ES2946638T3 - Composiciones azeotrópicas o casi azeotrópicas de FH y 253fb - Google Patents
Composiciones azeotrópicas o casi azeotrópicas de FH y 253fb Download PDFInfo
- Publication number
- ES2946638T3 ES2946638T3 ES20172163T ES20172163T ES2946638T3 ES 2946638 T3 ES2946638 T3 ES 2946638T3 ES 20172163 T ES20172163 T ES 20172163T ES 20172163 T ES20172163 T ES 20172163T ES 2946638 T3 ES2946638 T3 ES 2946638T3
- Authority
- ES
- Spain
- Prior art keywords
- catalyst
- reactor
- azeotropic
- carried out
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 42
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- 239000003054 catalyst Substances 0.000 description 60
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 44
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 43
- 238000006243 chemical reaction Methods 0.000 description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 22
- 239000000047 product Substances 0.000 description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 19
- 239000011701 zinc Substances 0.000 description 14
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 239000012808 vapor phase Substances 0.000 description 12
- 229910052725 zinc Inorganic materials 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 239000007788 liquid Substances 0.000 description 10
- 239000007791 liquid phase Substances 0.000 description 10
- 238000000746 purification Methods 0.000 description 10
- 238000000926 separation method Methods 0.000 description 10
- 238000004821 distillation Methods 0.000 description 9
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 8
- 238000005191 phase separation Methods 0.000 description 8
- FDMFUZHCIRHGRG-UHFFFAOYSA-N 3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)C=C FDMFUZHCIRHGRG-UHFFFAOYSA-N 0.000 description 7
- 239000011651 chromium Substances 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 238000009835 boiling Methods 0.000 description 6
- 238000007033 dehydrochlorination reaction Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- ZPIFKCVYZBVZIV-UHFFFAOYSA-N 3-chloro-1,1,1-trifluoropropane Chemical compound FC(F)(F)CCCl ZPIFKCVYZBVZIV-UHFFFAOYSA-N 0.000 description 4
- 238000006704 dehydrohalogenation reaction Methods 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910001026 inconel Inorganic materials 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- -1 3,3,3-trifluoropropylbenzene epoxide Chemical class 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000002808 molecular sieve Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 3
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 3
- 150000003752 zinc compounds Chemical class 0.000 description 3
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- FXRLMCRCYDHQFW-UHFFFAOYSA-N 2,3,3,3-tetrafluoropropene Chemical compound FC(=C)C(F)(F)F FXRLMCRCYDHQFW-UHFFFAOYSA-N 0.000 description 2
- 241001469893 Oxyzygonectes dovii Species 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 229910000423 chromium oxide Inorganic materials 0.000 description 2
- QCMJBECJXQJLIL-UHFFFAOYSA-L chromium(6+);oxygen(2-);difluoride Chemical compound [O-2].[O-2].[F-].[F-].[Cr+6] QCMJBECJXQJLIL-UHFFFAOYSA-L 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003682 fluorination reaction Methods 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 229910001119 inconels 625 Inorganic materials 0.000 description 2
- 239000011968 lewis acid catalyst Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000003444 phase transfer catalyst Substances 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000005201 scrubbing Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- UTACNSITJSJFHA-UHFFFAOYSA-N 1,1,1,3-tetrachloropropane Chemical compound ClCCC(Cl)(Cl)Cl UTACNSITJSJFHA-UHFFFAOYSA-N 0.000 description 1
- JFEVIPGMXQNRRF-UHFFFAOYSA-N 1,1,3-trichloroprop-1-ene Chemical compound ClCC=C(Cl)Cl JFEVIPGMXQNRRF-UHFFFAOYSA-N 0.000 description 1
- QJMGASHUZRHZBT-UHFFFAOYSA-N 2,3-dichloro-1,1,1-trifluoropropane Chemical compound FC(F)(F)C(Cl)CCl QJMGASHUZRHZBT-UHFFFAOYSA-N 0.000 description 1
- VKEIPALYOJMDAC-UHFFFAOYSA-N 3,3,3-trichloroprop-1-ene Chemical compound ClC(Cl)(Cl)C=C VKEIPALYOJMDAC-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910008433 SnCU Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910004546 TaF5 Inorganic materials 0.000 description 1
- 229910003074 TiCl4 Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- VMPVEPPRYRXYNP-UHFFFAOYSA-I antimony(5+);pentachloride Chemical compound Cl[Sb](Cl)(Cl)(Cl)Cl VMPVEPPRYRXYNP-UHFFFAOYSA-I 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001845 chromium compounds Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 150000003997 cyclic ketones Chemical class 0.000 description 1
- SHQSVMDWKBRBGB-UHFFFAOYSA-N cyclobutanone Chemical compound O=C1CCC1 SHQSVMDWKBRBGB-UHFFFAOYSA-N 0.000 description 1
- BAPZCSMFCUVUHW-UHFFFAOYSA-N dichloro(fluoro)methane Chemical compound F[C](Cl)Cl BAPZCSMFCUVUHW-UHFFFAOYSA-N 0.000 description 1
- DDXLVDQZPFLQMZ-UHFFFAOYSA-M dodecyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)C DDXLVDQZPFLQMZ-UHFFFAOYSA-M 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000012025 fluorinating agent Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- YRGLXIVYESZPLQ-UHFFFAOYSA-I tantalum pentafluoride Chemical compound F[Ta](F)(F)(F)F YRGLXIVYESZPLQ-UHFFFAOYSA-I 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/25—Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/07—Preparation of halogenated hydrocarbons by addition of hydrogen halides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/20—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/20—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
- C07C17/202—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
- C07C17/206—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/35—Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C19/00—Acyclic saturated compounds containing halogen atoms
- C07C19/08—Acyclic saturated compounds containing halogen atoms containing fluorine
- C07C19/10—Acyclic saturated compounds containing halogen atoms containing fluorine and chlorine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C21/00—Acyclic unsaturated compounds containing halogen atoms
- C07C21/02—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
- C07C21/18—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/041—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
- C09K5/044—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
- C09K5/045—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/12—Hydrocarbons
- C09K2205/122—Halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/12—Hydrocarbons
- C09K2205/126—Unsaturated fluorinated hydrocarbons
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Detergent Compositions (AREA)
Abstract
La presente invención proporciona composiciones azeotrópicas o casi azeotrópicas que comprenden HF y 253fb. (Traducción automática con Google Translate, sin valor legal)
Description
DESCRIPCIÓN
Composiciones azeotrópicas o casi azeotrópicas de FH y 253fb
La invención se refiere a composiciones azeotrópicas o casi azeotrópias de FH y 253fb. Se describe también un proceso para preparar 3,3,3-trifluoropropeno.
