ES2935283T3 - Sistemas y métodos para proporcionar sistemas de control robótico dinámico - Google Patents

Sistemas y métodos para proporcionar sistemas de control robótico dinámico Download PDF

Info

Publication number
ES2935283T3
ES2935283T3 ES20186543T ES20186543T ES2935283T3 ES 2935283 T3 ES2935283 T3 ES 2935283T3 ES 20186543 T ES20186543 T ES 20186543T ES 20186543 T ES20186543 T ES 20186543T ES 2935283 T3 ES2935283 T3 ES 2935283T3
Authority
ES
Spain
Prior art keywords
articulated arm
control signal
controller
end effector
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES20186543T
Other languages
English (en)
Inventor
Thomas Wagner
Kevin Ahearn
Christopher GEYER
Thomas Koletschka
Matthew T Mason
Kyle MARONEY
Gene Temple Price
Daniel Smith
Joseph Romano
Siddhartha SRINIVASA
Prasanna Velagapudi
Thomas P Allen
Michael DAWSON-HAGGERTY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Berkshire Grey Inc
Original Assignee
Berkshire Grey Operating Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Berkshire Grey Operating Co Inc filed Critical Berkshire Grey Operating Co Inc
Application granted granted Critical
Publication of ES2935283T3 publication Critical patent/ES2935283T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1612Programme controls characterised by the hand, wrist, grip control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/081Touching devices, e.g. pressure-sensitive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/086Proximity sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • B25J15/0616Gripping heads and other end effectors with vacuum or magnetic holding means with vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37401Differential pressure
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39529Force, torque sensor in wrist, end effector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39531Several different sensors integrated into hand
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39533Measure grasping posture and pressure distribution
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39555Revolver with several grippers, hands
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39556Control system build into hand itself
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39558Vacuum hand has selective gripper area

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

Se divulga un sistema de brazo articulado que incluye un brazo articulado que incluye un efector final y un sistema de control de brazo robótico que incluye al menos un sensor para detectar al menos uno de la posición, movimiento o aceleración del brazo articulado, y un controlador principal para proporcionar control computacional del brazo articulado, y un controlador integrado para proporcionar, en respuesta al al menos un sensor, una señal de movimiento que controla directamente al menos una parte del brazo articulado. (Traducción automática con Google Translate, sin valor legal)

