WO2023281286A1 - 冷却装置 - Google Patents

冷却装置 Download PDF

Info

Publication number
WO2023281286A1
WO2023281286A1 PCT/IB2021/000456 IB2021000456W WO2023281286A1 WO 2023281286 A1 WO2023281286 A1 WO 2023281286A1 IB 2021000456 W IB2021000456 W IB 2021000456W WO 2023281286 A1 WO2023281286 A1 WO 2023281286A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
cooling device
voltage
electronic component
control electrode
Prior art date
Application number
PCT/IB2021/000456
Other languages
English (en)
French (fr)
Inventor
江森健太
新井田淳平
高橋瑛美
山上滋春
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to CN202180100208.9A priority Critical patent/CN117643185A/zh
Priority to EP21948699.0A priority patent/EP4369878A1/en
Priority to PCT/IB2021/000456 priority patent/WO2023281286A1/ja
Publication of WO2023281286A1 publication Critical patent/WO2023281286A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20172Fan mounting or fan specifications

Definitions

  • the present invention relates to a cooling device using a plasma actuator.
  • Patent Document 1 discloses an electronic device that cools a substrate in a housing such as a shield case and an element on the substrate.
  • the air discharged from the cooling fan obliquely impinges on the upper wall plate to change its direction and flow in the direction of the main substrate, thereby cooling the elements of the main substrate.
  • an object of the present invention is to provide a cooling device capable of improving cooling performance by efficiently blowing air onto electronic components.
  • a cooling device uses plasma actuators to cool electronic components.
  • the plasma actuator comprises a dielectric, a first electrode arranged on one side of the dielectric to generate an induced flow, and a second electrode arranged on the other side of the dielectric. Then, the electronic component and the third electrode are arranged in the direction in which the induced current flows, and the voltage applied to the third electrode is a voltage that creates a potential difference between the first electrode and the first electrode that can attract the induced current. be.
  • the cooling performance of the cooling device can be improved because the air can be efficiently applied to the electronic components.
  • FIG. 1 is a perspective view showing the configuration of a cooling device according to a first embodiment of the invention.
  • FIG. 2 is a top view showing the configuration of the cooling device according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing the configuration of the cooling device according to the first embodiment of the present invention.
  • FIG. 4 is a top view showing the configuration of the cooling device according to the first embodiment of the present invention when a heat sink is provided as an electronic component.
  • FIG. 5 is a cross-sectional view showing a configuration in which a heat sink is provided as an electronic component in the cooling device according to the first embodiment of the present invention.
  • FIG. 6 is a top view showing a configuration in which two control electrodes are provided in the cooling device according to the first embodiment of the present invention.
  • FIG. 7 is a top view showing a configuration in which two control electrodes are provided in the cooling device according to the first embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing the configuration of the cooling device according to the first embodiment of the present invention when a switch for turning on and off the control electrode is provided.
  • FIG. 9 is a cross-sectional view showing the configuration of the cooling device according to the second embodiment of the present invention when the control electrode is connected to the power supply.
  • FIG. 10 is a diagram showing temporal changes in the voltage applied to the upper electrode in the cooling device according to the second embodiment of the present invention.
  • FIG. 11 is a diagram showing voltages applied to control electrodes in a cooling device according to a second embodiment of the present invention.
  • FIG. 12 is a diagram showing temporal changes in the voltage applied to the upper electrode in the cooling device according to the second embodiment of the present invention.
  • FIG. 13 is a diagram showing voltages applied to control electrodes in a cooling device according to a second embodiment of the present invention.
  • FIG. 14 is a diagram showing temporal changes in voltage applied to the upper electrode and the control electrode in the cooling device according to the second embodiment of the present invention.
  • FIG. 15 is a cross-sectional view showing the structure of the cooling device according to the third embodiment of the present invention when the dielectric of the plasma actuator is a printed circuit board.
  • FIG. 16 is a cross-sectional view showing the configuration of a cooling device according to a third embodiment of the present invention, in which a main current generator is provided between two printed circuit boards.
  • FIG. 17 is a cross-sectional view showing the configuration of the cooling device according to the third embodiment of the present invention when the control electrodes are embedded in the printed circuit board.
  • FIG. 18 is a cross-sectional view showing a configuration in which control electrodes are embedded in a printed circuit board in a cooling device according to a third embodiment of the present invention.
  • FIG. 19 is a cross-sectional view showing a configuration in which control electrodes are embedded in a printed circuit board in a cooling device according to a third embodiment of the present invention.
  • FIG. 1 is a perspective view showing the configuration of a cooling device according to this embodiment, FIG. 2 is a top view, and FIG. 3 is a cross-sectional view taken along line A-A of FIG.
  • the cooling device 1 includes a plasma actuator 3, a control electrode (third electrode) 5, and an electronic component .
  • the plasma actuator 3 includes a dielectric 11, an upper electrode (first electrode) 13 arranged on the upper surface of the dielectric 11 to generate an induced flow, and a lower electrode (second electrode) arranged on the lower surface of the dielectric 11. 15 and a power supply 17 .
  • the dielectric 11 is made of a predetermined insulating material.
  • polytetrafluoroethylene, polyimide, silicon, or nylon is preferably used as the insulating material from the viewpoint of resistance to high voltage and high insulation.
  • aluminum oxide or ceramics may be used as long as it has a thickness of several hundred ⁇ m and a withstand voltage of several kV. Therefore, the upper electrode 13 and the lower electrode 15 are insulated.
  • the upper electrode 13 and the lower electrode 15 are made of metal material such as copper, aluminum, or iron.
  • a thin one such as a copper tape having a thickness of several hundred ⁇ m can be used, and a wire having a thickness of several ten ⁇ m such as a tungsten wire can be used.
  • different metals may be used for each electrode.
  • the lower electrode 15 is displaced from the position where the upper electrode 13 is arranged in the X-axis direction. It is possible to generate an induced flow that flows into the Incidentally, the lower electrode 15 is grounded in this embodiment.
  • the power supply device 17 is composed of an AC power supply, and applies a high AC voltage between the upper electrode 13 and the lower electrode 15 .
  • Plasma is generated from the upper electrode 13 in the positive direction of the X-axis by applying a high AC voltage between the upper electrode 13 and the lower electrode 15 .
  • Ions and electrons are generated by ionization by this plasma, and the generated ions and electrons are accelerated by the electric field and collide with neutral particles such as oxygen to generate an induced current flowing in the positive direction of the X axis.
  • the optimum frequency for generating the induced flow is about several kHz to ten and several kHz.
  • Plasma is generated in air, but may be in other gases or fluids such as argon.
  • the control electrode 5 is an electrode for controlling the flow of the induced current generated by the plasma actuator 3. As shown in FIGS. ing. However, it is not necessary to expose the entire control electrode 5, and at least a portion thereof may be exposed. Moreover, in order to avoid discharge between the upper electrode 13 and the control electrode 5, the control electrode 5 may be covered with an insulating film.
  • control electrode 5 is arranged on the upper surface of the dielectric 11 together with the electronic component 7 in the direction in which the induced current flows.
  • the lower electrode 15 is displaced from the position of the upper electrode 13 in the X-axis direction, an electric field is generated, thereby generating an induced current flowing in the positive direction of the X-axis.
  • the control electrode 5 is arranged on the downstream side in the positive direction of the X-axis, the control electrode 5 is arranged in the direction in which the induced current flows.
  • a control voltage is applied to the control electrode 5 , and this control voltage is a voltage that creates a potential difference that can attract an induced current between the control electrode 5 and the upper electrode 13 . That is, the control voltage is applied to the control electrode 5 so that the potential difference between the upper electrode 13 and the control electrode 5 becomes a potential difference that can attract the induced current.
  • the control electrode 5 may be grounded, or a voltage opposite in polarity to the voltage of the upper electrode 13 may be applied to the control electrode 5 .
  • an electric field is generated between the upper electrode 13 and the control electrode 5, and ions generated from the plasma move in a direction in which the ions generated from the plasma are attracted to the control electrode 5 by this electric field and collide with the neutral particles. can be controlled in the direction of the control electrode 5 .