El 3,3,3-trifluoropropeno, también conocido como HFO-1243zf (o 1243zf), es un monómero útil para la producción de fluorosiliconas, y en la fabricación de epóxido de trifluoropropeno y 3,3,3-trifluoropropilbenceno. También se cree que el 1243zf tiene utilidad en las composiciones refrigerantes.
La enumeración o descripción de un documento publicado previamente en la presente memoria descriptiva no debe considerarse necesariamente una aceptación de que el documento forme parte del estado de la técnica o de que sea el conocimiento común general.
El documento US5986151 describe la preparación de 1243zf a partir de CF3CH2CF2H, lo que implica una serie complicada de reacciones de deshidrofluroación e hidrogenación independientes.
El documento US4220608 describe la preparación de 1243zf haciendo reaccionar al menos uno de 1,1,1,3-tetracloropropano (también conocido como 250fb), 1,1,3-tricloroprop-1-eno y 3,3,3-tricloropropeno con fluoruro de hidrógeno (HF) en presencia de un catalizador a base de nitrógeno. Tales catalizadores no son ideales, por ejemplo porque no pueden regenerarse o separarse fácilmente de los reactivos y/o productos.
Los documentos US2889379 y US4465786 describen la preparación de 1243zf mediante la reacción de un hidrocarburo halogenado (por ejemplo, 250fb) con FH en presencia de catalizadores de oxifluoruro de cromo (modificado). La actividad, selectividad, robustez y/o facilidad de regeneración de tales catalizadores no son ideales. El documento WO 2009/125201 describe un proceso para preparar 2,3,3,3-tetrafluoropropeno que comprende fluorar 1,1,1-trifluoro-2,3-dicloropropano y deshidrogenar un compuesto formado a partir de la fluoración para producir 2,3,3,3-tetrafluoropropeno.
De acuerdo con la presente invención se proporciona una composición azeotrópica o casi azeotrópica de acuerdo con la reivindicación 1.
Se describe un proceso para preparar 3,3,3-trifluoropropeno (1243zf), comprendiendo el proceso:
(a) fluorar CChCH2CH2Cl (250fb) para producir CF3CH2CH2G (253fb) en la fase líquida en un primer reactor; y (b) deshidrohalogenar 253fb para producir 1243zf en la fase de vapor en presencia de un catalizador en un segundo reactor.
También se describe un proceso para preparar 3,3,3-trifluoropropeno (1243zf), comprendiendo el proceso:
(a) fluorar CCl3CH2CH2Cl (250fb) para producir un producto de reacción que comprende CF3CH2CH2Cl (253fb) en la fase líquida en un primer reactor, usando FH como el agente fluorante; y
(b) deshidrohalogenar 253fb para producir 1243zf en un segundo reactor;
en donde el producto de reacción que comprende 253fb producido en la etapa (a) se somete a una o más etapas de purificación antes de la etapa (b).
250fb se puede adquirir de proveedores habituales de hidrocarburos halogenados, tales como Apollo Scientific, Stockport, RU. Como alternativa, 250fb se puede preparar mediante la telomerización de tetracloruro de carbono (CCl4) y etileno (véase, por ejemplo, J. Am. Chem. Soc. Vol. 70, p2529, 1948).
La conversión de 250fb en 1243zf normalmente implica las etapas de fluoración y deshidrohalogenación.
Por ejemplo, 250fb se puede fluorar para producir CF3CH2CH2G, como se ilustra en el esquema siguiente. 1243zf se puede producir mediante una etapa de deshidrocloración final de CF3CH2CH2CL Esto se ilustra a continuación:
La etapa (a) del proceso se realiza normalmente a una temperatura de aproximadamente 20 a aproximadamente 100 °C, preferentemente de aproximadamente 40 a aproximadamente 70 °C.
La etapa (a) se realiza normalmente a una presión de aproximadamente 100 a aproximadamente 1000 kPa
(aproximadamente 1 a aproximadamente 10 barg), preferentemente de aproximadamente 200 kPa a aproximadamente 700 kPa (aproximadamente 2 a aproximadamente 7 barg).
En un aspecto, la etapa (a) se puede realizar a una temperatura de aproximadamente 40 a aproximadamente 70 °C y una presión de aproximadamente 200 kPa a aproximadamente 700 kPa.
La etapa (a) se puede realizar en presencia de un inhibidor y/o retardador de la polimerización. Se puede usar cualquier inhibidor/retardador de la polimerización adecuado. Los inhibidores de la polimerización adecuados incluyen, aunque no de forma limitativa, cetona cíclica o compuestos aromáticos a base de quinona, compuestos nitro o que contienen nitrógeno o compuestos que contienen azufre, por ejemplo, ciclobutanona y ciclohexanona y mezclas de los mismos. Sin desear quedar ligado a teoría alguna, se cree que el uso de un inhibidor/retardador de la polimerización minimiza la formación de alquitrán.
La etapa (a) se realiza normalmente en presencia de un catalizador. Los catalizadores adecuados incluyen catalizadores de ácido de Lewis. Los catalizadores de ácido de Lewis adecuados incluyen, aunque no de forma limitativa, TiCl4, BF3, SnFxCly (en donde x y = 4) tales como SnCl4 o SnChF2, TaF5, SbCl5 y AlCh. Un catalizador preferido para usar en la etapa (a) es SnFxCly.
SnCl4 es fácilmente asequible. SnCl4 se fluorará en presencia de HF para formar especies de Cl/F y/o SnF4 mixtas. Por lo tanto, el catalizador (por ejemplo, SnCU) se puede cargar en el reactor y tratar con un volumen conocido de HF para fluorar el catalizador antes de iniciar la reacción; por ejemplo antes de cualquier alimentación continua de los reactivos para la etapa (a). Durante esta etapa de prefluoración, cualquier HCl generado se puede eliminar del reactor.
La concentración del catalizador puede variar en límites amplios. Como ejemplo no limitante, la concentración de catalizador puede ser de aproximadamente 10 a aproximadamente 25% en peso en HF, tal como de aproximadamente 15 a aproximadamente 20 % de HF
La etapa (a) se lleva a cabo preferentemente en un entorno no acuoso o anhidro. Por tanto, es preferible utilizar HF anhidro en la etapa (a).
La relación entre HF y 250fb en la etapa (a) puede variar en límites amplios. La relación entre HF y 250fb puede ser, por ejemplo, de aproximadamente 1:1 a aproximadamente 20:1, tal como de aproximadamente 5:1 a aproximadamente 15:1, por ejemplo aproximadamente 10:1.
