ES2820425T3 - Partículas abrasivas conformadas con factor de redondez bajo - Google Patents

Partículas abrasivas conformadas con factor de redondez bajo Download PDF

Info

Publication number
ES2820425T3
ES2820425T3 ES10797517T ES10797517T ES2820425T3 ES 2820425 T3 ES2820425 T3 ES 2820425T3 ES 10797517 T ES10797517 T ES 10797517T ES 10797517 T ES10797517 T ES 10797517T ES 2820425 T3 ES2820425 T3 ES 2820425T3
Authority
ES
Spain
Prior art keywords
shaped abrasive
abrasive particles
area
face
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES10797517T
Other languages
English (en)
Inventor
Dwight Erickson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43357110&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=ES2820425(T3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Application granted granted Critical
Publication of ES2820425T3 publication Critical patent/ES2820425T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • B24D11/001Manufacture of flexible abrasive materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/1115Minute sintered entities, e.g. sintered abrasive grains or shaped particles such as platelets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62815Rare earth metal oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/02Particle morphology depicted by an image obtained by optical microscopy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/22Particle morphology extending in two dimensions, e.g. plate-like with a polygonal circumferential shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Abstract

Partículas (20) abrasivas conformadas que comprenden alfa-alúmina, que comprenden una primera cara (24) y una segunda cara (26) conectadas entre sí por una pared lateral (22), estando la primera cara (24) y la segunda cara (26) separadas por un espesor t que oscila entre 25 micrómetros y 500 micrómetros y teniendo una forma en sección transversal a lo largo de un eje longitudinal de las partículas (20) abrasivas conformadas, comprendiendo la forma de la sección transversal un plano transversal poligonal, en donde las partículas (20) abrasivas conformadas comprenden un factor de redondez promedio comprendido entre aproximadamente el 15 % y el 0 %, en donde el factor de redondez promedio se determina promediando los factores de redondez de 10 partículas (20) abrasivas conformadas individuales, en donde el factor de redondez expresado como porcentaje se calcula dividiendo el área ausente (68) por el área real (66) y multiplicando por 100, es decir, factor de redondez en %=área ausente/área real * 100, en donde el área real (66) representa el plano en sección transversal de un corte transversal situado lo más cerca posible del punto medio (60) del eje longitudinal (50) de la partícula (20) abrasiva conformada, en donde cada cara de las paredes laterales (22), primera cara (24) y segunda cara (26) del plano en sección transversal está limitada por una línea (62) trazada tangente a los dos puntos más altos ubicados en cualquier lugar a lo largo de esa cara, encerrando así un área máxima (64) que tiene forma poligonal, y en donde el área ausente (68) representa la cantidad de área presente debido a las esquinas redondeadas y bordes irregulares de la partícula (20) abrasiva conformada, en donde el área real (66) del plano en sección transversal se resta del área máxima (64) limitada por el polígono para determinar el área ausente (68), en donde el área real (66), el área máxima (64) y el área ausente (68) se determinan por la determinación del factor de redondez.

