ES2534653T3 - Prótesis ortopédicas - Google Patents

Prótesis ortopédicas Download PDF

Info

Publication number
ES2534653T3
ES2534653T3 ES09164168.8T ES09164168T ES2534653T3 ES 2534653 T3 ES2534653 T3 ES 2534653T3 ES 09164168 T ES09164168 T ES 09164168T ES 2534653 T3 ES2534653 T3 ES 2534653T3
Authority
ES
Spain
Prior art keywords
cam
column
concave
curvature
flexion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES09164168.8T
Other languages
English (en)
Inventor
Joseph Wyss
Travis D Bennett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DePuy Ireland ULC
Original Assignee
DePuy Ireland ULC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DePuy Ireland ULC filed Critical DePuy Ireland ULC
Application granted granted Critical
Publication of ES2534653T3 publication Critical patent/ES2534653T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3886Joints for elbows or knees for stabilising knees against anterior or lateral dislocations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3836Special connection between upper and lower leg, e.g. constrained
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3868Joints for elbows or knees with sliding tibial bearing

Abstract

Una prótesis ortopédica de articulación de rodilla que comprende: un cojinete tibial (12) configurado para ser acoplado a la bandeja tibial (15), teniendo el cojinete tibial una plataforma (16) y una columna (30) que se extiende hacia arriba desde la plataforma, teniendo la columna un lado posterior (34) que incluye una superficie cóncava (64) de leva y una superficie convexa (62) de leva ubicada superiormente con respecto a la superficie cóncava de leva; y un componente femoral (14) configurado para articularse con el cojinete tibial, incluyendo el componente femoral (i) un par de cóndilos separados (44, 46) que definen una escotadura intracondílea entre ellos y (ii) una leva posterior (50) colocada en la escotadura intracondílea (42), incluyendo la leva posterior una superficie cóncava (56) de leva y una superficie convexa (58) de leva, en la que la leva posterior no hace contacto con la columna cuando la prótesis no se encuentra en flexión, caracterizada porque (a) la superficie cóncava de leva de la leva posterior hace contacto con la superficie convexa de leva de la columna durante un primer intervalo de flexión que comienza con un ángulo de flexión desde aproximadamente 50º, y (b) un contacto entre la leva posterior y la superficie de leva de la columna cambia a hacer contacto entre la superficie cóncava de leva de la leva posterior y la superficie cóncava de leva de la columna durante un segundo intervalo de flexión que comienza con un ángulo de flexión que es mayor que el ángulo de flexión que marca el final del primer intervalo de flexión y termina con un ángulo de flexión no superior a aproximadamente 150º.