250fb se alimenta normalmente al reactor para la etapa (a) en la fase líquida.
La etapa (a) se puede realizar como una reacción discontinua, una reacción continua o una reacción semicontinua. Se prefiere el uso de una reacción semicontinua porque esto permite purgar/limpiar y reemplazar el catalizador según sea necesario.
Un ejemplo de una posible disposición de reactores de funcionamiento semicontinuo de la etapa (a) es utilizar 2 o más, por ejemplo, 3, 4 o 5 reactores en paralelo dispuestos de manera que cada uno de los reactores pueda apagarse y aislarse independientemente para permitir la purga y/o limpieza mientras los otros reactores continúan funcionando.
Por ejemplo, se pueden usar 3 reactores, tal como 3 reactores cada uno con un volumen de aproximadamente 5 m3 a aproximadamente 15 m3, por ejemplo, aproximadamente 10 m3 para llevar a cabo la etapa (a). En esta disposición, la tasa de reacción puede ser de aproximadamente 150 a 350 kg/m3 h, tal como de aproximadamente 200 a 300 kg/m3 h. Se espera que con esta disposición, será necesario purgar/limpiar el o los reactores cada 3 a 10 días, por ejemplo, aproximadamente cada 4 o 5 días.
Para la etapa (a) puede usarse cualquier reactor adecuado. Un ejemplo de un reactor adecuado es un reactor de tanque de agitación continua y en estado estacionario.
En una disposición ventajosa, el o los reactores usados para la etapa (a) pueden estar conectados a una columna o columnas rectificadoras. Los compuestos más ligeros tales como el HF no utilizado, 253fb y HCl generados durante la reacción abandonan el o los reactores a través de la o las columnas rectificadoras, mientras que los compuestos más pesados permanecen en el o los reactores. En esta disposición, los intermedios y/o los subproductos, tales como 251fb (CH2ClCH2CCl2F) o 252fc (CClF2CH2CH2Cl) se pueden condensar en la columna rectificadora y, por lo tanto, se pueden devolver al reactor, donde se pueden fluorar adicionalmente.
En una disposición particular, el HF alimentado puede introducirse en el reactor a través de la parte superior de la columna rectificadora. Sin desear quedar ligado a teoría alguna, se cree que esto puede reducir las incrustaciones dentro de la columna al disminuir las concentraciones de orgánicos.
La corriente de producto que sale del reactor de la etapa (a), por ejemplo a través de la columna rectificadora, puede someterse a una o más etapas de separación y/o purificación antes de pasar al segundo reactor o antes de
almacenarse antes de pasar al segundo reactor. Como alternativa, la corriente de producto se puede pasar directamente al segundo reactor o se puede almacenar sin someterla a separación y/o purificación.
Si la corriente de producto del reactor de la etapa (a) se somete a separación y/o purificación, se puede utilizar cualquier técnica de separación y/o purificación adecuada. Las técnicas adecuadas incluyen, pero no se limitan a destilación, separación de fases, depuración y adsorción, por ejemplo, usando tamices moleculares y/o carbono activado.
La corriente de producto del reactor de la etapa (a) puede someterse a destilación para separar el HCl del HF y los orgánicos. A continuación, se puede recuperar el HCl.
El HF se puede separar de una corriente de producto que comprende 253fb, por ejemplo, mediante separación de fases y/o el uso de un depurador de ácido tal como un depurador de H2SO4, por ejemplo un depurador de H2SO4 que funciona a una temperatura superior a la temperatura ambiente. El HF separado de esta manera se puede reciclar de nuevo al reactor de la etapa (a). Si se usa un depurador de ácido, la corriente de producto que comprende 253fb puede pasarse a través de un tamiz molecular o un lecho empaquetado de Sofnolime para eliminar las trazas de ácido.
En un ejemplo de proceso de purificación que puede usarse, la corriente de producto de la etapa (a) puede someterse a destilación para eliminar o reducir la concentración de HCl y a continuación separación de fases para separar el HF de la corriente de producto que comprende 253fb (los orgánicos). La corriente de producto se puede pasar opcionalmente a través de un depurador de H2SO4.
La corriente de producto se puede enfriar opcionalmente antes de someterla a la separación de fases o la separación de fases puede tener lugar a temperatura ambiente o por debajo de esta.
El 253fb producido en la etapa (a) puede condensarse y almacenarse, por ejemplo, en un tanque de reserva, antes de su uso en la etapa (b).
Los inventores han descubierto que puede estar presente un azeótropo o casi azeótropo de HH253fb en la corriente de producto producida en la etapa (a).
Por azeótropo o composición azeotrópica, se entiende una composición binaria que en el equilibrio vapor-líquido tiene la misma composición tanto en la fase líquida como de vapor, y cuyo punto de ebullición es menor que el de cualquiera de los componentes puros. Por casi azeótropo o composición casi azeotrópica (por ejemplo, una composición casi azeotrópica de 253fb y HF), se entiende una composición que se comporta de manera similar a una composición azeotrópica (es decir, la composición tiene características de ebullición constante o una tendencia a no fraccionarse tras la ebullición), pero pueden no tener todas las propiedades de un azeótropo, por ejemplo, composiciones líquidas binarias cuya presión de vapor está por encima de la del componente puro con el punto de ebullición más bajo (por ejemplo, HF en comparación con 253fb) cuando se mide a temperatura equivalente, pero cuya composición de vapor en equilibrio puede diferir de la composición líquida.
Esencialmente, a una presión dada, una composición azeotrópica o casi azeotrópica en ebullición tiene las mismas proporciones de constituyentes en la fase de vapor que en la fase líquida en ebullición. Esto significa que no tiene lugar (o sustancialmente ningún) fraccionamiento de los componentes en la composición líquida.
Tras la formación del producto de reacción 253fb en la etapa (a), el HF puede estar presente en una cantidad eficaz para formar una composición azeotrópica con 253fb. Por cantidad eficaz, se entiende que HF y 253fb están presentes en proporciones adecuadas para formar composiciones azeotrópicas o casi azeotrópicas.
Se ha identificado una composición azeotrópica binaria entre HF y R253fb (véanse las figuras 1 a 3). Se ha demostrado que las composiciones que comprenden de aproximadamente 65 % en moles a aproximadamente 90 % en moles de Hf y de aproximadamente 35 % en moles a aproximadamente 10 % en moles de 253fb forman azeótropos a temperaturas de aproximadamente -25 °C a aproximadamente 70 °C, tales como composiciones que comprenden de aproximadamente 70 % en moles a aproximadamente 85 % en moles de HF y de aproximadamente 30 % en moles a aproximadamente 15 % en moles de 253fb.