Description

DESCRIPCIÓN
Sistemas y métodos para proporcionar sistemas de control robótico dinámico
PRIORIDAD
La presente solicitud reivindica la prioridad de la Solicitud de Patente Provisional U.S. N° de serie 62/212.697 presentada del 1 de septiembre de 2015 y la Solicitud de Patente Provisional U.S. N° de serie 62/221.976 presentada el 22 de septiembre de 2015.
ANTECEDENTES
La invención se refiere, en general, a robótica, y se refiere, en particular a sistemas de control robóticos que están diseñados para admitir una amplia variedad de condiciones y cargas inesperadas.
La mayoría de los sistemas robóticos industriales funciona de una manera desde arriba hacia abajo, generalmente de la siguiente manera: un controlador muestrea una variedad de sensores y entonces la lógica en ese mismo controlador calcula si debe actuar o no. La ventaja de este flujo lógico (referido normalmente como "sondeo") es que toda la lógica está en el mismo lugar. El inconveniente es que en sistemas robóticos prácticos, las señales son muestreadas a menudo con bastante lentitud. Además, todos los sensores deben estar cableados al armario de control, lo que ocasiona tendidos de cables largos y propensos a errores.
Un ejemplo específico de esta arquitectura tradicional sería implementado generalmente por un proveedor de robots legados, tales como los vendidos por ABB Robotics, Inc. of Auburn Hills, Michigan, KukaRoboter GmbH de Alemania, Fanuc America Corporation of Rochester Hills, Michigan, o uno de sus integradores de primer nivel. Todos estos proveedores fomentan generalmente la misma arquitectura y tienen factores de forma similares. Por ejemplo, una célula de soldadura utilizada en una instalación de automoción puede tener un armario de control ABB IRC5, un robot ABB IRB2600 1.85m alcanza 6 grados de libertad, una unidad de soldadura Miller GMAW cableada sobre un bus industrial (Devicenet/CANbus) al IRC5 y un paquete de herramientas ando-farm que monta una antorcha GMAW (por ejemplo, un Tregaskiss Tough Gun). Toda la programación se hace en el IRC5, y el efector extremo no tiene conocimiento del mundo, y hechos tales como choques sólo pueden ser observados o prevenidos en el IRC5 que en sí mismo es bastante limitado.
De nuevo, en tales sistemas, sin embargo, las señales son muestreadas a menudo de una manera relativamente lenta y los sensores deben cablearse hasta el armario de control. Por lo tanto, permanece una necesidad de un sistema de control robótico que sea capaz de proporcionar de manera eficiente y fiable un control dinámico y sensible a condiciones en el entorno del robot.
SUMARIO
La invención proporciona un sistema de brazo articulado de acuerdo con las reivindicaciones independientes adjuntas 1 y 8.
La invención proporciona además un método de controlar el movimiento de un brazo articulado de acuerdo con las reivindicaciones independientes adjuntas 11 y 14.
Algunas características opcionales se describen en las reivindicaciones dependientes adjuntas.
BREVE DESCRIPCIÓN DE LAS REALIZACIONES ILUSTRADAS
La descripción siguiente se puede comprender mejor con referencia a los dibujos que se acompañan, en los que: La figura 1 muestra una vista esquemática ilustrativa de un efector extremo utilizado en un sistema robótico.
La figura 2 muestra una vista esquemática ilustrativa de un controlador de a bordo utilizado en el efector extremo de la figura 1.
La figura 3 muestra una vista esquemática ilustrativa de etapas de procesamiento utilizadas por un sistema de control robótico.
La figura 4 muestra un sistema de brazo articulado de acuerdo con una realización de la invención.
La figura 5 muestra un diagrama de bloques ilustrativo de un sistema de control robótico de acuerdo con una realización de la invención.
Las figuras 6A y 6B muestran una vista esquemática ilustrativa de etapas ilustrativas de procesamiento utilizadas por el sistema de control robótico de la figura 5.
La figura 7 muestra una vista esquemática ilustrativa del sistema de brazo articulado de la figura 4 con el efector extremo girado 180 grados;
Las figuras 8A y 8B muestran vistas esquemáticas ilustrativas de efectores extremos para uso en otras realizaciones de la invención.
Los dibujos se muestran sólo para fines ilustrativos.
DESCRIPCIÓN DETALLADA
La invención proporciona una arquitectura para efectores extremos robóticos que permite al efector extremo alterar el estado del robot. El efector extremo puede observar el entorno a una frecuencia muy alta y comparar datos de los sensores locales y observaciones con respecto a un conjunto de fórmulas o de eventos de activación. Esto permite rutinas primitivas de movimiento de baja latencia agnósticas de robot, tales como, por ejemplo, mover hasta succión y mover hasta fuerza sin requerir el tiempo de respuesta completo del controlador robótico principal. Por lo tanto, está previsto un efector extremo robótico que puede alterar el estado del robot y que, además, puede ser modificado durante un tiempo de ejecución basado en una variedad de políticas de control.
La invención proporciona una estrategia de diseño de pinzas de facetas múltiples para agarre multimodal sin cambiadores de herramientas.
Una mayoría de sistemas robóticos industriales ejecutan su control lógico de programación solamente en un lugar -en el controlador del robot. El controlador del robot en estos sistemas es a menudo un controlador de legado grande con un lenguaje de programación oscuro (y a veces pobremente caracterizado). En contraste, la mayoría de los sistemas robóticos modernos y emergentes contienen lógica distribuida entre un controlador de robot y varios ordenadores de puestos de trabajo que ejecutan un sistema operativo moderno y una pila de software, tal como el sistema operativo Ubuntu vendido por Canonical Ltd. of Isle Of Man, el sistema operativo Linux proporcionado por The Linux Foundation de San Francisco, California y el entorno operativo robótico ROS proporcionado por Open Source Robotics Foundation de San Francisco, California.
Un aspecto positivo de estas arquitecturas es que proporcionan cantidades enormes, incluso arbitrarias, de potencia de cálculo que puede ser dirigida hacia problemas como planificación del movimiento, localización, visión por ordenador, etc. Los puntos débiles de esta arquitectura son principalmente que el paso por middleware de alto nivel, tal como ROS añade latencia significativa y la evaluación de una política de control en un núcleo puede requerir tiempos de ejecución muy superiores a 100ms.
Como una solución de unificación de este problema, ha sido desarrollado un sistema de control de pinzas con electrónica de a bordo, sensores y actuadores en los que una lógica de alto nivel que controla el sistema carga un conjunto de “activadores” en el tiempo de proceso. Éstos son medidas de control, tales como parar el robot cuando se observa una fuerza por encima de X Newtons o cuando se observa objeto por sensor de profundidad, ralentizar la trayectoria. El efector extremo puede evaluar entonces la medida nativamente en el nivel de kHz, y activar acciones de situaciones en las que las pinzas deberían actuar.
La figura 1 muestra una porción de un conjunto de brazo articulado que incluye un sistema sensor de fuerza 1, electrónica de control de a bordo 2, un efector extremo de vacío 3, un sistema sensor de profundidad tridimensional 4, un sensor de la presión de entrada 5, un sensor de la presión de salida 6, y otro efector extremo de vacío 7. Por lo tanto, el brazo articulado incluye una electrónica de control de a bordo 2 así como múltiples efectores extremos 3, 7. En ciertas realizaciones, el brazo articulado puede incluir otro efector extremo similar al efector extremo 3 que está adyacente al efector extremo 3 (y, por lo tanto, no se muestra en la figura 1).
La figura 2 muestra la electrónica de control de a bordo 2, que incluye conectores 11 para los sensores de fuerza, conectores 12 para el robot, conectores 13 para los sensores de presión, conectores 14 para LEDs tales como RGB LEDs, y el conector 15 para un microcontrolador con conexiones en serie y sin cables.
La invención proporciona un sistema de control de brazo articulado que incluye un brazo articulado con un efector extremo, al menos un sensor para detectar al menos uno de la posición, movimiento o aceleración del brazo articulado, un controlador principal para proporcionar control de cálculo del brazo articulado, y un controlador de a bordo para proporcionar, en respuesta a al menos un sensor, una señal de control al controlador principal.
La figura 3 muestra una rutina de control de robot pre-programada que comienza (etapa 300), ejecuta un primer programa por lotes (etapa 302), sondea sensores para entradas (etapa 304), ejecuta un segundo programa por lotes (etapa 306), sondea los sensores de nuevo para entradas (etapa 308), ejecuta un tercer programa por lotes (etapa 310) y entonces termina (etapa 312). Si el sistema se basa en entradas de sensor para causar un cambio en el programa (por ejemplo, parada debido a lecturas de un sensor de fuerza), el sistema debe esperar que el sensor sea consultado. De acuerdo con formas de realización de la presente invención, por otra parte, se pueden proporcionar señales de interrupción al controlador de robot principal para causar respuestas específicas pre-definidas. Como se muestra esquemáticamente en la figura 3, tales señales de interrupción pueden ser recibidas en cualquier momento y procesadas inmediatamente.
La figura 4 muestra un sistema robótico 20 de acuerdo con una realización de la presente invención, en la que la porción de brazo articulado de la figura 1 (incluyendo el sistema sensor de fuerza 1, electrónica de control de a bordo 2, el efector extremo de vacío 3, el sistema sensor de profundidad tridimensional 4, el sensor de la presión de entrada 5, el sensor de la presión de salida 6, y otro efector extremo de vacío 7) se fija a otras secciones del brazo articulado 22, 24, 26, 28 y 30. La sección de brazo articulado 30 está fijada a una base de robot 32, que está acoplada a un controlador de robot principal 34 por cables de conector 36. Una señal de interrupción puede proporcionarse desde la electrónica de control de a bordo 2 al controlador de robot principal 34 o bien a través de conexión directa de cable o sin cables.
Esta solución implica varias ventajas enormes. Primero, se pueden añadir los comportamientos avanzados que uno genera a cualquier robot con tal que el robot cumpla con una API relativamente sencilla. Segundo, se pueden evitar tendidos de cables largos para señales delicadas, desde el efector extremo hasta la caja de control del robot (que está montada a menudo a cierta distancia de una célula de trabajo). Tercero, se puede responder a cambios en el entorno a la velocidad de un bucle de control nativo, a menudo miles de veces más rápido que el paso exclusivamente a través de una lógica de alto nivel y middleware. Cuarto, se pueden alterar estas medidas en el tiempo del proceso, conmutando desde mover hasta succión hasta parar después de la pérdida de succión, así como medidas de concatenación.
La invención proporciona un método de alteración o anulación de una señal de control desde un controlador principal hasta un efector extremo.
La figura 5, por ejemplo, muestra una implementación de la electrónica de control de a bordo 2. La electrónica 2 recibe en 40 unas señales de control desde el controlador de robot principal 34 (mostrado en la figura 4) que causa que se muevan los motores M1, M2, M3 (mostrados en 42, 44 y 46) y el vacío (mostrado en 48) en el brazo articulado. Los motores pueden controlar, por ejemplo, los motores del codo, de la muñeca y de las pinzas del brazo articulado. En ausencia de cualquier señal de reacción desde el entorno, las señales de control 40 son encaminadas hasta los motores apropiados para el control del brazo articulado de acuerdo con el programa en el controlador principal.
La electrónica 2, sin embargo, está acoplada también a sensores de entrada que incluyen sensores de presión 50, 52 y 54, una cámara 56, sensores de fuerza / par 58, 60, sensor de deflexión / deformación 62 y sensor de flujo 63. Estos sensores están acoplados a un controlador de a bordo 64 que determina si hay que enviar o no una señal de interrupción al controlador robótico principal y determina si hay que actuar o no inmediatamente anulando cualquiera de las señales de salida a los motores M1 - M3 y el vacío. Esto se consigue acoplando el controlador de a bordo 64 a las conexiones de control 66, 68, 70 y 72 en las trayectorias de control de las señales 42, 44, 46 y 48.