Description

E09164168
09-04-2015
DESCRIPCIÓN
Prótesis ortopédicas
La presente invención versa acerca de prótesis ortopédicas para ser utilizadas en una cirugía de sustitución de rodilla.
5 La artroplastia de articulaciones es un procedimiento quirúrgico bien conocido mediante el cual se sustituye una articulación natural enferma y/o dañada por una articulación protésica. Una prótesis típica de rodilla incluye una bandeja tibial, un componente femoral y un inserto o cojinete polimérico colocado entre la bandeja tibial y el componente femoral. En general, una prótesis de rodilla está diseñada para duplicar el movimiento natural de la articulación del paciente. Sin embargo, dependiendo de la gravedad del daño a la articulación del paciente, se
10 pueden utilizar prótesis ortopédicas de movilidad variable. Por ejemplo, en algunos pacientes, el ligamento cruzado posterior puede resultar dañado, ser deficiente o extirparse durante el procedimiento quirúrgico ortopédico. En tales casos, se puede utilizar una prótesis ortopédica de rodilla que sacrifica el ligamento cruzado posterior, que normalmente restringe o limita el movimiento posterior de la tibia con respecto al fémur.
El documento WO-A-96/24311 da a conocer una prótesis que incluye un cojinete tibial que tiene una columna cuyo
15 lado posterior tiene porciones cóncavas y convexas. Se proporciona una leva entre los cóndilos. La leva tiene porciones cóncavas y convexas. La porción convexa de la leva hace contacto con la porción cóncava de la columna en el cojinete en el juego de la articulación.
La presente invención proporciona una prótesis ortopédica de articulación de rodilla según se define en la reivindicación 1.
20 La superficie superior de leva de la columna del cojinete tibial puede estar curvada convexamente en el plano sagital. La superficie inferior de leva de la columna puede estar curvada cóncavamente en el plano sagital. La superficie superior de leva y la superficie inferior de leva de la columna pueden estar curvadas convexamente en el plano transversal. En tales realizaciones, el radio de curvatura en el plano transversal de la superficie cóncava inferior de leva de la columna puede ser sustancialmente igual al radio de curvatura, o distinto del mismo, en el plano
25 transversal de la superficie convexa superior de leva de la columna.
En una realización particular, el primer intervalo de flexión es desde aproximadamente 50 de flexión hasta aproximadamente 80 de flexión y el segundo intervalo de flexión es desde aproximadamente 80 de flexión hasta aproximadamente 150 de flexión.
La columna del cojinete tibial y la leva posterior del componente femoral pueden tener cada una un perfil en corte
30 transversal con una forma sustancialmente de “S”. Además, en algunas realizaciones, el radio de curvatura de la superficie convexa de leva de la columna puede ser mayor que el radio de curvatura de la superficie cóncava de leva de la columna. Además, en algunas realizaciones, el radio de curvatura de la superficie cóncava de leva de la leva posterior del componente femoral puede ser sustancialmente mayor que el radio de curvatura de la superficie convexa de leva de la leva posterior.
35 El radio de curvatura de la superficie superior de leva de la columna del cojinete tibial puede ser aproximadamente igual al radio de curvatura de la superficie inferior de leva de la columna.
A continuación se describen realizaciones de la invención a modo de ejemplo con referencia a los dibujos adjuntos, en los que:
La FIG. 1 es una vista despiezada en perspectiva de una prótesis ortopédica.
40 La FIG. 2 es una vista en corte transversal de un componente femoral de la prótesis ortopédica de la FIG. 1; la FIG. 3 es una vista en corte transversal de un cojinete tibial de la prótesis ortopédica de la FIG. 1; la FIG. 4 es otra vista en corte transversal del componente femoral de la FIG. 2. La FIG. 5 es otra vista en corte transversal del cojinete tibial de la FIG. 3. Las FIGURAS 6 a 15 son vistas laterales en alzado de la prótesis ortopédica de la FIG. 1 con diversos grados de
45 flexión. La FIG. 16 es una vista en planta desde arriba de otro cojinete tibial de la prótesis ortopédica de la FIG. 1. La FIG. 17 es una vista en planta en corte transversal del cojinete tibial de la FIG. 17 que tiene quitada una porción de la columna. La FIG. 18 es una vista lateral en alzado de una prótesis ortopédica que incluye el cojinete tibial de la FIG. 18
50 colocado en un grado incipiente de flexión. La FIG. 19 es una vista en corte transversal de la prótesis ortopédica de la FIG. 18 tomada, en general, a lo largo de la línea 19-19 de sección. La FIG. 20 es una vista lateral en alzado de la prótesis ortopédica de la FIG. 18 colocada en un grado tardío de flexión.
55 La FIG. 21 es una vista en corte transversal de la prótesis ortopédica de la FIG. 21 tomada, en general, a lo largo de la línea 21-21 de sección.
10
15
20
25
30
35
40
45
50
55
E09164168
09-04-2015
La FIG. 22 es una vista despiezada en perspectiva de otra prótesis ortopédica. La FIG. 23 es una vista en corte transversal de un componente femoral de la prótesis ortopédica de la FIG. 22. La FIG. 24 es una vista en corte transversal de un cojinete tibial de la prótesis ortopédica de la FIG. 22. Las FIGURAS 25 a 28 son vistas laterales en alzado de la prótesis ortopédica de la FIG. 22 en diversos grados de flexión.
Se pueden utilizar términos que representan referencias anatómicas, tales como anterior, posterior, medial, lateral, superior e inferior, en todo el presente documento para hacer referencia tanto a los implantes ortopédicos descritos en la presente memoria como a la anatomía natural del paciente. Tales términos tienen significados bien conocidos tanto en el estudio de la anatomía como en el campo de la ortopedia. Se pretende que el uso de tales términos de referencia anatómica sea coherente con su significado bien conocido a no ser que se haga notar lo contrario.