Description

DESCRIPCIÓN
Partículas abrasivas conformadas con factor de redondez bajo
Esta solicitud de patente reivindica el beneficio de la solicitud Provisional US-61/219.161 presentada el 22 de junio de 2009, que reivindica prioridad de la solicitud n. ° 12/570.067, presentada en septiembre de 2009.
Antecedentes
Las partículas abrasivas y los artículos abrasivos fabricados a partir de las partículas abrasivas son útiles para pulir, acabar o moler una amplia variedad de superficies y materiales en la fabricación de bienes. De este modo, hay una necesidad continuada de mejorar el coste, el comportamiento o la duración de la partícula abrasiva y/o del artículo abrasivo.
Las partículas abrasivas de forma triangular y los artículos abrasivos que utilizan las partículas abrasivas de forma triangular se describen en las patentes US-5.201.916 de Berg; US-5.366.523 de Rowenhorst (Re 35.570); EP0615816; y US-5.984.988 de Berg. En una realización, la forma de las partículas abrasivas comprende un triángulo equilátero. Las partículas abrasivas de forma triangular son útiles en la fabricación de artículos abrasivos que tienen tasas de corte mejoradas.
Resumen
Las partículas abrasivas conformadas, por lo general, pueden tener un comportamiento superior comparado con las partículas abrasivas trituradas al azar. Al controlar la forma de la partícula abrasiva, es posible controlar el comportamiento resultante del artículo abrasivo. Los inventores han descubierto que haciendo que la forma en sección transversal de la partícula abrasiva conformada con un factor de redondez bajo se produce un mejor rendimiento de rectificado.
Cuando se utilizan partículas abrasivas conformadas para rectificar sustratos, se cree que las partículas abrasivas conformadas tienden a fracturarse durante el uso al penetrar a lo largo de planos de fractura orientados transversalmente al eje longitudinal de la partícula abrasiva conformada. Estos planos de fractura, por lo general, no están orientados en un ángulo exacto de 90° con respecto al eje longitudinal de la partícula abrasiva conformada que se extiende desde la base de la partícula abrasiva conformada hasta su punta de rectificado. De este modo, los planos de fractura tienden a inclinarse con respecto al eje longitudinal y la base de la partícula abrasiva conformada. El plano de fractura inclinado tiende a concentrar las fuerzas de rectificado a lo largo del borde de la parte más alta del plano de fractura. A menudo este borde está donde se encuentran dos caras de la partícula abrasiva conformada, tal como en una esquina del plano de fractura en sección transversal de la partícula abrasiva conformada. Puesto que la esquina más alta del plano de fractura de la partícula abrasiva conformada forma entonces la cara de rectificado, es importante que la esquina más alta esté lo más afilada posible. De forma alternativa, si una parte de un borde forma la cara de rectificado, es importante que el borde sea lo más plano y liso posible, de modo que se comporte de forma similar a la hoja de un cincel afilada con precisión.
Se cree que el afilado de la esquina y el borde pueden mejorarse en condiciones de procesamiento que proporcionen un llenado mejor y una contracción reducida de las partículas abrasivas conformadas mientras se encuentran en las cavidades del molde utilizado para formar las partículas abrasivas conformadas. En particular, se ha determinado que, a medida que aumenta la velocidad de secado, el nivel ácido del sol-gel que se utiliza para llenar las cavidades del molde para hacer las partículas abrasivas conformadas también debe aumentarse para crear esquinas y bordes del plano de fractura más afilados. No se esperaba que el nivel ácido del sol-gel tuviera un efecto significativo en el rendimiento de rectificado y el afilado resultante de las partículas abrasivas conformadas, ya que después de cocer las partículas abrasivas conformadas en un horno, las partículas abrasivas conformadas elaboradas con diferentes niveles ácidos tenían prácticamente la misma dureza. Se pueden dar otras mejoras en el afilado de las esquinas minimizando el daño a las partículas abrasivas conformadas precursoras durante el transporte y la manipulación. Las partículas abrasivas conformadas precursoras que se extraen del molde pueden tener los bordes redondeados mientras se conducen y transportan al horno donde las partículas abrasivas conformadas se cuecen hasta alcanzar el estado endurecido final.
El rendimiento de rectificado de las partículas abrasivas conformadas se ha relacionado a un factor de redondez promedio donde las partículas abrasivas conformadas que tienen un factor de redondez promedio inferior tienen un mejor resultado de rectificado. Por lo tanto, en una realización, y como se define en las reivindicaciones, la invención reside en partículas abrasivas conformadas que comprenden alfa-alúmina, que comprenden una primera cara y una segunda cara conectadas entre sí por una pared lateral, estando la primera cara y la segunda cara separadas por un espesor, t; y un ángulo de incidencia a entre la segunda cara y la pared lateral, y teniendo una forma en sección transversal a lo largo de un eje longitudinal de las partículas abrasivas conformadas, comprendiendo la forma de la sección transversal un plano transversal poligonal, en donde las partículas abrasivas conformadas comprenden un factor de redondez promedio comprendido entre el 15 % y el 0 %.
Breve descripción de los dibujos
El experto en la técnica debe entender que la presente descripción es una descripción de las realizaciones ilustrativas solamente, y no se pretende que sean una limitación de los aspectos más amplios de la presente descripción, cuyos aspectos más amplios se llevan a cabo en la construcción ilustrativa.
La Figura 1 ilustra una vista superior de una partícula abrasiva conformada que tiene forma triangular.
La Figura 2 ilustra una vista lateral de la partícula abrasiva conformada de la Figura 1.
La Figura 3 ilustra un artículo abrasivo revestido fabricado a partir de las partículas abrasivas conformadas de la Figura 1. La Figura 4 es una fotomicrografía de un plano en sección transversal de la partícula abrasiva conformada triangular tomada a lo largo de la línea 4-4 de la Figura 1.
La Figura 5 ilustra el área medida del plano en sección transversal de la partícula abrasiva conformada triangular de la Figura 4 que está limitada por líneas dibujadas tangentes a los dos puntos más altos de cada cara de la partícula abrasiva conformada.
La Figura 6 ilustra el área presente entre las líneas tangentes de la Figura 5 y las caras de la partícula abrasiva conformada de la Figura 4.
La Figura 7 ilustra el área medida de un plano en sección transversal de una partícula abrasiva conformada triangular del estado de la técnica.
La Figura 8 ilustra el área entre las líneas tangentes y las caras del plano en sección transversal de la partícula abrasiva conformada triangular del estado de la técnica de la Figura 7.
La Figura 9 ilustra un gráfico que compara el rendimiento de rectificado de las partículas abrasivas conformadas que tienen factores de redondeo promedios bajos de las partículas abrasivas conformadas del estado de la técnica.
Se pretende que el uso repetido de números de referencia en la memoria descriptiva y los dibujos representen características iguales o análogas o elementos de la descripción.
Definiciones
Como se utiliza en la presente memoria, las formas de las palabras “comprende” , “tiene” e “ incluye” son jurídicamente equivalentes y se consideran abiertas. Por tanto, elementos, funciones, etapas o limitaciones adicionales no citados pueden estar presentes junto con los elementos, funciones, etapas o limitaciones citados. Como se utiliza en la presente memoria, el término “dispersión abrasiva” significa un precursor de alfa-alúmina que se puede convertir en alfa-alúmina que se introduce en una cavidad del molde. La composición se denomina dispersión abrasiva hasta que se eliminan suficientes componentes volátiles para conseguir la solidificación de la dispersión abrasiva. Como se utiliza en la presente memoria, el término “partícula abrasiva conformada precursora” significa la partícula no sinterizada producida mediante la eliminación de una cantidad suficiente de componentes volátiles de la dispersión abrasiva, cuando se encuentra en la cavidad del molde, para formar un cuerpo solidificado que se puede extraer de la cavidad del molde y retener prácticamente su forma moldeada durante las operaciones de procesamiento posteriores. Como se utiliza en la presente memoria, el término “partícula abrasiva conformada” significa una partícula abrasiva cerámica en la que al menos una parte de la partícula abrasiva tiene una forma predeterminada que es réplica de una cavidad de un molde utilizado para formar la partícula abrasiva conformada precursora. Salvo en el caso de esquirlas abrasivas (p. ej., como se describe en la solicitud provisional US-61/016965), la partícula abrasiva conformada tendrá por lo general una forma geométrica predeterminada que prácticamente replica la cavidad del molde utilizado para formar la partícula abrasiva conformada. La partícula abrasiva conformada en la presente memoria excluye las partículas abrasivas obtenidas mediante una operación de trituración mecánica. Descripción detallada
Partícula abrasiva conformada con factor de redondez bajo
Con referencia a las Figuras 1, y 2, se muestra una partícula 20 abrasiva conformada ilustrativa. En algunas realizaciones, la partícula abrasiva conformada comprende una pared lateral 22 que tiene un ángulo de incidencia a diferente de 90° denominada en adelante pared lateral inclinada. El material a partir del cual se fabrica la partícula 20 abrasiva conformada comprende alfa-alúmina. Las partículas de alfa-alúmina se pueden fabricar a partir de una dispersión de óxido de aluminio monohidratado que se gelifica, se moldea para conformación, se seca para retener la forma, se calcina, y a continuación se sinteriza como se analiza más adelante en la presente memoria. La forma de la partícula abrasiva conformada se retiene sin necesidad de un aglutinante para formar un aglomerado que comprenda partículas abrasivas en un aglutinante a las que se da forma para obtener una estructura conformada.
En general, las partículas 20 abrasivas conformadas comprenden cuerpos finos que tienen una primera cara 24 y una segunda cara 26, y que tienen un espesor t. En algunas realizaciones, el espesor t oscila entre aproximadamente 25 micrómetros y aproximadamente 500 micrómetros. La primera cara 24 y la segunda cara 26 están conectadas entre sí por al menos una pared lateral 22, que puede ser una pared lateral inclinada. En algunas realizaciones, puede estar presente más de una pared 22 lateral inclinada y la inclinación o ángulo de cada pared 22 lateral inclinada pueden ser iguales o diferentes como se describe con mayor detalle en la solicitud de patente en trámite US-12/337075 presentada el 17 de diciembre de 2008 titulada “ Partículas abrasivas conformadas con una pared lateral inclinada” .
En algunas realizaciones, la primera cara 24 es prácticamente plana, la segunda cara 26 es prácticamente plana, o ambas caras son prácticamente planas. De forma alternativa, las caras podrían ser cóncavas o convexas, como se describe con mayor detalle en la solicitud de patente copendiente US-12/336961 titulada “ Partículas abrasivas conformadas en forma de plato con una superficie hundida” , presentada el 17 de diciembre de 2008, y con número de expediente del agente representante 64716US002. Además, una abertura o abertura a través de las caras podría estar presente, como se describe con mayor detalle en la solicitud de patente copendiente US-12/337112 titulada “ Partículas abrasivas conformadas con una abertura” , presentada el 17 de diciembre de 2008 y con número de expediente del agente representante 64765US002.
En una realización, la primera cara 24 y la segunda cara 26 son prácticamente paralelas entre sí. En otras realizaciones, la primera cara 24 y la segunda cara 26 pueden ser no paralelas de tal forma que una cara esté inclinada con respecto a la otra cara, y líneas imaginarias tangentes a cada cara intersectarían en un punto. La pared lateral 22 de la partícula 20 abrasiva conformada puede variar y forma generalmente el perímetro 29 de la primera cara 24 y la segunda cara 26. En una realización, el perímetro 29 de la primera cara 24 y la segunda cara 26 se selecciona para que tenga una forma geométrica, y la primera cara 24 y la segunda cara 26 se seleccionan para que tengan la misma forma geométrica; aunque difieren en tamaño, siendo una cara más grande que la otra cara. En una realización, el perímetro 29 de la primera cara 24 y el perímetro 29 de la segunda cara 26 tiene una forma triangular, como se ilustra.
El ángulo de incidencia a entre la segunda cara 26 y la pared lateral 22 de la partícula 20 abrasiva conformada puede variar para cambiar los tamaños relativos de cada cara. En varias realizaciones de la invención, el ángulo de incidencia a puede estar entre aproximadamente 90° y aproximadamente 130°, o entre aproximadamente 95° y aproximadamente 130°, o entre aproximadamente 95° y aproximadamente 125°, o entre aproximadamente 95° y aproximadamente 120°, o entre aproximadamente 95° y aproximadamente 115°, o entre aproximadamente 95° y aproximadamente 110°, o entre aproximadamente 95° y aproximadamente 105°, o entre aproximadamente 95° y aproximadamente 100°. Como se explica en la solicitud de patente US-12/337075, se ha descubierto que los intervalos específicos para el ángulo de incidencia a producen aumentos sorprendentes en el rendimiento de rectificado de artículos abrasivos revestidos fabricados a partir de las partículas abrasivas conformadas con una pared lateral inclinada. En particular, se ha descubierto que los ángulos de incidencia de 98°, 120° o 135° tienen un mejor rendimiento de rectificado que un ángulo de incidencia de 90°. La mejora en el rendimiento de rectificado es especialmente pronunciada en ángulos de incidencia de 98° o 120°, como se ve en las Figuras 6 y 7 de la solicitud de patente US-12/337075.
Con referencia a la Figura 3, las partículas 20 abrasivas conformadas pueden utilizarse para fabricar un artículo 40 abrasivo revestido que tiene una primera superficie principal 41 de un soporte 42 cubierta por una capa abrasiva. La capa abrasiva comprende un revestimiento 44 de inclusión sobre la primera superficie principal 41 y una pluralidad de partículas 20 abrasivas conformadas unidas al revestimiento 44 de inclusión normalmente por la pared lateral 22. Se aplica un revestimiento 46 de apresto para pegar o adherir adicionalmente las partículas 20 abrasivas conformadas al soporte 42. También se puede aplicar un revestimiento opcional de superapresto, como es conocido por el experto en la técnica.
Haciendo de nuevo referencia a la Figura 1, la partícula 20 abrasiva conformada comprende un eje longitudinal 50 que se extiende desde una base 52 hasta la punta 54 de rectificado. La pared lateral 22 de la base 52 está normalmente unida al soporte 42 en el artículo 40 abrasivo recubierto por el revestimiento 44 de inclusión. Para determinar el factor de redondez, la partícula 10 abrasiva conformada es aserrada transversalmente a 90° con respecto al eje longitudinal 50. El corte transversal, C, debería estar en una ubicación entre una primera línea transversal 56 trazada a % de la longitud total de la partícula a lo largo del eje longitudinal y una segunda línea transversal 58 trazada a % de la longitud total de la partícula, de manera que el corte transversal atraviese la mitad central de la longitud total de la partícula. Convenientemente, el corte transversal se ubica lo más cerca posible del punto medio 60 del eje longitudinal 50. Se puede utilizar una sierra de corte de disco de silicio para cortar transversalmente la partícula 20 abrasiva conformada o la partícula abrasiva conformada se puede rectificar hasta la distancia adecuada. El corte transversal debería ser bastante liso de manera que el perímetro del plano en sección transversal resultante sea marcado y bien definido. De ser necesario, el plano en sección transversal resultante puede pulirse hasta una altura uniforme.
La partícula 20 abrasiva conformada, tras el seccionamiento, se monta por su base 52 sobre un adaptador de un scanning electron microscope (microscopio electrónico de barrido - SEM) de manera que el plano en sección transversal del corte transversal esté horizontal. Se toma una fotomicrografía del plano en sección transversal usando formación de imágenes de electrones retrodispersados en un SEM. Se usa un aumento adecuado para que se pueda ver todo el plano en sección transversal y se maximiza el tamaño del plano en sección transversal para llenar el campo de visión del SEM. En la Figura 4 se muestra una imagen de SEM típica del plano en sección transversal con un aumento de 100X.
A continuación, como se muestra en la Figura 5, cada cara de la partícula 20 abrasiva conformada (paredes laterales 22, primera cara 24 y segunda cara 26) está limitada por una línea 62 trazada tangente a los dos puntos más altos situados en cualquier lugar a lo largo de esa cara, incluyendo de este modo un área máxima 64 que tiene forma poligonal. Para una partícula abrasiva conformada que tenga una sección transversal generalmente triangular se trazan tres líneas, para una sección transversal generalmente rectangular se trazan cuatro líneas, para una sección transversal pentagonal se trazan cinco líneas, y así sucesivamente.
A continuación, utilizando un software de análisis de imágenes como el Image J (comercializado por el National Institute of Health) se resta el área real 66 del plano en sección transversal, como se muestra en la Figura 5 en negro, del área máxima 64 limitada por el polígono para determinar el área ausente 68, como se muestra en negro en la Figura 6. El área ausente 68 representa la cantidad de área presente debido a las esquinas redondeadas y bordes irregulares de la partícula 20 abrasiva conformada. Se cree que minimizar el área ausente 68 mejora el rendimiento de rectificado, ya que la partícula tenderá a tener esquinas más afiladas y bordes más aplanados.