  • the control electrode 5 is connected to the lower electrode 15 as shown in FIG. Since the lower electrode 15 is grounded, the control electrode 5 is also grounded. Since a high AC voltage is applied to the upper electrode 13 , a potential difference is generated between the upper electrode 13 and the control electrode 5 that can attract an induced current. Therefore, as shown in FIG. 2, the induced current generated by the upper electrode 13 can be attracted toward the control electrode 5 and collected. In particular, since the width of the control electrode 5 in the Y-axis direction is narrower than the width of the upper electrode 13 , the induced current generated over the entire lateral width of the upper electrode 13 can be concentrated and collected at the control electrode 5 .
  • the electronic component 7 is, for example, a semiconductor element, and as shown in FIGS. there is In particular, in FIGS. 1 to 3, electronic component 7 is provided in contact with the upper surface of control electrode 5 .
  • the electronic component 7 does not necessarily have to be provided in contact with the control electrode 5 , and may be provided, for example, downstream of the control electrode 5 in the induced flow and away from the control electrode 5 .
  • the electronic component 7 and the control electrode 5 may be electrically connected, or may be insulated via an adhesive or the like.
  • the electronic component 7 has the same potential as the control electrode 5, so an electric field is generated between the upper electrode 13 and the electronic component 7, Part 7 can attract the induced current.
  • the electronic component 7 since the electronic component 7 is tall, it can attract the induced flow not only along the dielectric 11 but also in the Z-axis direction.
  • the electronic component 7 When the electronic component 7 is a semiconductor element, it may be, for example, a logic IC or a power semiconductor, and may be resin-packaged or mounted as a bare chip. At this time, the control electrode 5 may be divided into a plurality of electrodes as electrode pads of the semiconductor element.
  • the electronic component 7 may be a heat sink 71 as shown in FIGS. 4 and 5 show the heat sink 71 with pin fins on the base plate, but the heat sink 71 may have only the base plate or straight fins.
  • the material of the heat sink 71 is generally a metal such as copper or aluminum, but may be other metals or an insulating material such as ceramics.
  • the control electrode 5 and the heat sink 71 are electrically connected, an electric field is generated between the upper electrode 13 and the heat sink 71, so that the induced current can be controlled to flow toward the heat sink 71. Therefore, the cooling performance can be further improved.
  • the heat sink 71 may be provided in contact with the upper surface of the electronic component 7 provided on the upper surface of the control electrode 5 . As a result, the heat of the electronic component 7, which is a heating element, can be dissipated through the heat sink 71.
  • the electronic component 7 may be a passive component such as a capacitor, coil, or resistor.
  • the electronic component 7 may be a passive component such as a capacitor, coil, or resistor.
  • two control electrodes 5 may be provided, the passive component 73 and the control electrodes 5 may be electrically connected, and the two control electrodes 5 may be used as pad electrodes.
  • the two control electrodes 5 may have the same potential or may have different potentials.
  • the two control electrodes 5 shown in FIG. 6 may be rotated by 90 degrees and arranged as shown in FIG. In this case, since the two control electrodes 5 each attract the induced current, the induced current splits into two and flows to cool the passive component 73 .
  • the passive component 73 is electrically connected to the control electrode 5, an electric field is generated between the upper electrode 13 and the passive component 73, so that the induced current can be controlled to flow toward the passive component 73.
  • the cooling device 1 configured as described above, when the power supply device 17 is driven, a high AC voltage is applied between the upper electrode 13 and the lower electrode 15, and plasma is generated from the upper electrode 13 in the positive direction of the X axis. An electric field between the upper electrode 13 and the lower electrode 15 causes an induced current. Furthermore, by applying a control voltage to the control electrode 5, the induced current generated by the plasma actuator 3 can be attracted toward the control electrode 5 and collected as shown in FIG. Therefore, the cooling device 1 according to the present embodiment cools the electronic component 7 by applying the wind of the induced flow collected to the control electrode 5 to the electronic component 7 .
  • a switch 9 may be further provided as shown in FIG.
  • the switch 9 turns on and off the control voltage applied to the control electrode 5 .
  • the electronic component 7 and the control electrode 5 are arranged in the direction in which the induced current flows, and the voltage applied to the control electrode 5 is applied to the upper electrode 13 to generate a potential difference capable of attracting an induced current.
  • the induced current can be attracted in the direction of the control electrode 5, so that the electronic component 7 can be efficiently blown. Therefore, the cooling performance of the cooling device 1 can be improved.
  • the cooling performance of the cooling device 1 can be further improved.
  • the dust and organic substances that accumulate due to long-term use can be removed by ions and ozone generated by the plasma, the performance of the cooling device 1 can be maintained for a long period of time.
  • the control electrode 5 is connected to the lower electrode 15 .
  • the potential difference between the upper electrode 13 and the control electrode 5 can be increased, so that the induced current can be strongly attracted. Therefore, the air can be efficiently applied to the electronic component 7, so that the cooling performance of the cooling device 1 can be improved.
  • the cooling device 1 according to the present embodiment, at least a portion of the control electrode 5 is arranged to be exposed on the upper surface of the dielectric 11 .
  • the electric field between the upper electrode 13 and the control electrode 5 is strengthened, so that the induced current can be attracted more strongly. Therefore, the air can be efficiently applied to the electronic component 7, so that the cooling performance of the cooling device 1 can be improved.
  • the shortest distance between the upper electrode 13 and the lower electrode 15 is shorter than the shortest distance between the upper electrode 13 and the control electrode 5 .
  • an induced current can be generated between the upper electrode 13 and the lower electrode 15, and the generated induced current can be attracted and collected by the control electrode 5.
  • FIG. Therefore, the air can be efficiently applied to the electronic component 7, so that the cooling performance of the cooling device 1 can be improved.
  • the cooling device 1 further includes a switch 9 for turning on and off the voltage applied to the control electrode 5 .
  • the control electrode 5 can be turned on and off as needed, so the electronic component 7 can be exposed to air only when necessary. Therefore, it is possible to efficiently control the wind, so that the cooling performance of the cooling device 1 can be improved.
  • the electronic component 7 is electrically connected to the control electrode 5 .
  • an electric field is generated between the upper electrode 13 and the electronic component 7 , so that the electronic component 7 can be directly exposed to air. Therefore, the air can be efficiently applied to the electronic component 7, so that the cooling performance of the cooling device 1 can be improved.
  • the electronic component 7 is provided in contact with the control electrode 5 .
  • the wind attracted to the control electrode 5 hits the electronic component 7 directly, so that the electronic component 7 can be efficiently cooled. Therefore, the cooling performance of the cooling device 1 can be improved.
  • the cooling device 1 since the electronic component 7 is a semiconductor element, the air drawn by the control electrode 5 can be applied to the semiconductor element, which is a heating element. Therefore, the cooling performance of the cooling device 1 can be improved.
  • the electronic component 7 is a heat sink, so the wind attracted to the control electrode 5 can hit the heat sink for heat dissipation. Therefore, the cooling performance of the cooling device 1 can be improved.
  • the cooling device 1 since the electronic component 7 is a passive component, the air drawn by the control electrode 5 can be applied to the passive component, which is a heating element. Therefore, the cooling performance of the cooling device 1 can be improved.
  • FIG. 9 is a cross-sectional view showing the structure of the cooling device according to this embodiment.
  • the cooling device 1 according to this embodiment further includes a power supply device 20 .
  • the control electrode 5 was connected to the lower electrode 15, but in this embodiment, a power supply 20 separate from the power supply 17 of the plasma actuator 3 is prepared, and the control electrode is connected to the power supply 20 from this power supply 20. 5 is applied with a control voltage.
  • the control voltage is a voltage that produces a potential difference that can attract an induced current between the upper electrode 13 and the upper electrode 13, as in the first embodiment.