El robot, por ejemplo, puede estar trabajando en entornos muy desordenados y dinámicos. Para manipular objetos en estas condiciones, se necesita mucha más detección que la requerida por un sistema robótico típico de circuito abierto, más estructurado. Por lo tanto, las pinzas están instrumentadas con sensores de presión absoluta, una cámara 3D RGBD, sensor de fuerza-par, y detección de la deflexión de la ventosa. Detectando y procesando los datos de sensor directamente en la muñeca a través de un hardware de microcontrolador se pueden fijar interrupciones (a través de entradas digitales) inmediatamente (cientos/miles de Hz). Existe mucho más gasto general en el otro método de comunicación de los datos del sensor de retorno al controlador robótico principal para análisis, lo que sería significantemente más lento. Esto permite modificar el movimiento/ejecución del robot significativamente más rápido, lo que, a su vez, permite mover el robot significativamente más rápido, adaptándose a velocidades no posibles en otro caso. En estos entornos dinámicos e impredecibles, la adaptación y la provisión de la recuperación tienen una importancia vital.
Los sensores de presión, por ejemplo, pueden proporcionar agarre / no agarre binario, y comparaciones de umbral (> presión de agarre, < presión de retracción requerida, < presión de caída). Los sensores de presión pueden mapear también propiedades del material / aprietes seleccionados para lecturas de presión previstas y modificar en tiempo real la ejecución de la trayectoria (velocidades, limitaciones) con el fin de asegurar el transporte con éxito. Los sensores de presión pueden proporcionar también una supervisión en tiempo real de la presión ascendente (presión desde la fuente) para asegurar la presión esperada del aire disponible, y modificar mediciones de succión previsibles descendentes de manera correspondiente.
La cámara puede ser una cámara RGBD que proporciona datos relacionados con el registro del entorno, localización automática de componentes previstos del entorno (transportador, estantes de salida, pila a granel) para eliminar la sintonización manual, y objetos/obstáculos esperados/inesperados en el entorno y modificar la ejecución de la trayectoria de manera correspondiente.
Los sensores de fuerza-par pueden proporcionar interrupciones de impulsos. Cuando se encuentra una fuerza o par inusual o inesperado se puede detener la ejecución de la trayectoria y recuperarla donde el robot habría continuado antes su movimiento en colisión con ese objeto causando daño al objeto o al robot. Los sensores de fuerza-par pueden proporcionar también estimaciones de masa/COM, tales como las estimaciones de masa Model Free que pueden informar de la ejecución de la trayectoria para ralentizarla, ya que se puede tratar de masas e inercias más altas en el punto extremo, que son más probables que se caigan debido a la caída del par de torsión. Las estimaciones de masas basadas en modelos pueden utilizarse también para asegurar la calidad del apriete por encima de COM para asegurar que se ha agarrado el objeto correcto, que el objeto está individualizado, y que el objeto no está dañado (masa inesperada).
El sensor de deflexión/deformación puede observar el contacto de la ventosa con el entorno (típicamente cuando se desea interrumpir el movimiento), ya que los fuelles se desinflan y no tienen lecturas de presiones modificadas, y no han visualizado todavía un impulso de fuerza apreciable. El sensor de deflexión en su forma más simple se utilizará para interrumpir el movimiento y evitar Paradas Protectoras de Fuerza del robot, que es la primera medida de contacto. El sensor de deflexión/deformación puede medir también la flexibilidad de los picos, que permite modificar de nuevo en tiempo real la ejecución de la trayectoria, ralentizar o limitar los movimientos para asegura el éxito del transporte o ponerla de nuevo en el margen si la flexibilidad está más allá de un umbral en el que el objeto puede ser transportado con seguridad.
Los sensores de flujo pueden detectar cambios en la cantidad de flujo de aire en comparación con los valores o cambios del flujo de aire. Por ejemplo, después de agarrar un objeto, es previsible que se reduzca el flujo de aire. Una vez que el objeto ha sido agarrado y está siendo transportado o justamente retenido, un incremento brusco del flujo de aire puede indicar que el agarre ha sido comprometido y que se ha caído el objeto. La supervisión del peso en combinación con el flujo de aire se puede emplear también, particularmente cuando se utilizan sistemas de vacío de flujo alto.
Con referencia a la figura 6A, el programa comienza (etapa 600) aplicando un efector extremo a un objeto en una localización de agarre seleccionada (etapa 602). Se aplica un vacío al efector extremo (etapa 604) y se consultan los sensores (etapa 606). Sensible a las entradas de sensores, el sistema determina si debería tratar de coger el objeto (etapa 608). Por ejemplo, si se detecta un flujo de vacío demasiado alto, el sistema puede determinar si el agarre es insuficiente para coger el objeto. En este caso, el sistema determinará (etapa 610) si ya han existido demasiados intentos de coger este objeto particular (posiblemente implicando al controlador principal). Si no han existido ya demasiado re-intentos, el sistema puede seleccionar otra localización de agarre para el objeto (etapa 612) y retornar a la etapa 602 anterior. Si el sistema determina que ya han existido demasiados re-intentos, el sistema seleccionará un nuevo objeto y una nueva localización de agarre asociada (etapa 614) y retornará a la etapa 602 anterior.
Si el sistema determina que el objeto debería ser elevado (etapa 608), el sistema elevará entonces el objeto (etapa 616) y entonces leerá los sensores (etapa 618). Si la orientación del efector extremo tiene que ser ajustada, el sistema ajusta la orientación del efector extremo (etapa 620), por ejemplo para causar que un objeto pesado sea mantenido en tensión (verticalmente) por el efector extremo en oposición a una combinación de un agarre vertical y horizontal que causaría que se aplicase una fuerza de cizallamiento. En otro ejemplo, el sistema puede seleccionar la retención de un objeto más ligero con una combinación de un agarre vertical y horizontal para permitir un movimiento de rotación de alta velocidad, para que cuando el objeto está siendo movido, se aplique una fuerza centrífuga en la dirección alineada con el agarre del objeto. Una vez seleccionada la orientación del efector extremo (etapa 620), el sistema seleccionará una vía de trayectoria (etapa 622) y entonces comenzará la ejecución de la trayectoria, por ejemplo, el programa por lotes N (etapa 624).
Con referencia a la figura 6B, la ejecución del programa por lotes N puede comenzar consultando uno o más sensores para entradas (etapa 626). Si ninguna de las entradas excede un umbral definido para el comando de control principal (etapa 628), por ejemplo para moverse en un cierto vector, entonces el sistema continuará ejecutando el programa por lotes (etapa 630) hasta que lo ejecuta (después de lo cual el sistema retorna a la etapa 614). Si el programa por lotes no es ejecutado, el sistema retorna a la etapa 626 consultando el (los) sensor(es) para entradas. Si ninguna de las entradas desde el (los) sensor(es) excede un umbral (etapa 628), entonces el sistema determinará si el comando de control principal debería alterarse (por ejemplo, movimiento ralentizado o cambio de la trayectoria) (etapa 632), y en ese caso, el programa alterará el comando de control principal (etapa 634). Si el comando de control principal no es alterado, el sistema determinará si el comando de control principal debería anularse (etapa 636), por ejemplo, debería detenerse el movimiento del efector extremo o debería ponerse el objeto para un nuevo intento de agarre, o el objeto se ha caído, en cuyo caso el sistema procederá a coger un objeto nuevo y señalizará para que una persona indique que se ha caído un objeto. En cualquiera de los casos ejemplares, el programara anulará el comando de control principal (etapa 638). En cualquier caso, el sistema retorna entonces a ejecutar el programa por lotes o bien alterado o cancelado, retornando a la etapa 626 hasta que se ejecuta. Si se cambia (altera o anula) la señal de control principal para un programa por lotes, se notifica oportunamente también al controlador principal.
Un sistema de control de brazo articulado incluye un brazo articulado con un efector extremo, al menos un sensor para detectar al menos uno de la posición, movimiento o aceleración del brazo articulado, y un controlador principal para proporcionar control de cálculo del brazo articulado, y un controlador de a bordo para proporcionar, sensible al menos a un sensor, una señal de movimiento que controla directamente al menos una porción del brazo articulado.
La figura 7 muestra, por ejemplo, el sistema robótico 20 de la figura 4, excepto que la porción de brazo articulado 1 está girada con respecto a la sección de brazo articulado 22, de tal manera que el efector extremo de vacío 3 está posicionado ahora para acoplarse con el entorno de trabajo mientras el efector extremo de vacío 7 se mueve fuera del camino.
Una contribución única del brazo articulado es sus múltiples facetas para agarre multimodal, por ejemplo con múltiples pinzas empaquetadas en un solo efector extremo, de tal manera que el robot puede utilizar diferentes pinzas orientando el efector extremo del robot de diferentes maneras. Estas facetas pueden combinarse en combinaciones así como individualmente. Otros métodos más comunes son cambiadores de herramientas, que conmutan una herramienta individual con una diferente sobre un bastidor. El agarre multimodal de la presente invención reduce el tiempo del ciclo significativamente comparado con cambiadores de herramientas, así como es capaz de combinar múltiples aspectos de un efector extremo individual para coger objetos únicos.
Los diseños de las pinzas en las realizaciones anteriores que implican el uso de hasta tres ventosas, pueden diseñarse específicamente para agarrar objetos inferiores a un cierto peso, tal como 2,2 libras, entre un conjunto de objetos, y para agarrar y manipular los envases en los que están previstos los objetos.
El mismo método de instrumentación de un efecto extremo de agarre de vacío puede ser aplicado también a cualquier configuración arbitraria de ventosas. Por ejemplo, si el sistema robótico tiene que manejar cajas que pueden utilizarse para el envío de cosas, entonces se pueden crear disposiciones arbitrarias NxM de células de succión para manejar rangos de peso de tales paquetes. La figura 8A, por ejemplo, muestra un efector extremo 70 que incluye una matriz 3 por 3 de secciones 72 de efector extremo, cada una de las cuales incluye una ventosa 74. Cada sección 72 del efector extremo puede incluir sensores de presión como se ha descrito anteriormente, y cada ventosa 74 puede incluir un sensor de deformación que es capaz de detectar deformación a lo largo de cualquiera de tres dimensiones. Las secciones 72 del efector extremo están montadas en una base común 76 que incluye un acoplamiento 78 para fijación a un brazo articulado.
La figura 8B muestra un efector extremo 80 que incluye una matriz 6 por 6 de secciones 82 de efector extremo, cada una de las cuales incluye una ventosa 84. De nuevo, cada sección 82 de efector extremo puede incluir sensores de presión como se ha descrito anteriormente y cada ventosa 84 puede incluir un sensor de deformación que es capaz de detectar deformación a lo largo de cualquiera de tres dimensiones. Las secciones 82 del efector extremo están montadas en una base común 86 que incluye un acoplamiento 88 para fijación a un brazo articulado.
La matriz 3x3 puede manejar, por ejemplo, paquetes de hasta 69,8 onzas, y la matriz 6x6 puede manejar hasta 79,2 onzas. Tal escala de secciones de efector extremo pueden realizarse arbitrariamente grandes y de formas arbitrarias (si, por ejemplo, los objetos conocidos a manejar son de una forma particular opuesta a la forma general cuadrada/rectangular).
Es significativo que extrapolando la célula de vacío estándar a tamaños/formas arbitrarios, puede diseñarse un efector extremo instrumentalizado para cualquier objeto o clase de objetos dados que comparten todas las ventajas de tal instrumentación como las realizaciones anteriores.
Los expertos en la técnica apreciarán que se pueden realizar numerosas variaciones y modificaciones en las realizaciones descritas anteriormente sin apartarse del alcance de la presente invención, como se define por las reivindicaciones anexas.