Usando el software de análisis de imágenes u otra técnica de medición apropiada, se determinan el área ocupada por el área real 66, en negro en la Figura 5, y el área ocupada por el área ausente 68, en negro en la Figura 6. El factor de redondez expresado como un porcentaje se calcula dividiendo el área ausente 68 (Figura 6 en negro) por el área real 66 (Figura 5 en negro) y multiplicándolo por 100. Factor de redondez en %=área ausente/área real * 100. El proceso se repite hasta aserrar y medir 10 partículas abrasivas conformadas individuales. El factor de redondez promedio de las 10 muestras se determina promediando los 10 resultados individuales. Un factor de redondez de cero por ciento indicaría que la partícula abrasiva conformada tenía esquinas completamente llenas y bordes completamente lineales. Si se limitara un círculo por un cuadrado tocando cada lado, el factor de redondez sería del 27,3 %, lo que significa que se necesita aproximadamente el 27,3 % del área del círculo para llenar las esquinas ausentes del cuadrado.
Haciendo referencia ahora a la Figura 7 (área real 66) y la Figura 8 (área ausente 68), se muestra un plano en sección transversal típico de una partícula abrasiva conformada triangular (partículas de Rowenhorst) producidas según el método descrito en las patentes US-5.201.916 de Berg; US-5.366.523 de Rowenhorst (Re 35.570); y US-5.984.988 de Berg. Como se observa, las partículas abrasivas conformadas triangulares producidas por el estado de la técnica tienden a tener esquinas mucho más redondeadas y una ondulación del borde mucho mayor.
La Tabla 1 siguiente indica el factor de redondez promedio de las partículas abrasivas conformadas de la presente invención en comparación con el estado de la técnica.
Tabla 1: Factor de redondez promedio
Figure imgf000005_0001
El factor de redondez promedio de las partículas de Rowenhorst del estado de la técnica fue del 20,0 %, lo cual se acerca bastante al factor de redondez del 27,3 % que resultaría de un círculo perfecto limitado por un cuadrado. Por lo tanto, las partículas de Rowenhorst tienen un plano en sección transversal bastante redondeado. Por el contrario, las partículas abrasivas conformadas de la presente invención tienen un plano en sección transversal mucho menos redondeado, que se considera que produce un rendimiento de rectificado significativamente mejorado como se muestra en la Figura 9. En varias realizaciones de la invención, el factor de redondez promedio de las partículas abrasivas conformadas puede estar comprendido entre aproximadamente 15 % y 0 %, o entre aproximadamente 13 % y 0 %, o entre aproximadamente 12 % y 0 %, o entre aproximadamente 12 % y aproximadamente 5 %.
Las partículas 20 abrasivas conformadas pueden tener varias formas tridimensionales. La forma geométrica del perímetro 29 puede ser triangular, rectangular, circular, elíptica, en forma de estrella o de otros polígonos regulares o irregulares. En una realización, se utilizó un perímetro en forma de triángulo equilátero y en otra realización se utilizó un perímetro en forma de triángulo isósceles.
La forma geométrica del plano en sección transversal que resulta del corte transversal de las partículas abrasivas conformadas también puede variar. En todas las realizaciones se usa una forma en sección transversal no circular. Una forma de sección transversal circular es redonda, que se considera menos afilada. Se cree que una forma en sección transversal no circular tiene un mejor rendimiento de rectificado, ya que pueden estar presentes una o más esquinas afiladas y uno o más lados pueden ser generalmente lineales como una hoja de cincel. De forma deseable, la forma de sección transversal es una forma poligonal incluidas, aunque no de forma limitativa, un triángulo, un rectángulo, un trapezoide o un pentágono. En una realización, el perímetro de la partícula abrasiva conformada era triangular, como se observa en la Figura 1, y la forma en sección transversal era trapezoidal, como se observa en las Figuras 2 y 4.
Las partículas 20 abrasivas conformadas pueden tener diversas relaciones dimensionales volumétricas. La relación dimensional volumétrica se define como el cociente entre el área de sección transversal máxima que pasa a través del centroide de un volumen dividido por el área de sección transversal mínima que pasa a través del centroide. Para algunas formas, el área de sección transversal máxima o mínima puede ser un plano inclinado, angulado o ladeado con respecto a la geometría externa de la forma. Por ejemplo, una esfera tendría una relación dimensional volumétrica de 1,000, mientras que un cubo tendrá una relación dimensional volumétrica de 1,414. Una partícula abrasiva conformada en forma de triángulo equilátero que tiene cada lado igual que la longitud A y un espesor uniforme igual que A tendrá una relación dimensional volumétrica de 1,54, y si el espesor uniforme se reduce a 0,25A, la relación dimensional volumétrica se aumenta a 2,64. Se cree que las partículas abrasivas conformadas que tienen una relación dimensional volumétrica más grande tienen un rendimiento de corte mejorado. En diversas realizaciones de la invención, la relación dimensional volumétrica de las partículas abrasivas conformadas puede ser superior a aproximadamente 1,15, o superior a aproximadamente 1,50, o superior a aproximadamente 2,0, o entre aproximadamente 1,15 y aproximadamente 10,0, o entre aproximadamente 1,20 y aproximadamente 5,0, o entre aproximadamente 1,30 y aproximadamente 3,0.
Las partículas abrasivas conformadas pueden tener un radio de curvatura mucho más pequeño en los puntos o esquinas de las partículas abrasivas conformadas presentes en la primera cara 24. Las partículas abrasivas conformadas como triángulo equilátero descritas en las patentes US-5.201.916 de Berg; US-5.366.523 de Rowenhorst (Re 35.570); y US-5.984.988 de Berg tenían un radio de curvatura para los puntos del triángulo (medido desde un lado alrededor del punto hasta el siguiente lado) de 103,6 micrómetros para el radio de punta medio. El radio de curvatura se puede medir desde una sección transversal pulida de la primera o segunda cara usando análisis de imágenes, tal como un programa de análisis de imágenes Clemex equipado con un microscopio óptico invertido u otro software de análisis de imágenes adecuado. El radio de curvatura para cada vértice triangular puede estimarse definiendo tres puntos en cada vértice cuando se observa en sección transversal con una ampliación de 100X. Se coloca un punto al principio de la curva del extremo donde hay una transición desde el borde recto al comienzo de una curva, en el vértice del extremo, y en la transición desde la punta curvada hasta un borde recto. El software de análisis de imágenes traza entonces un arco definido por los tres puntos (inicio, medio, y final de la curva) y calcula un radio de curvatura. El radio de curvatura para al menos 30 vértices se mide y promedia para determinar el radio promedio de la punta. Las partículas abrasivas conformadas fabricadas por el presente método se realizan con mayor precisión. Como tal, el radio de punta promedio de las partículas abrasivas conformadas es mucho menor. El radio de punta promedio de las partículas abrasivas conformadas fabricadas según la presente descripción se ha medido con un diámetro inferior a 19,2 micrómetros. En diversas realizaciones de la invención, el radio de punta promedio puede ser inferior a 75 micrómetros, o inferior a 50 micrómetros, o inferior a 25 micrómetros. Se cree que una punta más afilada favorece el corte inicial más agresivo y la fractura mejorada de las partículas abrasivas conformadas durante el uso.
Las partículas 20 abrasivas conformadas fabricadas según la presente descripción se pueden incorporar a un artículo abrasivo, o se pueden utilizar de forma suelta. Las partículas abrasivas se clasifican, generalmente, según una distribución de tamaño de partícula dada antes de su uso. Estas distribuciones tienen de forma típica una gama de tamaños de partícula, desde partículas gruesas hasta partículas finas. En la técnica de los abrasivos, esta gama se conoce a veces como fracciones “gruesas” , “control” y “fina” . Las partículas abrasivas clasificadas según las normas de clasificación aceptadas por la industria de los abrasivos especifican la distribución del tamaño de partícula para cada dureza nominal dentro de límites numéricos. Estas normas de clasificación aceptadas por la industria (es decir, la dureza nominal especificada por la industria de los abrasivos) incluyen las conocidas como las normas del American National Standards Institute, Inc. (ANSI), las normas de la Federation of European Producers of Abrasive Products (FEPA) y las normas del Japanese Industrial Standard (JIS).
Las designaciones de dureza (es decir, las durezas nominales especificadas) de ANSI incluyen: ANSI 4, ANSI 6, ANSI 8, ANSI 16, ANSI 24, ANSI 36, ANSI 40, ANSI 50, ANSI 60, ANSI 80, ANSI 100, ANSI 120, ANSI 150, ANSI 180, ANSI 220, ANSI 240, ANSI 280, ANSI 320, ANSI 360, ANSI 400 y ANSI 600. Las designaciones de dureza de la FEPA incluyen P8, P12, P16, P24, P36, P40, P50, P60, P80, P100, P120, P150, P180, P220, P320, P400, P500, P600, P800, P1000 y P1200. Las designaciones de dureza del JIS incluyen JIS8, JIS12, JIS16, JIS24, JIS36, JIS46, JIS54, JIS60, JIS80, JIS100, JIS150, JIS180, JIS220, JIS240, JIS280, JIS320, JIS360, JIS400, JIS600, JIS800, JIS1000, JIS1500, JIS2500, JIS4000, JIS6000, JIS8000, y JIS10,000.
De forma alternativa, las partículas 20 abrasivas conformadas pueden clasificarse con una dureza nominal evaluada por tamizado utilizando tamices de ensayo estándares en los EE. UU. según la norma ASTM E-11 “ Especificación estándar para telas metálicas y tamices para realizar ensayos” . La norma ASTM E-11 indica los requisitos de diseño y construcción de los tamices de ensayo usando un medio de tela metálica tejida montada sobre un bastidor para la clasificación de materiales según un tamaño de partículas designado. Una designación típica puede representarse como -18+20, que significa que las partículas 20 abrasivas conformadas pasan a través de un tamiz de ensayo que cumple con las especificaciones de la norma ASTM E-11 con el número de tamiz 18 y quedan retenidas sobre un tamiz de ensayo que cumple con las especificaciones de la norma ASTM E-11 con el número de tamiz 20. En una realización, las partículas 20 abrasivas conformadas con una pared 22 lateral inclinada tienen un tamaño de partícula tal que la mayoría de las partículas atraviesan un tamiz de ensayo de malla 18 y pueden quedar retenidas sobre un tamiz de ensayo de malla 20, 25, 30, 35, 40, 45 o 50. En varias realizaciones de la invención, las partículas 20 abrasivas conformadas con una pared 22 lateral inclinada pueden tener una dureza nominal evaluada por tamizado que comprende: -18+20, -20+25, -25+30, -30+35, -35+40, -40+45, -45+50, -50+60, -60+70, -70+80, -80+100, -100+120, -120+140, -140+170, -170+200, -200+230, -230+270, -270+325, -325+400, -400+450,-450+500, o -500+635.
En un aspecto, la presente descripción proporciona una pluralidad de partículas abrasivas conformadas que tienen una dureza nominal o dureza nominal evaluada por tamizado especificada en la industria de los abrasivos, en donde al menos una parte de la pluralidad de partículas abrasivas son partículas 20 abrasivas conformadas. En otro aspecto, la descripción proporciona un método que comprende clasificar las partículas 20 abrasivas conformadas fabricadas según la presente descripción para proporcionar una pluralidad de partículas 20 abrasivas conformadas que tienen una dureza nominal o una dureza nominal evaluada por tamizado especificada en la industria de los abrasivos.
Si se desea, las partículas 20 abrasivas conformadas que tienen una dureza nominal o una dureza nominal evaluada por tamizado especificada en la industria de los abrasivos se pueden mezclar con otras partículas abrasivas o no abrasivas conocidas. En algunas realizaciones, al menos 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, o incluso 100 por ciento en peso de la pluralidad de partículas abrasivas que tienen una dureza nominal o una dureza nominal evaluada por tamizado especificada en la industria de los abrasivos son partículas 20 abrasivas conformadas fabricadas según la presente descripción, en base al peso total de la pluralidad de partículas abrasivas.
Las partículas adecuadas para mezclar con las partículas 20 abrasivas conformadas incluyen granos abrasivos convencionales, granos de diluyente, o aglomerados erosionables, tales como los descritos en las patentes US- 4.799.939 y 5.078.753. Ejemplos representativos de granos abrasivos convencionales incluyen óxido de aluminio fundido, carburo de silicio, granate, aluminocirconita fundida, nitruro de boro cúbico, diamante, y similares. Ejemplos representativos de granos de diluyente incluyen mármol, yeso y vidrio. Las mezclas de partículas 20 abrasivas conformadas de diferente forma (por ejemplo triángulos y cuadrados) o mezclas de partículas 20 abrasivas conformadas con paredes laterales inclinadas que tienen diferentes ángulos de inclinación (por ejemplo partículas que tienen un ángulo de incidencia de 98° mezcladas con partículas que tienen un ángulo de incidencia de 120 o) pueden utilizarse en los artículos de la presente invención.
Las partículas 20 abrasivas conformadas también pueden tener un revestimiento de superficie. Se sabe que los revestimientos de superficie mejoran la adhesión entre los granos abrasivos y el aglutinante en artículos abrasivos, o pueden utilizarse para ayudar en la deposición electrostática de las partículas 20 abrasivas conformadas. Dichos revestimientos de superficie se han descrito en las patentes US-5.213.591; US-5.011.508; US-1.910.444; US-3.041.156; US-5.009.675; US-5.085.671; US-4.997.461; y US-5.042.991. Además, el revestimiento superficial puede evitar que la partícula abrasiva conformada tenga una protección terminal. La protección terminal es el término para describir el fenómeno por el cual las partículas metálicas de la pieza de trabajo que se están esmerilando quedan soldadas a las partes superiores de las partículas abrasivas conformadas. Los recubrimientos de superficie para realizar las funciones anteriores son conocidos por los expertos en la materia.
Artículo abrasivo que tiene partículas abrasivas conformadas con factor de redondez bajo
Con referencia a la Figura 3, un artículo abrasivo 40 revestido comprende un soporte 42 que tiene una primera capa de aglutinante, denominada a continuación el revestimiento 44 de inclusión, aplicado sobre una primera superficie 41 principal del soporte 42. Unida o parcialmente incrustada en el revestimiento 44 de inclusión hay una pluralidad de partículas 20 abrasivas conformadas que forman una capa abrasiva. Sobre las partículas 20 abrasivas conformadas hay una segunda capa de aglutinante, denominada a continuación el revestimiento 46 de apresto. El fin del revestimiento 44 de inclusión es fijar las partículas 20 abrasivas conformadas al soporte 42 y el fin del revestimiento 46 de apresto es reforzar las partículas 20 abrasivas conformadas. También se puede aplicar un revestimiento opcional de superapresto, como es conocido por el experto en la técnica. La mayoría de las partículas 20 abrasivas conformadas se orientan de tal manera que la punta 48 (punta 54 de rectificado en la Figura 1) o el vértice apuntan lejos del soporte 42 y las partículas abrasivas conformadas están apoyadas sobre la pared lateral 22. Si se usa una pared lateral inclinada, las partículas 20 abrasivas conformadas están generalmente ladeadas o inclinadas, como se muestra.
Para optimizar aún más la orientación inclinada, las partículas abrasivas conformadas con una pared lateral inclinada se aplican en el soporte en una capa abrasiva de revestimiento abierto. Una capa abrasiva de revestimiento cerrado se define como el peso máximo de las partículas abrasivas, o de mezcla de partículas abrasivas, que se puede aplicar a un revestimiento de soporte de un artículo abrasivo en un único paso a través de la conformadora. Una capa abierta es una cantidad de partículas abrasivas o una mezcla de partículas abrasivas, que pesa menos que el peso máximo en gramos que se puede aplicar, que se aplica a un revestimiento de inclusión de un artículo abrasivo revestido. Una capa abrasiva de revestimiento abierto dará como resultado una cobertura inferior al 100 % del revestimiento de soporte con partículas abrasivas, dejando de este modo áreas abiertas y una capa de resina visible entre las partículas. En varias realizaciones de la invención, el porcentaje de área abierta en la capa abrasiva puede estar entre aproximadamente 10 % y aproximadamente 90 % o entre aproximadamente 30 % y aproximadamente 80 %, o entre aproximadamente 40 % y aproximadamente 70 %.
Se cree que, si se aplican al soporte demasiadas partículas abrasivas conformadas con una pared lateral inclinada, aparecerán espacios insuficientes entre las partículas para poder apuntarse o inclinarse antes de curar los revestimientos de soporte y apresto. En varias realizaciones de la invención, más de 50, 60, 70, 80 o 90 por ciento de las partículas abrasivas conformadas del artículo abrasivo revestido que tienen una capa abrasiva de revestimiento abierto apuntan o están inclinadas con un ángulo de orientación p (Figura 3) menor que 90°.