  • the voltage supplied to the electronic component 7 may be applied to the control electrode 5 without providing the power supply device 20 . In this case, since the power supply device 20 is not provided, it can be constructed at low cost.
  • an AC voltage is applied to the upper electrode 13 from the power supply 17 and a DC voltage is applied to the control electrode 5 from the power supply 20 .
  • a DC voltage is applied to the control electrode 5 from the power supply 20 .
  • the time change (dV/dt) of the AC voltage applied to the upper electrode 13 has a positive gradient as shown in FIG. Apply voltage.
  • the control electrode 5 may be grounded.
  • the time change (dV/dt) of the AC voltage applied to the upper electrode 13 has a negative slope as shown in FIG. 12
  • a positive control voltage is applied to the control electrode 5 as shown in FIG. .
  • the ions generated from the plasma are different when the time change (dV/dt) of the AC voltage rises with a positive gradient and when it has a falling negative gradient. Therefore, when the gradient is positive, positive ions are attracted to generate an induced flow, but when the gradient is negative, negative ions are attracted to generate an induced flow. Therefore, when the voltage of the control electrode 5 is negatively biased when the gradient is positive, and positively biased when the gradient is negative, the induced current can be more strongly attracted.
  • the power supply 20 responds to the time change (dV/dt) of the AC voltage.
  • the DC voltage applied to the control electrode 5 is switched between positive and negative. That is, when the time change of the AC voltage of the upper electrode 13 has a positive slope, a negative DC voltage is applied to the control electrode 5, and when the time change of the AC voltage switches to a negative slope, a positive DC voltage is applied to the control electrode 5. do.
  • FIG. 15 is a cross-sectional view showing the structure of the cooling device according to this embodiment. As shown in FIG. 15, the cooling device 1 according to this embodiment differs from the first embodiment in that the dielectric is configured by a printed circuit board 30 .
  • An upper electrode 13 and a control electrode 5 are arranged on the upper surface of the printed circuit board 30, and a passive component 73 is provided in contact with the control electrode 5.
  • a lower electrode 15 is arranged on the lower surface of the printed circuit board 30 .
  • Electronic circuits having wiring patterns are formed on the upper and lower surfaces of the printed circuit board 30 .
  • a pad electrode (fourth electrode) 32 is formed in this electronic circuit, and a plurality of electronic components 7 are electrically connected to the pad electrode 32 .
  • the electronic component 7 includes a heat sink 71 and passive components 73 .
  • the plasma actuator 3 can be formed on the printed board with low cost and high precision in units of mm and ⁇ m with multi-layer wiring. can be formed. Also, by using an electronic circuit board made of glass epoxy or the like, it is possible to provide the cooling device 1 with high strength and high reliability by taking advantage of its characteristics. Furthermore, when a flexible printed circuit board is used, the plasma actuator 3 can be formed on a thin and bendable printed circuit board.
  • a mainstream generator 34 such as a fan is provided on the upper surface of the printed circuit board 30 .
  • the main flow generator 34 generates a main flow from one end of the printed circuit board 30 in the direction in which the induced flow flows.
  • the electronic component 7 arranged on the upper surface of the printed circuit board 30 can be cooled using not only the induced flow but also the main flow.
  • the mainstream is separated from the printed circuit board 30 because a boundary layer is generated due to friction with the printed circuit board 30 and the boundary layer gradually develops. Therefore, the heat transfer between the printed circuit board 30 and the air layer decreases toward the downstream side of the printed circuit board 30 in the X-axis direction.
  • the plasma actuator 3 generates an induced flow and the control electrode 5 is used to attract the induced flow, so the separation of the main stream from the printed circuit board 30 can be suppressed. Therefore, the heat transfer between the printed circuit board 30 and the air layer can be improved, so that the cooling performance of the cooling device 1 can be improved.
  • the electronic components 7 are classified into high-current components and low-current components, and the high-current components are arranged on the upper surface of the printed circuit board 30, and the low-current components are arranged on the lower surface, the high-current components that generate a large amount of heat are classified as the main current and the induced current. It becomes possible to cool more efficiently by using both.
  • two printed circuit boards 30 may be stacked one above the other, and the mainstream generator 34 may be arranged between them.
  • the base plate 36 of the heat sink 71 may be formed on the lower surface of the upper printed circuit board 30 .
  • a plurality of plasma actuators 3 may be provided at locations desired to be cooled.
  • the mainstream generator 34 may be provided not only in this embodiment but also in the cooling devices 1 of the first and second embodiments.
  • the control electrode 5 may be embedded in the printed circuit board 30 as shown in FIG. 17 . Since the printed circuit board 30 can form, for example, four wiring layers layer by layer, it is possible to easily form the control electrodes 5 inside the printed circuit board 30 . Incidentally, the control electrode 5 may be embedded in the dielectric 11 . In this case, a method of fixing the control electrode 5 and solidifying it by pouring a liquid dielectric or a method of inserting the control electrode 5 into the dielectric can be used.
  • control electrode 5 By embedding the control electrode 5 in the printed circuit board 30 in this way, the control electrode 5 is insulated and protected by the printed circuit board 30, and dielectric breakdown between the upper electrode 13 and the control electrode 5 can be suppressed. Therefore, reliability can be improved. Moreover, it is possible to prevent the control electrode 5 from being exposed to the air and being oxidized.
  • a plurality of control electrodes 5 are provided, and the control electrodes 5 on the side closer to the upper electrode 13 are embedded in deep positions, and the control electrodes 5 on the far side from the upper electrode 13 are embedded in shallow positions. may be placed. Since the control electrode 5 on the side closer to the upper electrode 13 is embedded at a deep position, dielectric breakdown can be suppressed. On the other hand, since the control electrode 5 on the far side from the upper electrode 13 is buried in a shallow position, the electric field between it and the upper electrode 13 can be strengthened.
  • the control electrode 5 is embedded in the printed circuit board 30, the control electrode 5 is connected to the lower electrode 15, and the upper surface of the control electrode 5 is arranged obliquely toward the upper electrode 13. As shown in FIG. may If the control electrode 5 is arranged horizontally, the distance from the upper electrode 13 is different between the end portion of the control electrode 5 closer to the upper electrode 13 and the end portion thereof farther from the upper electrode 13, resulting in a different electric field. On the other hand, as shown in FIG. 19, when the upper surface of the control electrode 5 is obliquely arranged toward the upper electrode 13, the electric field is made uniform between the end near the upper electrode 13 and the far end. can be brought closer to Therefore, the control electrode 5 can secure an insulating distance from the upper electrode 13 and can uniformly strengthen the electric field on the upper surface of the control electrode 5 .
  • the dielectric is configured by the printed circuit board 30. Therefore, each electrode can be formed with high precision, and the withstand voltage can be easily secured. can be done. Therefore, the reliability of the cooling device 1 can be ensured, and mass productivity can be improved.
  • the control electrode 5 is embedded in the printed circuit board 30 . Therefore, dielectric breakdown between the upper electrode 13 and the control electrode 5 can be suppressed, so the reliability of the cooling device 1 can be improved.
  • each electronic component formed on the electronic circuit can be cooled by the induced flow generated by the plasma actuator 3. can.
  • cooling device 1 in the cooling device 1 according to the present embodiment, high-voltage components are arranged on the surface of the printed circuit board 30 on which the upper electrode 13 is arranged. As a result, it is possible to cool the high-voltage components that generate a large amount of heat by the induced flow, so that the cooling performance of the cooling device 1 can be improved.
  • the pad electrodes 32 for connecting the electronic components 7 are formed in the electronic circuit, so noise generated from the electronic circuit can be shielded.
  • the cooling device 1 further includes a mainstream generator 34 that generates a mainstream in the direction in which the induced flow flows.
  • a mainstream generator 34 that generates a mainstream in the direction in which the induced flow flows.
  • cooling device 3 plasma actuator 5 control electrode (third electrode) 7 electronic component 11 dielectric 13 upper electrode (first electrode) 15 lower electrode (second electrode) Reference Signs List 17, 20 power supply device 30 printed circuit board 32 pad electrode (fourth electrode) 34 mainstream generator 36 base plate 71 heat sink 73 passive components