Además, se han identificado composiciones casi azeotrópicas entre HF y R253fb, en donde HF está presente en una cantidad de aproximadamente 55 % en moles a aproximadamente 95 % en moles y 253fb está presente en una cantidad de aproximadamente 45% en moles a aproximadamente 5% en moles. Tales composiciones casi azeotrópicas existen a temperaturas que oscilan entre aproximadamente -25 °C y aproximadamente 70 °C.
Por ejemplo, se ha descubierto que una composición que consiste en aproximadamente 75 % en moles de HF y aproximadamente 25 % en moles de 253fb es azeotrópica a 70 °C y 600 kPa (6 bar)
Los presentes inventores también han descubierto que la separación de fases, por ejemplo la separación de fases a temperaturas por debajo de aproximadamente 30 °C puede usarse para separar el HF y 253fb en la composición
azeotrópica o casi azeotrópica. La fase de HF separada puede comprender de 88 a 100 % en moles de HF, tal como aproximadamente 90 % en moles. Esta etapa de separación permite reciclar el HF a la etapa (a).
En la etapa (b), 253fb se deshidroclora para producir 1243zf en la fase de vapor en presencia de un catalizador. Se prevé un proceso en el que la corriente de producto de la reacción (a) se purifica como se describió anteriormente antes de que se deshidroclore 253fb para producir 1243zf en la fase de vapor en presencia de un catalizador.
Cuando la etapa (b) se realiza en fase de vapor en presencia de un catalizador, se puede usar cualquier catalizador adecuado. Los catalizadores adecuados pueden comprender carbono activado, alúmina y/o cromia o cinc/cromia. Los ejemplos de catalizadores adecuados incluyen carbono activado, Pt/carbono, Pd/carbono, Au/carbono, Pd/alúmina, Ni/alúmina, Pt/alúmina, Cr/alúmina o Zn/cromia.
El uso de un catalizador en la etapa (b) en la fase de vapor permite que la etapa de deshidrohalogenación se lleve a cabo usando menos condiciones de forzamiento (por ejemplo, temperatura y/o presión y/o tiempo de residencia más bajas) de lo que sería necesario de otro modo.
Los catalizadores adecuados para su uso en la etapa (b) en la fase de vapor pueden obtenerse de fuentes comerciales.
Por la expresión "catalizador de cinc/cromia" se entiende cualquier catalizador que comprende cromo o un compuesto de cromo y cinc o un compuesto de cinc. Tales catalizadores se conocen en la técnica, véanse, por ejemplo, los documentos EP-A-0502605, EP-A-0773061, EP-A-0957074 y WO 98/10862.
Normalmente, el cromo o compuesto de cromo presente en los catalizadores de cinc/cromia es un óxido, oxifluoruro 0 fluoruro de cromo, tal como óxido de cromo.
La cantidad total de cinc o un compuesto de cinc presente en los catalizadores de cinc/cromia es normalmente de aproximadamente 0,01% o aproximadamente 0,5% a aproximadamente 25%, preferentemente de 0,1% o aproximadamente 1 % a aproximadamente 10 %, de aproximadamente 2 a 8 % en peso del catalizador, convenientemente de 0,01 % a 6 % de cinc, por ejemplo de aproximadamente 4 a 6 % en peso del catalizador.
Debe entenderse que la cantidad de cinc o de un compuesto de cinc citado en el presente documento se refiere a la cantidad de cinc elemental, tanto si está presente como cinc elemental o como compuesto de cinc.
Los catalizadores de cinc/cromia usados pueden incluir un metal adicional o un compuesto del mismo. Normalmente, el metal adicional es un metal divalente o trivalente, preferentemente seleccionado de níquel, magnesio, aluminio y mezclas de los mismos. Normalmente, el metal adicional está presente en una cantidad de 0,01 % en peso a aproximadamente 25% en peso del catalizador, preferentemente de aproximadamente 0,01 a 10% en peso del catalizador. El catalizador puede comprender al menos aproximadamente 0,5 % en peso o al menos aproximadamente 1 % en peso de metal adicional.
Cuando la etapa (b) se realiza en la fase de vapor en presencia de un catalizador, esta etapa se realiza normalmente a una temperatura de aproximadamente 150 °C a aproximadamente 450 °C, tal como de aproximadamente 150 °C a aproximadamente 400 °C, por ejemplo de aproximadamente 200 °C a aproximadamente 350 °C o de aproximadamente 150 °C a aproximadamente 250 °C.
Por ejemplo, el catalizador usado en la etapa (b) puede comprender carbono activado y el proceso de la etapa (b) puede realizarse a una temperatura de aproximadamente 250 °C a aproximadamente 350 °C, preferentemente de 250 °C a aproximadamente 300 °C.
En el proceso, el catalizador usado en la etapa (b) puede estar prefluorado, es decir, es fluorado antes de usar. Puede utilizarse cualquier técnica de prefluoración adecuada, por ejemplo, el catalizador puede prefluorarse pasando HF sobre el catalizador antes de que el catalizador se ponga en contacto con 253fb.
Por ejemplo, el catalizador usado en la etapa (b) puede ser un catalizador de Zn/cromia prefluorado, tal como ZnO/Cr2O3 prefluorado y el proceso de la etapa (b) puede realizarse a una temperatura de aproximadamente 250 °C a aproximadamente 350 °C.
En el proceso, la etapa (b) también se puede realizar coalimentando el HF y 253fb. Por ejemplo, el catalizador usado en la etapa (b) puede estar prefluorado, tal como un catalizador de ZnO/Cr2O3 prefluorado y el HF y 253fb coalimentados sobre el catalizador prefluorado.
Si la corriente de producto de la reacción (a) se purifica como se describe anteriormente entre la etapa (a) y (b), la etapa (b) puede realizarse como alternativa en la fase líquida o en la fase de vapor en presencia de un material inerte tal como porcelana, cuarzo, alúmina o malla Inconel para ayudar a la transferencia de calor. La etapa (b) puede ser, por ejemplo, una reacción de deshidrocloración térmica realizada en ausencia de un catalizador.
Si la etapa (b) es una reacción de deshidrocloración térmica, esta reacción se realiza normalmente a una temperatura de aproximadamente 300 a aproximadamente 800 °C, tal como de aproximadamente 400 a aproximadamente 600 °C, por ejemplo de aproximadamente 450 a aproximadamente 550 °C.
