ES2726228B2 - Disipador de Calor Electro-Hidro-Dinámico - Google Patents

Disipador de Calor Electro-Hidro-Dinámico Download PDF

Info

Publication number
ES2726228B2
ES2726228B2 ES201830328A ES201830328A ES2726228B2 ES 2726228 B2 ES2726228 B2 ES 2726228B2 ES 201830328 A ES201830328 A ES 201830328A ES 201830328 A ES201830328 A ES 201830328A ES 2726228 B2 ES2726228 B2 ES 2726228B2
Authority
ES
Spain
Prior art keywords
heat sink
electro
hydro
electrode
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES201830328A
Other languages
English (en)
Other versions
ES2726228A1 (es
Inventor
Martinez Hector Puago
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cedrion Consultoria Tecnica E Ingenieria Sl
Original Assignee
Cedrion Consultoria Tecnica E Ingenieria Sl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cedrion Consultoria Tecnica E Ingenieria Sl filed Critical Cedrion Consultoria Tecnica E Ingenieria Sl
Priority to ES201830328A priority Critical patent/ES2726228B2/es
Priority to PCT/ES2019/070214 priority patent/WO2019193225A1/es
Priority to EP19781659.8A priority patent/EP3780091A4/en
Priority to US17/044,964 priority patent/US20210164704A1/en
Publication of ES2726228A1 publication Critical patent/ES2726228A1/es
Application granted granted Critical
Publication of ES2726228B2 publication Critical patent/ES2726228B2/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