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Plasma Technology (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

冷却装置は、誘電体と、誘電体の一方の面に配置されて誘起流を発生させる第1電極と、誘電体の他方の面に配置された第2電極とを備えたプラズマアクチュエータを用いて電子部品を冷却する。そして、誘起流が流れていく方向に電子部品と第3電極を配置し、第3電極に印加される電圧は、第1電極との間に誘起流を引き付けることのできる電位差を生じさせる電圧である。

Description

冷却装置
 本発明は、プラズマアクチュエータを用いた冷却装置に関する。
 従来では、シールドケース等の筐体内の基板及び基板上の素子を冷却する電子機器として、特許文献1が開示されている。特許文献1に開示された電子機器では、冷却ファンから排気された空気を上壁板に斜めに当てることによって向きを変えてメイン基板の方向へ流し、メイン基板の素子を冷却していた。
特開2017−117950号公報
 しかしながら、上述した従来の電子機器では、冷却ファンからの空気をシールドケースの壁に当てて向きを変えていたので、壁に当たった空気はすべてが基板上の電子部品の方向へ流れるわけではなく、シールドケース内に拡散していた。そのため、電子部品に効率的に風を当てることができないので、冷却性能を向上させることができないという問題点があった。
 そこで、本発明は上記実情に鑑みて提案されたものであり、電子部品に効率的に風を当てることによって冷却性能を向上させることのできる冷却装置を提供することを目的とする。
 上述した課題を解決するために、本発明の一態様に係る冷却装置は、プラズマアクチュエータを用いて電子部品を冷却する。プラズマアクチュエータは、誘電体と、誘電体の一方の面に配置されて誘起流を発生させる第1電極と、誘電体の他方の面に配置された第2電極とを備える。そして、誘起流が流れていく方向に電子部品と第3電極を配置し、第3電極に印加される電圧は、第1電極との間に誘起流を引き付けることのできる電位差を生じさせる電圧である。
 本発明によれば、電子部品に効率的に風を当てることができるので、冷却装置の冷却性能を向上させることができる。
図1は、本発明の第1実施形態に係る冷却装置の構成を示す斜視図である。 図2は、本発明の第1実施形態に係る冷却装置の構成を示す上面図である。 図3は、本発明の第1実施形態に係る冷却装置の構成を示す断面図である。 図4は、本発明の第1実施形態に係る冷却装置において、電子部品としてヒートシンクを備えた場合の構成を示す上面図である。 図5は、本発明の第1実施形態に係る冷却装置において、電子部品としてヒートシンクを備えた場合の構成を示す断面図である。 図6は、本発明の第1実施形態に係る冷却装置において、制御電極を2つ備えた場合の構成を示す上面図である。 図7は、本発明の第1実施形態に係る冷却装置において、制御電極を2つ備えた場合の構成を示す上面図である。 図8は、本発明の第1実施形態に係る冷却装置において、制御電極をオンオフするスイッチを備えた場合の構成を示す断面図である。 図9は、本発明の第2実施形態に係る冷却装置において、制御電極が電源装置に接続されている場合の構成を示す断面図である。 図10は、本発明の第2実施形態に係る冷却装置において、上部電極に印加される電圧の時間変化を示す図である。 図11は、本発明の第2実施形態に係る冷却装置において、制御電極に印加される電圧を示す図である。 図12は、本発明の第2実施形態に係る冷却装置において、上部電極に印加される電圧の時間変化を示す図である。 図13は、本発明の第2実施形態に係る冷却装置において、制御電極に印加される電圧を示す図である。 図14は、本発明の第2実施形態に係る冷却装置において、上部電極と制御電極に印加される電圧の時間変化を示す図である。 図15は、本発明の第3実施形態に係る冷却装置において、プラズマアクチュエータの誘電体をプリント基板とした場合の構成を示す断面図である。 図16は、本発明の第3実施形態に係る冷却装置において、2枚のプリント基板の間に主流発生装置を設けた場合の構成を示す断面図である。 図17は、本発明の第3実施形態に係る冷却装置において、制御電極がプリント基板に埋め込まれた場合の構成を示す断面図である。 図18は、本発明の第3実施形態に係る冷却装置において、制御電極がプリント基板に埋め込まれた場合の構成を示す断面図である。 図19は、本発明の第3実施形態に係る冷却装置において、制御電極がプリント基板に埋め込まれた場合の構成を示す断面図である。
[第1実施形態]
 以下、本発明を適用した第1実施形態について図面を参照して説明する。図面の記載において同一部分には同一符号を付して、詳細な説明は省略する。
 [冷却装置の構成]
 図1は、本実施形態に係る冷却装置の構成を示す斜視図、図2は上面図、図3は図2のA−A線における断面図である。図1~3に示すように、冷却装置1は、プラズマアクチュエータ3と、制御電極(第3電極)5と、電子部品7を備えている。
 プラズマアクチュエータ3は、誘電体11と、誘電体11の上面に配置されて誘起流を発生させる上部電極(第1電極)13と、誘電体11の下面に配置される下部電極(第2電極)15と、電源装置17を備えている。
 誘電体11は、所定の絶縁材料から構成される。特に、絶縁材料としては、高電圧に対する耐性及び高絶縁性の観点からポリテトラフルオロエチレン、ポリイミド、シリコン又はナイロンを採用することが好ましい。また、酸化アルミニウムやセラミックスでも良く、数百μmの厚さで数kVの耐圧があればよい。したがって、上部電極13と下部電極15の間は絶縁されている。
 上部電極13と下部電極15は、銅、アルミニウム、又は鉄等の金属材料から構成される。各電極の厚みは銅テープのように数百μm厚などの薄いものを使用することができ、タングステンワイヤなどの数十μmの線を利用することも可能である。尚、各電極に用いる金属は別々でも良い。下部電極15は、上部電極13が配置された位置からX軸方向にずれて配置されており、このように配置することによって上部電極13と下部電極15の間に電界が生じて、X軸方向に流れる誘起流を発生させることができる。尚、下部電極15は、本実施形態では接地されている。
 電源装置17は、交流電源によって構成され、上部電極13と下部電極15の間に高電圧の交流電圧を印加する。上部電極13と下部電極15の間に高電圧の交流電圧を印加することで、上部電極13からX軸の正方向にプラズマが発生する。このプラズマによる電離でイオンと電子が発生し、発生したイオンと電子は電界によって加速され、酸素等の中性粒子に衝突することでX軸の正方向に向かって流れる誘起流が発生する。誘起流を発生させる最適な周波数は、数kHz~10数kHz程度とされている。プラズマは空気中であれば発生するが、アルゴンなどの他の気体または流体であってもよい。