Cuando la etapa (b) se realiza en la fase de vapor, Esta normalmente se realiza a presión atmosférica, sub o super atmosférica, tal como a una presión de aproximadamente 0 kPa a aproximadamente 3000 kPa (aproximadamente 0 a 30 barg), preferentemente de aproximadamente 100 kPa a aproximadamente 200 kPa (de aproximadamente 1 a aproximadamente 20 barg).
El tiempo de reacción para el proceso de preparación de 1243zf (etapa (b)) es generalmente de aproximadamente 1 segundo a aproximadamente 100 horas, preferentemente de aproximadamente 10 segundos a aproximadamente 50 horas, tal como de aproximadamente 1 minuto a aproximadamente 10 o 20 horas en la fase de vapor.
En un proceso continuo, los tiempos de contacto típicos del catalizador con los reactivos son de aproximadamente de 1 a aproximadamente 1000 segundos, tal como de aproximadamente 1 a aproximadamente 500 segundos o de aproximadamente 1 a aproximadamente 300 segundos o de aproximadamente 1 a aproximadamente 50, 100 o 200 segundos.
Si la etapa (b) se lleva a cabo en la fase líquida, normalmente se lleva a cabo en un entorno acuoso en condiciones básicas. Puede usarse cualquier base adecuada para proporcionar el entorno básico. Por ejemplo, se puede usar NaOH acuoso a una concentración de aproximadamente 10 a aproximadamente 30 % en peso. La reacción en fase líquida tiene lugar normalmente en presencia de un catalizador tal como un catalizador de transferencia de fase. Los catalizadores de transferencia de fase adecuados incluyen sales de amonio cuaternario tales como cloruro de dodeciltrimetilamonio.
La reacción en fase líquida (b) se realiza normalmente a una temperatura de aproximadamente 30 a aproximadamente 100 °C, por ejemplo de aproximadamente 50 a aproximadamente 80 °C y una presión de aproximadamente 100 kPa a aproximadamente 300 kPa (aproximadamente 1 a aproximadamente 3 barg).
La etapa de deshidrohalogenación se puede llevar a cabo usando cualquier aparato adecuado, tal como una mezcladora estática, un reactor de tanque agitado o un recipiente de separación vapor-líquido agitado. Preferentemente, el aparato está hecho de uno o más materiales que son resistentes a la corrosión, por ejemplo, Hastelloy®, Inconel® o un vaso recubierto con fluoropolímero.
La etapa de deshidrohalogenación se puede llevar a cabo de forma discontinua o (semi)continua. Preferentemente, la etapa se lleva a cabo de forma continua.
La corriente de producto que sale del reactor de la etapa (b) puede someterse a una o más etapas de separación y/o purificación.
Si la corriente de producto del reactor de la etapa (b) se somete a separación y/o purificación, se puede utilizar cualquier técnica de separación y/o purificación adecuada. Las técnicas adecuadas incluyen, pero no se limitan a destilación, separación de fases, depuración y adsorción, por ejemplo, usando tamices moleculares y/o carbono activado.
En un método de purificación, la corriente de producto del reactor de la etapa (b) se somete a una o más etapas de destilación. Por ejemplo, la corriente de producto del reactor de la etapa (b) se puede someter a tres etapas de destilación. Puede usarse una primera etapa de destilación para separar el HCl para su recuperación. Puede usarse una segunda etapa de destilación para eliminar los subproductos ligeros. Puede usarse una tercera etapa de destilación para separar el 253fb sin reaccionar del producto; el 253fb sin reaccionar se puede reciclar de nuevo al reactor de la etapa (b).
El producto 1243zf se puede almacenar para uso futuro o se puede pasar directamente a otro reactor.
Breve descripción de las Figuras:
Las Figuras 1 a 3 muestran los resultados obtenidos al medir la presión de vapor de composiciones variables de HF y 253fb en un intervalo de temperatura de -25 °C a 70 °C.
La invención se ilustrará ahora por los siguientes Ejemplos no limitantes.
Ejemplo 1 - Deshidrocloración catalítica (carbono activado) de 253fb (fuera del alcance de la invención)
Los catalizadores a base de carbono de la Tabla 1 se molieron hasta 0,5-1,4 mm y se introdujeron 2 ml en un reactor Inconel 625 (DE 0,5 pulgadas (1,27 cm) x 32 cm) soportado con una malla Inconel. Los catalizadores se secaron previamente a 200 °C durante al menos 2 horas bajo un flujo de N2 (60 ml/min) a presión atmosférica y a continuación
la temperatura del reactor aumentó hasta 250 °C y el nitrógeno se redujo hasta 30 ml/min y se desvió hasta la salida del reactor. Se alimentó un flujo de 253fb (3-cloro-1,1,1-trifluoropropano, 99,09 %) sobre los catalizadores de carbono rociando 253fb líquido a 10 °C con 4-6 ml/min de nitrógeno, dando vapor de 253fb que fluye a 1-2,5 ml/min. Después de dejar que la reacción se desarrollara durante 30 minutos, se tomaron muestras de los gases residuales del reactor en agua desionizada y se analizaron mediante CG, para obtener los resultados de la conversión de 253fb y selectividad a 1243zf que se muestran en la Tabla 1. El experimento también se repitió a 300 y 350 °C para catalizadores seleccionados.
Tabla 1 - Resultados de la deshidrocloración de 253fb a 1243zf con catalizadores de carbono activado
Ejemplo 2 - Deshidrocloración catalítica de 253fb que investiga el efecto de la prefluoración, con/sin HF coalimentado en ZnO/Cr2O3 (fuera del alcance de la invención)
Se molió un catalizador de ZnO/Cr2O3 hasta 0,5-1,4 mm y se introdujeron 2 ml en un reactor Inconel 625 (DE 0,5 pulgadas (1,27 cm) x 32 cm) soportado con una malla Inconel. El catalizador se secó previamente a 200 °C durante al menos 2 horas bajo un flujo de N2 (60 ml/min) a presión atmosférica. Se realizaron tres experimentos por duplicado de la siguiente manera:
Sin prefluoración:
El flujo de nitrógeno se redujo a 30 ml/min y se desvió a la salida del reactor y la temperatura del reactor se incrementó a 250 °C. Se alimentó un flujo de 253fb (3-cloro-1,1,1-trifluoropropano, 99,09 %) sobre el catalizador rociando 253fb líquido a 10 °C con 10-12 ml/min de nitrógeno, dando vapor de 253fb que fluye a 4-5 ml/min. Después de dejar que la reacción se desarrollara durante 30 minutos, se tomaron muestras de los gases residuales del reactor en agua desionizada y se analizaron mediante CG, para obtener los resultados de la conversión de 253fb y selectividad a 1243zf que se muestran en la Tabla 2. El experimento también se repitió a 300 y 350 °C.