Con referencia a los dibujos, la FIG. 1 muestra una prótesis ortopédica 10 de rodilla que sacrifica el ligamento cruzado posterior que incluye un inserto o cojinete tibial 12, un componente femoral 14 y una bandeja tibial 15. El componente femoral 14 está configurado para articularse con el cojinete tibial 12 durante su uso. El cojinete tibial 12 está formado de un material polimérico tal como polietileno de peso molecular ultra alto (UHMWPE), pero puede estar formado de otros materiales, tales como un material cerámico, un material metálico, un material biodiseñado, o similares, en otras realizaciones. El componente femoral 12 y la bandeja tibial 15 pueden estar formados de un material metálico tal como cromo cobalto o titanio, pero pueden estar formados, de vez de ello, de otros materiales, tales como un material cerámico, un material polimérico, un material biodiseñado, o similar, en otras realizaciones.
Como se expone con más detalle a continuación, el componente femoral 14 está configurado para articularse con el cojinete tibial 12, que está configurado para acoplarse con la bandeja tibial 15. El cojinete tibial 12 mostrado en el dibujo está implementado como un cojinete tibial giratorio o móvil y está configurado para girar con respecto a la bandeja tibial 15 durante su uso. Sin embargo, en otras realizaciones, el cojinete tibial 12 puede estar implementado como un cojinete tibial fijo, cuya rotación con respecto a la bandeja tibial 15 puede ser limitada o restringida.
La bandeja tibial 15 está configurada para ser fijada a un extremo proximal preparado quirúrgicamente de la tibia (no mostrada) de un paciente. La bandeja tibial 15 puede ser fijada a la tibia del paciente mediante el uso de un adhesivo óseo u otros medios de fijación. La bandeja tibial 15 incluye una plataforma 80 que tiene una superficie superior 82 y una superficie inferior 84. En la realización descrita, la superficie superior 82 es generalmente plana y, en algunas realizaciones, puede estar muy pulida. La bandeja tibial 15 también incluye un vástago 86 que se extiende hacia abajo desde la superficie inferior 84 de la plataforma 80. Hay definido un orificio 88 o una cavidad en la superficie superior 82 de la plataforma 80 y se extiende hacia abajo al interior del vástago 86. El orificio 88 está formado para recibir un vástago complementario del inserto tibial 12 como se expone con más detalle a continuación.
Como se ha expuesto anteriormente, el cojinete tibial 12 está configurado para acoplarse con la bandeja tibial 15. El cojinete tibial 12 incluye una plataforma 16 que tiene una superficie superior 18 de cojinete y una superficie inferior
20. En la realización descrita en la que el cojinete tibial 12 está implementado como un cojinete tibial giratorio o móvil, el cojinete 12 incluye un vástago 22 que se extiende hacia abajo desde la superficie inferior 20 de la plataforma 16. Cuando el cojinete tibial 12 está acoplado a la bandeja tibial 15, se recibe el vástago 22 en el orificio 88 de la bandeja tibial 15. En uso, el cojinete tibial 12 está configurado para girar en torno a un eje definido por el vástago 22 con respecto a la bandeja tibial 15. En realizaciones en las que el cojinete tibial 15 está implementado como un cojinete tibial fijo, el cojinete 12 puede incluir o no el vástago 22 y/o puede incluir otros dispositivos o características para fijar el cojinete tibial 12 a la bandeja tibial 15 en una configuración no giratoria.
La superficie superior 18 de cojinete del cojinete tibial 12 incluye una superficie medial 24 de cojinete, una superficie lateral 26 de cojinete, y una columna 30 que se extiende hacia arriba desde la plataforma 16. Las superficies mediales y laterales 24, 26 de cojinete están configuradas para recibir o hacer contacto de otra manera con cóndilos mediales y laterales correspondientes 44, 46 del componente femoral 14 como se expone con más detalle a continuación. Como tales, las superficies 24, 26 de cojinete pueden tener contornos cóncavos en algunas realizaciones. La columna 30 está colocada entre las superficies 24, 26 de cojinete e incluye un lado anterior 32 y un lado posterior 34.
El componente femoral 14 está configurado para acoplarse a una superficie preparada quirúrgicamente del extremo distal del fémur (no mostrado) de un paciente. El componente femoral 14 puede estar fijado al fémur del paciente mediante el uso de adhesivo óseo u otros medios de fijación. El componente femoral 14 incluye una superficie articulada 40 que tiene un par de cóndilos mediales y laterales separados 44, 46. En uso, los cóndilos 44, 46 sustituyen los cóndilos naturales del fémur del paciente y están configurados para articularse en las superficies correspondientes 24, 26 de cojinetes de la plataforma 16 del cojinete tibial 12.
Los cóndilos 44, 46 están separados para definir un rebaje o escotadura intracondílea 42 entre los mismos. Una leva posterior 50 y una leva anterior 52 (véase la FIG. 2) están colocadas en la escotadura intracondílea 42. La leva posterior 50 está ubicada hacia el lado posterior del componente femoral 14 y está configurada para acoplarse con la columna 30, o hacer contacto de otra manera con la misma, del cojinete tibial 12 durante la flexión, como se muestra y se describe con más detalle a continuación con referencia a las FIGURAS 4 a 13.
15
25
35
45
55
E09164168
09-04-2015
Con referencia ahora a las FIGURAS 2 a 5, cada una de la leva posterior 50 del componente femoral 14 y de la columna 30 del cojinete tibial 12 tiene un perfil en corte transversal con forma sustancialmente de “S” en el plano sagital. En particular, como se muestra en la FIG. 2, la leva posterior 50 del componente femoral 14 incluye una superficie 54 de leva configurada para hacer contacto con una superficie 60 de leva de la columna 30 durante su uso. Para hacerlo, la superficie 54 de leva de la leva posterior 50 incluye una superficie cóncava 56 de leva y una superficie convexa 58 de leva. La superficie convexa 58 de leva está colocada posteriormente con respecto a la superficie cóncava 56 de leva. Las superficies 56, 58 de leva pueden tener radios de curvaturas similares o distintos. Por ejemplo, en algunas realizaciones, la superficie convexa 58 de leva puede tener un radio de curvatura sustancialmente mayor que el radio de curvatura de la superficie cóncava 56 de leva. Sin embargo, en otras realizaciones, la superficie convexa 58 de leva puede tener un radio de curvatura que es sustancialmente igual o menor que el radio de curvatura de la superficie cóncava 56 de leva.