Sin pretender imponer ninguna teoría, se cree que un ángulo de orientación p menor que 90° da como resultado un rendimiento de corte mejorado de las partículas abrasivas conformadas con una pared lateral inclinada. Sorprendentemente, este resultado tiende a producirse independientemente de la orientación rotacional de las partículas abrasivas conformadas alrededor del eje Z dentro del artículo abrasivo revestido. Aunque la Figura 3 está idealizada para mostrar todas las partículas alineadas en la misma dirección, un disco abrasivo revestido real tendría las partículas distribuidas aleatoriamente y rotadas. Dado que el disco abrasivo es giratorio y las partículas abrasivas conformadas están distribuidas aleatoriamente, algunas partículas abrasivas conformadas se impulsarán contra la pieza de trabajo con un ángulo de orientación p de menos de 90° con la pieza de trabajo atacando inicialmente la segunda cara 26 mientras que una partícula abrasiva conformada vecina podría estar girada exactamente 180°, atacando la pieza de trabajo por la parte posterior de la partícula abrasiva conformada y la primera cara 24. Con una distribución aleatoria de las partículas y la rotación del disco, menos de la mitad de las partículas abrasivas conformadas podría atacar inicialmente la pieza de trabajo por la segunda cara 26 en lugar de la primera cara 24. Sin embargo, para una banda abrasiva que tenga una dirección de rotación definida y un punto de contacto definido con la pieza de trabajo, puede ser posible alinear las partículas abrasivas conformadas con una pared lateral inclinada de la banda para garantizar que cada partícula abrasiva conformada discurra en un ángulo de orientación p de menos de 90° y que la pieza de trabajo se impulse hacia la segunda cara 26 en primer lugar, como se idealiza en la Figura 3. En distintas realizaciones de la invención, el ángulo de orientación p para al menos una mayoría de partículas abrasivas conformadas con una pared lateral inclinada en una capa abrasiva de un artículo abrasivo revestido puede estar comprendido entre aproximadamente 50° y aproximadamente 85°, o entre aproximadamente 55° y aproximadamente 85°, o entre aproximadamente 60° y aproximadamente 85°, o entre aproximadamente 65° y aproximadamente 85°, o entre aproximadamente 70° y aproximadamente 85°, o entre aproximadamente 75° y aproximadamente 85°, o entre aproximadamente 80° y aproximadamente 85°.
El revestimiento 44 de mecanizado y el revestimiento 46 de apresto comprenden un adhesivo resinoso. El adhesivo resinoso del revestimiento 44 de mecanizado puede ser igual o diferente al del revestimiento 46 de apresto. Los ejemplos de adhesivos resinosos adecuados para estos revestimientos incluyen resinas fenólicas, resinas epoxídicas, resinas de urea-formaldehído, resinas de acrilato, resinas de aminoplasto, resinas de melamina, resinas epoxídicas acriladas, resinas de uretano y combinaciones de las mismas. Además del adhesivo resinoso, el revestimiento 44 de mecanizado o el revestimiento 46 de apresto, o ambos revestimientos, pueden comprender además aditivos que son conocidos en la materia tales como, por ejemplo, cargas, auxiliares de esmerilado, agentes humectantes, tensioactivos, colorantes, pigmentos, agentes de acoplamiento, promotores de adhesión, y combinaciones de los mismos. Los ejemplos de cargas incluyen carbonato de calcio, sílice, talco, arcilla, metasilicato cálcico, dolomita, sulfato de aluminio y combinaciones de los mismos.
Puede aplicarse un auxiliar de esmerilado al artículo abrasivo revestido. Un auxiliar de esmerilado se define como material en forma de partículas cuya adición tiene un efecto significativo en los procesos químicos y físicos de abrasión, lo que da como resultado un rendimiento mejorado. Los auxiliares de esmerilado abarcan una amplia variedad de materiales diferentes y pueden ser inorgánicos u orgánicos. Los ejemplos de grupos químicos de auxiliares de esmerilado incluyen ceras, compuestos haluro orgánicos, sales de haluro, y metales y sus aleaciones. Los compuestos haluro orgánicos se descompondrán de forma típica durante la abrasión y liberarán un ácido de halógeno o un compuesto de haluro gaseoso. Los ejemplos de estos materiales incluyen ceras cloradas, tales como tetracloronaftaleno, pentacloronaftaleno; y cloruro de polivinilo. Los ejemplos de sales de haluro incluyen cloruro sódico, criolita potásica, criolita sódica, criolita amónica, tetrafluorocarbonato potásico, tetrafluorocarbonato sódico, fluoruro de silicio, cloruro potásico, cloruro magnésico. Los ejemplos de metales incluyen estaño, plomo, bismuto, cobalto, antimonio, cadmio, hierro y titanio. Otros materiales de esmerilado incluyen sulfuro, compuestos de azufre orgánicos, grafito, y sulfuros metálicos. También está dentro del alcance de la presente invención el uso de una combinación de diferentes auxiliares de esmerilado; en algunos casos, esto puede producir un efecto sinérgico. En una realización, el auxiliar de esmerilado es criolita o tetrafluoroborato potásico. La cantidad de dichos aditivos puede ajustarse para obtener las propiedades deseadas. También está dentro del alcance de la presente invención el uso de un revestimiento de superapresto. El revestimiento de superapresto contiene de forma típica un aglutinante y un auxiliar de esmerilado. Los aglutinantes pueden estar formados de materiales tales como resinas fenólicas, resinas de acrilato, resinas epoxídicas, resinas de urea-formaldehído, resinas de melamina, resinas de uretano, y combinaciones de las mismas. En algunas realizaciones se utiliza un revestimiento de superapresto que comprende una resina epoxídica terrmoendurecible, un agente de curado, una resina hidrocabonada termoplástica, un coadyuvante de rectificado, un agente dispersante y un pigmento como se describe en US-5.441.549 (Helmin).
Dentro del ámbito de la presente invención también está incluido que las partículas 20 abrasivas conformadas puedan utilizarse en un artículo abrasivo unido, un artículo abrasivo no tejido o cepillos abrasivos. Un abrasivo unido puede comprender una pluralidad de partículas 20 abrasivas conformadas unidas entre sí por medio de un aglutinante para formar una masa con forma. El aglutinante de un abrasivo unido puede ser metálico, orgánico o vítreo. Un abrasivo no tejido comprende una pluralidad de partículas 20 abrasivas conformadas unidas a una banda fibrosa no tejida por medio de un aglutinante orgánico.
Método para fabricar partículas abrasivas conformadas con factor de redondez bajo
La primera etapa del proceso implica proporcionar una dispersión abrasiva sembrada o no sembrada que se puede convertir en alfa-alúmina. La composición precursora de alfa-alúmina comprende frecuentemente un líquido que es un componente volátil. En una realización, el componente volátil es agua. La dispersión abrasiva debe comprender una cantidad suficiente de líquido para que la viscosidad de la dispersión abrasiva sea suficientemente baja para permitir rellenar las cavidades del molde y replicar las superficies del molde, pero no tan líquida como para hacer que la posterior extracción del líquido de la cavidad del molde sea prohibitivamente cara. En una realización, la dispersión abrasiva comprende del 2 % al 90 % en peso de las partículas que se pueden convertir en alfa-alúmina, tal como partículas de óxido de aluminio monohidratado (bohemita), y al menos 10 % en peso, o de 50 % a 70 %, o de 50 % a 60 %, en peso del componente volátil tal como agua. Por el contrario, en algunas realizaciones, la dispersión abrasiva contiene de 30 por ciento a 50 por ciento, o de 40 por ciento a 50 por ciento, en peso de sólidos.
También se pueden usar otros óxidos de aluminio que no sean bohemita. La bohemita se puede preparar por técnicas conocidas o se puede obtener comercialmente. Los ejemplos de bohemita comercial incluyen productos que tienen las marcas registradas “ DISPERAL” , y “ DISPAL” , ambas comercializadas por Sasol North America, Inc. o “ HiQ-40” comercializada por BASF Corporation. Estos óxidos de aluminio monohidratados son relativamente puros, es decir, incluyen relativamente poca cantidad, en su caso, de fases hidrato diferentes a monohidrato, y tienen un área superficial elevada. Las propiedades físicas de las partículas 20 abrasivas conformadas resultantes dependerán generalmente del tipo de material utilizado en la dispersión abrasiva.
En una realización, la dispersión abrasiva se encuentra en un estado de gel. Como se utiliza en la presente memoria, un “gel” es una red tridimensional de sólidos dispersos en un líquido. La dispersión abrasiva puede contener un aditivo modificante o un precursor de un aditivo modificante. El aditivo modificante puede funcionar para mejorar algunas propiedades deseables de las partículas abrasivas o aumentar la eficacia de la posterior etapa de sinterización. Los aditivos modificantes o los precursores de aditivo modificante pueden estar en la forma de sales solubles, de forma típica, sales solubles en agua. Consisten, de forma típica, en un compuesto que contiene metal y puede ser un precursor de óxido de magnesio, cinc, hierro, silicio, cobalto, níquel, zirconio, hafnio, cromo, itrio, praseodimio, samario, iterbio, neodimio, lantano, gadolinio, cerio, disprosio, erbio, titanio y mezclas de los mismos. Las concentraciones particulares de estos aditivos que pueden estar presentes en la dispersión abrasiva pueden variarse dependiendo de la experiencia en la técnica. De forma típica, la introducción de un aditivo modificante o un precursor de un aditivo modificante provocará la gelificación de la dispersión abrasiva. La gelificación de la dispersión abrasiva también se puede inducir mediante la aplicación de calor durante un periodo de tiempo.
La dispersión abrasiva también puede contener un agente nucleante (inductor por semilla) para potenciar la transformación del óxido de aluminio hidratado o calcinado en alfa-alúmina. Los agentes nucleantes adecuados para esta descripción incluyen partículas finas de alfa-alúmina, alfa-óxido férrico o su precursor, óxidos de titanio y titanatos, óxidos de cromo, o cualquier otro material que nuclee la transformación. La cantidad de agente nucleante, si se utiliza, debería ser suficiente para llevar a cabo la transformación de la alfa-alúmina. La nucleación de este tipo de dispersiones abrasivas se describe en US-4.744.802 de Schwabel.
Se puede añadir un agente peptizante a la dispersión abrasiva para producir un hidrosol o dispersión abrasiva coloidal más estable. Los agentes peptizantes adecuados son ácidos monopróticos o compuestos ácidos tales como el ácido acético, ácido clorhídrico, ácido fórmico, y ácido nítrico. También se pueden utilizar ácidos multipróticos, pero pueden gelificar rápidamente la dispersión abrasiva, haciendo que sea difícil manipular o introducir componentes adicionales en la misma. Algunas fuentes comerciales de bohemita contienen un título de ácido (tal como ácido nítrico o fórmico absorbido) que ayudarán en la formación de una dispersión abrasiva estable.
La dispersión abrasiva se puede formar por cualquier medio adecuado, como, por ejemplo, simplemente mezclando óxido de aluminio monohidratado con agua que contiene un agente peptizante, o formando una suspensión acuosa de óxido de aluminio monohidratado a la que se añade el agente peptizante. Se pueden añadir desespumantes u otras sustancias químicas adecuadas para reducir la tendencia a formar burbujas o arrastrar aire durante el mezclado. Otras sustancias químicas adicionales, tales como agentes humectantes, alcoholes, o agentes de acoplamiento, se pueden añadir si se desea. El grano abrasivo de alfa-alúmina puede contener sílice y óxido de hierro como se describe en US-5.645.619 de Erickson y col., del 8 de julio de 1997. El grano abrasivo de alfa-alúmina puede contener circonia como se describe en US-5.551.963 de Larmie, del 3 de septiembre de 1996. Como alternativa, el grano abrasivo de alfa-alúmina puede tener una microestructura o aditivos como se describe en US-6.277.161 de Castro, del 21 de agosto de 2001.
La segunda etapa del proceso implica proporcionar un molde que tiene al menos una cavidad de molde y, preferiblemente, una pluralidad de cavidades. El molde puede tener una superficie inferior generalmente plana y una pluralidad de cavidades de molde. La pluralidad de cavidades se puede formar en una herramienta de producción. La herramienta de producción puede ser una cinta, una hoja, una banda continua, un rodillo de revestimiento como un rodillo de rotograbado, un manguito montado sobre un rodillo de revestimiento, o una matriz. En una realización, la herramienta de producción comprende material polimérico. Los ejemplos de materiales poliméricos adecuados incluyen materiales termoplásticos tales como poliésteres, policarbonatos, poli(étersulfona), poli(metacrilato de metilo), poliuretanos, poli(cloruro de vinilo), poliolefina, poliestireno, polipropileno, polietileno o combinaciones de los mismos, o materiales termoendurecibles. En una realización, toda la herramienta se fabrica a partir de un material polimérico o termoplástico. En otra realización, las superficies de la herramienta en contacto con el sol-gel durante el secado, tales como las superficies de la pluralidad de cavidades, comprenden materiales poliméricos o termoplásticos y otras partes de la herramienta se pueden fabricar a partir de otros materiales. Se puede aplicar un revestimiento polimérico adecuado a una herramienta metálica para cambiar sus propiedades de tensión superficial, a modo de ejemplo.
Una herramienta polimérica o termoplástica se puede replicar en el exterior de una herramienta maestra de metal. La herramienta maestra tendrá el diseño invertido deseado para la herramienta de producción. La herramienta maestra se puede fabricar de la misma manera que la herramienta de producción. En una realización, la herramienta maestra está hecha de metal, p. ej., níquel, y está pulida con diamante. La lámina de material polimérico se puede calentar junto con la herramienta maestra de tal forma que el material polimérico se estampe con el diseño de la herramienta maestra presionando ambos entre sí. Un material polimérico o termoplástico también se puede extrudir o colar sobre la herramienta maestra y posteriormente presionarse. El material termoplástico se enfría para solidificarse y producir la herramienta de producción. Si se utiliza una herramienta de producción termoplástica, en ese caso, se debe tener cuidado de no generar demasiado calor que pueda deformar la herramienta de producción termoplástica, limitando su duración. Se encuentra más información relativa al diseño y la fabricación de herramientas de producción o herramientas maestras en las patentes US-5.152.917 (Pieper y col.); US-5.435.816 (Spurgeon y col.); US-5.672.097 (Hoopman y col.); US-5.946.991 (Hoopman y col.); US-5.975.987 (Hoopman y col.); y US-6.129.540 (Hoopman y col.).
El acceso a las cavidades puede ser desde una abertura en la superficie superior o la superficie inferior del molde. En algunos casos, la cavidad puede extenderse a la totalidad del espesor del molde. Como alternativa, la cavidad puede extenderse solamente a una parte del espesor del molde. En una realización, la superficie superior es prácticamente paralela a la superficie inferior del molde y las cavidades tienen una profundidad prácticamente uniforme. Al menos un lado del molde, es decir, el lado en el que la cavidad se forma, puede quedar expuesto a la atmósfera circundante durante la etapa en la cual se extrae el componente volátil.
La cavidad tiene una forma tridimensional específica. En una realización, la forma de la cavidad puede describirse como un triángulo, vista desde la parte superior, que tiene una pared lateral en pendiente de tal forma que la superficie inferior de la cavidad es algo más pequeña que la abertura de la superficie superior. Se cree que una pared lateral inclinada mejora el rendimiento de rectificado y permite una eliminación más sencilla de las partículas abrasivas precursoras del molde. En otra realización, el molde comprende una pluralidad de cavidades triangulares. Cada uno de la pluralidad de cavidades triangulares comprende un triángulo equilátero.
De forma alternativa, se pueden usar cavidades de otras formas, tales como, círculos, rectángulos, cuadrados, hexágonos, estrellas, o combinaciones de los mismos todos con una dimensión de profundidad prácticamente uniforme. La dimensión de profundidad es igual que la distancia perpendicular desde la superficie superior al punto más inferior de la superficie inferior. La profundidad de una cavidad dada puede ser uniforme o puede variar a lo largo de su longitud y/o anchura. Las cavidades de un molde dado pueden tener la misma forma o formas diferentes.
La tercera etapa de proceso implica llenar las cavidades del molde con la dispersión abrasiva mediante cualquier técnica convencional. En algunas realizaciones, se puede usar un revestidor de rodillos con cuchilla o una matriz ranurada al vacío. Se puede usar una liberación del molde para ayudar a retirar las partículas del molde si se desea. Los agentes de liberación del molde típicos incluyen aceites tales como aceite de cacahuete o aceite mineral, aceite de pescado, siliconas, politetrafluoroetileno, estearato de cinc y grafito. En general, entre aproximadamente 0,1 % y aproximadamente 5 % en peso de agente de liberación del molde, tal como aceite de cacahuete, en un líquido, tal como agua o alcohol, se aplica a las superficies de la herramienta de producción en contacto con el sol-gel de tal forma que entre aproximadamente 0,1 mg/in2 y aproximadamente 3,0 mg/in2, o entre aproximadamente 0,1 mg/in2 y aproximadamente 5,0 mg/in2 del agente de liberación del molde esté presente por unidad de área del molde cuando se desea una liberación del molde. En una realización, la superficie superior del molde se reviste con la dispersión abrasiva. La dispersión abrasiva se puede bombear a la superficie superior. A continuación, un raspador o barra niveladora puede utilizarse para forzar la dispersión abrasiva completamente al interior de la cavidad del molde. La parte restante de la dispersión abrasiva que no entre en la cavidad debe retirarse de la superficie superior del molde y recircularse. En algunas realizaciones, una pequeña parte de la dispersión abrasiva puede permanecer sobre la superficie superior y, en otras realizaciones, la superficie superior está prácticamente exenta de la dispersión. La presión aplicada por el raspador o barra niveladora es, de forma típica, menor que 100 MPa (100 psi), o menor que 0,3 MPa (50 psi), o menor que 0,07 MPa (10 psi). En algunas realizaciones, la superficie no expuesta de la dispersión abrasiva se extiende prácticamente más allá de la superficie superior para garantizar la uniformidad del espesor de las partículas 20 abrasivas conformadas resultantes.