 制御電極5は、プラズマアクチュエータ3で発生した誘起流の流れを制御する電極であり、図1~3に示すように、上部電極13と同様に誘電体11の上面に配置され、上面から露出している。ただし、制御電極5の全体が露出する必要はなく、少なくとも一部が露出していればよい。また、上部電極13との間で放電することを回避するために、制御電極5は絶縁膜で覆われていてもよい。
 また、制御電極5は、誘電体11の上面において、誘起流が流れていく方向に電子部品7とともに配置されている。図3において、下部電極15は、上部電極13の位置からX軸方向にずれて配置されているので、電界が生じ、それによってX軸の正方向に流れる誘起流が発生する。さらに、X軸の正方向の下流側に制御電極5が配置されているので、制御電極5は、誘起流が流れていく方向に配置されている。
 したがって、図3のX軸の正方向では、上部電極13、下部電極15、制御電極5の順に配置されており、上部電極13と下部電極15との間の最短距離は、上部電極13と制御電極5との間の最短距離よりも短くなっている。
 制御電極5には制御電圧が印加されており、この制御電圧は、上部電極13との間に誘起流を引き付けることのできる電位差を生じさせる電圧である。すなわち、上部電極13と制御電極5との間の電位差が、誘起流を引き付けることができる電位差となるように、制御電極5に制御電圧が印加される。例えば、制御電極5は接地されていてもよいし、上部電極13の電圧と正負が反対の電圧が、制御電極5に印加されてもよい。これにより、上部電極13と制御電極5の間に電界が発生し、この電界によってプラズマから発生したイオンが制御電極5に引き付けられる方向に移動して中性粒子に衝突するので、誘起流の流れを制御電極5の方向にコントロールすることができる。
 具体的に、制御電極5は、図3に示すように下部電極15に接続されている。下部電極15は接地されているので、制御電極5も接地される。上部電極13には高電圧の交流電圧が印加されているので、上部電極13と制御電極5の間には、誘起流を引き付けることのできる電位差が生じる。したがって、図2に示すように、上部電極13で発生した誘起流を、制御電極5の方向に引き付けて集めることができる。特に、制御電極5のY軸方向の幅は、上部電極13の幅よりも狭いので、上部電極13の横幅全体で発生した誘起流を制御電極5に集中させて集めることができる。
 電子部品7は、例えば半導体素子であり、図1~3に示すように、上部電極13と同様に誘電体11の上面に配置され、誘起流が流れていく方向に制御電極5とともに配置されている。特に、図1~3では、電子部品7は、制御電極5の上面に接触して設けられている。ただし、電子部品7は、必ずしも制御電極5に接触して設ける必要はなく、例えば制御電極5よりも誘起流の下流側に制御電極5から離れて設置されていてもよい。
 また、電子部品7と制御電極5の間は、電気的に接続されていてもよいし、接着剤等を介して絶縁されていてもよい。ただし、電子部品7と制御電極5が電気的に接続されていると、電子部品7は制御電極5と同電位になるので、上部電極13と電子部品7との間に電界が発生し、電子部品7が誘起流を引き付けることができる。特に、電子部品7は高さがあるので、誘起流を誘電体11に沿って引き付けるだけでなく、Z軸方向にも引き付けることができる。
 電子部品7が半導体素子の場合、例えばロジックICやパワー半導体などであり、樹脂パッケージされていても、ベアチップとして実装されていてもよい。このとき、制御電極5は、半導体素子の電極パッドとして、複数に分割されていてもよい。
 また、電子部品7は、図4、5に示すように、ヒートシンク71であってもよい。図4、5では、ベースプレートにピンフィンがついたヒートシンク71を示しているが、ベースプレートのみであっても、ストレートフィンがついたものでもよい。ヒートシンク71の材質は銅やアルミニウムなどの金属が一般的であるが、その他の金属でもよいし、セラミックスなどの絶縁性のものでもよい。
 尚、制御電極5とヒートシンク71が電気的に接続されていると、上部電極13とヒートシンク71の間に電界が発生するので、ヒートシンク71に向けて誘起流が流れるよう制御することができる。したがって、冷却性能をより向上させることができる。また、ヒートシンク71を、制御電極5の上面に設けられた電子部品7のさらに上面に接触して設けてもよい。これにより、発熱体である電子部品7の熱を、ヒートシンク71を介して放熱することができる
 また、電子部品7は、コンデンサ、コイル、抵抗等の受動部品であってもよい。例えば、図6に示すように制御電極5を2つ設けて、受動部品73と制御電極5を電気的に接続し、2つの制御電極5をパッド電極として利用してもよい。尚、2つの制御電極5は、同じ電位でもよいし、異なっていてもよい。
 さらに、図6で示した2つの制御電極5を90度回転させて、図7に示すように配置してもよい。この場合、2つの制御電極5がそれぞれ誘起流を引き付けるので、誘起流は2つに分かれて流れていき、受動部品73を冷却する。受動部品73が制御電極5と電気的に接続されていると、上部電極13と受動部品73の間に電界が発生するので、受動部品73に向けて誘起流が流れるよう制御することができる。
 このように構成された冷却装置1において、電源装置17を駆動すると、上部電極13と下部電極15の間に高電圧の交流電圧が印加され、上部電極13からX軸の正方向にプラズマが発生し、上部電極13と下部電極15の間の電界によって誘起流が発生する。さらに、制御電極5に制御電圧を印加することにより、図2に示すように、プラズマアクチュエータ3で発生した誘起流を、制御電極5の方向に引き付けて集めることができる。したがって、本実施形態に係る冷却装置1は、制御電極5に集めた誘起流の風を電子部品7に当てることによって、電子部品7を冷却する。
[変形例]
 本実施形態に係る冷却装置1の変形例として、図8に示すように、スイッチ9をさらに備えていてもよい。スイッチ9は、制御電極5に印加される制御電圧をオンオフする。スイッチ9で制御電圧をオンオフすることにより、必要なときだけ誘起流を制御電極5の方向に引き付けて電子部品7を冷却するように制御することができる。
 [第1実施形態の効果]
 以上、詳細に説明したように、本実施形態に係る冷却装置1では、誘起流が流れていく方向に電子部品7と制御電極5を配置し、制御電極5に印加される電圧を、上部電極13との間に誘起流を引き付けることのできる電位差を生じさせる電圧としている。これにより、誘起流を制御電極5の方向に引き付けることができるので、電子部品7に効率的に風を当てることができる。したがって、冷却装置1の冷却性能を向上させることができる。
 特に、通常では、ファン等を用いて電子部品に風を当てようとしても、電子部品7を避けるように風の流れが分かれてしまうので、電子部品7を効率的に冷却することは難しかった。しかし、本実施形態では、制御電極5の方向に風を集めることができるので、風の流れが分かれてしまうことを防止して、より効率的に電子部品7に風を当てることができる。したがって、冷却装置1の冷却性能をさらに向上させることができる。また、経年使用によって堆積するホコリや有機物をプラズマで発生するイオンやオゾンによって除去できるので、長期的に冷却装置1の性能を保つことができる。