En algunas realizaciones, la curvatura de las superficies 56, 58 de leva puede estar definida por medio de un único radio de curvatura. El radio particular de curvatura de las superficies 56, 58 de leva (es decir, el “tamaño” de las superficies de leva) puede depender de varios criterios tales como el tamaño del implante, la forma o geometría de la superficie articulada de la columna 30 del implante tibial 12 y/o similares. Sin embargo, en otras realizaciones, la superficie cóncava 56 de leva y la superficie convexa 58 de leva del componente femoral 14 pueden estar formadas de múltiples radios de curvatura. Por ejemplo, en la realización mostrada en la FIG. 4, la superficie cóncava 56 de leva está definida por un radio de curvatura 200 y un radio de curvatura 202, cada uno de los cuales es tangencial al otro. En una realización particular, el radio de curvatura 200 es de aproximadamente 10,42 mm y el radio de curvatura 202 es de aproximadamente 8,13 mm. Además, la superficie convexa 58 de leva está definida por una pluralidad de radios de curvatura 204, 206, 208 y 210. Cada uno de los radios de curvatura 204, 206, 208, 210 es tangencial al otro radio adyacente de curvatura. En una realización particular, el radio de curvatura 204 es de aproximadamente 7,14 mm, el radio de curvatura 206 es de aproximadamente 7,01 mm, el radio de curvatura 208 es de aproximadamente 7,30 mm, y el radio de curvatura 210 es de aproximadamente 2,30 mm. En otras realizaciones, se puede utilizar un mayor o menor número de radios de curvatura para definir las superficies 56, 58 de leva. Además, los radios de curvatura 200, 202, 204, 206, 210 pueden tener otros valores en otras realizaciones.
Con referencia ahora a la FIG. 3, la superficie 60 de leva del cojinete tibial 12 está definida en el lado posterior 34 de la columna 30. De forma similar a la superficie 54 de leva de la leva posterior 50 del componente femoral 14, la superficie 60 de leva de la columna 30 incluye una superficie convexa 62 de leva y una superficie cóncava 64 de leva. En la realización descrita, la superficie convexa 62 de leva está colocada superiormente con respecto a la superficie cóncava 64 de leva. De forma similar a las superficies 56, 58 de leva de la leva posterior 50, las superficies 62, 64 de leva de la columna 30 pueden tener radios de curvatura similares o distintos. Por ejemplo, en algunas realizaciones, la superficie cóncava 64 de leva tiene un radio de curvatura sustancialmente mayor que el radio de curvatura de la superficie convexa 62 de leva. Sin embargo, en otras realizaciones, la superficie cóncava 64 de leva puede tener un radio de curvatura que es sustancialmente igual o menor que el radio de curvatura de la superficie convexa 62 de leva.
En algunas realizaciones, la curvatura de las superficies 62, 64 de leva pueden estar definidas por un único radio de curvatura. El radio particular de curvatura de las superficies 62, 64 de leva (es decir, el “tamaño” de las superficies de leva) pueden depender de un número de criterios tales como el tamaño del implante, la forma o la geometría de la superficie articulada de la leva posterior 50 del componente femoral 14 y/o similares. Sin embargo, en otras realizaciones, la superficie convexa 62 de leva y la superficie cóncava 64 de leva del cojinete tibial 12 pueden estar formadas de múltiples radios de curvatura. Por ejemplo, en la realización mostrada en la FIG. 5, la superficie cóncava 64 de leva está definida por un radio de curvatura 220 y un radio de curvatura 222, cada uno de los cuales es tangencial al otro. En una realización particular, el radio de curvatura 220 es de aproximadamente 9,00 mm y el radio de curvatura 222 es de aproximadamente 13,00 mm. La superficie convexa 62 de leva está definida por un radio de curvatura 224. En una realización particular, el radio de curvatura 224 es de aproximadamente 8,00 mm. Por supuesto, en otras realizaciones, se puede utilizar un mayor o menor número de radios de curvatura para definir las superficies 62, 64 de leva. Además, los radios de curvatura 220, 222, 224 pueden tener otros valores en otras realizaciones.
Con referencia ahora a las FIGURAS 6 a 15, el componente femoral 14 y el cojinete tibial 12 están configurados de forma que la leva posterior 50 del componente femoral 14 hace contacto con la columna 30 del cojinete tibial 12 durante la flexión. En particular, durante una flexión incipiente, la superficie cóncava 56 de leva de la leva posterior 50 hace contacto con la superficie convexa 62 de leva de la columna 30. Según se aumenta la flexión de la prótesis ortopédica 10, el contacto entre la leva posterior 50 y la columna 30 realiza una transición desde un contacto entre la superficie cóncava 56 de leva de la leva posterior 50 y la superficie convexa 62 de leva de la columna 30 para hacer contacto entre la superficie convexa 58 de leva de la leva posterior 50 y la superficie cóncava 64 de la columna 30 durante una flexión tardía.
Como se muestra en la FIG. 6, cuando la prótesis ortopédica 10 se encuentra en extensión o, si no, no se encuentra en flexión (por ejemplo, una flexión de aproximadamente 0), la leva posterior 50 no se encuentra en contacto con la columna 30. Sin embargo, durante la flexión incipiente, como se muestra en las FIGURAS 7 y 8, la leva posterior 50 del componente femoral 14 hace contacto con la columna 30 del cojinete tibial 12. Por ejemplo, en una realización