La cuarta etapa del proceso implica retirar el componente volátil para secar la dispersión. De forma deseable, el componente volátil se elimina con velocidades de evaporación rápidas. En algunas realizaciones, la eliminación del componente volátil mediante evaporación se produce a temperaturas superiores al punto de ebullición del componente volátil. El límite superior de la temperatura de secado frecuentemente depende del material del que está fabricado el molde. Para la herramienta de polipropileno, la temperatura debería ser inferior al punto de fusión del plástico.
En una realización, para una dispersión de agua de entre aproximadamente 40 % a 50 % de sólidos y un molde de polipropileno, las temperaturas de secado pueden estar entre aproximadamente 90 0C y aproximadamente 165 °C, o entre aproximadamente 105 0C y aproximadamente 150 0C, o entre aproximadamente 105 °C y aproximadamente 120 0C. Temperaturas más elevadas pueden dar lugar a velocidades de producción mejoradas, pero también llevan a la degradación de la herramienta de polipropileno, limitando su duración como molde.
En una realización, se fabricó una muestra de sol-gel de bohemita usando la siguiente receta: óxido de aluminio monohidratado en polvo (40 %) con la designación comercial “ DISPERAL” se dispersó mezclando con alto cizallamiento una solución acuosa de ácido nítrico al 1,85 % (60 %) durante 10 minutos. El sol-gel resultante se envejeció durante al menos 24 horas antes del revestimiento. El sol-gel se forzó al interior de la herramienta de producción que tiene cavidades del molde de forma triangular de 0,71 mm (28 milésimas de pulgada) de profundidad y 2,8 mm (110 milésimas de pulgada) por cada lado. El ángulo de incidencia a entre la pared lateral y el fondo del molde era de 98 grados. La herramienta de producción se fabricó para tener un 100 % de las cavidades de molde con 8 aristas paralelas ascendiendo desde las superficies inferiores de las cavidades que intersecan con un lado del triángulo en un ángulo de 90°. Las aristas paralelas están separadas cada 0,277 mm, y la sección transversal de las aristas tenía una forma triangular con una altura de 0,0127 mm y un ángulo de 45 grados entre las caras de cada arista en la punta, como se describe en la solicitud de patente en trámite US-61/138268 con número de expediente del agente representante 64792US002 a la que se ha hecho referencia posteriormente.
El sol-gel se forzó al interior de las cavidades con una estación de revestimiento provista de matriz ranurada al vacío, de tal forma que todas las aberturas de la herramienta de producción quedaron completamente llenas. La herramienta de producción revestida con sol-gel se hizo pasar a través de un horno de aire de convección de 60 pies a 17,5 pies por minuto ajustado a 240 0F a una velocidad de aire de 5000 cfm en la sección de 20 pies de la zona 1, a 240 0F a una velocidad de aire de 4300 cfm en la sección de 20 pies de la zona 2 y a 225 0F a una velocidad de aire de 3500 cfm en la sección de 20 pies de la zona 3. Las partículas abrasivas conformadas precursoras se extrajeron de la herramienta de producción haciéndola pasar por una punta ultrasónica.
La quinta etapa del proceso implica retirar las partículas abrasivas conformadas precursoras de las cavidades del molde. Las partículas abrasivas conformadas precursoras se pueden extraer de las cavidades aplicando los siguientes procesos, solos o combinados, sobre el molde: gravedad, vibración, vibración ultrasónica, vacío, o aire comprimido para extraer las partículas de las cavidades del molde.
Las partículas abrasivas precursoras se pueden secar adicionalmente fuera del molde. Si la dispersión abrasiva se seca hasta el nivel deseado en el molde, esta etapa de secado adicional no es necesaria. Sin embargo, en algunos casos, puede ser rentable emplear esta etapa de secado adicional para minimizar el tiempo durante el que la dispersión abrasiva permanece en el molde. De forma típica, las partículas abrasivas conformadas precursoras se secarán de 10 a 480 minutos, o de 120 a 400 minutos, a una temperatura de 50 0C a 160 0C, o de 120 0C a 150 0C.
La sexta etapa del proceso implica calcinar las partículas abrasivas conformadas precursoras. Durante la calcinación se eliminan prácticamente todos los materiales volátiles, y los diferentes componentes que están presentes en la dispersión abrasiva se transforman en óxidos de metal. Las partículas abrasivas conformadas precursoras por lo general se calientan a una temperatura de 400 0C a 800 0C, y se mantienen en este intervalo de temperatura hasta que el agua libre y más del 90 % en peso de cualquier material volátil unido se eliminan. En una etapa opcional, se puede desear introducir el aditivo modificante mediante un proceso de impregnación. Se puede introducir una sal soluble en agua mediante impregnación en el interior de los poros de las partículas abrasivas conformadas precursoras calcinadas. Entonces las partículas abrasivas conformadas precursoras se pre-cuecen de nuevo. Esta opción se describe detalladamente en la solicitud de patente europea n.° 293.163.
La séptima etapa del proceso implica la sinterización de las partículas abrasivas conformadas precursoras calcinadas para formar partículas de alfa-alúmina. Antes de la sinterización, las partículas abrasivas conformadas precursoras calcinadas no están completamente compactadas y, por tanto, carecen de la dureza deseada para su uso como partículas abrasivas conformadas. La sinterización se lleva a cabo mediante el calentamiento de las partículas abrasivas conformadas precursoras calcinadas a una temperatura comprendida de desde 1.000 grados C a 1.650 grados C, y manteniéndolas en dicho intervalo de temperatura hasta que prácticamente toda la alfa-alúmina monohidratada (o equivalente) se haya convertido en alfa-alúmina y la porosidad se haya reducido a menos del 15 por ciento en volumen. El tiempo durante el cual las partículas abrasivas conformadas precursoras calcinadas deben estar expuestas a la temperatura de sinterización para conseguir este nivel de conversión depende de varios factores, pero normalmente será entre cinco segundos y 48 horas, de forma típica. En otra realización, la duración de la etapa de sinterización está comprendida entre un minuto y 90 minutos. Después de la sinterización, las partículas abrasivas conformadas con una pared lateral inclinada pueden tener una dureza Vickers de 10 GPa, 16 GPa, 18 GPa, 20 GPa, o superior.
Se pueden usar otras etapas para modificar el proceso descrito, tal como calentar rápidamente el material desde la temperatura de calcinación a la temperatura de sinterización, centrifugar la dispersión abrasiva para retirar el lodo, residuo, etc. Además, el proceso se puede modificar combinando dos o más de las etapas del proceso, si se desea. Las etapas del proceso convencionales que se han usado para modificar el proceso de la presente descripción se han descrito más detalladamente en US-4.314.827 de Leitheiser.
Además, las partículas abrasivas conformadas pueden tener ranuras en una de las caras, como se describe en la solicitud provisional copendiente US-61/138268 titulada “Shaped Abrasive Particles With Grooves” , con el número de expediente del agente representante 64792US002, y presentada el 17 de diciembre de 2008. Las ranuras se forman mediante una pluralidad de aristas situadas en la superficie inferior de la cavidad del molde, y se ha descubierto que esto facilita la extracción de las partículas abrasivas conformadas precursoras del molde. Se describe más información relativa a los métodos para fabricar partículas abrasivas conformadas en la solicitud de patente US-12/337.001 titulada “ Method Of Making Abrasive Shards, Shaped Abrasive Particles With An Opening, Or Dish-Shaped Abrasive Particles” , con el número de expediente 63512US002, y presentada el 17 de diciembre de 2008.
Ejemplos
Los objetos y ventajas de esta descripción se ilustran adicionalmente en los siguientes ejemplos no limitantes. Los materiales y cantidades particulares de los mismos indicados en dichos ejemplos, así como otras condiciones y detalles, no deben tomarse como una limitación indebida de esta descripción. Salvo que se indique lo contrario, todas las partes, porcentajes, relaciones, etc. en los Ejemplos y en el resto de la memoria descriptiva son en peso.
Ejemplo 1: Preparación de partículas abrasivas conformadas dopadas con REO
Se fabricó un gel de bohemita mediante el siguiente procedimiento: óxido de aluminio monohidratado en polvo (1.235 partes) que tiene la designación comercial “ DISPERAL” se dispersó con mezcla continua en una solución que contiene agua (3.026 partes) y ácido nítrico acuoso al 70 % (71 partes). El sol que resultó entonces se calentó a una temperatura de aproximadamente 125 °C en una secadora continua para producir una dispersión de sólidos del 44 %. El sol-gel se dispersó a mano y se hizo pasar manualmente al interior de la herramienta de producción que tenía cavidades de forma triangular con tamaños y dimensiones de 28 mils de profundidad y 110 mils por cada lado. El ángulo de incidencia a entre la pared lateral y la superficie inferior del molde era de 98 grados. La herramienta de producción se fabricó para tener un 50 % de las cavidades de molde con 8 aristas paralelas ascendiendo desde las superficies inferiores de las cavidades que intersecan con un lado del triángulo en un ángulo de 90° mientras que las cavidades restantes tenían una superficie del molde inferior lisa. Las aristas paralelas están separadas cada 0,277 mm, y la sección transversal de las aristas tenía una forma triangular con una altura de 0,0127 mm y un ángulo de 45 grados entre las caras de cada arista en la punta, como se describe en la solicitud de patente copendiente con el número de expediente del agente representante 64792US002 a la que se ha hecho referencia anteriormente.
Se cepilló un 1 % de dispersión de aceite de cacahuete en metanol sobre la herramienta de producción para obtener un recubrimiento de liberación de aceite de cacahuete de aproximadamente 46,5 microgramos/centímetro cuadrado (0,3 mg/in2). El sol-gel se hizo pasar de manera manual y uniforme al interior de las cavidades hasta que todas las aberturas de la herramienta quedaron completamente llenas. La herramienta de producción revestida con el sol-gel se introdujo en un horno de aire de convección ajustado a 55 0C y se secó durante una hora para producir partículas abrasivas conformadas precursoras mientras se encontraban en las cavidades de la herramienta de producción. Las partículas abrasivas conformadas precursoras se extrajeron de la herramienta de producción haciéndola pasar por una punta ultrasónica. Las partículas abrasivas conformadas precursoras se calcinaron a aproximadamente 650 0C y a continuación se saturaron con una solución mixta de nitrato con la siguiente concentración (indicada en óxidos): 1,0 % de MgO, 1,2 %de Y2O3, 4,0 %de La2O3 y 0,05 % de CoO. El exceso de solución de nitrato se eliminó, y las partículas abrasivas conformadas precursoras saturadas se dejaron secar, después de lo cual las partículas se volvieron a calcinar a 650 0C y se sinterizaron a aproximadamente 1400 °C. Tanto la calcinación como la sinterización se llevaron a cabo usando hornos de tubo giratorio. Se midió el factor de redondez promedio de las partículas abrasivas conformadas del Ejemplo 1 y se determinó que fue del 7,8 %.
Ejemplo 2: Preparación de partículas abrasivas conformadas dopadas con REO
Se fabricó una muestra de sol-gel de bohemita usando la siguiente receta: óxido de aluminio monohidratado en polvo (40 %) con la designación comercial “ DISPERAL” se dispersó mezclando con alto cizallamiento una solución acuosa de ácido nítrico al 1,85 % (60 %) durante 10 minutos. El sol-gel resultante se envejeció durante al menos 24 horas antes del revestimiento. El sol-gel se forzó al interior de la herramienta de producción que tiene cavidades del molde de forma triangular de 0,71 mm (28 milésimas de pulgada) de profundidad y 2,8 mm (110 milésimas de pulgada) por cada lado. El ángulo de incidencia a entre la pared lateral y el fondo del molde era de 98 grados. La herramienta de producción se fabricó para tener un 100 % de las cavidades de molde con 8 aristas paralelas ascendiendo desde las superficies inferiores de las cavidades que intersecan con un lado del triángulo en un ángulo de 90° Las aristas paralelas están separadas cada 0,277 mm, y la sección transversal de las aristas tenía una forma triangular con una altura de 0,0127 mm y un ángulo de 45° entre las caras de cada arista en la punta, como se describe en la solicitud de patente en trámite US-61/138268 con número de expediente del agente representante 64792US002 a la que se ha hecho referencia anteriormente.
El sol-gel se forzó al interior de las cavidades con una estación de revestimiento provista de matriz ranurada al vacío, de tal forma que todas las aberturas de la herramienta de producción quedaron completamente llenas. La herramienta de producción revestida con sol-gel se hizo pasar a través de un horno de aire de convección de 60 pies a 17,5 pies por minuto ajustado a 240 0F a una velocidad de aire de 5000 cfm en la sección de 20 pies de la zona 1, a 240 0F a una velocidad de aire de 4300 cfm en la sección de 20 pies de la zona 2 y a 225 0F a una velocidad de aire de 3500 cfm en la sección de 20 pies de la zona 3. Las partículas abrasivas conformadas precursoras se extrajeron de la herramienta de producción haciéndola pasar por una punta ultrasónica.
Las partículas abrasivas conformadas precursoras se calcinaron a aproximadamente 650 0C (15 minutos) y a continuación se saturaron con una solución mixta de nitrato con la siguiente concentración (indicada en óxidos): 1,0 % de MgO, 1,2 % de Y2O3, 4,0 % de La2O3 y 0,05 % de CoO. El exceso de solución de nitrato se eliminó, y las partículas abrasivas conformadas precursoras saturadas se dejaron secar, después de lo cual las partículas se volvieron a calcinar a 650 0C (15 minutos) y se sinterizaron a aproximadamente 1400 0C (5 minutos). Tanto la calcinación como la sinterización se llevaron a cabo usando hornos de tubo giratorio. Se midió el factor de redondez promedio de las partículas abrasivas conformadas del Ejemplo 2 y se determinó que fue del 9,5 %.
Ejemplo comparativo: Preparación de partículas conformadas según el estado de la técnica
Las partículas abrasivas conformadas se prepararon según los métodos descritos en las patentes US-5.201.916 de Berg; US-5.366.523 de Rowenhorst (Re 35.570); y US-5.984.988 de Berg. Las partículas abrasivas conformadas resultantes eran de tamaño y forma similares a las descritas anteriormente, pero los bordes y las esquinas no estaban tan bien definidos.
Preparación del artículo abrasivo
Después de fabricar las partículas abrasivas conformadas de la invención y comparativas, se prepararon bandas abrasivas revestidas sin fin de partículas abrasivas conformadas de cada método. Las partículas abrasivas conformadas se recubrieron electrostáticamente sobre un soporte de poliéster tratado como se describe en la patente US-6.843.815 (Thurber y col.), Tabla 1, Ejemplo de soporte 12, por procedimientos bien conocidos en la técnica, usando composiciones de resina para un revestimiento fenólico de inclusión, un revestimiento de apresto y un revestimiento superapresto, como se muestra en la Tabla 2, a las estructuras del artículo abrasivo que se muestran en la Tabla 3. La resina fenólica puede fabricarse, a partir de resina de fenol-formaldehído, resol, un condensado con una relación de 1,5:1 a 2,1:1 (fenol:formaldehído) catalizado por 1 % a 5 % de hidróxido de potasio acuoso. También se aplicó un revestimiento de superapresto sobre el revestimiento de apresto. La composición de apresto utilizada fue según el Ejemplo 26 de la patente US-5.441.549 (Helmin).
Tabla 2: Formulaciones para el revestimiento de inclusión, apresto y superapresto
Figure imgf000013_0001
Tabla 3: Ejemplos de abrasivos revestidos
Figure imgf000014_0001
Los ejemplos de abrasivos revestidos se sometieron al siguiente perfil de curado. Los revestimientos de inclusión y mineral se curaron a 90 0C durante 60 minutos y 102 0C durante 30 minutos. Las estructuras con apresto se curaron a 90 0C durante 60 minutos y 102 0C durante 12 horas. Las estructuras con superapresto se curaron a 90 0C durante 30 minutos y 110 0C durante 2 horas. Las bandas se convirtieron en bandas sin fin de 10,16 cm x 91,44 cm usando técnicas conocidas de empalme y se evaluaron con el ensayo de rectificado.
Ensayo de rectificado
Se realizó un ensayo de rectificado sobre las bandas de 10,16 cm x 91,44 cm. La pieza de trabajo era una barra de acero inoxidable 304 cuya superficie que desgastar medía 2,54 cm por 2,54 cm. Se utilizó una rueda dentada de contacto de 20,3 cm de diámetro, caucho con una durometría de 70, relación entre la superficie plana y la ranura 1:1. La banda se hizo girar a 2750 rpm. La pieza de trabajo se aplicó a la parte central de la banda con una fuerza normal de 5 libras por pulgada cuadrada (34 kPa). La prueba midió la pérdida de peso de la pieza de trabajo después de cada ciclo de rectificado de 15 segundos. La pieza de trabajo se enfrió a continuación y se volvió a probar. El ensayo concluyó cuando la velocidad de corte (gramos/15 segundos) fue del 15 % de la velocidad de corte inicial.
Los resultados del ensayo comparativo se muestran en la Figura 9, que demuestra claramente el corte total mejorado y la velocidad de corte de la banda de la invención de los Ejemplos 1 y 2 frente a la banda del estado de la técnica del ejemplo comparativo usando las partículas abrasivas conformadas de Rowenhorst.
Los expertos en la técnica pueden realizar otras modificaciones y variaciones a la presente descripción sin alejarse del alcance de la presente descripción, que se expone en las reivindicaciones adjuntas. Se entiende que los aspectos de las diferentes realizaciones se pueden intercambiar en todo o en parte, o combinarse con otros aspectos de las diferentes realizaciones. La memoria descriptiva anterior, proporcionada para permitir a un experto en la técnica llevar a la practica la descripción reivindicada, no debe tomarse como una limitación del alcance de la descripción, que está definida mediante las reivindicaciones.