 また、本実施形態に係る冷却装置1では、制御電極5が、下部電極15に接続されている。これにより、上部電極13と制御電極5の間の電位差を大きくできるので、誘起流を強く引き付けることができる。したがって、電子部品7に効率的に風を当てることができるので、冷却装置1の冷却性能を向上させることができる。
 さらに、本実施形態に係る冷却装置1では、制御電極5の少なくとも一部が誘電体11の上面に露出して配置される。これにより、上部電極13と制御電極5の間の電界が強くなるので、誘起流をより強く引き付けることができる。したがって、電子部品7に効率的に風を当てることができるので、冷却装置1の冷却性能を向上させることができる。
 また、本実施形態に係る冷却装置1では、上部電極13と下部電極15との間の最短距離が、上部電極13と制御電極5との間の最短距離よりも短くなっている。これにより、上部電極13と下部電極15の間で誘起流を発生させることができ、発生した誘起流を制御電極5で引き付けて集めることができる。したがって、電子部品7に効率的に風を当てることができるので、冷却装置1の冷却性能を向上させることができる。
 さらに、本実施形態に係る冷却装置1では、制御電極5に印加される電圧をオンオフするためのスイッチ9をさらに備えている。これにより、必要に応じて制御電極5をオンオフできるので、必要なときだけ電子部品7に風を当てることができる。したがって、効率的に風を制御することができるので、冷却装置1の冷却性能を向上させることができる。
 また、本実施形態に係る冷却装置1では、電子部品7が、制御電極5に電気的に接続されている。これにより、上部電極13と電子部品7の間に電界が発生するので、電子部品7に直接風を当てることができる。したがって、電子部品7に効率的に風を当てることができるので、冷却装置1の冷却性能を向上させることができる。
 さらに、本実施形態に係る冷却装置1では、電子部品7が、制御電極5に接触して設けられている。これにより、制御電極5に引き付けられた風が電子部品7に直接当たるので、電子部品7を効率的に冷却することができる。したがって、冷却装置1の冷却性能を向上させることができる。
 また、本実施形態に係る冷却装置1では、電子部品7が半導体素子なので、制御電極5に引き付けられた風を、発熱体である半導体素子に当てることができる。したがって、冷却装置1の冷却性能を向上させることができる。
 また、本実施形態に係る冷却装置1では、電子部品7がヒートシンクなので、制御電極5に引き付けられた風を、放熱するためのヒートシンクに当てることができる。したがって、冷却装置1の冷却性能を向上させることができる。
 さらに、本実施形態に係る冷却装置1では、電子部品7が受動部品なので、制御電極5に引き付けられた風を、発熱体である受動部品に当てることができる。したがって、冷却装置1の冷却性能を向上させることができる。
[第2実施形態]
 以下、本発明を適用した第2実施形態について図面を参照して説明する。図面の記載において同一部分には同一符号を付して、詳細な説明は省略する。
 図9は、本実施形態に係る冷却装置の構造を示す断面図である。図9に示すように、本実施形態に係る冷却装置1は、電源装置20をさらに備えている。第1実施形態では、制御電極5を下部電極15に接続していたが、本実施形態では、プラズマアクチュエータ3の電源装置17とは別の電源装置20を用意し、この電源装置20から制御電極5に制御電圧を印加する。制御電圧は、第1実施形態と同様に、上部電極13との間に誘起流を引き付けることのできる電位差を生じさせる電圧である。ただし、電源装置20を設けなくても、電子部品7に供給されている電圧を制御電極5に印加してもよい。この場合には電源装置20を設けないので、安価に構成することができる。
 本実施形態では、上部電極13に電源装置17から交流電圧が印加され、制御電極5に電源装置20から直流電圧が印加される。具体的に説明すると、上部電極13に印加される交流電圧の時間変化(dV/dt)が、図10に示すように正勾配のときには、図11に示すように、制御電極5に負の制御電圧を印加する。ただし、上部電極13に印加される交流電圧の時間変化が正勾配のときには、制御電極5を接地してもよい。一方、上部電極13に印加される交流電圧の時間変化(dV/dt)が、図12に示すように負勾配のときには、図13に示すように、制御電極5に正の制御電圧を印加する。
 ここで、交流電圧の時間変化(dV/dt)が上昇する正勾配のときと、下降する負勾配のときでは、プラズマから発生するイオンが異なる。そのため、正勾配のときにはプラスイオンが引き付けられて誘起流を発生するが、負勾配のときにはマイナスイオンが引き付けられて誘起流を発生する。そのため、制御電極5の電圧は、正勾配のときに負バイアス、負勾配のときに正バイアスにすると、誘起流をより強く引き付けることができる。
 したがって、図14に示すように、上部電極13と下部電極15の間に電源装置17から交流電圧が印加されると、電源装置20は、交流電圧の時間変化(dV/dt)に応じて、制御電極5に印加する直流電圧の正負を切り替えている。すなわち、上部電極13の交流電圧の時間変化が正勾配のときには制御電極5に負の直流電圧を印加し、交流電圧の時間変化が負勾配に切り替わると、制御電極5に正の直流電圧を印加する。
 [第2実施形態の効果]
 以上、詳細に説明したように、本実施形態に係る冷却装置1では、上部電極13の電圧の時間変化が正勾配のときには、制御電極5を接地するか、または負の電圧を印加し、上部電極13の電圧の時間変化が負勾配のときには、制御電極5に正の電圧を印加する。これにより、プラズマから発生するイオンを引き付けることができるので、誘起流を引き付けるように制御することができる。したがって、電子部品7に効率的に風を当てることができ、冷却装置1の冷却性能を向上させることができる。
[第3実施形態]
 以下、本発明を適用した第3実施形態について図面を参照して説明する。図面の記載において同一部分には同一符号を付して、詳細な説明は省略する。
 図15は、本実施形態に係る冷却装置の構造を示す断面図である。図15に示すように、本実施形態に係る冷却装置1は、誘電体をプリント基板30で構成したことが第1実施形態と相違している。
 プリント基板30の上面には、上部電極13と制御電極5が配置され、制御電極5に接触して受動部品73が設けられている。一方、プリント基板30の下面には下部電極15が配置されている。また、プリント基板30の上面と下面には、配線パターンを備えた電子回路が形成されている。そして、この電子回路にはパッド電極(第4電極)32が形成され、パッド電極32に複数の電子部品7が電気的に接続されている。この電子部品7の中にはヒートシンク71と受動部品73が含まれている。パッド電極32をプリント基板30上に広く形成することによって、ノイズの広がりを抑える電磁シールドとして利用することができる。