10
15
20
25
30
35
40
45
50
55
60
E09164168
09-04-2015
como se muestra en la FIG. 7, según se mueve la prótesis ortopédica 10 en flexión, la superficie cóncava 56 de leva de la leva posterior 50 hace contacto inicialmente con la superficie convexa 62 de leva de la columna con un grado predeterminado de flexión. En la realización descrita, el componente femoral 14 y el cojinete tibial 12 están configurados de forma que las superficies 56, 62 de leva hagan contacto inicialmente entre sí con aproximadamente 60 de flexión. Sin embargo, en otras realizaciones, se puede determinar el grado de flexión con el que se establece un contacto inicial entre la leva posterior 50 y la columna 30 en función de criterios particulares tales como el tamaño de la prótesis ortopédica 10, la forma o geometría de la superficie articulada del componente femoral 14 y/o el cojinete tibial 12 y/o similares.
Durante la flexión incipiente de la prótesis ortopédica 10, se mantiene el contacto entre la superficie cóncava 56 de leva y la superficie convexa 62 de leva. Por ejemplo, en una realización como se muestra en la FIG. 8, la superficie convexa 62 de leva de la columna 30 puede estar “asentada” plenamente en la superficie cóncava 56 de leva de la leva posterior 50 con aproximadamente 60 de flexión. Después de una flexión incipiente, el contacto entre la leva posterior 50 y la columna 30 realiza una transición desde las superficies 56, 62 de leva hasta las superficies 58, 64 de leva. Por ejemplo, en una realización como se muestra en la FIG. 9, el contacto entre la leva posterior 50 y la columna 30 comienza la transición a las superficies 58, 64 de leva a aproximadamente 80. Con este grado de flexión, se puede establecer el contacto inicial entre la superficie convexa 58 de leva de la leva posterior 50 y la superficie cóncava 64 de leva de la columna 30.
Durante una flexión tardía de la prótesis ortopédica 10, la superficie convexa 58 de leva mantiene un contacto con la superficie cóncava 64 de leva. Por ejemplo, las FIGURAS 10 a 15 muestra una realización con diversos grados de flexión tardía. En particular, se muestra la prótesis ortopédica 10 con una flexión de aproximadamente 100 en la FIG. 10, con una flexión de aproximadamente 110 en la FIG. 11, con una flexión de aproximadamente 120 en la FIG. 12, con una flexión de aproximadamente 130 en la FIG. 13, con una flexión de aproximadamente 140 en la FIG. 14 y con una flexión de aproximadamente 150 en la FIG. 15.
Se debería apreciar que se mantiene un contacto entre la leva posterior 50 y la columna 30 en todo el intervalo de flexión incipiente y tardía. El intervalo particular de flexión incipiente (es decir, el intervalo en el que la superficie cóncava 56 de leva de la leva posterior 50 hace contacto con la superficie convexa 62 de leva de la columna 30) y de flexión tardía (es decir, el intervalo en el que la superficie convexa 58 de leva de la leva posterior 50 hace contacto con la superficie cóncava 64 de leva de la columna 30) de la prótesis ortopédica 10 puede depender de uno
o más criterios tales como el tamaño de la prótesis ortopédica 10, la forma o geometría de las superficies de leva articuladas del cojinete tibial 12 y del componente femoral 14, o similares. En la realización descrita, la prótesis ortopédica 10 está configurada para tener un intervalo de flexión incipiente desde aproximadamente 50 hasta aproximadamente 80 y un intervalo de flexión tardía desde aproximadamente 80 hasta aproximadamente 150, pero se pueden utilizar otros intervalos de flexión. Se determina el intervalo de flexión incipiente y tardía de la prótesis ortopédica 10, en parte, en función del radio de curvatura de la superficie 56, 58, 62, 64 de leva. Como tal, se puede configurar el intervalo de flexión incipiente y tardía de las prótesis ortopédicas 10 ajustando el radio de curvatura de las superficies 56, 58, 62, 64 de leva.
También se debería apreciar que debido a que la superficie 54 de leva de la leva posterior 50 incluye la superficie cóncava 56 de leva y la superficie convexa 58 de leva y la superficie 34 de leva de la columna 30 incluye la superficie convexa 62 de leva y la superficie cóncava 64 de leva, se aumenta el área superficial de contacto entre la leva posterior 50 y la columna 30 en el intervalo de flexión con respecto a la prótesis ortopédica en la que la leva posterior y/o la columna incluye superficies planas de leva o superficies de leva que solo tienen una superficie cóncava o convexa. Por ejemplo, se aumenta el área de contacto entre la leva posterior 50 y la columna 30 en flexión incipiente debido al contacto entre la superficie cóncava 56 de leva de la leva posterior 50 y la superficie convexa 62 de leva de la columna 30. Además, en la flexión tardía, el área de contacto entre la leva posterior 50 y la columna 30 aumenta en grados tardíos de flexión debido al contacto entre la superficie convexa 58 de leva de la leva posterior 50 y la superficie cóncava 64 de leva de la columna 30. Debido a que el contacto entre la leva posterior 50 y la columna 30 está extendido en un área de contacto mayor, también se puede reducir el desgaste anterior de la columna 30.
Con referencia ahora a las FIGURAS 16 y 17, en algunas realizaciones, el lado posterior 34 de la columna 30 también puede estar curvado en el plano transversal. Es decir, cada una de la superficie convexa superior 62 de leva y de la superficie cóncava inferior 64 de leva puede ser convexa en la dirección del plano transversal. Por ejemplo, como se muestra en la FIG. 16, la superficie convexa 62 de leva de la columna 30 puede estar curvada convexamente en el plano transversal. Además, como se muestra en la FIG. 17, la superficie cóncava 64 de leva de la columna 30 puede estar curvada convexamente en el plano transversal. El radio de curvatura en el plano transversal de la superficie convexa 62 de leva y de la superficie cóncava 64 de leva puede ser sustancialmente igual o distinto. Por ejemplo, en algunas realizaciones, el radio de curvatura en el plano transversal de la superficie cóncava 64 de leva puede ser mayor que el radio de curvatura en el plano transversal de la superficie convexa 62 de leva. De forma alternativa, en otras realizaciones, el radio de curvatura en el plano transversal de la superficie convexa 62 de leva puede ser mayor que el radio de curvatura en el plano transversal de la superficie convexa 64 de leva.