Claims (14)

  1. REIVINDICACIONES
    i. Partículas (20) abrasivas conformadas que comprenden alfa-alúmina, que comprenden una primera cara (24) y una segunda cara (26) conectadas entre sí por una pared lateral (22), estando la primera cara (24) y la segunda cara (26) separadas por un espesor t que oscila entre 25 micrómetros y 500 micrómetros y teniendo una forma en sección transversal a lo largo de un eje longitudinal de las partículas (20) abrasivas conformadas, comprendiendo la forma de la sección transversal un plano transversal poligonal, en donde las partículas (20) abrasivas conformadas comprenden un factor de redondez promedio comprendido entre aproximadamente el 15 % y el 0 %,
    en donde el factor de redondez promedio se determina promediando los factores de redondez de 10 partículas (20) abrasivas conformadas individuales,
    en donde el factor de redondez expresado como porcentaje se calcula dividiendo el área ausente (68) por el área real (66) y multiplicando por 100, es decir,
    factor de redondez en %=área ausente/área real * 100,
    en donde el área real (66) representa el plano en sección transversal de un corte transversal situado lo más cerca posible del punto medio (60) del eje longitudinal (50) de la partícula (20) abrasiva conformada, en donde cada cara de las paredes laterales (22), primera cara (24) y segunda cara (26) del plano en sección transversal está limitada por una línea (62) trazada tangente a los dos puntos más altos ubicados en cualquier lugar a lo largo de esa cara, encerrando así un área máxima (64) que tiene forma poligonal, y en donde el área ausente (68) representa la cantidad de área presente debido a las esquinas redondeadas y bordes irregulares de la partícula (20) abrasiva conformada, en donde el área real (66) del plano en sección transversal se resta del área máxima (64) limitada por el polígono para determinar el área ausente (68), en donde el área real (66), el área máxima (64) y el área ausente (68) se determinan por la determinación del factor de redondez.
  2. 2. Las partículas (20) abrasivas conformadas de la reivindicación 1, en donde un perímetro de la primera cara (24) y la segunda cara (26) comprende una forma prácticamente triangular.
  3. 3. Las partículas (20) abrasivas conformadas de la reivindicación 1 o 2, en donde la forma en sección transversal comprende un rectángulo.
  4. 4. Las partículas (20) abrasivas conformadas de la reivindicación 1 o 2, en donde la forma en sección transversal comprende un trapezoide.
  5. 5. Las partículas (20) abrasivas conformadas según cualquiera de las reivindicaciones 1 a 4, un ángulo de incidencia a estando definido entre la segunda cara (26) y la pared lateral (22), en donde el ángulo de incidencia a es de entre aproximadamente 90° a aproximadamente 130°, preferiblemente entre aproximadamente 95° a aproximadamente 130°.
  6. 6. Las partículas (20) abrasivas conformadas de cualquiera de las reivindicaciones anteriores, que comprenden una relación dimensional volumétrica, y la relación dimensional volumétrica es superior a aproximadamente 1,15.
  7. 7. Las partículas (20) abrasivas conformadas de la reivindicación 2, que comprenden un radio de punta promedio y el radio de punta promedio es inferior a 75 micrómetros.
  8. 8. Las partículas (20) abrasivas conformadas de cualquiera de las reivindicaciones anteriores, en donde el factor de redondez promedio es de aproximadamente 12 % a aproximadamente 5 %.
  9. 9. Un artículo abrasivo seleccionado del grupo que consiste en artículos abrasivos unidos, artículos abrasivos revestidos, artículos abrasivos no tejidos y cepillos abrasivos, que comprenden las partículas (20) abrasivas conformadas de cualquiera de las reivindicaciones anteriores.
  10. 10. Un artículo (40) abrasivo revestido que comprende las partículas (20) abrasivas conformadas de una cualquiera de las reivindicaciones 1 a 8 y un revestimiento (44) de inclusión sobre una primera superficie principal de un soporte (42) y una mayoría de las partículas (20) abrasivas conformadas adheridas al recubrimiento (44) de inclusión por la pared lateral (22), formando las partículas (20) abrasivas conformadas una capa abrasiva, estando la capa abrasiva recubierta con un revestimiento (46) de apresto y en donde la capa abrasiva comprende al menos un 5 % en peso de las partículas (20) abrasivas conformadas.
  11. 11. El artículo (40) abrasivo revestido de la reivindicación 10, en donde una mayoría de las partículas (20) abrasivas conformadas están adheridas al revestimiento (44) de inclusión por la pared lateral (22), y tienen un ángulo de orientación p entre aproximadamente 50° y aproximadamente 85°.
  12. 12. El artículo (40) abrasivo revestido de la reivindicación 10 u 11, en donde la capa abrasiva es una capa abrasiva de revestimiento abierto y el porcentaje del área abierta en la capa abrasiva está entre aproximadamente el 40 % y aproximadamente el 70 %.
  13. 13. El artículo (40) abrasivo revestido de la reivindicación 12, en donde la capa abrasiva comprende el 100 % en peso de las partículas (20) abrasivas conformadas.
  14. 14. El artículo (40) abrasivo revestido de la reivindicación 12, en donde el ángulo de orientación p es de entre aproximadamente 70° y aproximadamente 85°.
ES10797517T 2009-06-22 2010-06-15 Partículas abrasivas conformadas con factor de redondez bajo Active ES2820425T3 (es)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US21916109P 2009-06-22 2009-06-22
US12/570,067 US10137556B2 (en) 2009-06-22 2009-09-30 Shaped abrasive particles with low roundness factor
PCT/US2010/038588 WO2011005425A2 (en) 2009-06-22 2010-06-15 Shaped abrasive particles with low roundness factor