DESCRIPCIÓN
DISIPADOR DE CALOR ELECTRO-HIDRO-DINÁMICO
Sector de la técnica
La presente invención está relacionada con la refrigeración de componentes de escala reducida. La invención propone un disipador de calor que permite la aceleración de unos iones bajo la acción de un campo eléctrico para producir el movimiento de un fluido con el objetivo de disipar calor al ambiente. La invención es aplicable al control térmico de gran variedad de componentes o equipos, siendo especialmente adecuado para el ámbito de la electrónica.
Estado de la técnica
Son conocidos los dispositivos EHD que emplean la tecnología Electro-Hidro-Dinámica produciendo un efecto corona que permite la ionización de un fluido que rodea a un conductor cargado. Este tipo de dispositivos son empleados principalmente como acondicionadores de fluidos en diversas industrias, típicamente como precipitadores.
Los dispositivos EHD ofrecen ventajas dada la reducción de sus dimensiones, su bajo peso y consumo eléctrico, así como la reducción de ruido y vibraciones. Estas características hacen que estén siendo empelados en aplicaciones de refrigeración de componentes de escala reducida en sustitución de los disipadores de calor o los ventiladores convencionales.
Los dispositivos EHD empleados actualmente en refrigeración aprovechan el efecto corona para direccionar una corriente de aire hacia un elemento de disipación de calor provisto de aletas dispuesto aguas abajo del dispositivo EHD, de manera que el dispositivo EHD se emplea para producir un movimiento del aire en el interior del componente que se pretende refrigerar y las aletas del disipador de calor son las encargadas de recibir el calor y disiparlo. Los dispositivos EHD empleados en refrigeración son convencionalmente conocidos como bombas EHD ya que su función es la impulsión del aire, siendo el disipador el que realiza la función de disipación. Véase por ejemplo el documento US2012314334A1.
Existen además diversos estudios académicos que vislumbran dispositivos de muy diverso diseño como queda reflejado en el documento “Recent advances in electrohydrodynamic pumps operated by ionic winds: a review” publicado en 2017 por Michael J Johnsosn y David B Go.
Al emplearse disipadores de aletas se aumentan las dimensiones del equipamiento necesario para la refrigeración, lo cual resulta especialmente contraproducente en componentes de escala reducida, como por ejemplo los empleados en el campo de la electrónica. Además los disipadores de calor convencionales provistos de aletas que generan los mismos problemas del ámbito de la mecánica de fluidos, como el efecto de la capa límite, o la trasferencia de calor, o la distribución de la temperatura.
Se hace por tanto necesaria una solución que permita emplear la tecnología EHD en refrigeración sin la necesidad de emplear disipadores de calor provistos de aletas, con lo que se consigan reducir las dimensiones del elemento disipador para mejorar su integración en el componente que se pretende refrigerar.
Objeto de la invención
La invención se refiere a un disipador de calor electro-hidro-dinámico “EHD” de dimensiones reducidas que genera el movimiento de un fluido por efecto corona aumentando la transferencia de calor con respecto a las soluciones convencionales, mejorando así la refrigeración del componente en donde se disponga el disipador EHD.
El disipador de calor electro-hidro-dinámico comprende:
- un electrodo base que recibe calor de una fuente de calor a disipar, el electrodo base teniendo una forma convergente con una cavidad en la que en uso está dispuesto un fluido, y
- un electrodo corona que está dispuesto en la cavidad del electrodo base, estando el electrodo corona conectado a una fuente de alimentación eléctrica para ionizar el fluido del electrodo base y generar un viento iónico desde el electrodo de corona hacia el electrodo base, tal que se genera una corriente laminar del fluido para la evacuación del calor al exterior de la cavidad.
De esta manera se obtiene un disipador de calor que en un único dispositivo integra las funciones de generación de la corriente laminar de fluido y la función de disipación de calor, evitando tener que emplear un disipador de calor de aletas como en las soluciones del estado de la técnica.
Preferentemente el electrodo corona está separado del electrodo base una distancia mínima de entre 1 y 5 mm para permitir una adecuada ionización del fluido.
La cavidad del electrodo base tiene un fondo y unas paredes laterales dispuestas en continuidad del fondo.
Preferentemente las paredes laterales están separadas entre sí una distancia que es al menos 5 veces la distancia mínima de separación del electrodo corona del electrodo base.
Según un ejemplo de realización preferente de la invención la cavidad tiene una forma de "U” con unos bordes arqueados en la unión del fondo con las paredes laterales.
El fluido de la cavidad del electrodo base es un fluido dieléctrico, tal como por ejemplo agua o aire.
En caso de emplearse aire a presión atmosférica como fluido, el electrodo corona se alimenta eléctricamente entre un valor mínimo comprendido entre 500-2000 voltios y un valor máximo comprendido entre 3000-7000 voltios. De esta manera se consigue una alimentación eléctrica suficiente para garantizar la ionización y que a su vez no genere arcos eléctricos. En tal caso el electrodo de corona tiene una punta con un radio de entre 5 y 100 micras.
Preferentemente el electrodo corona tiene una forma alargada que se extiende de forma sustancialmente paralela al fondo de la cavidad del electrodo base.
Según otro ejemplo de realización de la invención el disipador de calor adicionalmente comprende un canal dispuesto entre las paredes laterales y electrodo de corona. Preferentemente el canal está formado por dos paredes dispuestas a ambos lados del electrodo corona que se extienden en una dirección perpendicular al fondo de la cavidad.
Según otro ejemplo de realización de la invención el electrodo base tiene dos o más cavidades, en donde en cada una de las cavidades se dispone un sólo electrodo de corona.
Descripción de las figuras
La figura 1 muestra una vista en perspectiva de un primer ejemplo de realización del disipador de calor electro-hidro-dinámico EHD de la invención.
La figura 2 muestra una vista frontal del disipador de la figura 1 en donde se observa el viento iónico generado entre los electrodos del disparador y la corriente laminar generada para la evacuación del calor fuera de la cavidad.
La figura 3 muestra una vista esquemática de la alimentación eléctrica del disipador de calor de las figuras anteriores.
La figura 4 muestra una vista de un segundo ejemplo de realización del disipador de calor electro-hidro-dinámico EHD de la invención.
La figura 5 muestra un ejemplo con diferentes formas de la cavidad del electrodo base.
La figura 6 muestra un ejemplo con diferentes formas del electrodo de corona que se dispone en la cavidad del electrodo base.
Descripción detallada de la invención
En las figuras 1 a 3 se muestra un disipador de calor electro-hidro-dinámico "EHD” de acuerdo a un primer ejemplo de realización de la invención. El disipador de calor EHD está previsto para disponerse en un componente o equipo que tiene una fuente que genera un calor que es necesario disipar, tal como por ejemplo un componente o equipo electrónico.
El disipador de calor EHD comprende un electrodo base (10) y un electrodo corona (20).
Los electrodos (10, 20) están fabricados en un material solido eléctricamente conductor. La selección del tipo de material dependerá de los requerimientos para la disipación de calor del componente o equipo en donde se disponga el disipador.
El electrodo base (10) tiene una cara exterior que está expuesta a la fuente de calor y una cara interior, opuesta a la cara exterior, en donde está dispuesta la cavidad (11) que contiene el fluido.
La cavidad (11) tiene un fondo (12) y unas paredes laterales (13) dispuestas en continuidad del fondo (12).
El electrodo base (10) tiene una forma convergente con una cavidad (11) en la que en uso está dispuesto un fluido, mientras que en dicha cavidad (11) está dispuesto el electrodo corona (20). El electrodo corona (20) está conectado a una fuente de alimentación eléctrica (F.A) mientras que el electrodo base (10) preferentemente está conectado a masa.
Con esta disposición el electrodo base (10) recibe el calor a disipar, mientras que en uso cuando el electrodo corona (20) es alimentado eléctricamente se produce un efecto corona entre el electrodo corona (20) y el electrodo base (10). El campo eléctrico generado entre los electrodos (10, 20) produce la ionización del fluido de la cavidad (11), produciendo un efecto electro-hidro-dinámico y con ello un viento iónico (w) desde el electrodo corona (20) hacia el electrodo base (10). El viento iónico (w) genera una corriente laminar del fluido que absorbe el calor del electrodo base (10) y que provoca la evacuación del calor hacia el exterior de la cavidad (11). La corriente laminar del fluido es generada por el impacto de los iones en movimiento con las partículas neutras del fluido.
En la figura 2 se ilustra el funcionamiento del disipador de calor, en donde las flechas a trazo discontinuo representan el viento iónico (w), las flechas a trazo continuo representan la corriente laminar para la evacuación del calor, y las flechas de mayor tamaño representan el calor que recibe el electrodo base (10) proveniente de la fuente de calor.
El electrodo corona (20) está separado del electrodo base (10) una distancia mínima (G), tal que para una diferencia de potencial dado por efecto corona el campo eléctrico generado alrededor del electrodo corona (20) sea suficiente para ionizar el fluido circundante permaneciendo en régimen de descarga corona y no en régimen de arco eléctrico.
Preferentemente la distancia mínima (G) en la que está separado el electrodo corona (20) del electrodo base (10) es de entre 1 y 5 mm.
Como se observa en la figura 3 la distancia mínima (G) se establece como la mínima distancia existente entre el electrodo corona (20) y el fondo (12) de la cavidad (11) del electrodo base (10).
Preferentemente las paredes laterales (13) de la cavidad (11) están separadas entre sí una distancia que es al menos 5 veces la distancia mínima (G). Esta separación permite que el viento iónico (w) tenga una única componente principalmente vertical, es decir, que el flujo de iones se dirija del electro corona (20) hacia el fondo (12) de la cavidad (11) del electrodo base (10), que es la zona en donde se concentra la mayoría del calor a disipar, puesto que es la cara exterior del electrodo base (10) que está directamente expuesta la calor.
En las figuras 1 a 4 se muestra una cavidad (11) que tiene una forma de "U” con unos bordes arqueados en la unión del fondo (12) con las paredes laterales (13). En la figura 5 se muestran otros ejemplos de realización del fondo (12) y las paredes laterales (13) de la cavidad (11). Así por ejemplo la cavidad (11) puede tener forma de "U” con un ángulo recto entre el fondo (12) y las paredes laterales (13), puede tener forma de "U” con un ángulo obtuso entre el fondo (12) y las paredes laterales (13), o la cavidad (11) puede tener una forma circular. En cualquier caso la distancia entre las paredes laterales (13), el ángulo de éstas (13) respecto del fondo (12), o la forma de la cavidad (11) no resultan esenciales, resultado únicamente necesario para la invención que el electrodo base (10) tenga la cavidad (11) y que se genere el viento iónico (w) desde el electrodo corona (20) hacia el electrodo base (10).
La forma circular de la cavidad (11) tiene menor superficie de contacto expuesta al flujo de calor que las formas en "U” de la figura 5, sin embargo no presenta aristas en la transición entre las paredes laterales (13) y el fondo (12), siendo esta transición continua para el caso de la cavidad con forma circular, por lo que se evita que se creen remansos o choques bruscos que frenen el flujo y que por tanto puedan mermar la refrigeración. Es por ello que la forma preferente de la cavidad (11) es la mostrada en las figuras 1 a 4 con los bordes arqueados en la unión del fondo (12) con las paredes laterales (13).
El fluido de la cavidad (11) es un fluido dieléctrico que pueda ser ionizado por el efecto corona, es decir un fluido no conductor. Por ejemplo el fluido puede ser un gas o un líquido, tal como aire o agua. También se pueden emplear refrigerante industrial como fluido.
El electrodo corona (20) está conectado al terminal positivo de la fuente de alimentación eléctrica (F.A), pudiendo ser la naturaleza de la señal eléctrica de cualquier tipo conocido, tal como corriente continua, alterna, o pulsada.
Las condiciones de alimentación eléctrica del electrodo corona (20) varían en función del fluido empleado. Por ejemplo, empleando como fluido aire a presión atmosférica, el electrodo corona (20) está alimentado eléctricamente entre un valor mínimo comprendido entre 500-2000 voltios, suficiente para garantizar que se produzca la ionización del aire, y un valor máximo comprendido entre 3000-7000 voltios, garantizando que no es produzcan arcos eléctricos. En tales condiciones de alimentación eléctrica, el electrodo corona (20) tiene una punta con un radio de entre 5 y 100 micras.
El electrodo corona (20) tiene una forma alargada que se extiende de forma sustancialmente paralela al fondo (12) de la cavidad (11) del electrodo base (10). A parte de esta configuración alargada en la figura 6 se muestran diferentes geometrías que puede adaptar el electrodo corona (20).
En la figura 4 se muestra un disipador de calor de acuerdo a un segundo ejemplo de realización de la invención. El segundo ejemplo de realización es idéntico al primer ejemplo de realización descrito anteriormente en las figuras 1 a 3 y únicamente difiere en que el disipador de calor adicionalmente comprende unos medios para la canalización del viento iónico.
Los medios para la canalización del viento iónico (w) comprenden un canal (30) dispuesto en la cavidad (11) del electrodo base (10) entre las paredes laterales (13) de la cavidad (11) y el electrodo corona (20).
El canal (30) está realizado en un material eléctricamente aislante para que no altere el campo eléctrico que se establece entre los dos electrodos (10,20).
El canal (30) está formado por dos paredes dispuestas a ambos lados del electrodo corona (20) que se extienden en una dirección perpendicular al fondo (12) de la cavidad (11). El canal (30) restringe el movimiento del flujo de iones del fluido en sentido perpendicular al fondo (12), de manera que se crea un circuito de fluido en donde el fluido frio pasa entre las paredes del canal (30) para dirigiese al fondo (12) de la cavidad (11), y del fondo es evacuado hacia el exterior de la cavidad (11) recorriendo las paredes laterales (13), de tal manera que en su recorrido por la cara interior de la cavidad (11) el fluido absorbe el calor del electrodo base (10).
El canal (30) permite mejorar las condiciones de refrigeración al disgregar el fluido frío y el caliente y además permite obtener un recuperador de calor más compacto, puesto que el canal (30) ejerce de barrera electrostática para que los iones del fluido no viajen en una dirección no deseada.
En las figuras 1 a 6 se muestra un disipador de calor con el electrodo corona (20) dispuesto en la cavidad (11) del electrodo base (10), si bien en función de las necesidades de refrigeración se podría emplear un electrodo base (10) con dos o más cavidades (11), en donde en cada una de las cavidades (11) se dispone un sólo electrodo corona (20).
El funcionamiento aislado de un electrodo corona (20) respecto a los otros electrodos corona (20) que pudieran estar colocados de forma modular evita efectos de apantallado entre ellos a nivel electrostático y evita generar corrientes de fluido contrapuestas que reduzcan la refrigeración.

Claims (11)

REIVINDICACIONES
1. - Disipador de calor electro-hidro-dinámico que comprende un electrodo base (10) que recibe calor de una fuente de calor a disipar en el que está dispuesto un fluido, y un electrodo corona (20) conectado a una fuente de alimentación eléctrica (F.A) para ionizar el fluido del electrodo base (10) caracterizado por que el electrodo base (10) tiene una forma convergente con al menos una cavidad (11) generando un viento iónico (w) desde el electrodo corona (20) hacia el electrodo base (10), tal que se genera una corriente laminar del fluido para la evacuación del calor al exterior de la cavidad (11); en donde la cavidad (11) tiene un fondo (12) y unas paredes laterales (13), estando las paredes laterales (13) separadas entre sí una distancia que es al menos 5 veces una distancia mínima (G) de separación entre el electrodo corona (20) y el electrodo base (10).
2. - Disipador de calor electro-hidro-dinámico según la reivindicación 1, caracterizado por que el electrodo corona (20) está separado del electrodo base (10) una distancia mínima (G) de entre 1 y 5 mm.
3. - Disipador de calor electro-hidro-dinámico según la reivindicación 1, caracterizado por que la cavidad (11) tiene una forma de "U” con unos bordes arqueados en la unión del fondo (12) con las paredes laterales (13).
4. - Disipador de calor electro-hidro-dinámico según una cualquiera de las reivindicaciones anteriores, caracterizado por que el fluido de la cavidad (11) del electrodo base (10) es un fluido dieléctrico.
5. - Disipador de calor electro-hidro-dinámico según la reivindicación anterior, caracterizado por que el fluido dieléctrico es agua o aire.
6. - Disipador de calor electro-hidro-dinámico según la reivindicación anterior, caracterizado por que el aire está a presión atmosférica, estando el electrodo corona (20) alimentado eléctricamente entre un valor mínimo comprendido entre 500-2000 voltios y un valor máximo comprendido entre 3000-7000 voltios.
7. - Disipador de calor electro-hidro-dinámico según la reivindicación anterior, caracterizado por que el electrodo corona (20) tiene una punta con un radio de entre 5 y 100 micras.
8. - Disipador de calor electro-hidro-dinámico según una cualquiera de las reivindicaciones 3 a 7, caracterizado por que el electrodo corona (20) tiene una forma alargada que se extiende de forma sustancialmente paralela al fondo (12) de la cavidad (11) del electrodo base (10).
9. - Disipador de calor electro-hidro-dinámico según una cualquiera de las reivindicaciones 3 a 9, caracterizado por que adicionalmente comprende un canal (30) dispuesto entre las paredes laterales (13) y electrodo corona (20).
10.- Disipador de calor electro-hidro-dinámico según la reivindicación anterior, caracterizado por que el canal (30) está formado por dos paredes dispuestas a ambos lados del electrodo corona (20) que se extienden en una dirección perpendicular al fondo (12) de la cavidad (11).
11.- Disipador de calor electro-hidro-dinámico según una cualquiera de las reivindicaciones anteriores, caracterizado por que el electrodo base (10) tiene dos o más cavidades (11), en donde en cada una de las cavidades (11) se dispone un sólo electrodo corona (20).
ES201830328A 2018-04-02 2018-04-02 Disipador de Calor Electro-Hidro-Dinámico Active ES2726228B2 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES201830328A ES2726228B2 (es) 2018-04-02 2018-04-02 Disipador de Calor Electro-Hidro-Dinámico
PCT/ES2019/070214 WO2019193225A1 (es) 2018-04-02 2019-03-29 Disipador de calor electro-hidro-dinámico
EP19781659.8A EP3780091A4 (en) 2018-04-02 2019-03-29 ELECTROHYDRODYNAMIC HEAT SINK
US17/044,964 US20210164704A1 (en) 2018-04-02 2019-03-29 Electrohydrodynamic heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201830328A ES2726228B2 (es) 2018-04-02 2018-04-02 Disipador de Calor Electro-Hidro-Dinámico

Publications (2)

Publication Number Publication Date
ES2726228A1 ES2726228A1 (es) 2019-10-02
ES2726228B2 true ES2726228B2 (es) 2020-03-19

Family

ID=68063129

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201830328A Active ES2726228B2 (es) 2018-04-02 2018-04-02 Disipador de Calor Electro-Hidro-Dinámico

Country Status (4)

Country Link
US (1) US20210164704A1 (es)
EP (1) EP3780091A4 (es)
ES (1) ES2726228B2 (es)
WO (1) WO2019193225A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2871201A1 (es) * 2020-04-27 2021-10-28 Advances & Devices Healthtech S L Dispositivo y procedimiento de tratamiento de aire
US11531383B1 (en) * 2020-09-30 2022-12-20 Amazon Technologies, Inc. Mist cooling for computer systems

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09252068A (ja) * 1996-03-15 1997-09-22 Yaskawa Electric Corp イオン風冷却装置
US20050007726A1 (en) * 2003-01-10 2005-01-13 Schlitz Daniel J. Ion-driven air pump device and method
US7830643B2 (en) * 2006-01-23 2010-11-09 Igo, Inc. Power supply with electrostatic cooling fan
US8342234B2 (en) * 2007-06-11 2013-01-01 Chien Ouyang Plasma-driven cooling heat sink
US20090168344A1 (en) * 2007-12-31 2009-07-02 Ploeg Johan F Thermal device with electrokinetic air flow
JP4314307B1 (ja) * 2008-02-21 2009-08-12 シャープ株式会社 熱交換装置
KR101798080B1 (ko) * 2011-01-07 2017-11-15 삼성전자주식회사 이온풍을 이용한 방열유닛 및 led조명유닛
US20120314334A1 (en) 2011-06-08 2012-12-13 Tessera, Inc. Ehd device in-situ airflow
EP4132246A1 (en) * 2021-07-23 2023-02-08 Eaton Intelligent Power Limited Corona discharge powered cooling

Also Published As

Publication number Publication date
US20210164704A1 (en) 2021-06-03
ES2726228A1 (es) 2019-10-02
EP3780091A4 (en) 2021-12-22
WO2019193225A1 (es) 2019-10-10
EP3780091A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
US7661468B2 (en) Electro-hydrodynamic gas flow cooling system
US7269008B2 (en) Cooling apparatus and method
ES2726228B2 (es) Disipador de Calor Electro-Hidro-Dinámico
KR101798080B1 (ko) 이온풍을 이용한 방열유닛 및 led조명유닛
JP4833643B2 (ja) 高電圧システムと冷却手段を備えた高電力回路遮断器
JP5128656B2 (ja) 流管装置
JP2006100758A (ja) イオン風を利用した無騒音高効率放熱装置
CN1270336C (zh) 包括装配有去离子鳍形件的消弧室的电气开关装置
US20160230783A1 (en) Airflow generation device
KR20150051894A (ko) 방열 장치
KR20160122014A (ko) 헤드 램프의 결로 발생 방지 장치
US20110139401A1 (en) Ionic wind heat sink
JP2008078260A (ja) イオン風を発生させるヒートシンク装置
JP5179797B2 (ja) X線発生装置
US10698304B2 (en) Cooling device, projector, and heat receiving unit
US20190331102A1 (en) Electro hydro dynamic apparatus and system comprising an electro hydro dynamic apparatus
KR101708554B1 (ko) 이온풍을 이용하는 히트싱크
EP3939398A1 (en) Arrangement for cooling of electronic components by using an electrohdrodynamic flow unit
CN102480899A (zh) 散热装置
WO2023281286A1 (ja) 冷却装置
KR101698813B1 (ko) 진공차단기용 냉각 유닛
ES2921523A1 (es) Dispositivo de ventilacion electrohidrodinamica
JP6311415B2 (ja) エキシマランプ
JP5384146B2 (ja) コンデンサ装置
CN111372427A (zh) 离子风扇及显示装置

Legal Events

Date Code Title Description
BA2A Patent application published

Ref document number: 2726228

Country of ref document: ES

Kind code of ref document: A1

Effective date: 20191002

FG2A Definitive protection

Ref document number: 2726228

Country of ref document: ES

Kind code of ref document: B2

Effective date: 20200319