Prefluorado:
Se hizo pasar HF a 30 ml/min sobre el catalizador junto con 60 ml/min de nitrógeno a 300 °C durante una hora. El flujo de nitrógeno se dirigió a continuación a la salida del reactor dejando pasar el HF puro sobre el catalizador. La temperatura se aumentó lentamente hasta 360 °C y se mantuvo durante 10 horas.
Después de este tiempo, la temperatura se redujo a 300 °C y el flujo de HF se detuvo y se reemplazó con 30 ml/min de nitrógeno, durante 1 h. El flujo de nitrógeno se desvió a continuación a la salida del reactor y a continuación se alimentó un flujo de 253fb (3-cloro-1,1,1-trifluoropropano, 99,09 %) sobre el catalizador rociando 253fb líquido a 10 °C con 10-12 ml/min de nitrógeno, dando vapor de 253fb que fluye a 4-5 ml/min. Después de dejar que la reacción se desarrollara durante 30 minutos, se tomaron muestras de los gases residuales del reactor en agua desionizada y se analizaron mediante CG, para obtener los resultados de la conversión de 253fb y selectividad a 1243zf que se muestran en la Tabla 2.
Prefluorado y HF coalimentado:
Prefluoración como se ha descrito anteriormente. Después de este tiempo, la temperatura se redujo a 250 °C y el flujo de HF se mantuvo sobre el catalizador. Se alimentó un flujo de 253fb (3-cloro-1,1,1-trifluoropropano, 99,09 %) sobre el catalizador rociando 253fb líquido a 10 °C con 10-12 ml/min de nitrógeno, dando vapor de 253fb que fluye a 4 5 ml/min. Después de dejar que la reacción se desarrollara durante 30 minutos, se tomaron muestras de los gases residuales del reactor en agua desionizada y se analizaron mediante CG, para obtener los resultados de la conversión de 253fb y selectividad a 1243zf que se muestran en la Tabla 2. El experimento también se repitió a 300 y 350 °C.
En general, hubo una mejora en la conversión y una selectividad ligeramente superior a 1243zf cuando el catalizador se prefluoró y 253fb se coalimentó con HF.
Ejemplo 3 - Identificación del azeótropo
Se identificó un azeótropo binario entre HF y 253fb mediante un estudio del equilibrio vapor-líquido de mezclas binarias en un intervalo de temperatura de -25 °C a 70 °C usando un aparato de volumen constante.
Los datos experimentales se midieron en un aparato estático de volumen constante que consiste en un recipiente de volumen interno conocido con precisión (32,57 ml) ubicado en un bloque metálico de temperatura controlada. Se ubicó un dispositivo de agitación magnética dentro del recipiente. Se pasó fluido refrigerado a través del bloque para permitir un control preciso de la temperatura dentro del recipiente. La celda se evacuó y a continuación se cargaron en la celda cantidades conocidas de composiciones de HF y 253fb. A continuación, la celda se varió gradualmente desde aproximadamente -25 °C a 70 °C. En cada etapa se midieron y registraron las temperaturas y la presión de la celda cuando se alcanzaron condiciones estables.
Las composiciones estudiadas se presentan a continuación en la Tabla 3. El comportamiento de fase de estas composiciones a tres temperaturas de ejemplo, que son -25 °C, 30 °C y 70 °C se ilustra en las Figuras 1 a 3. Los gráficos de las Figuras 1 a 3 muestran que se alcanza una presión de vapor constante en las composiciones en donde HF está presente en una cantidad de aproximadamente 55 % en moles a aproximadamente 95 % en moles y 253fb está presente en una cantidad de aproximadamente 45 % en moles a aproximadamente 5 % en moles, lo que concuerda con lo que se esperaría de las composiciones azeotrópicas. Esta tendencia se evidencia en todos los intervalos de temperatura probados.
Tabla 3
Ejemplo 4 (fuera del alcance de la invención)
Se cargó una composición de alimentación de HF y 253fb en una bomba Whitey, se agitó y se colocó en un baño frío a temperatura constante. El sistema se dejó reposar durante la noche para lograr el equilibrio térmico y de fases. Se extrajeron muestras consecutivas de la base de la bomba Whitey, lentamente, cada media hora durante un período total de 4 horas para no perturbar el equilibrio de fase en la bomba, y se analizaron para determinar la concentración de HF. Los resultados que se muestran en la Tabla 4 demuestran la separación de Hf y 253fb en dos fases líquidas.
Carga inicial 99,7 g
Composición de alimentación 81,91 % en moles de HF
Temp -25 °C
Tabla 4
Claims (4)
1. Una composición azeotrópica o casi azeotrópica que consiste en del 55 % en moles al 95 % en moles de HF y del 45 % en moles al 15 % en moles de 253fb, a temperaturas de -25 °C a 70 °C.
2. Una composición azeotrópica o casi azeotrópica de acuerdo con la reivindicación 1 que consiste en del 65 % en moles al 90 % en moles de Hf y del 35 % en moles al 10 % en moles de 253fb.
3. Una composición azeotrópica o casi azeotrópica de acuerdo con una cualquiera de las reivindicaciones 1 a 2 que consiste en del 70 % en moles al 85 % en moles de HF y del 30 % en moles al 15 % en moles de 253fb.
4. Una composición de acuerdo con la reivindicación 1 que es azeotrópica a 70 °C y 600 kPa, que consiste en el 75 % en moles de HF y el 25 % en moles de 253fb.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1512598.2A GB2540428B (en) | 2015-07-17 | 2015-07-17 | Process for preparing 3,3,3-trifluoropropene |
Publications (1)
Publication Number | Publication Date |
---|---|
ES2946638T3 true ES2946638T3 (es) | 2023-07-21 |
Family
ID=54013207
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES16750475T Active ES2869987T3 (es) | 2015-07-17 | 2016-07-14 | Proceso para la preparación de 3,3,3-trifluoropropeno |
ES20172163T Active ES2946638T3 (es) | 2015-07-17 | 2016-07-14 | Composiciones azeotrópicas o casi azeotrópicas de FH y 253fb |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES16750475T Active ES2869987T3 (es) | 2015-07-17 | 2016-07-14 | Proceso para la preparación de 3,3,3-trifluoropropeno |
Country Status (8)
Country | Link |
---|---|
US (3) | US10689316B2 (es) |
EP (2) | EP3325436B1 (es) |
JP (3) | JP6707122B2 (es) |
KR (2) | KR20240115913A (es) |
CN (3) | CN108026002A (es) |
ES (2) | ES2869987T3 (es) |
GB (1) | GB2540428B (es) |
WO (1) | WO2017013404A1 (es) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2540428B (en) * | 2015-07-17 | 2017-09-13 | Mexichem Fluor Sa De Cv | Process for preparing 3,3,3-trifluoropropene |
HUE065487T2 (hu) | 2017-03-10 | 2024-05-28 | Chemours Co Fc Llc | Eljárás 3,3,3-trifluorprop-1-én elõállítására |
CN115093307A (zh) * | 2022-07-18 | 2022-09-23 | 福建三农新材料有限责任公司 | 全氟烷基乙烯及其连续制备方法和连续生产设备 |
WO2024205836A1 (en) * | 2023-03-29 | 2024-10-03 | The Chemours Company Fc, Llc | Method for producing 1,1,1-trifluoropropene from the dehydrochlorination of 3-chloro-1,1,1-trifluoropropane |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2889379A (en) | 1957-02-06 | 1959-06-02 | Dow Chemical Co | Preparation of 3, 3, 3-trifluoropropene |
GB1533764A (en) * | 1975-10-03 | 1978-11-29 | Halocarbon Prod Corp | Fluorine substitution in 1,1,1-trihalomethyl derivatives |
US4078007A (en) | 1975-10-03 | 1978-03-07 | Halocarbon Products Corporation | Fluorine substitution in 1,1,1-trihalomethanes |
US4220608A (en) | 1979-06-06 | 1980-09-02 | E. I. Du Pont De Nemours And Company | Preparation of 3,3,3-trifluoropropene-1 |
US4465786A (en) | 1982-09-27 | 1984-08-14 | General Electric Company | Catalyst composition for the preparation of 3,3,3-trifluoropropene |
JPH0723328B2 (ja) | 1985-01-09 | 1995-03-15 | 旭化成工業株式会社 | 弗素化炭化水素の製造方法 |
US5066418A (en) * | 1990-03-21 | 1991-11-19 | E. I. Du Pont De Nemours And Company | Binary azeotropic compositions of 3-chloro-1,1,1-trifluoropropane with methanol or ethanol, or trans-1,2-dichloroethylene |
GB9104775D0 (en) | 1991-03-07 | 1991-04-17 | Ici Plc | Fluorination catalyst and process |
US5152845A (en) * | 1991-03-18 | 1992-10-06 | Allied-Signal Inc. | Method of cleaning using 1-chloro-3,3,3-trifluoropropane |
US5213707A (en) * | 1991-11-26 | 1993-05-25 | Allied-Signal Inc. | Azeotrope-like compositions of 1-chloro-3,3,3-trifluoropropane and a mono- or dichlorinated C1 or C3 alkane |
US5211866A (en) * | 1991-11-26 | 1993-05-18 | Allied-Signal Inc. | Azeotrope-like compositions of 1-chloro-3,3,3-trifluoropropane and isopropanol |
US5227088A (en) | 1991-11-26 | 1993-07-13 | Allied-Signal Inc. | Azeotrope-like compositions of 1-chloro-3,3,3-trifluoropropane and a C.sub.56 hydrocarbon |
FR2689885B1 (fr) * | 1992-04-14 | 1994-10-21 | Atochem North America Elf | Procédé pour inhiber la décomposition du 1,1-dichloro-1-fluoréthane. |
FR2740994B1 (fr) | 1995-11-10 | 1997-12-05 | Atochem Elf Sa | Catalyseurs massiques a base d'oxyde de chrome, leur procede de preparation et leur application a la fluoration d'hydrocarbures halogenes |
US6316681B1 (en) * | 1996-03-05 | 2001-11-13 | Central Glass Company, Limited | Method for producing 1,1,1,3,3-pentafluoropropane |
EP0925112A1 (en) | 1996-09-10 | 1999-06-30 | Imperial Chemical Industries Plc | Fluorination catalyst and process |
US5986151A (en) * | 1997-02-05 | 1999-11-16 | Alliedsignal Inc. | Fluorinated propenes from pentafluoropropane |
EP0957074B2 (en) | 1997-04-23 | 2006-01-11 | Asahi Glass Company Ltd. | Process for producing halogenated hydrocarbons |
US6475971B2 (en) * | 2001-01-24 | 2002-11-05 | Honeywell International Inc. | Azeotrope-like composition of 1,2-dichloro-3,3,3-trifluoropropene and hydrogen fluoride composition |
US6500795B2 (en) | 2001-01-24 | 2002-12-31 | Honeywell International Inc. | Azeotrope-like composition of 1-chloro-1,3,3,3-tetrafluoropropane and hydrogen fluoride |
CN1488614A (zh) * | 2002-10-13 | 2004-04-14 | 浙江三环化工有限公司 | 3,3,3-三氟丙烯的制备方法 |
WO2005037743A1 (en) * | 2003-10-14 | 2005-04-28 | E.I. Dupont De Nemours And Company | Process for the preparation of 1,1,1,3,3-pentafluoropropane and 1,1,1,2,3-pentafluoropropane |
US8952208B2 (en) * | 2006-01-03 | 2015-02-10 | Honeywell International Inc. | Method for prolonging a catalyst's life during hydrofluorination |
FR2906517B1 (fr) | 2006-10-02 | 2008-12-05 | Renault Sas | Procede et systeme de controle d'un vehicule equipe d'un systeme de freinage pilote. |
GB0806422D0 (en) * | 2008-04-09 | 2008-05-14 | Ineos Fluor Holdings Ltd | Process |
US8483413B2 (en) | 2007-05-04 | 2013-07-09 | Bose Corporation | System and method for directionally radiating sound |
EP2254851B1 (en) * | 2008-02-21 | 2016-10-26 | The Chemours Company FC, LLC | Azeotrope compositions comprising 3,3,3-trifluoropropene and hydrogen fluoride and processes for separation thereof |
GB0806389D0 (en) * | 2008-04-09 | 2008-05-14 | Ineos Fluor Holdings Ltd | Process |
GB0806419D0 (en) | 2008-04-09 | 2008-05-14 | Ineos Fluor Holdings Ltd | Process |
GB0906191D0 (en) * | 2009-04-09 | 2009-05-20 | Ineos Fluor Holdings Ltd | Process |
JP5817373B2 (ja) * | 2010-11-10 | 2015-11-18 | セントラル硝子株式会社 | トランス−1,3,3,3−テトラフルオロプロペンの製造方法 |
CN102219635A (zh) * | 2011-04-19 | 2011-10-19 | 巨化集团公司 | 一种3,3,3-三氟-1-氯丙烷的制备方法 |
CN103044191B (zh) * | 2013-01-25 | 2014-10-22 | 浙江环新氟材料股份有限公司 | 一种3,3,3-三氟丙烯的制备方法 |
FR3015478B1 (fr) * | 2013-12-19 | 2015-12-25 | Arkema France | Compositions azeotropiques a base de fluorure d'hydrogene et de z-3,3,3-trifluoro-1-chloropropene |
US10604217B2 (en) | 2014-09-05 | 2020-03-31 | Mastercraft Boat Company, Llc | Aft-facing transom seating for a boat |
GB2540428B (en) * | 2015-07-17 | 2017-09-13 | Mexichem Fluor Sa De Cv | Process for preparing 3,3,3-trifluoropropene |
GB2559056B (en) * | 2015-07-17 | 2019-09-11 | Mexichem Fluor Sa De Cv | Process for preparing 245cb and 1234yf from 243db |
WO2020018764A1 (en) * | 2018-07-18 | 2020-01-23 | The Chemours Company Fc, Llc | Production of haloolefins in an adiabatic reaction zone |
EP3847145A2 (en) * | 2018-09-07 | 2021-07-14 | The Chemours Company FC, LLC | Fluorine removal from antimony fluorohalide catalyst using chlorocarbons |
AU2020287313A1 (en) * | 2019-06-04 | 2021-12-02 | The Chemours Company Fc, Llc | 2-chloro-3,3,3-trifluoropropene (1233XF) compositions and methods for making and using the compositions |
US20240199513A1 (en) * | 2021-04-19 | 2024-06-20 | The Chemours Company Fc, Llc | Compositions containing 3,3,3-trifluoropropene (1243zf) and methods for making and using the compositions |
-
2015
- 2015-07-17 GB GB1512598.2A patent/GB2540428B/en active Active
-
2016
- 2016-07-14 WO PCT/GB2016/052137 patent/WO2017013404A1/en unknown
- 2016-07-14 ES ES16750475T patent/ES2869987T3/es active Active
- 2016-07-14 US US15/745,460 patent/US10689316B2/en active Active
- 2016-07-14 ES ES20172163T patent/ES2946638T3/es active Active
- 2016-07-14 CN CN201680042046.7A patent/CN108026002A/zh active Pending
- 2016-07-14 EP EP16750475.2A patent/EP3325436B1/en active Active
- 2016-07-14 KR KR1020247023490A patent/KR20240115913A/ko active Search and Examination
- 2016-07-14 JP JP2018501321A patent/JP6707122B2/ja active Active
- 2016-07-14 EP EP20172163.6A patent/EP3705468B1/en active Active
- 2016-07-14 CN CN202110354624.3A patent/CN113233956B/zh active Active
- 2016-07-14 CN CN202310928205.5A patent/CN117088750A/zh active Pending
- 2016-07-14 KR KR1020187004716A patent/KR102685955B1/ko active IP Right Grant
-
2020
- 2020-04-30 US US16/863,026 patent/US11021423B2/en active Active
- 2020-05-18 JP JP2020087017A patent/JP6964713B2/ja active Active
- 2020-05-18 JP JP2020087018A patent/JP7047012B2/ja active Active
-
2021
- 2021-04-30 US US17/245,459 patent/US11767277B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2020143110A (ja) | 2020-09-10 |
GB2540428B (en) | 2017-09-13 |
JP7047012B2 (ja) | 2022-04-04 |
GB201512598D0 (en) | 2015-08-26 |
KR20180030670A (ko) | 2018-03-23 |
JP6964713B2 (ja) | 2021-11-10 |
US20190169098A1 (en) | 2019-06-06 |
US20220033330A1 (en) | 2022-02-03 |
CN113233956A (zh) | 2021-08-10 |
JP6707122B2 (ja) | 2020-06-10 |
US10689316B2 (en) | 2020-06-23 |
CN117088750A (zh) | 2023-11-21 |
JP2020143109A (ja) | 2020-09-10 |
US20200255360A1 (en) | 2020-08-13 |
KR102685955B1 (ko) | 2024-07-18 |
KR20240115913A (ko) | 2024-07-26 |
US11767277B2 (en) | 2023-09-26 |
CN113233956B (zh) | 2023-12-15 |
GB2540428A (en) | 2017-01-18 |
JP2018520180A (ja) | 2018-07-26 |
EP3705468A1 (en) | 2020-09-09 |
EP3325436A1 (en) | 2018-05-30 |
WO2017013404A1 (en) | 2017-01-26 |
EP3705468B1 (en) | 2023-03-15 |
EP3325436B1 (en) | 2021-04-14 |
US11021423B2 (en) | 2021-06-01 |
ES2869987T3 (es) | 2021-10-26 |
CN108026002A (zh) | 2018-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2310502T3 (es) | Método para producir compuestos orgánicos fluorados | |
CA2790098C (en) | A process for preparing 3,3,3-trifluoropropene | |
US11767277B2 (en) | Process for the preparation of 3,3,3-trifluoropropene | |
ES2655871T3 (es) | Método para producir olefinas fluoradas | |
US8436217B2 (en) | Integrated process to co-produce 1,1,1,3,3-pentafluoropropane, trans-1-chloro-3,3,3-trifluoropropene and trans-1,3,3,3-tetrafluoropropene | |
ES2854833T3 (es) | Proceso para producir 2,3,3,3-tetrafluoropropeno | |
EP3127893A1 (en) | Method for producing 2,3,3,3-tetrafluoropropene | |
WO2015020808A1 (en) | Process for 1-chloro -3,3,3 -trifluoropropene from trifluoropropene | |
JP2022535432A (ja) | 2-クロロ-3,3,3-トリフルオロプロペン(1233xf)組成物並びに組成物の製造及び使用方法 | |
US20230234903A1 (en) | INTEGRATED PROCESS FOR MAKING 1-CHLORO-3,3,3-TRIFLUOROPROPENE (HCFO-1233zd) FROM A MIXTURE OF HIGH-BOILING FLUORINATED COMPONENT | |
WO2023141792A1 (en) | Integrated process for making 1-chloro-3, 3, 3-trifluoropropene (hcfo-1233zd) from a mixture of high-boiling fluorinated components | |
US20210198168A1 (en) | Compositions and methods for an integrated 2,3,3,3-tetrafluoropropene manufacturing process |