Publications (1)

Publication Number Publication Date
ES2820425T3 true ES2820425T3 (es) 2021-04-21

Family

ID=43357110

Family Applications (2)

Application Number Title Priority Date Filing Date
ES10797517T Active ES2820425T3 (es) 2009-06-22 2010-06-15 Partículas abrasivas conformadas con factor de redondez bajo
ES19187213T Active ES2885274T3 (es) 2009-06-22 2010-06-15 Partículas abrasivas conformadas con factor de redondez bajo

Family Applications After (1)

Application Number Title Priority Date Filing Date
ES19187213T Active ES2885274T3 (es) 2009-06-22 2010-06-15 Partículas abrasivas conformadas con factor de redondez bajo

Country Status (11)

Country Link
US (1) US10137556B2 (es)
EP (4) EP3971257A1 (es)
JP (3) JP6288914B2 (es)
KR (1) KR101697387B1 (es)
CN (1) CN102459493B (es)
BR (1) BRPI1014333A2 (es)
CA (1) CA2765503C (es)
ES (2) ES2820425T3 (es)
PL (2) PL3591022T3 (es)
RU (1) RU2517526C2 (es)
WO (1) WO2011005425A2 (es)

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8123828B2 (en) * 2007-12-27 2012-02-28 3M Innovative Properties Company Method of making abrasive shards, shaped abrasive particles with an opening, or dish-shaped abrasive particles
KR101691240B1 (ko) 2008-12-17 2016-12-29 쓰리엠 이노베이티브 프로퍼티즈 컴파니 홈을 갖는 성형된 연마 입자
US8142531B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with a sloping sidewall
US8142891B2 (en) * 2008-12-17 2012-03-27 3M Innovative Properties Company Dish-shaped abrasive particles with a recessed surface
US9447311B2 (en) 2009-12-02 2016-09-20 3M Innovative Properties Company Dual tapered shaped abrasive particles
BR112012022084A2 (pt) * 2010-03-03 2016-06-14 3M Innovative Properties Co roda de abrasivo ligado
CN102858496B (zh) 2010-04-27 2016-04-27 3M创新有限公司 陶瓷成形磨粒及其制备方法以及包含陶瓷成形磨粒的磨具制品
TWI613285B (zh) 2010-09-03 2018-02-01 聖高拜磨料有限公司 粘結的磨料物品及形成方法
CN105713568B (zh) 2010-11-01 2018-07-03 3M创新有限公司 用于制备成形陶瓷磨粒的激光法、成形陶瓷磨粒以及磨料制品
EP2658680B1 (en) 2010-12-31 2020-12-09 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles comprising abrasive particles having particular shapes and methods of forming such articles
BR112013019401B1 (pt) * 2011-02-16 2021-09-28 3M Innovative Properties Company Artigos abrasivos revestidos
PL2697416T3 (pl) 2011-04-14 2017-09-29 3M Innovative Properties Company Artykuł ścierny z włókniny zawierający aglomeraty ukształtowanych ziaren ściernych wiązanych elastomerem
US8986409B2 (en) 2011-06-30 2015-03-24 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
EP2726248B1 (en) 2011-06-30 2019-06-19 Saint-Gobain Ceramics & Plastics, Inc. Liquid phase sintered silicon carbide abrasive particles
CA2841435A1 (en) 2011-07-12 2013-01-17 3M Innovative Properties Company Method of making ceramic shaped abrasive particles, sol-gel composition, and ceramic shaped abrasive particles
KR101951506B1 (ko) 2011-09-07 2019-02-22 쓰리엠 이노베이티브 프로퍼티즈 컴파니 공작물을 연마하는 방법
EP2567784B1 (en) 2011-09-08 2019-07-31 3M Innovative Properties Co. Bonded abrasive article
RU2600464C2 (ru) * 2011-09-07 2016-10-20 3М Инновейтив Пропертиз Компани Склеенное абразивное изделие
BR112014007089A2 (pt) 2011-09-26 2017-03-28 Saint-Gobain Ceram & Plastics Inc artigos abrasivos incluindo materiais de partículas abrasivas, abrasivos revestidos usando os materiais de partículas abrasivas e os métodos de formação
JP5903502B2 (ja) 2011-12-30 2016-04-13 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 成形研磨粒子を備える粒子材料
JP6033886B2 (ja) 2011-12-30 2016-11-30 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 成形研磨粒子および同粒子を形成する方法
RU2014130167A (ru) 2011-12-30 2016-02-27 Сэнт-Гобэйн Керамикс Энд Пластикс Инк. Получение формованных абразивных частиц
RU2602581C2 (ru) 2012-01-10 2016-11-20 Сэнт - Гобэйн Керамикс Энд Пластик,Инк. Абразивные частицы, имеющие сложные формы, и способы их формования
US8840696B2 (en) 2012-01-10 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
WO2013149209A1 (en) 2012-03-30 2013-10-03 Saint-Gobain Abrasives, Inc. Abrasive products having fibrillated fibers
EP2834040B1 (en) 2012-04-04 2021-04-21 3M Innovative Properties Company Abrasive particles, method of making abrasive particles, and abrasive articles
KR101813466B1 (ko) 2012-05-23 2017-12-29 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 형상화 연마입자들 및 이의 형성방법
KR20150023034A (ko) 2012-06-29 2015-03-04 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 특정 형상을 가지는 연마입자들 및 이러한 입자들 형성방법
KR101736085B1 (ko) * 2012-10-15 2017-05-16 생-고뱅 어브레이시브즈, 인코포레이티드 특정한 형태들을 가진 연마 입자들 및 이러한 입자들을 형성하는 방법들
WO2014070468A1 (en) 2012-10-31 2014-05-08 3M Innovative Properties Company Shaped abrasive particles, methods of making, and abrasive articles including the same
WO2014106280A1 (en) 2012-12-31 2014-07-03 Saint-Gobain Abrasives, Inc. Abrasive articles including a blend of abrasive grains and method of forming same
CN104994996B (zh) 2012-12-31 2017-12-05 圣戈班磨料磨具有限公司 粘结研磨制品和碾磨方法
US9074119B2 (en) 2012-12-31 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
WO2014106211A1 (en) * 2012-12-31 2014-07-03 Saint-Gobain Ceramics & Plastics, Inc. Abrasive blasting media and methods of forming and using same
US9102039B2 (en) 2012-12-31 2015-08-11 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of grinding
JP6064058B2 (ja) 2012-12-31 2017-01-18 サンーゴバン アブレイシブズ,インコーポレイティド 結合研磨物品および研削方法
MX2015011535A (es) * 2013-03-04 2016-02-05 3M Innovative Properties Co Articulo abrasivo no tejido que contiene particulas abrasivas conformadas.
CN105050770B (zh) 2013-03-12 2018-08-17 3M创新有限公司 粘结磨料制品
MX2015013831A (es) 2013-03-29 2016-03-01 Saint Gobain Abrasives Inc Particulas abrasivas con formas particulares y metodos para elaborar las particulas.
DE112014001102T5 (de) 2013-03-31 2015-11-19 Saint-Gobain Abrasifs Gebundener Schleifartikel und Schleifverfahren
TW201502263A (zh) 2013-06-28 2015-01-16 Saint Gobain Ceramics 包含成形研磨粒子之研磨物品
JP2016538149A (ja) 2013-09-30 2016-12-08 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 形状化研磨粒子及び形状化研磨粒子を形成する方法
EP3052271B1 (en) 2013-10-04 2021-04-21 3M Innovative Properties Company Bonded abrasive articles and methods
WO2015102992A1 (en) 2013-12-31 2015-07-09 Saint-Gobain Abrasives, Inc. Abrasive article including shaped abrasive particles
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
CA2945493C (en) 2014-04-14 2020-08-04 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
CN106457522B (zh) 2014-04-14 2020-03-24 圣戈本陶瓷及塑料股份有限公司 包括成形磨粒的研磨制品
US9902045B2 (en) 2014-05-30 2018-02-27 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
EP3677380A1 (en) 2014-12-23 2020-07-08 Saint-Gobain Ceramics and Plastics, Inc. Shaped abrasive particles and method of forming same
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
TWI634200B (zh) 2015-03-31 2018-09-01 聖高拜磨料有限公司 固定磨料物品及其形成方法
WO2016161157A1 (en) 2015-03-31 2016-10-06 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
DE102015108812A1 (de) 2015-06-03 2016-12-08 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Plättchenförmige, zufällig geformte, gesinterte Schleifpartikel sowie ein Verfahren zu ihrer Herstellung
CA3118239A1 (en) 2015-06-11 2016-12-15 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
PL3310532T3 (pl) 2015-06-19 2022-01-17 3M Innovative Properties Company Systemy i sposoby wytwarzania wyrobów ściernych
CN107848094B (zh) 2015-07-08 2020-09-11 3M创新有限公司 用于制造磨料制品的系统和方法
US10919126B2 (en) 2015-07-08 2021-02-16 3M Innovative Properties Company Systems and methods for making abrasive articles
KR102313436B1 (ko) 2016-05-10 2021-10-19 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 연마 입자들 및 그 형성 방법
SI3455321T1 (sl) 2016-05-10 2022-10-28 Saint-Gobain Ceramics & Plastics, Inc. Metode oblikovanja abrazivnih delcev
US11607776B2 (en) 2016-07-20 2023-03-21 3M Innovative Properties Company Shaped vitrified abrasive agglomerate, abrasive articles, and method of abrading
CN109563398A (zh) * 2016-08-01 2019-04-02 3M创新有限公司 具有尖锐顶端的成形磨料颗粒
US10988648B2 (en) 2016-09-21 2021-04-27 3M Innovative Properties Company Elongated abrasive particle with enhanced retention features
US11446787B2 (en) * 2016-09-27 2022-09-20 3M Innovative Properties Company Open coat abrasive article and method of abrading
US11230653B2 (en) 2016-09-29 2022-01-25 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11478899B2 (en) 2016-10-25 2022-10-25 3M Innovative Properties Company Shaped vitrified abrasive agglomerate with shaped abrasive particles, abrasive articles, and related methods
KR102427116B1 (ko) * 2016-10-25 2022-08-01 쓰리엠 이노베이티브 프로퍼티즈 캄파니 배향된 연마 입자를 포함하는 접합된 연마 용품, 및 그의 제조 방법
EP3558592A4 (en) 2016-12-21 2020-08-05 3M Innovative Properties Company SYSTEMS AND METHODS FOR MANUFACTURING ABRASIVE BODS
US10759024B2 (en) 2017-01-31 2020-09-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10563105B2 (en) 2017-01-31 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10865148B2 (en) 2017-06-21 2020-12-15 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US20190160630A1 (en) * 2017-11-30 2019-05-30 Saint-Gobain Abrasives, Inc. Abrasive articles and methods of forming same
WO2019125995A1 (en) 2017-12-18 2019-06-27 3M Innovative Properties Company Phenolic resin composition comprising polymerized ionic groups, abrasive articles and methods
EP3826805A1 (en) 2018-07-23 2021-06-02 3M Innovative Properties Company Articles including polyester backing and primer layer and related methods
US11485889B2 (en) 2019-04-15 2022-11-01 3M Innovative Properties Company Partially shaped abrasive particles, methods of manufacture and articles containing the same
US20220315820A1 (en) 2019-07-23 2022-10-06 3M Innovative Properties Company Shaped abrasive particles with sharp edges, methods of manufacturing and articles containing the same
CN114555296A (zh) * 2019-10-17 2022-05-27 3M创新有限公司 带涂层磨料制品及其制备方法
US20220396722A1 (en) 2019-10-23 2022-12-15 3M Innovative Properties Company Shaped abrasive particles with concave void within one of the plurality of edges
WO2021133901A1 (en) 2019-12-27 2021-07-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same
US20230061952A1 (en) 2020-01-31 2023-03-02 3M Innovative Properties Company Coated abrasive articles
EP4139088A1 (en) 2020-04-23 2023-03-01 3M Innovative Properties Company Shaped abrasive particles
EP4161732A1 (en) 2020-06-04 2023-04-12 3M Innovative Properties Company Shaped abrasive particles and methods of manufacture the same
WO2021245492A1 (en) 2020-06-04 2021-12-09 3M Innovative Properties Company Incomplete polygonal shaped abrasive particles, methods of manufacture and articles containing the same
EP4192650A1 (en) 2020-08-10 2023-06-14 3M Innovative Properties Company Abrasive system and method of using the same
WO2023209518A1 (en) 2022-04-26 2023-11-02 3M Innovative Properties Company Abrasive articles, methods of manufacture and use thereof