 尚、プリント基板30に、ガラスエポキシなどで構成される電子回路基板やポリイミドなどで構成されるフレキシブルプリント基板を用いれば、安価に多層配線でmm、μm単位の高精度なプリント基板にプラズマアクチュエータ3を形成することができる。また、ガラスエポキシなどの電子回路基板を用いることにより、その特性を生かして高強度で信頼性の高い冷却装置1を提供することができる。さらに、フレキシブルプリント基板を用いた場合には、薄く折り曲げ可能なプリント基板にプラズマアクチュエータ3を形成することができる。
 また、プリント基板30の上面には、ファンなどの主流発生装置34が備えられている。主流発生装置34は、図15に示すように、プリント基板30の一方の端部から誘起流が流れる方向に向かって主流を発生させる。これにより、プリント基板30の上面に配置された電子部品7を、誘起流だけでなく主流も利用して冷却することができる。
 ただし、主流は、プリント基板30との間の摩擦によって境界層が発生し、次第に境界層は発達するので、主流がプリント基板30から剥離していた。そのため、プリント基板30のX軸方向の下流側に行くにつれて、プリント基板30と空気層との間の熱伝達は低下していた。
 しかし、本実施形態では、プラズマアクチュエータ3によって誘起流を発生させ、制御電極5を用いて誘起流を引き付けるので、主流がプリント基板30から剥離することを抑制できる。したがって、プリント基板30と空気層との間の熱伝達を向上させることができるので、冷却装置1の冷却性能を向上させることができる。
 この場合に、電子部品7を強電部品と弱電部品に分類して、強電部品をプリント基板30の上面に配置し、弱電部品を下面に配置すれば、発熱が大きい強電部品を、主流と誘起流の両方を用いてより効率的に冷却することが可能となる。
 また、図16に示すように、2枚のプリント基板30を上下に重ねて、その間に主流発生装置34を配置してもよい。このとき上側のプリント基板30の下面にはヒートシンク71のベースプレート36が形成されていてもよい。このように2枚のプリント基板30の間に主流発生装置34を配置することにより、ダクト内に主流を流すことができるので、プリント基板30上の電子部品7に確実に風を当てることができる。さらに、ベースプレート36が形成されていることにより、電子部品7の冷却とヒートシンク71の冷却を両立させることができるので、冷却装置1の冷却性能を向上できるとともに小型化を実現することもできる。
 尚、図15、16では、プラズマアクチュエータ3がプリント基板30上に1つのみ形成されているが、冷却したい個所などに複数設けてもよい。また、主流発生装置34は、本実施形態だけでなく、第1及び第2実施形態の冷却装置1に設けてもよい。
 [変形例]
 本実施形態に係る冷却装置1の変形例として、図17に示すように、制御電極5が、プリント基板30に埋め込まれていてもよい。プリント基板30は、基板の中に例えば4層の配線層をレイヤー毎に形成できるので、制御電極5をプリント基板30の内部に形成することは容易に可能である。尚、制御電極5は、誘電体11に埋め込まれていてもよい。この場合、制御電極5を固定して液状の誘電体を流して固める方法や制御電極5を誘電体に差し込む工法を用いることができる。
 このように制御電極5をプリント基板30に埋め込むことで、制御電極5がプリント基板30によって絶縁保護され、上部電極13と制御電極5の間で絶縁破壊することを抑制できる。したがって、信頼性を向上させることができる。また、制御電極5が空気に露出して酸化することを防止できる。
 さらに、図18に示すように、制御電極5を複数設けて、上部電極13に近い側の制御電極5を深い位置に埋め込み、上部電極13から遠い側の制御電極5を浅い位置に埋め込むように配置してもよい。上部電極13に近い側の制御電極5を深い位置に埋め込んでいるので、絶縁破壊を抑制することができる。一方、上部電極13から遠い側の制御電極5を浅い位置に埋め込んでいるので、上部電極13との間の電界を強くすることができる。
 また、図19に示すように、制御電極5をプリント基板30に埋め込んで、制御電極5を下部電極15に接続し、制御電極5の上面が上部電極13に向けて斜めになるように配置してもよい。制御電極5を水平に配置すると、制御電極5の上部電極13に近い側の端部と遠い側の端部では、上部電極13からの距離が相違するので、電界が相違してしまう。これに対して、図19に示すように、制御電極5の上面を上部電極13に向けて斜めに配置すると、上部電極13に近い側の端部と遠い側の端部の間で電界を均一に近づけることができる。したがって、制御電極5は、上部電極13との間で絶縁距離を確保できるとともに、制御電極5の上面において電界を均一に強くすることができる。
 [第3実施形態の効果]
 以上、詳細に説明したように、本実施形態に係る冷却装置1では、誘電体をプリント基板30で構成したので、各電極を高精度に形成することができ、耐電圧を容易に確保することができる。したがって、冷却装置1の信頼性を確保できるとともに、量産性を向上させることができる。
 また、本実施形態に係る冷却装置1では、制御電極5が、プリント基板30に埋め込まれている。これにより、上部電極13と制御電極5の間で絶縁破壊することを抑制できるので、冷却装置1の信頼性を向上させることができる。
 さらに、本実施形態に係る冷却装置1では、プリント基板30に電子回路が形成されているので、電子回路上に形成された各電子部品をプラズマアクチュエータ3で発生させた誘起流で冷却することができる。
 また、本実施形態に係る冷却装置1では、プリント基板30の上部電極13が配置された面に強電部品を配置する。これにより、発熱の大きい強電部品を誘起流で冷却することができるので、冷却装置1の冷却性能を向上させることができる。
 さらに、本実施形態に係る冷却装置1では、電子回路に、電子部品7を接続するためのパッド電極32が形成されているので、電子回路から発生するノイズをシールドすることができる。
 また、本実施形態に係る冷却装置1では、誘起流が流れる方向に向かって主流を発生させる主流発生装置34をさらに備えている。これにより、主流発生装置34から発生される主流を、制御電極5を利用して制御できるので、冷却装置1の冷却性能をさらに向上させることができる。
 なお、上述の実施形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施形態以外の形態であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計などに応じて種々の変更が可能であることは勿論である。
 1 冷却装置
 3 プラズマアクチュエータ
 5 制御電極(第3電極)
 7 電子部品
 11 誘電体
 13 上部電極(第1電極)
 15 下部電極(第2電極)
 17、20 電源装置
 30 プリント基板
 32 パッド電極(第4電極)
 34 主流発生装置
 36 ベースプレート
 71 ヒートシンク
 73 受動部品