Claims (15)

REIVINDICACIONES
1. Un sistema de brazo articulado que comprende un brazo articulado (22, 24, 26, 28, 30) que incluye un efector extremo al vacío (3, 7), y un sistema de control (2, 4, 34, 64) del brazo articulado que incluye al menos un sensor (4) para detectar al menos una posición, movimiento o aceleración del brazo articulado, un controlador principal (34) para proporcionar al menos una señal de control principal (40), que controla un movimiento del brazo articulado y en el que el sistema de control del brazo articulado se caracterizada por que:
un controlador de a bordo (64) acoplado al menos a un motor (M1, M2, M3) del brazo articulado para proporcionar respuesta a una salida de al menos un sensor, una señal de control de movimiento que anula la al menos una señal de control principal y controla directamente el movimiento del brazo articulado, en el que dicha señal de control de movimiento del controlador de a bordo anula la al menos una señal de control principal del controlador principal utilizando una unión de control (66, 68, 70, 72) a través de la cual pasa la al menos una señal de control principal.
2. El sistema de brazo articulado según la reivindicación 1, en donde la señal de control de movimiento anula la al menos una señal de control principal del controlador principal para cambiar cualquiera de la aceleración, movimiento o posición del brazo articulado.
3. El sistema de brazo articulado según la reivindicación 1 o 2, en donde dicha señal de control de movimiento anula la al menos una señal de control principal del controlador principal para cambiar una vía de trayectoria del efector extremo de vacío del brazo articulado.
4. El sistema de brazo articulado según la reivindicación 1, en donde dicho al menos un sensor incluye cualquiera de sensores de flujo, sensores de presión, cámaras, sensores de par y sensores de deformación.
5. El sistema de brazo articulado según la reivindicación 1, en donde dicho controlador de a bordo está previsto próximo al efector extremo de vacío.
6. El sistema de brazo articulado según la reivindicación 1, en donde dicho efector extremo de vacío incluye una pluralidad de secciones (3, 7) de efector extremo, cada una de las cuales incluye al menos un sensor de presión (5, 6).
7. Un sistema de brazo articulado que comprende un brazo articulado (22, 24, 26, 28, 30) que incluye un efector extremo al vacío (3, 7), y un sistema de control (2, 4, 34, 64) del brazo articulado que incluye al menos un sensor (4) para detectar al menos una posición, movimiento o aceleración del brazo articulado, un controlador principal (34) para proporcionar al menos una señal de control principal (40), que controla un movimiento del brazo articulado en el que el sistema de control del brazo articulado se caracterizada por que:
un controlador de a bordo (64) para proporcionar, respuesta a una salida de al menos a un sensor, una modificación de la señal de control que modifica la al menos una señal de control principal para cambiar el movimiento del brazo articulado, en el que dicha modificación de la señal de control se proporciona como una señal de interrupción del controlador principal.
8. El sistema de control del brazo articulado según la reivindicación 7, en donde dicho al menos un sensor incluye cualquiera de sensores de flujo, sensores de presión, cámaras, sensores de par y sensores de deformación.
9. Un método para controlar el movimiento de un brazo articulado comprendiendo dicho método:
proporcionar una señal de control principal (40) de un controlador principal (34) a al menos un motor (M1, M2, M3) de un brazo articulado (22, 24, 26, 28, 30) a través de un sistema de control a bordo (2) en el brazo articulado, dicha señal de control principal para controlar el movimiento de un brazo articulado;
recibir por el sistema de control de a bordo (2) un sistema de control de a bordo (2) un sensor de señal de entrada al menos un sensor próximo al efector extremo al vacío (3) del brazo articulado; y proporcionar una señal de interrupción por el sistema de control a bordo (2), del controlador principal (34), para modificar, al menos parcialmente, la señal de control principal en respuesta a la señal de entrada del sensor, para cambiar el movimiento del brazo articulado.
10. El método según la reivindicación 9, en donde la señal de entrada del sensor está acoplada a un controlador de a bordo (64) del sistema de control de a bordo, y en donde el controlador de a bordo proporciona la señal de interrupción al controlador principal para cambiar una trayectoria del efector final de vacío del brazo articulado.
11. Un método para controlar el movimiento de un brazo articulado, comprendiendo dicho método:
proporcionar una señal de control principal (40) desde un controlador principal (34) a al menos un motor (M1, M2, M3) de un brazo articulado (22, 24, 26, 28, 30) a través de una unión de control (66, 68, 70, 72) de un sistema de control de a bordo (2) del brazo articulado, dicha señal de control principal para controlar un movimiento del brazo articulado;
recepción, por un controlador de a bordo (64) del sistema de control de a bordo (2), una señal de entrada procedente de un sensor (4) situado cerca de un efector final de vacío (3) del brazo articulado; y proporcionar una señal de control de movimiento desde el controlador de a bordo (64) al al menos un motor del brazo articulado a través de la unión de control (66, 68, 70, 72) del sistema de control de a bordo (2), en la que la unión de control permite que la señal de control de movimiento del controlador de a bordo anule la señal de control principal del controlador principal (34), en respuesta a la señal de entrada del sensor, para cambiar el movimiento del brazo articulado.
12. El método según la reivindicación 11, en donde dicho al menos un sensor incluye cualquiera de sensores de flujo, sensores de presión, cámaras, sensores de par y sensores de deformación.
13. El sistema de brazo articulado según la reivindicación 8, en el que la señal de control modificadora del controlador de a bordo (64) cambia cualquiera de la aceleración, el movimiento o la posición del brazo articulado.
14. El sistema de brazo articulado según la reivindicación 8, en el que la señal de control modificadora del controlador de a bordo (64) cambia una vía de trayectoria del efector final de vacío del brazo articulado.
15. El método según la reivindicación 11, en el que la señal de control de movimiento del controlador de a bordo anula la señal de control principal del controlador principal para cambiar una vía de trayectoria del efector final de vacío del brazo articulado.
ES20186543T 2015-09-01 2016-09-01 Sistemas y métodos para proporcionar sistemas de control robótico dinámico Active ES2935283T3 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562212697P 2015-09-01 2015-09-01
US201562221976P 2015-09-22 2015-09-22

Publications (1)

Publication Number Publication Date
ES2935283T3 true ES2935283T3 (es) 2023-03-03

Family

ID=56940396

Family Applications (2)

Application Number Title Priority Date Filing Date
ES16766742T Active ES2845683T3 (es) 2015-09-01 2016-09-01 Sistemas y métodos para proporcionar sistemas de control robótico dinámico
ES20186543T Active ES2935283T3 (es) 2015-09-01 2016-09-01 Sistemas y métodos para proporcionar sistemas de control robótico dinámico

Family Applications Before (1)

Application Number Title Priority Date Filing Date
ES16766742T Active ES2845683T3 (es) 2015-09-01 2016-09-01 Sistemas y métodos para proporcionar sistemas de control robótico dinámico

Country Status (6)

Country Link
US (1) US10647002B2 (es)
EP (3) EP3753687B1 (es)
CN (2) CN108495738B (es)
CA (1) CA2997280C (es)
ES (2) ES2845683T3 (es)
WO (1) WO2017040803A1 (es)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3104707C (en) 2015-08-26 2022-10-18 Berkshire Grey, Inc. Systems and methods for providing vacuum valve assemblies for end effectors
CN114290355B (zh) 2015-09-08 2023-08-11 伯克希尔格雷营业股份有限公司 用于在活节臂末端执行器中提供动态真空压力的系统和方法
US10011020B2 (en) 2016-01-08 2018-07-03 Berkshire Grey, Inc. Systems and methods for acquiring and moving objects
US10875057B2 (en) 2016-12-06 2020-12-29 Berkshire Grey, Inc. Systems and methods for providing for the processing of objects in vehicles
EP3592510B1 (en) 2017-03-06 2023-09-06 Berkshire Grey Operating Company, Inc. Systems and methods for efficiently moving a variety of objects
US10836525B1 (en) * 2017-03-07 2020-11-17 Amazon Technologies, Inc. Robotic gripper for bagging items
US10906740B2 (en) 2017-03-22 2021-02-02 Berkshire Grey, Inc. Systems and methods for processing objects, including automated radial processing stations
US10941000B2 (en) 2017-03-23 2021-03-09 Berkshire Grey, Inc. Systems and methods for processing objects, including automated linear processing stations
CA3071407C (en) 2017-08-02 2023-10-03 Berkshire Grey, Inc. Systems and methods for acquiring and moving objects having complex outer surfaces
JP6818660B2 (ja) * 2017-09-12 2021-01-20 株式会社東芝 物体保持装置
WO2019060489A2 (en) * 2017-09-21 2019-03-28 AMP Robotics Corporation SYSTEMS AND METHODS FOR ROBOTIC SUCTION PREVENTION DEVICES
JP2019104087A (ja) * 2017-12-13 2019-06-27 カシオ計算機株式会社 デバイス制御装置、デバイス制御方法及びプログラム
EP3723950B1 (en) 2017-12-14 2024-01-03 Onrobot A/S Gripping device
CA3088655A1 (en) 2018-01-17 2019-07-25 Berkshire Grey, Inc. Systems and methods for efficiently moving a variety of objects
US10843333B2 (en) 2018-03-05 2020-11-24 Berkshire Grey, Inc. Systems and methods for processing objects, including automated re-circulating processing stations
JP2019155536A (ja) * 2018-03-13 2019-09-19 株式会社東芝 保持装置、飛行体、および搬送システム
WO2019239563A1 (ja) * 2018-06-14 2019-12-19 ヤマハ発動機株式会社 ロボットシステム
CA3107825C (en) 2018-07-27 2023-06-13 Berkshire Grey, Inc. Systems and methods for efficiently exchanging end effector tools
US11667039B2 (en) 2019-01-31 2023-06-06 Toyota Research Institute, Inc. Systems and methods for estimating shape, contact forces, and pose of objects manipulated by robots having compliant contact and geometry sensors
EP3970926A4 (en) * 2019-05-13 2022-07-06 OMRON Corporation ORDERED
CN113994356A (zh) 2019-06-24 2022-01-28 伯克希尔格雷股份有限公司 用于在订单履行中心中提供订单装运的系统和方法
CA3150291A1 (en) 2019-08-08 2021-02-11 Berkshire Grey, Inc. Systems and methods for providing, in programmable motion devices, compliant end effectors with noise mitigation
US20220024705A1 (en) 2020-07-22 2022-01-27 Berkshire Grey, Inc. Systems and methods for object processing using a vacuum gripper that provides object retention by evacuation
WO2022020157A1 (en) 2020-07-22 2022-01-27 Berkshire Grey, Inc. Systems and methods for object processing using a passively folding vacuum gripper
JP7230889B2 (ja) * 2020-08-13 2023-03-01 カシオ計算機株式会社 装置、制御方法及びプログラム
CN112738022B (zh) * 2020-12-07 2022-05-03 浙江工业大学 一种针对机器人操作系统ros消息的攻击方法
US20240139971A1 (en) * 2022-10-26 2024-05-02 Berkshire Grey Operating Company, Inc. Pneumatic systems and methods for providing high flow vacuum acquisition in automated systems

Family Cites Families (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191009385A (en) * 1909-04-19 1911-04-13 Ronald Francis Mcfeely Improvements in or relating to Pulling-over and like Machines.
US4557659A (en) 1982-09-14 1985-12-10 M. Scaglia S.P.A. Device for supporting and handling loads by means of vacuum operated suction pads
JPS59128143A (ja) 1983-01-07 1984-07-24 Canon Inc シ−ト取扱い装置
US4604787A (en) 1984-08-15 1986-08-12 Transamerica Delaval Inc. Tool changer for manipulator arm
US4896357A (en) 1986-04-09 1990-01-23 Tokico Ltd. Industrial playback robot having a teaching mode in which teaching data are given by speech
US4786847A (en) * 1986-11-20 1988-11-22 Unimation Inc. Digital control for multiaxis robots
DE3853616T2 (de) 1987-11-20 1995-11-30 Philips Electronics Nv Verfahren und Gerät zur Wegplanung.
US5860900A (en) 1993-01-06 1999-01-19 The Boeing Company End effector storage station
US5370216A (en) 1993-03-05 1994-12-06 Shibuya Kogyo Co., Ltd. Apparatus for aligning vessels
JP2599571B2 (ja) 1994-05-11 1997-04-09 ダイトロンテクノロジー株式会社 基板搬送ロボット
US5865487A (en) 1996-05-23 1999-02-02 Motorola, Inc. Pick-and-place tool for vacuum and magnetic coupling
US5777267A (en) 1996-06-28 1998-07-07 Abb Flexible Automation, Inc. Harness assembly to provide signals to end effector
US6059092A (en) 1997-12-23 2000-05-09 Fanuc Robotics North America, Inc. Material handling robot and rail assembly
US8600551B2 (en) * 1998-11-20 2013-12-03 Intuitive Surgical Operations, Inc. Medical robotic system with operatively couplable simulator unit for surgeon training
DE19915023A1 (de) * 1999-04-01 2000-10-05 Fibro Gmbh Werkstückhandhabungssystem sowie Verfahren zum Handhaben von Werkstücken
US6446175B1 (en) * 1999-07-28 2002-09-03 Storage Technology Corporation Storing and retrieving data on tape backup system located at remote storage system site
US20010056313A1 (en) 2000-05-08 2001-12-27 Osborne William Joseph Object locating and retrieving system utilizing labels
KR20020044499A (ko) * 2000-12-06 2002-06-15 윤종용 로봇 제어시스템 및 그 제어방법
US6520317B2 (en) 2001-04-27 2003-02-18 Abb Inc. Packaging and casing system
DE10121344A1 (de) 2001-05-02 2002-11-07 Fft Flexible Fertigungstechnik Zum Greifen von Gegenständen ausgebildete Greifvorrichtung
DE10140248B4 (de) 2001-08-09 2006-09-28 J. Schmalz Gmbh Unterdruckhandhabungseinrichtung
JP3602817B2 (ja) 2001-10-24 2004-12-15 ファナック株式会社 食品盛り付けロボット及び食品盛り付け装置
JP3805310B2 (ja) 2003-01-30 2006-08-02 ファナック株式会社 ワーク取出し装置
JP2004351527A (ja) 2003-05-27 2004-12-16 Koganei Corp 吸着検出方法および吸着検出装置
DE102004042825B3 (de) 2004-08-28 2006-01-05 J. Schmalz Gmbh Verfahren zum Betreiben einer Unterdruckhandhabungseinrichtung
ITMI20042428A1 (it) 2004-12-20 2005-03-20 Giacobbe Mazzucchelli Dispositivo valvolare a depressione particolarmente per l'uso in piani di presa universali
US7481472B2 (en) * 2005-03-15 2009-01-27 Sage Automation, Inc. Layer picking end effector system, apparatus and method
DE102005045681B4 (de) 2005-09-24 2007-07-26 Eckelt Glas Gmbh Verfahren zum Steuern von Unterdruck-Hebezeugen und Lastsicherungsvorrichtung für Unterdruck-Hebezeuge sowie deren Verwendung
US7313464B1 (en) 2006-09-05 2007-12-25 Adept Technology Inc. Bin-picking system for randomly positioned objects
JP5376859B2 (ja) 2007-08-28 2013-12-25 キヤノン株式会社 磁気式力センサ及び磁気式力センサを有するロボットアーム
CA2722125C (en) * 2008-01-23 2016-05-10 Kl Products Inc. Destacking and restacking of containers using a robot in poultry hatchery operations
US20100018071A1 (en) * 2008-07-28 2010-01-28 Mckinley Donald E Clothes dryer lint filter device
US7950708B2 (en) * 2008-08-15 2011-05-31 Amf Automation Technologies, Inc. Programmable zoned end effector
AT507339B1 (de) 2008-09-26 2011-06-15 Stiwa Holding Gmbh Verfahren und anlage zum aufnehmen und/oder bearbeiten von objekten
DE102008063680A1 (de) 2008-10-10 2010-04-15 Abb Ag Verfahren zum Einlernen (Teachen) eines Industrieroboters sowie ein entsprechend ausgestatteter Industrieroboter
US8333129B2 (en) * 2008-10-29 2012-12-18 S.A. Robotics Robotic manipulator arm
JP2010131743A (ja) 2008-10-30 2010-06-17 Canon Inc 力覚センサを内蔵した把持装置
FR2938508B1 (fr) 2008-11-14 2010-12-17 Sidel Participations Installation de palettisation combinee avec acces securise
FR2939769B1 (fr) 2008-12-11 2010-12-31 Ballina Freres De Procede et installation de distribution de produits pour leur conditionnement
US20100180711A1 (en) 2009-01-19 2010-07-22 Comau, Inc. Robotic end effector system and method
WO2010107872A2 (en) * 2009-03-17 2010-09-23 Comau, Inc. Industrial communication system and method
CH701886A2 (de) 2009-09-23 2011-03-31 Stefan Fischer Neuronics Ag Handhabungsautomat oder Roboterarm mit Sicherheitseinrichtungen und Einrichtungen für die Darstellung der Betriebszustände.
US8284407B2 (en) 2010-01-20 2012-10-09 Faro Technologies, Inc. Coordinate measuring machine having an illuminated probe end and method of operation
DE102010002317B4 (de) 2010-02-24 2018-06-14 Apologistics Gmbh System und Verfahren zur Vereinzelung und Kommissionierung von Artikeln
JP5685027B2 (ja) 2010-09-07 2015-03-18 キヤノン株式会社 情報処理装置、物体把持システム、ロボットシステム、情報処理方法、物体把持方法およびプログラム
FR2967648B1 (fr) 2010-11-22 2012-12-07 Thimon Procede et machine d'emballage par robot d'une charge palettisee au moyen d'une housse en matiere plastique souple
DE102011006679B4 (de) 2011-03-16 2018-07-12 Ferrobotics Compliant Robot Technology Gmbh Aktive Handhabungsvorrichtung und Verfahren für Kontaktaufgaben
US8977398B2 (en) 2011-04-29 2015-03-10 Sarcos Lc Multi-degree of freedom torso support for a robotic agile lift system
US9789603B2 (en) * 2011-04-29 2017-10-17 Sarcos Lc Teleoperated robotic system
US8868234B2 (en) * 2011-07-01 2014-10-21 GM Global Technology Operations LLC Communication system and method
WO2013067982A2 (de) 2011-11-11 2013-05-16 Böwe Systec Gmbh Vorrichtung und verfahren zum zusammenführen von karten und kartenträgern, zum handhaben von karten und/oder zum sortieren von karten sowie kartenmagazin
JP5911299B2 (ja) 2011-12-27 2016-04-27 キヤノン株式会社 情報処理装置、情報処理装置の制御方法およびプログラム
CN102540982B (zh) * 2011-12-30 2014-12-10 北京配天技术有限公司 一种运动控制卡和运动控制方法
US8805581B2 (en) 2012-02-21 2014-08-12 GM Global Technology Operations LLC Procedural memory learning and robot control
JP5940682B2 (ja) 2012-02-21 2016-06-29 アマゾン テクノロジーズ インコーポレイテッド 材料取扱施設における製品の自動ピッキングのためのシステム
JP5577365B2 (ja) * 2012-03-15 2014-08-20 コマツ産機株式会社 プレス機械の制動性能確認装置
US8843236B2 (en) 2012-03-15 2014-09-23 GM Global Technology Operations LLC Method and system for training a robot using human-assisted task demonstration
JP5594317B2 (ja) 2012-05-21 2014-09-24 株式会社安川電機 ロボットハンド、ロボットシステムおよび加工品の製造方法
US8996167B2 (en) 2012-06-21 2015-03-31 Rethink Robotics, Inc. User interfaces for robot training
DE102012013022A1 (de) 2012-06-29 2014-04-24 Liebherr-Verzahntechnik Gmbh Vorrichtung zur automatisierten Handhabung von Werkstücken
US9061868B1 (en) 2012-07-19 2015-06-23 Wepco., Inc. Vacuum-assisted carton or box lifter
JP5469216B2 (ja) 2012-07-31 2014-04-16 ファナック株式会社 バラ積みされた物品をロボットで取出す装置
JP5670397B2 (ja) 2012-08-29 2015-02-18 ファナック株式会社 バラ積みされた物品をロボットで取出す装置及び方法
US9043025B2 (en) 2012-08-31 2015-05-26 Rethink Robotics, Inc. Systems and methods for safe robot operation
US9056394B2 (en) 2012-09-27 2015-06-16 Siemens Product Lifecycle Management Software Inc. Methods and systems for determining efficient robot-base position
JP5642759B2 (ja) 2012-10-31 2014-12-17 ファナック株式会社 物品取出装置及び物品取出方法
US20150328779A1 (en) * 2012-12-21 2015-11-19 Short Brothers Plc Suction cup
CN203062791U (zh) * 2013-01-18 2013-07-17 沧州得丰机械设备有限公司 搬运机器人自动抓手
US9481518B2 (en) 2013-02-24 2016-11-01 Intelligrated Headquarters Llc Order fulfillment system and method
US9102055B1 (en) 2013-03-15 2015-08-11 Industrial Perception, Inc. Detection and reconstruction of an environment to facilitate robotic interaction with the environment
JP5862611B2 (ja) 2013-04-02 2016-02-16 トヨタ自動車株式会社 作業変更装置、作業変更方法、及び作業変更プログラム
JP5786896B2 (ja) 2013-06-07 2015-09-30 株式会社安川電機 ワーク検出装置、ロボットシステム、被加工物の製造方法及びワーク検出方法
KR20160018672A (ko) 2013-07-09 2016-02-17 가부시키가이샤 야스카와덴키 로봇 및 로봇의 관절 기구
US9785911B2 (en) 2013-07-25 2017-10-10 I AM Robotics, LLC System and method for piece-picking or put-away with a mobile manipulation robot
EP4019433A1 (en) 2013-09-09 2022-06-29 Dematic Corp. Autonomous mobile picking
SG2013069893A (en) 2013-09-13 2015-04-29 Jcs Echigo Pte Ltd Material handling system and method
WO2015058297A1 (en) 2013-10-25 2015-04-30 Vakanski Aleksandar Image-based trajectory robot programming planning approach
US9283674B2 (en) 2014-01-07 2016-03-15 Irobot Corporation Remotely operating a mobile robot
GB201402263D0 (en) 2014-02-10 2014-03-26 Ocado Ltd Intermediate holding facility for picking station
US9259844B2 (en) 2014-02-12 2016-02-16 General Electric Company Vision-guided electromagnetic robotic system
US9669550B2 (en) 2014-04-18 2017-06-06 Kla-Tencor Corporation Pick and place device with automatic pick-up-height adjustment and a method and a computer program product to automatically adjust the pick-up-height of a pick and place device
US20150306770A1 (en) * 2014-04-25 2015-10-29 Mittal Nimish Detachable robotic arm having interference detection system
FR3020303B1 (fr) 2014-04-25 2016-07-15 Sileane Procede et installation de prehension automatique d'un objet.
DE102014008108A1 (de) 2014-06-02 2015-12-03 Liebherr-Verzahntechnik Gmbh Vorrichtung zum automatisierten Entnehmen von in einem Behälter angeordneten Werkstücken
WO2015187975A1 (en) 2014-06-04 2015-12-10 Intelligrated Headquarters Llc Truck unloader visualization
EP2960024B1 (de) 2014-06-26 2020-12-09 J. Schmalz GmbH Anlage zur handhabung von werkstücken
US9636825B2 (en) 2014-06-26 2017-05-02 Robotex Inc. Robotic logistics system
JP5905537B2 (ja) * 2014-07-30 2016-04-20 ファナック株式会社 教示操作盤が着脱可能なロボット制御装置
WO2016054656A1 (en) 2014-10-03 2016-04-07 Wynright Corporation Perception-based robotic manipulation system and method for automated truck unloader that unloads/unpacks product from trailers and containers
WO2016070412A1 (en) * 2014-11-07 2016-05-12 Abb Technology Ltd An integrated gripper and a robot
US20160136816A1 (en) 2014-11-14 2016-05-19 James Charles Pistorino Sorting apparatus and method
US9561587B2 (en) 2014-12-16 2017-02-07 Amazon Technologies, Inc. Robotic grasping of items in inventory system
US9475198B2 (en) 2014-12-22 2016-10-25 Qualcomm Incorporated System and method for dynamic robot manipulator selection
DE102015202603A1 (de) 2015-02-12 2016-08-18 J. Schmalz Gmbh Unterdruckerzeugervorrichtung und Schlauchheber mit einer Unterdruckerzeugervorrichtung
US9687982B1 (en) 2015-05-27 2017-06-27 X Development Llc Adapting programming of a robot and/or control of the robot based on one or more parameters of an end effector of the robot
US9808936B2 (en) 2015-08-03 2017-11-07 Massachusetts Institute Of Technology Two-phase gripper to reorient and grasp
US9600798B2 (en) 2015-08-12 2017-03-21 Amazon Technologies, Inc. Automated materials handling facility
US10343284B2 (en) 2015-08-26 2019-07-09 Berkshire Grey, Inc. Systems and methods for providing contact detection in an articulated arm
CA3104707C (en) 2015-08-26 2022-10-18 Berkshire Grey, Inc. Systems and methods for providing vacuum valve assemblies for end effectors
DE102015216550A1 (de) 2015-08-28 2017-03-02 Kuka Roboter Gmbh Robotergreifer
CN114290355B (zh) 2015-09-08 2023-08-11 伯克希尔格雷营业股份有限公司 用于在活节臂末端执行器中提供动态真空压力的系统和方法
US10265872B2 (en) 2015-09-09 2019-04-23 Berkshire Grey, Inc. Systems and methods for providing dynamic communicative lighting in a robotic environment
ES2952517T3 (es) 2015-09-11 2023-10-31 Berkshire Grey Operating Company Inc Sistemas robóticos y métodos para identificar y procesar diversos objetos
US9718188B2 (en) 2015-09-21 2017-08-01 Amazon Technologies, Inc. Networked robotic manipulators
CN108349083B (zh) 2015-11-13 2021-09-21 伯克希尔格雷股份有限公司 用于提供各种物体的分拣的分拣系统和方法
CN108604091B (zh) 2015-12-04 2023-07-21 伯克希尔格雷营业股份有限公司 用于动态处理物体的系统和方法
US10011020B2 (en) 2016-01-08 2018-07-03 Berkshire Grey, Inc. Systems and methods for acquiring and moving objects
CA3178174A1 (en) 2016-02-08 2017-08-17 Berkshire Grey Operating Company, Inc. Systems and methods for providing processing of a variety of objects employing motion planning
US20170322561A1 (en) 2016-05-03 2017-11-09 Bby Solutions, Inc. Robotic inventory dispensary operational enhancements
US9981379B1 (en) 2016-05-12 2018-05-29 X Development Llc Detachable support member for robot gripper
JP7069110B2 (ja) 2016-07-18 2022-05-17 ラエル オドナー, ロボット把持の査定
JP6581049B2 (ja) * 2016-08-15 2019-09-25 ファナック株式会社 ロボットシステム
US10384872B2 (en) 2016-08-30 2019-08-20 Intelligrated Headquarters, Llc Robotic put wall
WO2018089486A1 (en) 2016-11-08 2018-05-17 Berkshire Grey Inc. Systems and methods for processing objects
EP3544911B1 (en) 2016-11-28 2023-10-18 Berkshire Grey Operating Company, Inc. System for providing singulation of objects for processing
EP3595989A1 (en) 2017-03-15 2020-01-22 Berkshire Grey, Inc. Systems and methods for storing, retrieving and processing objects including stackable semicircular towers
WO2018175466A1 (en) 2017-03-20 2018-09-27 Berkshire Grey, Inc. Systems and methods for processing objects including transport vehicles
WO2018175294A1 (en) 2017-03-20 2018-09-27 Berkshire Grey, Inc. Systems and methods for processing objects including an auto-shuttle system
CA3056782C (en) 2017-03-20 2023-03-14 Berkshire Grey, Inc. Systems and methods for processing objects including a zone gantry system
US10906740B2 (en) 2017-03-22 2021-02-02 Berkshire Grey, Inc. Systems and methods for processing objects, including automated radial processing stations
US10576621B2 (en) 2017-03-23 2020-03-03 Berkshire Grey, Inc. Systems and methods for processing objects, including automated mobile matrix bins
US10941000B2 (en) 2017-03-23 2021-03-09 Berkshire Grey, Inc. Systems and methods for processing objects, including automated linear processing stations
EP3601111B1 (en) 2017-03-23 2024-01-03 Berkshire Grey Operating Company, Inc. System and method for processing objects, including automated mobile matrix carriers
CN110691742B (zh) 2017-03-24 2022-09-09 伯克希尔格雷营业股份有限公司 包括自动处理的用于处理物体的系统和方法
CA3152708A1 (en) 2017-04-18 2018-10-25 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects including space efficient distribution stations and automated output processing
CA3178221A1 (en) 2017-04-24 2018-11-01 Berkshire Grey Operating Company, Inc. Systems and methods for providing singulation of objects for processing using object movement redistribution

Also Published As

Publication number Publication date
WO2017040803A1 (en) 2017-03-09
CN108495738B (zh) 2022-01-04
EP3344422B1 (en) 2020-11-04
EP3753687B1 (en) 2022-11-02
CN108495738A (zh) 2018-09-04
ES2845683T3 (es) 2021-07-27
EP3344422A1 (en) 2018-07-11
US20170080571A1 (en) 2017-03-23
EP4137280A1 (en) 2023-02-22
CA2997280C (en) 2022-12-13
CN114559428A (zh) 2022-05-31
EP3753687A1 (en) 2020-12-23
CA2997280A1 (en) 2017-03-09
CN114559428B (zh) 2023-10-27
US10647002B2 (en) 2020-05-12

Similar Documents

Publication Publication Date Title
ES2935283T3 (es) Sistemas y métodos para proporcionar sistemas de control robótico dinámico
KR101645091B1 (ko) 로봇 시스템 및 피가공물의 제조 방법
US10434646B2 (en) Robot control apparatus, robot, and robot system
Korpela et al. MM-UAV: Mobile manipulating unmanned aerial vehicle
JP4508164B2 (ja) 多関節ロボット及びその制御プログラム
KR20220025887A (ko) 로봇 운동 계획 방법, 경로 계획 방법, 그립핑 방법 및 그 장치
US20120215350A1 (en) Work picking system
US20120059515A1 (en) Workspace safe operation of a force- or impedance-controlled robot
Li et al. Autonomous continuum grasping
Huang et al. Development of dual robotic arm system based on binocular vision
US20220241989A1 (en) Systems and methods for providing dynamic robotic control systems
CN111975764B (zh) 机器人装置和握持方法
Soh et al. Development of an adjustable gripper for robotic picking and placing operation
EP3822048B1 (en) Gripping attitude evaluating device, and gripping attitude evaluating program
McTaggart et al. Mechanical design of a cartesian manipulator for warehouse pick and place
Mohammed et al. Kinematic analysis of 6-DOF arms for H20 mobile robots and labware manipulation for transportation in life science labs
Fukui et al. Design of Distributed End-Effectors for Caging-Specialized Manipulator: (Design Concept and Development of Finger Component)
Avalos et al. Flexible visually-driven object classification using the baxter robot
Sekarsari et al. Design of 2 dof arm robot control system using ultrasonic sensor
US20240217104A1 (en) Methods and apparatus for controlling a gripper of a robotic device
Chen et al. Flexible FPGA-based controller architecture for five-fingered dexterous robot hand with effective impedance control
Liow et al. Development of Arm-Robot for Harvesting of Agricultural Products: A Kinematics Analysis of Arm Robot by Roboanalyzer
WO2024137781A1 (en) Methods and apparatus for controlling a gripper of a robotic device
Lim et al. IT Assembly Process Gripper Real-Time Embedded System Design
Elouafiq Design and Engineering of a Chess-Robotic Arm