller for unmanned aerial vehicle
US20180052472A1 (en) Trajectory control of a vehicle
JP2014142828A (ja) 自律移動ロボット
JP6469492B2 (ja) 自律移動ロボット
JP2017206224A (ja) 飛行制御方法及び無人飛行体
WO2018196641A1 (zh) 飞行器
Kong et al. A ground-based multi-sensor system for autonomous landing of a fixed wing UAV
WO2015082594A1 (en) Determining routes for aircraft
GB2522327A (en) Determining routes for aircraft
JP2017182691A (ja) 自律飛行ロボット

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170825

R150 Certificate of patent or registration of utility model

Ref document number: 6200297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250