Claims (17)

  1.  誘電体と、前記誘電体の一方の面に配置されて誘起流を発生させる第1電極と、前記誘電体の他方の面に配置された第2電極とを備えたプラズマアクチュエータを用いて電子部品を冷却する冷却装置であって、
     前記誘起流が流れていく方向に前記電子部品と第3電極を配置し、
     前記第3電極に印加される電圧は、前記第1電極との間に前記誘起流を引き付けることのできる電位差を生じさせる電圧である冷却装置。
  2.  前記第3電極は、前記第2電極に接続されている請求項1に記載の冷却装置。
  3.  前記第3電極は、前記第1電極の電圧の時間変化が正勾配のときには接地されるか、または負の電圧が印加され、前記第1電極の電圧の時間変化が負勾配のときには正の電圧が印加される請求項1に記載の冷却装置。
  4.  前記第3電極は、少なくとも一部が前記誘電体の一方の面に露出して配置される請求項1~3のいずれか1項に記載の冷却装置。
  5.  前記第1電極と前記第2電極との間の最短距離は、前記第1電極と前記第3電極との間の最短距離よりも短い請求項1~4のいずれか1項に記載の冷却装置。
  6.  前記第3電極に印加される電圧をオンオフするためのスイッチをさらに備えている請求項1~5のいずれか1項に記載の冷却装置。
  7.  前記電子部品は、前記第3電極に電気的に接続されている請求項1~6のいずれか1項に記載の冷却装置。
  8.  前記電子部品は、前記第3電極に接触して設けられている請求項1~7のいずれか1項に記載の冷却装置。
  9.  前記電子部品は、半導体素子である請求項1~8のいずれか1項に記載の冷却装置。
  10.  前記電子部品は、ヒートシンクである請求項1~8のいずれか1項に記載の冷却装置。
  11.  前記電子部品は、受動部品である請求項1~8のいずれか1項に記載の冷却装置。
  12.  前記誘電体は、プリント基板である請求項1~11のいずれか1項に記載の冷却装置。
  13.  前記第3電極は、前記プリント基板に埋め込まれている請求項12に記載の冷却装置。
  14.  前記プリント基板には、電子回路が形成されている請求項12または13に記載の冷却装置。
  15.  前記電子回路が形成されたプリント基板では、前記第1電極が配置された面に強電部品を配置する請求項14に記載の冷却装置。
  16.  前記電子回路には、前記電子部品を接続するための第4電極が形成されている請求項14または15に記載の冷却装置。
  17.  前記誘起流が流れる方向に向かって主流を発生させる主流発生装置をさらに備えている請求項1~16のいずれか1項に記載の冷却装置。
PCT/IB2021/000456 2021-07-08 2021-07-08 冷却装置 WO2023281286A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180100208.9A CN117643185A (zh) 2021-07-08 2021-07-08 冷却装置
EP21948699.0A EP4369878A1 (en) 2021-07-08 2021-07-08 Cooling device
PCT/IB2021/000456 WO2023281286A1 (ja) 2021-07-08 2021-07-08 冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2021/000456 WO2023281286A1 (ja) 2021-07-08 2021-07-08 冷却装置

Publications (1)

Publication Number Publication Date
WO2023281286A1 true WO2023281286A1 (ja) 2023-01-12

Family

ID=84801345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/000456 WO2023281286A1 (ja) 2021-07-08 2021-07-08 冷却装置

Country Status (3)

Country Link
EP (1) EP4369878A1 (ja)
CN (1) CN117643185A (ja)
WO (1) WO2023281286A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481567B2 (ja) * 2010-12-17 2014-04-23 京セラ株式会社 イオン風発生体及びイオン風発生装置
JP2017117950A (ja) 2015-12-24 2017-06-29 京セラドキュメントソリューションズ株式会社 電子機器、及び画像形成装置
JP2020057720A (ja) * 2018-10-03 2020-04-09 日産自動車株式会社 冷却装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481567B2 (ja) * 2010-12-17 2014-04-23 京セラ株式会社 イオン風発生体及びイオン風発生装置
JP2017117950A (ja) 2015-12-24 2017-06-29 京セラドキュメントソリューションズ株式会社 電子機器、及び画像形成装置
JP2020057720A (ja) * 2018-10-03 2020-04-09 日産自動車株式会社 冷却装置

Also Published As

Publication number Publication date
CN117643185A (zh) 2024-03-01
EP4369878A1 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
US9961758B1 (en) Packaging a printed circuit board having a plurality of semiconductors in an inverter
JP2001326318A (ja) パワーモジュール
US5488255A (en) Cooling device for semiconductor packages, having flexible film heat expulsion means
US11778735B2 (en) Circuit board having a cooling area above and below a semiconductor chip
JP4257118B2 (ja) 冷却手段を備えるコイル
JP4407793B2 (ja) 静電チャックおよび静電チャックを搭載した装置
WO2023281286A1 (ja) 冷却装置
JP2010080431A (ja) イオン発生方法、イオン発生電極及びイオン発生モジュール
TW200830518A (en) Semiconductor packaging substrate improving capability of electrostatic dissipation
SE514520C2 (sv) Mönsterkort, substrat eller halvledarbricka med en ledare med etsad ytstruktur
US20190053384A1 (en) Substrate, electric compressor, and air conditioner
JP6758888B2 (ja) 半導体装置
JP4882479B2 (ja) 電源装置およびそれを備えた電気器具
JP2017118050A (ja) 半導体ユニット
JP2018156990A (ja) モジュール、電子機器、及び配線板
US20220046786A1 (en) Dissipating heat from an electronic assembly using forced convection, and method for dissipating heat from an electronic assembly
EP3291652B1 (en) Printed circuit board heat dissipation system using highly conductive heat dissipation pad
JP2001076611A (ja) 回路保護素子
WO2017086160A1 (ja) 光照射装置
US11839049B2 (en) Cooling apparatus
JP2018148033A (ja) プリント基板及び電子/電気機器
CN212183821U (zh) 绝缘金属印刷电路板
CN201541423U (zh) 等离子气流散热装置
JP2007123453A (ja) コントローラ
JP2023018985A (ja) 冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948699

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023532848

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180100208.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18577130

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021948699

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE