HK1081327A1 - Lateral insulated gate fet structure with improved on resistance performance - Google Patents

Lateral insulated gate fet structure with improved on resistance performance

Info

Publication number
HK1081327A1
HK1081327A1 HK06101182.0A HK06101182A HK1081327A1 HK 1081327 A1 HK1081327 A1 HK 1081327A1 HK 06101182 A HK06101182 A HK 06101182A HK 1081327 A1 HK1081327 A1 HK 1081327A1
Authority
HK
Hong Kong
Prior art keywords
improved
insulated gate
resistance performance
gate fet
fet structure
Prior art date
Application number
HK06101182.0A
Other languages
English (en)
Inventor
S Nair S Rajesh
Shanghui Larry Tu
Zia Hossain
Mohammed Tanvir Quddus
Original Assignee
Semiconductor Components Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Components Ind filed Critical Semiconductor Components Ind
Publication of HK1081327A1 publication Critical patent/HK1081327A1/xx

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7809Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7825Lateral DMOS transistors, i.e. LDMOS transistors with trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
HK06101182.0A 2004-03-11 2006-01-26 Lateral insulated gate fet structure with improved on resistance performance HK1081327A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/797,537 US7126166B2 (en) 2004-03-11 2004-03-11 High voltage lateral FET structure with improved on resistance performance

Publications (1)

Publication Number Publication Date
HK1081327A1 true HK1081327A1 (en) 2006-05-12

Family

ID=35038805

Family Applications (1)

Application Number Title Priority Date Filing Date
HK06101182.0A HK1081327A1 (en) 2004-03-11 2006-01-26 Lateral insulated gate fet structure with improved on resistance performance

Country Status (4)

Country Link
US (1) US7126166B2 (zh)
CN (1) CN1667838B (zh)
HK (1) HK1081327A1 (zh)
TW (1) TWI374474B (zh)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7719054B2 (en) * 2006-05-31 2010-05-18 Advanced Analogic Technologies, Inc. High-voltage lateral DMOS device
JP2005285980A (ja) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd 半導体装置および半導体装置の製造方法
WO2006082568A2 (en) * 2005-02-07 2006-08-10 Nxp B.V. Method of manufacturing a lateral semiconductor device
US7679146B2 (en) 2006-05-30 2010-03-16 Semiconductor Components Industries, Llc Semiconductor device having sub-surface trench charge compensation regions
US7355224B2 (en) * 2006-06-16 2008-04-08 Fairchild Semiconductor Corporation High voltage LDMOS
US7804150B2 (en) * 2006-06-29 2010-09-28 Fairchild Semiconductor Corporation Lateral trench gate FET with direct source-drain current path
US8106451B2 (en) * 2006-08-02 2012-01-31 International Rectifier Corporation Multiple lateral RESURF LDMOST
US7531888B2 (en) * 2006-11-30 2009-05-12 Fairchild Semiconductor Corporation Integrated latch-up free insulated gate bipolar transistor
KR100875159B1 (ko) * 2007-05-25 2008-12-22 주식회사 동부하이텍 반도체 소자 및 그의 제조 방법
JP5298488B2 (ja) 2007-09-28 2013-09-25 富士電機株式会社 半導体装置
US7842552B2 (en) * 2007-10-12 2010-11-30 International Business Machines Corporation Semiconductor chip packages having reduced stress
US7633121B2 (en) * 2007-10-31 2009-12-15 Force-Mos Technology Corp. Trench MOSFET with implanted drift region
KR100953333B1 (ko) * 2007-11-05 2010-04-20 주식회사 동부하이텍 수직형과 수평형 게이트를 갖는 반도체 소자 및 제조 방법
US7772668B2 (en) * 2007-12-26 2010-08-10 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US20090206397A1 (en) * 2008-02-15 2009-08-20 Advanced Analogic Technologies, Inc. Lateral Trench MOSFET with Conformal Depletion-Assist Layer
US8575695B2 (en) * 2009-11-30 2013-11-05 Alpha And Omega Semiconductor Incorporated Lateral super junction device with high substrate-drain breakdown and built-in avalanche clamp diode
US8373208B2 (en) * 2009-11-30 2013-02-12 Alpha And Omega Semiconductor Incorporated Lateral super junction device with high substrate-gate breakdown and built-in avalanche clamp diode
TWI430449B (zh) * 2011-09-29 2014-03-11 Anpec Electronics Corp 橫向堆疊式超級接面功率半導體元件
TWI473267B (zh) * 2012-11-06 2015-02-11 Ind Tech Res Inst 金氧半場效電晶體元件
US8860136B2 (en) * 2012-12-03 2014-10-14 Infineon Technologies Ag Semiconductor device and method of manufacturing a semiconductor device
US9799762B2 (en) * 2012-12-03 2017-10-24 Infineon Technologies Ag Semiconductor device and method of manufacturing a semiconductor device
CN104051416B (zh) * 2013-03-15 2018-04-13 半导体元件工业有限责任公司 包括垂直导电区域的电子设备及其形成工艺
KR101779237B1 (ko) * 2013-06-04 2017-09-19 매그나칩 반도체 유한회사 반도체 전력소자 및 이를 제조하는 방법
CN104218078B (zh) * 2013-06-05 2017-11-07 帅群微电子股份有限公司 具有漏极在顶部的功率晶体管及其形成方法
US9059324B2 (en) 2013-06-30 2015-06-16 Texas Instruments Incorporated Bi-directional ESD diode structure with ultra-low capacitance that consumes a small amount of silicon real estate
US9287404B2 (en) 2013-10-02 2016-03-15 Infineon Technologies Austria Ag Semiconductor device and method of manufacturing a semiconductor device with lateral FET cells and field plates
US9306058B2 (en) 2013-10-02 2016-04-05 Infineon Technologies Ag Integrated circuit and method of manufacturing an integrated circuit
US9401399B2 (en) 2013-10-15 2016-07-26 Infineon Technologies Ag Semiconductor device
US20150194424A1 (en) * 2014-01-06 2015-07-09 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
JP6340200B2 (ja) * 2014-01-27 2018-06-06 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP6270572B2 (ja) 2014-03-19 2018-01-31 株式会社東芝 半導体装置及びその製造方法
JP6564407B2 (ja) 2014-06-30 2019-08-21 プロヴェリス・サイエンティフィック・コーポレイション 薬物の送達用量の量及び均一性を確定するための試料採取機器及び関連方法
US10290566B2 (en) 2014-09-23 2019-05-14 Infineon Technologies Austria Ag Electronic component
US10186573B2 (en) * 2015-09-14 2019-01-22 Maxpower Semiconductor, Inc. Lateral power MOSFET with non-horizontal RESURF structure
KR102227666B1 (ko) * 2017-05-31 2021-03-12 주식회사 키 파운드리 고전압 반도체 소자
FR3100927B1 (fr) * 2019-09-12 2022-09-09 Commissariat Energie Atomique Dispositif electronique de puissance a super-jonction

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346835A (en) * 1992-07-06 1994-09-13 Texas Instruments Incorporated Triple diffused lateral resurf insulated gate field effect transistor compatible with process and method
US5294824A (en) * 1992-07-31 1994-03-15 Motorola, Inc. High voltage transistor having reduced on-resistance
US6097063A (en) * 1996-01-22 2000-08-01 Fuji Electric Co., Ltd. Semiconductor device having a plurality of parallel drift regions
US6566709B2 (en) * 1996-01-22 2003-05-20 Fuji Electric Co., Ltd. Semiconductor device
US6639277B2 (en) * 1996-11-05 2003-10-28 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US5864158A (en) * 1997-04-04 1999-01-26 Advanced Micro Devices, Inc. Trench-gated vertical CMOS device
DE19818300C1 (de) * 1998-04-23 1999-07-22 Siemens Ag Lateraler Hochvolt-Seitenwandtransistor
US6509220B2 (en) * 2000-11-27 2003-01-21 Power Integrations, Inc. Method of fabricating a high-voltage transistor
US6448625B1 (en) * 2001-03-16 2002-09-10 Semiconductor Components Industries Llc High voltage metal oxide device with enhanced well region
EP1267415A3 (en) * 2001-06-11 2009-04-15 Kabushiki Kaisha Toshiba Power semiconductor device having resurf layer
US6589845B1 (en) * 2002-07-16 2003-07-08 Semiconductor Components Industries Llc Method of forming a semiconductor device and structure therefor

Also Published As

Publication number Publication date
US20050218431A1 (en) 2005-10-06
TWI374474B (en) 2012-10-11
CN1667838A (zh) 2005-09-14
TW200535949A (en) 2005-11-01
US7126166B2 (en) 2006-10-24
CN1667838B (zh) 2010-10-13

Similar Documents

Publication Publication Date Title
HK1081327A1 (en) Lateral insulated gate fet structure with improved on resistance performance
HK1103167A1 (en) Semiconductor structure with improved on resistance and breakdown voltage performance
HK1103168A1 (en) Semiconductor structure with improved on resistance and breakdown voltage performance
TWI367689B (en) Oled device with short reduction
TWI329361B (en) Fet gate structure with metal gate electrode and silicide contact
HK1112111A1 (en) Mos-gated transistor with reduced miller capacitance
EP1805817A4 (en) SUPERCONDUCTIVE THICK FILMS WITH IMPROVED PERFORMANCE
EP1710692A4 (en) SECURITY, TERMINAL, DOOR DEVICE
SG115643A1 (en) Multiple-gate transistors with improved gate control
AU2003299738A1 (en) Double-gate transistor with enhanced carrier mobility
EP1949447A4 (en) SEMICONDUCTOR COMPONENT WITH LOW THRESHOLD VOLTAGE WITH DUAL THRESHOLD VOLTAGE CONTROL ELEMENTS
EP1786858A4 (en) CONDUCTIVE THERMODURCIS BY EXTRUSION
EP1829261A4 (en) EXTENDED WAYBAND PATHWAY ESTIMATOR
ITMI20051993A1 (it) Poliolefine ricche in parte sindiotattica
IL177984A0 (en) Access channel with constrained arrival times
EP1846955A4 (en) HIGH PERFORMANCE FET DEVICES AND ASSOCIATED METHODS
HK1077920A1 (en) Lateral fet structure with improved blocking voltage and on resistance performance and method
GB0407012D0 (en) Trench insulated gate field effect transistor
EP1805798A4 (en) GRID BATTERIES
EP1779439A4 (en) SIDE CHANNEL TRANSISTOR
GB0416174D0 (en) Insulated gate field effect transistors
GB0326237D0 (en) Insulated gate field effect transistor
ITMI20051290A1 (it) Interuttore con richiamo
DE502006001992D1 (de) DMOS-Transistor mit optimierter Randstruktur
GB0411621D0 (en) Dual gate semiconductor device

Legal Events

Date Code Title Description
PC Patent ceased (i.e. patent has lapsed due to the failure to pay the renewal fee)

Effective date: 20210310