Family Cites Families (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA743715A (en) 1966-10-04 The Carborundum Company Manufacture of sintered abrasive grain of geometrical shape and controlled grit size
US1910444A (en) 1931-02-13 1933-05-23 Carborundum Co Process of making abrasive materials
GB539221A (en) 1939-11-27 1941-09-01 John Walker Chalmers Improvements in or relating to apparatus for feeding rod-shaped articles
GB564733A (en) 1941-06-09 1944-10-11 Behr Manning Corp Improved manufacture of abrasive coated sheet materials
US2978850A (en) 1958-05-01 1961-04-11 Dixon Sintaloy Inc Tumble finishing process
US3041156A (en) 1959-07-22 1962-06-26 Norton Co Phenolic resin bonded grinding wheels
US3079243A (en) 1959-10-19 1963-02-26 Norton Co Abrasive grain
GB986847A (en) 1962-02-07 1965-03-24 Charles Beck Rosenberg Brunswi Improvements in or relating to abrasives
US3481723A (en) * 1965-03-02 1969-12-02 Itt Abrasive grinding wheel
US3387957A (en) 1966-04-04 1968-06-11 Carborundum Co Microcrystalline sintered bauxite abrasive grain
US3536005A (en) 1967-10-12 1970-10-27 American Screen Process Equip Vacuum screen printing method
US3874856A (en) 1970-02-09 1975-04-01 Ducommun Inc Porous composite of abrasive particles in a pyrolytic carbon matrix and the method of making it
US3808747A (en) 1970-06-08 1974-05-07 Wheelabrator Corp Mechanical finishing and media therefor
US3909991A (en) 1970-09-22 1975-10-07 Norton Co Process for making sintered abrasive grains
US3859407A (en) 1972-05-15 1975-01-07 Corning Glass Works Method of manufacturing particles of uniform size and shape
US4261706A (en) 1972-05-15 1981-04-14 Corning Glass Works Method of manufacturing connected particles of uniform size and shape with a backing
US4028453A (en) 1975-10-20 1977-06-07 Lava Crucible Refractories Company Process for making refractory shapes
US4314827A (en) 1979-06-29 1982-02-09 Minnesota Mining And Manufacturing Company Non-fused aluminum oxide-based abrasive mineral
DE2935914A1 (de) 1979-09-06 1981-04-02 Kali-Chemie Ag, 3000 Hannover Verfahren zur herstellung von kugelfoermigen formkoerpern auf basis al(pfeil abwaerts)2(pfeil abwaerts)o(pfeil abwaerts)3(pfeil abwaerts) und/oder sio(pfeil abwaerts)2(pfeil abwaerts)
AT363797B (de) 1979-12-24 1981-08-25 Swarovski Tyrolit Schleif Schleifkoerper und verfahren zur herstellung desselben
US4393021A (en) 1981-06-09 1983-07-12 Vereinigte Schmirgel Und Maschinen-Fabriken Ag Method for the manufacture of granular grit for use as abrasives
US4548617A (en) 1982-08-20 1985-10-22 Tokyo Shibaura Denki Kabushiki Kaisha Abrasive and method for manufacturing the same
JPS606356A (ja) 1983-06-20 1985-01-14 Res Dev Corp Of Japan 微細短繊維焼結型研摩材
US4963012A (en) 1984-07-20 1990-10-16 The United States Of America As Represented By The United States Department Of Energy Passivation coating for flexible substrate mirrors
CA1254238A (en) 1985-04-30 1989-05-16 Alvin P. Gerk Process for durable sol-gel produced alumina-based ceramics, abrasive grain and abrasive products
US4799939A (en) 1987-02-26 1989-01-24 Minnesota Mining And Manufacturing Company Erodable agglomerates and abrasive products containing the same
AU604899B2 (en) 1987-05-27 1991-01-03 Minnesota Mining And Manufacturing Company Abrasive grits formed of ceramic, impregnation method of making the same and products made therewith
US5312789A (en) 1987-05-27 1994-05-17 Minnesota Mining And Manufacturing Company Abrasive grits formed of ceramic, impregnation method of making the same and products made therewith
US5185299A (en) 1987-06-05 1993-02-09 Minnesota Mining And Manufacturing Company Microcrystalline alumina-based ceramic articles
US4954462A (en) 1987-06-05 1990-09-04 Minnesota Mining And Manufacturing Company Microcrystalline alumina-based ceramic articles
US4848041A (en) 1987-11-23 1989-07-18 Minnesota Mining And Manufacturing Company Abrasive grains in the shape of platelets
CH675250A5 (es) 1988-06-17 1990-09-14 Lonza Ag
US5011508A (en) 1988-10-14 1991-04-30 Minnesota Mining And Manufacturing Company Shelling-resistant abrasive grain, a method of making the same, and abrasive products
YU32490A (en) 1989-03-13 1991-10-31 Lonza Ag Hydrophobic layered grinding particles
JPH0320317A (ja) 1989-03-14 1991-01-29 Mitsui Toatsu Chem Inc 狭い粒度分布を持ったアミノ系樹脂微粒子の製造方法
US5009676A (en) 1989-04-28 1991-04-23 Norton Company Sintered sol gel alumina abrasive filaments
US5035723A (en) 1989-04-28 1991-07-30 Norton Company Bonded abrasive products containing sintered sol gel alumina abrasive filaments
US5431967A (en) 1989-09-05 1995-07-11 Board Of Regents, The University Of Texas System Selective laser sintering using nanocomposite materials
US4997461A (en) 1989-09-11 1991-03-05 Norton Company Nitrified bonded sol gel sintered aluminous abrasive bodies
US5049166A (en) 1990-02-27 1991-09-17 Washington Mills Ceramics Corporation Light weight abrasive tumbling media and method of making same
US5085671A (en) 1990-05-02 1992-02-04 Minnesota Mining And Manufacturing Company Method of coating alumina particles with refractory material, abrasive particles made by the method and abrasive products containing the same
RU1787753C (ru) 1990-06-25 1993-01-15 Физико-технический институт АН БССР Способ обработки деталей
US5078753A (en) 1990-10-09 1992-01-07 Minnesota Mining And Manufacturing Company Coated abrasive containing erodable agglomerates
US5090968A (en) 1991-01-08 1992-02-25 Norton Company Process for the manufacture of filamentary abrasive particles
US5152917B1 (en) 1991-02-06 1998-01-13 Minnesota Mining & Mfg Structured abrasive article
US5120327A (en) 1991-03-05 1992-06-09 Diamant-Boart Stratabit (Usa) Inc. Cutting composite formed of cemented carbide substrate and diamond layer
US5286687A (en) 1991-08-09 1994-02-15 Agency Of Industrial Science And Technology Method for production of needlelike crystalline particles
US5282875A (en) 1992-03-18 1994-02-01 Cincinnati Milacron Inc. High density sol-gel alumina-based abrasive vitreous bonded grinding wheel
CZ283469B6 (cs) 1992-06-02 1998-04-15 Sumitomo Chemical Company, Limited Alfa-oxid hlinitý
JPH07509508A (ja) * 1992-07-23 1995-10-19 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー 成形研磨粒子およびその製造方法
RU95105160A (ru) 1992-07-23 1997-01-10 Миннесота Майнинг энд Мануфакчуринг Компани (US) Способ приготовления абразивной частицы, абразивные изделия и изделия с абразивным покрытием
US5304331A (en) 1992-07-23 1994-04-19 Minnesota Mining And Manufacturing Company Method and apparatus for extruding bingham plastic-type materials
US5201916A (en) 1992-07-23 1993-04-13 Minnesota Mining And Manufacturing Company Shaped abrasive particles and method of making same
US5366523A (en) 1992-07-23 1994-11-22 Minnesota Mining And Manufacturing Company Abrasive article containing shaped abrasive particles
US5213591A (en) 1992-07-28 1993-05-25 Ahmet Celikkaya Abrasive grain, method of making same and abrasive products
US5312791A (en) 1992-08-21 1994-05-17 Saint Gobain/Norton Industrial Ceramics Corp. Process for the preparation of ceramic flakes, fibers, and grains from ceramic sols
KR950703625A (ko) 1992-09-25 1995-09-20 테릴 켄트 퀄리 희토류 산화물을 포함하는 연마 입자(abrasive grain including rare earth oxide therein)
JP3560341B2 (ja) 1992-09-25 2004-09-02 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー アルミナおよびジルコニアを含む砥粒
US5435816A (en) 1993-01-14 1995-07-25 Minnesota Mining And Manufacturing Company Method of making an abrasive article
CA2115889A1 (en) 1993-03-18 1994-09-19 David E. Broberg Coated abrasive article having diluent particles and shaped abrasive particles
US5441549A (en) 1993-04-19 1995-08-15 Minnesota Mining And Manufacturing Company Abrasive articles comprising a grinding aid dispersed in a polymeric blend binder
US5549962A (en) 1993-06-30 1996-08-27 Minnesota Mining And Manufacturing Company Precisely shaped particles and method of making the same
DE69419764T2 (de) 1993-09-13 1999-12-23 Minnesota Mining & Mfg Schleifartikel, verfahren zur herstellung desselben, verfahren zur verwendung desselben zum endbearbeiten, und herstellungswerkzeug
US5454844A (en) 1993-10-29 1995-10-03 Minnesota Mining And Manufacturing Company Abrasive article, a process of making same, and a method of using same to finish a workpiece surface
DE4339031C1 (de) 1993-11-15 1995-01-12 Treibacher Chemische Werke Ag Verfahren und Vorrichtung zur Herstellung eines Schleifmittels auf Basis Korund
US5409645A (en) 1993-12-20 1995-04-25 Saint Gobain/Norton Industrial Ceramics Corp. Molding shaped articles
KR970700745A (ko) 1993-12-28 1997-02-12 테릴 켄트 퀄리 알파 알루미나계 연마 입자(alpha alumina-based abrasive grain)
WO1995018192A1 (en) 1993-12-28 1995-07-06 Minnesota Mining And Manufacturing Company Alpha alumina-based abrasive grain having an as sintered outer surface
US5443603A (en) 1994-01-11 1995-08-22 Washington Mills Ceramics Corporation Light weight ceramic abrasive media
US5576214A (en) * 1994-09-14 1996-11-19 Johnson & Johnson Clinical Diagnostics, Inc. Method of supplying disposable tips to an aspirator
US6054093A (en) 1994-10-19 2000-04-25 Saint Gobain-Norton Industrial Ceramics Corporation Screen printing shaped articles
US5725162A (en) 1995-04-05 1998-03-10 Saint Gobain/Norton Industrial Ceramics Corporation Firing sol-gel alumina particles
US5759213A (en) 1995-04-24 1998-06-02 University Of Florida Method for controlling the size and morphology of alpha-alumina particles
US5645619A (en) 1995-06-20 1997-07-08 Minnesota Mining And Manufacturing Company Method of making alpha alumina-based abrasive grain containing silica and iron oxide
WO1997006926A1 (en) 1995-08-11 1997-02-27 Minnesota Mining And Manufacturing Company Method of making a coated abrasive article having multiple abrasive natures
US5576409B1 (en) 1995-08-25 1998-09-22 Ici Plc Internal mold release compositions
US5975987A (en) 1995-10-05 1999-11-02 3M Innovative Properties Company Method and apparatus for knurling a workpiece, method of molding an article with such workpiece, and such molded article
US5667542A (en) 1996-05-08 1997-09-16 Minnesota Mining And Manufacturing Company Antiloading components for abrasive articles
US6080215A (en) 1996-08-12 2000-06-27 3M Innovative Properties Company Abrasive article and method of making such article
US6475253B2 (en) 1996-09-11 2002-11-05 3M Innovative Properties Company Abrasive article and method of making
US5893935A (en) 1997-01-09 1999-04-13 Minnesota Mining And Manufacturing Company Method for making abrasive grain using impregnation, and abrasive articles
US5779743A (en) 1996-09-18 1998-07-14 Minnesota Mining And Manufacturing Company Method for making abrasive grain and abrasive articles
US5776214A (en) 1996-09-18 1998-07-07 Minnesota Mining And Manufacturing Company Method for making abrasive grain and abrasive articles
US6206942B1 (en) 1997-01-09 2001-03-27 Minnesota Mining & Manufacturing Company Method for making abrasive grain using impregnation, and abrasive articles
US6312324B1 (en) 1996-09-30 2001-11-06 Osaka Diamond Industrial Co. Superabrasive tool and method of manufacturing the same
US5902647A (en) 1996-12-03 1999-05-11 General Electric Company Method for protecting passage holes in a metal-based substrate from becoming obstructed, and related compositions
US6524681B1 (en) 1997-04-08 2003-02-25 3M Innovative Properties Company Patterned surface friction materials, clutch plate members and methods of making and using same
US5885311A (en) 1997-06-05 1999-03-23 Norton Company Abrasive products
US5908477A (en) 1997-06-24 1999-06-01 Minnesota Mining & Manufacturing Company Abrasive articles including an antiloading composition
US5946991A (en) 1997-09-03 1999-09-07 3M Innovative Properties Company Method for knurling a workpiece
JPH11138024A (ja) * 1997-11-13 1999-05-25 Shizuoka Seiki Co Ltd 精穀機
US6696258B1 (en) 1998-01-20 2004-02-24 Drexel University Mesoporous materials and methods of making the same
AU7701498A (en) 1998-01-28 1999-08-16 Minnesota Mining And Manufacturing Company Method for making abrasive grain using impregnation and abrasive articles
US6309775B1 (en) 1998-02-12 2001-10-30 Duracell Inc. Prismatic electrochemical cell
US6080216A (en) 1998-04-22 2000-06-27 3M Innovative Properties Company Layered alumina-based abrasive grit, abrasive products, and methods
US6228134B1 (en) 1998-04-22 2001-05-08 3M Innovative Properties Company Extruded alumina-based abrasive grit, abrasive products, and methods
US6019805A (en) 1998-05-01 2000-02-01 Norton Company Abrasive filaments in coated abrasives
US6053956A (en) 1998-05-19 2000-04-25 3M Innovative Properties Company Method for making abrasive grain using impregnation and abrasive articles
US6261682B1 (en) 1998-06-30 2001-07-17 3M Innovative Properties Abrasive articles including an antiloading composition
US6319108B1 (en) 1999-07-09 2001-11-20 3M Innovative Properties Company Metal bond abrasive article comprising porous ceramic abrasive composites and method of using same to abrade a workpiece
FR2797638B1 (fr) 1999-08-20 2001-09-21 Pem Abrasifs Refractaires Grains abrasifs pour meules, a capacite d'ancrage amelioree
US6287353B1 (en) 1999-09-28 2001-09-11 3M Innovative Properties Company Abrasive grain, abrasive articles, and methods of making and using the same
US6277161B1 (en) 1999-09-28 2001-08-21 3M Innovative Properties Company Abrasive grain, abrasive articles, and methods of making and using the same
US6596041B2 (en) 2000-02-02 2003-07-22 3M Innovative Properties Company Fused AL2O3-MgO-rare earth oxide eutectic abrasive particles, abrasive articles, and methods of making and using the same
EP1148028A3 (en) 2000-04-17 2004-04-14 Ykk Corporation Flake-like alpha-alumina particles and method for producing the same
BR0110423A (pt) 2000-05-09 2003-02-04 3M Innovative Properties Co Artigo abrasivo tridimensional conformado, método para produzir o mesmo, e, método para refinar uma superfìcie de peça de trabalho
JP3563017B2 (ja) 2000-07-19 2004-09-08 ロデール・ニッタ株式会社 研磨組成物、研磨組成物の製造方法及びポリシング方法
US6776699B2 (en) 2000-08-14 2004-08-17 3M Innovative Properties Company Abrasive pad for CMP
EP1332194B1 (en) 2000-10-06 2007-01-03 3M Innovative Properties Company Ceramic aggregate particles
US20020090901A1 (en) 2000-11-03 2002-07-11 3M Innovative Properties Company Flexible abrasive product and method of making and using the same
US8545583B2 (en) * 2000-11-17 2013-10-01 Wayne O. Duescher Method of forming a flexible abrasive sheet article
US7632434B2 (en) 2000-11-17 2009-12-15 Wayne O. Duescher Abrasive agglomerate coated raised island articles
US8062098B2 (en) 2000-11-17 2011-11-22 Duescher Wayne O High speed flat lapping platen
US20030022783A1 (en) 2001-07-30 2003-01-30 Dichiara Robert A. Oxide based ceramic matrix composites
BR0211580A (pt) 2001-08-02 2004-07-13 3M Innovative Properties Co Métodos para a fabricação de material amorfo, de cerâmica compreendendo vidro, de um artigo compreendendo vidro, de vidro-cerâmica, de um artigo de vidro-cerâmica e de partìculas abrasivas
JP2003049158A (ja) 2001-08-09 2003-02-21 Hitachi Maxell Ltd 研磨粒子および研磨体
WO2003014251A1 (en) 2001-08-09 2003-02-20 Hitachi Maxell, Ltd. Non-magnetic particles having a plate shape and method for production thereof, abrasive material, polishing article and abrasive fluid comprising such particles
NL1018906C2 (nl) 2001-09-07 2003-03-11 Jense Systemen B V Laser scanner.
US6593699B2 (en) 2001-11-07 2003-07-15 Axcelis Technologies, Inc. Method for molding a polymer surface that reduces particle generation and surface adhesion forces while maintaining a high heat transfer coefficient
US6706319B2 (en) 2001-12-05 2004-03-16 Siemens Westinghouse Power Corporation Mixed powder deposition of components for wear, erosion and abrasion resistant applications
FR2848889B1 (fr) 2002-12-23 2005-10-21 Pem Abrasifs Refractaires Grains abrasifs a base d'oxynitrure d'aluminium et de zirconium
US7811496B2 (en) 2003-02-05 2010-10-12 3M Innovative Properties Company Methods of making ceramic particles
US6843815B1 (en) 2003-09-04 2005-01-18 3M Innovative Properties Company Coated abrasive articles and method of abrading
US20050064805A1 (en) 2003-09-23 2005-03-24 3M Innovative Properties Company Structured abrasive article
US7300479B2 (en) 2003-09-23 2007-11-27 3M Innovative Properties Company Compositions for abrasive articles
US20050060941A1 (en) 2003-09-23 2005-03-24 3M Innovative Properties Company Abrasive article and methods of making the same
US20050132655A1 (en) 2003-12-18 2005-06-23 3M Innovative Properties Company Method of making abrasive particles
US7297402B2 (en) 2004-04-15 2007-11-20 Shell Oil Company Shaped particle having an asymmetrical cross sectional geometry
JP2006192540A (ja) 2005-01-14 2006-07-27 Tmp Co Ltd 液晶カラーフィルター用研磨フィルム
US7524345B2 (en) 2005-02-22 2009-04-28 Saint-Gobain Abrasives, Inc. Rapid tooling system and methods for manufacturing abrasive articles
KR100619248B1 (ko) 2005-03-25 2006-09-01 한국화학연구원 판상 알파알루미나 결정체 및 이의 제조방법
US20070020457A1 (en) 2005-07-21 2007-01-25 3M Innovative Properties Company Composite particle comprising an abrasive grit
US7556558B2 (en) * 2005-09-27 2009-07-07 3M Innovative Properties Company Shape controlled abrasive article and method
US7338355B2 (en) * 2006-06-13 2008-03-04 3M Innovative Properties Company Abrasive article and methods of making and using the same
US7373887B2 (en) 2006-07-01 2008-05-20 Jason Stewart Jackson Expanding projectile
US20080236635A1 (en) 2006-07-31 2008-10-02 Maximilian Rosenzweig Steam mop
PT2436747E (pt) 2007-01-23 2014-09-04 Saint Gobain Abrasives Inc Produtos abrasivos revestidos contendo agregados
WO2009085841A2 (en) 2007-12-27 2009-07-09 3M Innovative Properties Company Shaped, fractured abrasive particle, abrasive article using same and method of making
US8142891B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Dish-shaped abrasive particles with a recessed surface

Also Published As

Publication number Publication date
EP3591022A1 (en) 2020-01-08
RU2517526C2 (ru) 2014-05-27
JP2019214120A (ja) 2019-12-19
EP3971257A1 (en) 2022-03-23
JP6568179B2 (ja) 2019-08-28
PL2445982T3 (pl) 2021-01-11
US20100319269A1 (en) 2010-12-23
BRPI1014333A2 (pt) 2016-04-05
EP2445982A2 (en) 2012-05-02
WO2011005425A2 (en) 2011-01-13
CA2765503A1 (en) 2011-01-13
WO2011005425A3 (en) 2011-04-28
KR20120044983A (ko) 2012-05-08
CN102459493B (zh) 2014-07-16
ES2885274T3 (es) 2021-12-13
EP2445982B1 (en) 2020-07-15
US10137556B2 (en) 2018-11-27
JP2012530615A (ja) 2012-12-06
EP2445982A4 (en) 2015-10-07
JP2018065245A (ja) 2018-04-26
EP4155363A1 (en) 2023-03-29
EP3591022B1 (en) 2021-07-21
JP6288914B2 (ja) 2018-03-07
CA2765503C (en) 2017-11-28
CN102459493A (zh) 2012-05-16
RU2011150616A (ru) 2013-07-27
KR101697387B1 (ko) 2017-01-17
PL3591022T3 (pl) 2021-11-29

Similar Documents

Publication Publication Date Title
ES2820425T3 (es) Partículas abrasivas conformadas con factor de redondez bajo
ES2784187T3 (es) Partículas abrasivas conformadas con una pared lateral inclinada
ES2820559T3 (es) Partículas abrasivas con forma de plato con una superficie rebajada
US20190092991A1 (en) Shaped abrasive particles with low roundness factor
KR101863969B1 (ko) 이중 테이퍼진 성형된 연마 입자
KR101879884B1 (ko) 교차 플레이트 성형된 연마 입자
KR101800900B1 (ko) 개구를 갖는 성형된 연마 입자