15
25
35
45
55
E09164168
09-04-2015
En realizaciones en las que las superficies 62, 64 de leva de la columna 30 están curvadas en el plano transversal, la leva posterior 50 del componente femoral 12 se articula en las superficies 62, 64 de leva en el plano transversal, de forma que el componente femoral 14 gira una cantidad en torno a la columna 30. Por ejemplo, como se muestra en las FIGURAS 18 y 19, cuando la superficie cóncava 56 de leva de la leva posterior 50 se encuentra en contacto con la superficie convexa 62 de leva de la columna 30 durante una flexión incipiente, el componente femoral 14 puede girar en torno a la columna 30 en una dirección generalmente medial-lateral en el plano transversal, como se indica por medio de la flecha 70. En tales realizaciones, la superficie cóncava 56 de leva de la leva posterior 50 puede ser sustancialmente plana en la dirección medial-lateral en algunas realizaciones. De forma alternativa, similarmente a la superficie convexa 62 de leva de la columna 30, la superficie cóncava 56 de leva de la leva posterior 50 del componente femoral 12 también puede estar curvada en la dirección medial-lateral. Por ejemplo, como se muestra en la FIG. 19, la superficie cóncava 56 de leva puede estar curvada cóncavamente en la dirección medial-lateral. En algunas realizaciones, el radio de curvatura en la dirección medial-lateral de la superficie cóncava 56 de leva puede ser sustancialmente igual al radio de curvatura en el plano transversal de la superficie convexa 62 de leva de la columna 30. De forma alternativa, el radio de curvatura en la dirección medial-lateral de la superficie cóncava 56 de leva puede ser mayor o menor que el radio de curvatura en el plano transversal de la superficie convexa 62 de leva. Se puede regular la cantidad de rotación entre el componente femoral 14 y el cojinete tibial 12 durante una flexión incipiente en función del radio de curvatura en el plano transversal de las superficies 56, 62 de leva. Por ejemplo, se puede obtener una cantidad mayor de rotación durante una flexión incipiente de la prótesis ortopédica reduciendo el radio de curvatura en el plano transversal de la superficie convexa 62 de leva.
Con referencia ahora a las FIGURAS 20 y 21, cuando la superficie convexa 58 de leva de la leva posterior 50 se encuentra en contacto con la superficie cóncava 64 de leva de la columna 30 durante una flexión tardía, el componente femoral 14 puede girar en torno a la columna 30 en una dirección generalmente medial-lateral en el plano transversal como se indica por medio de la flecha 72 en algunas realizaciones. En tales realizaciones, la superficie convexa 58 de leva de la leva posterior 50 puede ser sustancialmente plana en la dirección medial-lateral. De forma alternativa, similarmente a la superficie cóncava 64 de leva de la columna 30, la superficie convexa 58 de leva de la leva posterior 50 del componente femoral 12 puede estar curvada en la dirección medial-lateral. Por ejemplo, como se muestra en la FIG. 21, la superficie convexa 58 de leva puede estar curvada cóncavamente en la dirección medial-lateral. En algunas realizaciones, el radio de curvatura en la dirección medial-lateral de la superficie convexa 58 de leva puede ser sustancialmente igual al radio de curvatura en la dirección medial-lateral de la superficie cóncava 64 de leva de la columna 30. De forma alternativa, el radio de curvatura en la dirección mediallateral de la superficie convexa 58 de leva puede ser mayor o ligeramente menor que el radio de curvatura en la dirección medial-lateral de la superficie cóncava 64 de leva. Como se ha expuesto anteriormente con respecto a una flexión incipiente, se puede regular la cantidad de rotación entre el componente femoral 14 y el cojinete tibial 12 durante una flexión tardía en función del radio de curvatura en la dirección medial-lateral de las superficies 58, 64 de leva.
Como se ha expuesto anteriormente, el intervalo de flexión tardía de la prótesis 10 es mayor que el intervalo de flexión incipiente. Sin embargo, en otras realizaciones, la prótesis ortopédica 10 puede tener un intervalo de flexión incipiente que es mayor que el intervalo de flexión tardía. Es decir, debido a que se determina el intervalo de flexión incipiente y tardía de la prótesis ortopédica, en parte, en función del radio de curvatura de la superficie 56, 58, 62, 64 de leva, se puede regular el intervalo de flexión incipiente y tardía cambiando el radio de curvatura de las superficies 56, 58, 62, 64 de leva (es decir, el “tamaño” de las superficies de leva). Por ejemplo, como se muestra en las FIGURAS 22 a 28, la prótesis ortopédica 10 puede incluir un intervalo de flexión incipiente (es decir, el intervalo en el que la superficie cóncava de leva de la leva posterior 50 hace contacto con la superficie convexa de leva de la columna 30) que es mayor que la flexión tardía (es decir, el intervalo en el que la superficie convexa de leva de la leva posterior 50 hace contacto con la superficie cóncava de leva de la columna 30).
En tales realizaciones, como se muestra en las FIGURAS 22 a 24, la leva posterior 50 del componente femoral 14 incluye una superficie 100 de leva configurada para hacer contacto con una superficie 102 de leva de la columna 30 durante su uso. Para hacerlo, la superficie 100 de leva de la leva posterior 50 incluye una superficie cóncava 104 de leva y una superficie convexa 106 de leva. En la realización descrita, la superficie convexa 106 de leva está colocada posteriormente con respecto a la superficie cóncava 104 de leva. La superficie cóncava 104 de leva tiene un radio de curvatura sustancialmente mayor que el radio de curvatura de la superficie convexa 106 de leva. Como se expone a continuación con respecto a las superficies 56, 58 de leva, el radio particular de curvatura de las superficies 104, 106 de leva (es decir, el “tamaño” de las superficies de leva) puede depender del número de criterios tales como el tamaño del implante, la forma o geometría de la superficie articulada del componente femoral 14 y/o del cojinete tibial 12 y/o similares. En una realización particular, la superficie cóncava 104 de leva tiene un radio de curvatura de aproximadamente 12,7 mm y la superficie convexa 106 de leva tiene un radio de curvatura de aproximadamente 6,4 mm.
De forma similar a la superficie 100 de leva de la leva posterior 50 del componente femoral 1, la superficie 102 de leva de la columna 30 incluye una superficie convexa 108 de leva y una superficie cóncava 110 de leva. En la realización descrita, la superficie convexa 108 de leva está colocada superiormente con respecto a la superficie cóncava 110 de leva. La superficie convexa 108 de leva tiene un radio de curvatura sustancialmente mayor que el radio de curvatura de la superficie cóncava 110 de leva. De nuevo, el radio particular de curvatura de las superficies
10
15
20
25
30
35
40
E09164168
09-04-2015
108, 110 de leva (es decir, el “tamaño” de las superficies de leva) puede depender del número de criterios tales como el tamaño del implante, la anatomía del paciente y/o similares. En una realización particular, la superficie convexa 108 de leva tiene un radio de curvatura de aproximadamente 10,3 mm y la superficie cóncava 110 de leva tiene un radio de curvatura de aproximadamente 1,00 mm.
Debido a que los radios de curvatura de las superficies 104, 108 de leva son mayores que los radios de curvatura de las superficies 106, 110 de leva, el intervalo de flexión incipiente de la realización de la prótesis ortopédica 10 mostrada en las FIGURAS 22 a 28 es mayor que el intervalo de flexión tardía. Por ejemplo, como se muestra en la FIG. 25, cuando la prótesis ortopédica 10 se encuentra en extensión o, si no, no se encuentra en flexión (por ejemplo, una flexión de aproximadamente 0), la leva posterior 50 no se encuentra en contacto con la columna 30. Sin embargo, durante una flexión incipiente como se muestra en la FIG. 26, la leva posterior 50 del componente femoral 14 hace contacto con la columna 30 del cojinete tibial 12. Es decir, durante una flexión incipiente, la superficie cóncava 104 de leva de la leva posterior 50 hace contacto con la superficie convexa 108 de leva de la columna 30. Debido a que se aumenta el radio de curvatura de las superficies 104, 108 de leva, las superficies 104, 108 de leva mantienen un contacto entre sí en un mayor intervalo de flexión. Como tal, se aumenta el intervalo de flexión incipiente de la prótesis ortopédica con respecto a realizaciones en las que se reduce el radio de curvatura de las superficies 104, 108 de leva. Después de una flexión incipiente, el contacto entre la leva posterior 50 y la columna 30 realiza una transición desde las superficies 104, 108 de leva desde las superficies 106, 110 de leva. Por ejemplo, en una realización como se muestra en la FIG. 27, el contacto entre la leva posterior 50 y la columna 30 empieza a realizar una transición a las superficies 106, 110 de leva. Con este grado de flexión, se puede establecer un contacto inicial entre la superficie convexa 106 de leva de la leva posterior 50 y la superficie cóncava 110 de leva de la columna 30. Subsiguientemente, durante una flexión tardía de la prótesis ortopédica 10, la superficie convexa 106 de leva mantiene un contacto con la superficie cóncava 110 de leva, como se muestra en la FIG. 28.
Se mantiene un contacto entre la leva posterior 50 y la columna 30 en todo el intervalo de flexión incipiente y tardía. El intervalo particular de flexión incipiente (es decir, el intervalo en el que la superficie cóncava 104 de leva de la leva posterior 50 hace contacto con la superficie convexa 108 de leva de la columna 30) y de flexión tardía (es decir, el intervalo en el que la superficie convexa 106 de leva de la leva posterior 50 hace contacto con la superficie cóncava 110 de leva de la columna 30) de la prótesis ortopédica 10 pueden depender de uno o más criterios tales como el tamaño de la prótesis ortopédica 10, la anatomía del paciente o similares. En la realización mostrada en las FIGURAS 22 a 28, la prótesis ortopédica está configurada para tener un intervalo de flexión incipiente desde aproximadamente 50 hasta aproximadamente 100 y un intervalo de flexión tardía desde aproximadamente 100 hasta aproximadamente 150, pero se pueden utilizar otros intervalos de flexión.
Debido a que la superficie 100 de leva de la leva posterior 50 incluye la superficie cóncava 104 de leva y la superficie convexa 106 de leva y la superficie 102 de leva de la columna 30 incluye la superficie convexa 108 de leva y la superficie cóncava 110 de leva, se aumenta el área superficial de contacto entre la leva posterior 50 y la columna 30 con respecto a prótesis ortopédicas en las que la leva posterior y/o la columna incluyen superficies planas de leva o superficies de leva que solo tienen una superficie cóncava o convexa. En particular, debido a que cada una de la superficie cóncava 104 de leva de la leva posterior 50 y de la superficie convexa 108 de leva de la columna 30 tiene un radio de curvatura grande, el área de contacto entre la leva posterior 50 y la columna 30 aumenta durante una flexión incipiente. Además, como se ha expuesto anteriormente, debido a que se extiende el contacto entre la leva posterior 50 y la columna 30 en una mayor área de contacto, también se puede reducir el desgaste anterior de la columna 30.

Claims (7)

  1. REIVINDICACIONES
    1. Una prótesis ortopédica de articulación de rodilla que comprende:
    un cojinete tibial (12) configurado para ser acoplado a la bandeja tibial (15), teniendo el cojinete tibial una plataforma (16) y una columna (30) que se extiende hacia arriba desde la plataforma, teniendo la columna
    5 un lado posterior (34) que incluye una superficie cóncava (64) de leva y una superficie convexa (62) de leva ubicada superiormente con respecto a la superficie cóncava de leva; y un componente femoral (14) configurado para articularse con el cojinete tibial, incluyendo el componente femoral (i) un par de cóndilos separados (44, 46) que definen una escotadura intracondílea entre ellos y (ii) una leva posterior (50) colocada en la escotadura intracondílea (42), incluyendo la leva posterior una
    10 superficie cóncava (56) de leva y una superficie convexa (58) de leva, en la que la leva posterior no hace contacto con la columna cuando la prótesis no se encuentra en flexión, caracterizada porque (a) la superficie cóncava de leva de la leva posterior hace contacto con la superficie convexa de leva de la columna durante un primer intervalo de flexión que comienza con un ángulo de flexión desde aproximadamente 50, y (b) un contacto entre la leva posterior y la superficie de leva de la
    15 columna cambia a hacer contacto entre la superficie cóncava de leva de la leva posterior y la superficie cóncava de leva de la columna durante un segundo intervalo de flexión que comienza con un ángulo de flexión que es mayor que el ángulo de flexión que marca el final del primer intervalo de flexión y termina con un ángulo de flexión no superior a aproximadamente 150.
  2. 2. La prótesis ortopédica de articulación de rodilla de la reivindicación 1, en la que la superficie convexa (62) de
    20 leva de la columna (30) del cojinete tibial (12) está curvada convexamente en el plano sagital y la superficie cóncava (64) de leva de la columna está curvada cóncavamente en el plano sagital.
  3. 3. La prótesis ortopédica de articulación de rodilla de la reivindicación 2, en la que la superficie cóncava (64) de leva y la superficie convexa (62) de leva de la columna (30) están curvadas convexamente en el plano transversal.
    25 4. La prótesis ortopédica de articulación de rodilla de la reivindicación 3, en la que el radio de curvatura en el plano transversal de la superficie cóncava (64) de leva de la columna (30) es sustancialmente igual al radio de curvatura en el plano transversal de la superficie convexa (62) de leva de la columna.
  4. 5. La prótesis ortopédica de articulación de rodilla de la reivindicación 1, en la que la superficie cóncava (56) de leva de la leva posterior (50) del componente femoral (14) está curvada cóncavamente en el plano sagital y la
    30 superficie convexa (58) de leva de la leva posterior del componente femoral está curvada convexamente en el plano sagital.
  5. 6. La prótesis ortopédica de articulación de rodilla de la reivindicación 5, en la que la superficie cóncava (56) de leva y la superficie convexa (58) de leva de la leva posterior (50) del componente femoral (14) están curvadas cóncavamente en la dirección medial-lateral.
    35 7. La prótesis ortopédica de articulación de rodilla de la reivindicación 1, en la que la columna (30) del cojinete tibial (12) y la leva posterior (50) del componente femoral (14) tienen cada una un perfil en corte transversal con una forma sustancialmente de “S”.
  6. 8. La prótesis ortopédica de articulación de rodilla de la reivindicación 1, en la que el primer intervalo de flexión es
    desde aproximadamente 50 de flexión hasta aproximadamente 80 de flexión y el segundo intervalo de flexión 40 es desde aproximadamente 80 de flexión hasta aproximadamente 150 de flexión.
  7. 9. La prótesis ortopédica de articulación de rodilla de la reivindicación 1, en la que la superficie cóncava (64) de leva de la columna (30) del cojinete tibial (12) está definida por un primer radio de curvatura y la superficie convexa (62) de leva de la columna está definida por un segundo radio de curvatura, siendo distinto el primer radio de curvatura del segundo radio de curvatura.
    45 10. La prótesis ortopédica de articulación de rodilla de la reivindicación 9, en la que la superficie cóncava (56) de leva de la leva posterior (50) del componente femoral (14) está definida por un primer radio de curvatura y la superficie convexa (58) de leva de la leva posterior del componente femoral está definida por un segundo radio, siendo distinto el primer radio de curvatura del segundo radio de curvatura.
    8
ES09164168.8T 2008-06-30 2009-06-30 Prótesis ortopédicas Active ES2534653T3 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US165582 2008-06-30
US12/165,582 US8206451B2 (en) 2008-06-30 2008-06-30 Posterior stabilized orthopaedic prosthesis

Publications (1)

Publication Number Publication Date
ES2534653T3 true ES2534653T3 (es) 2015-04-27

Family

ID=41350712

Family Applications (2)

Application Number Title Priority Date Filing Date
ES09164168.8T Active ES2534653T3 (es) 2008-06-30 2009-06-30 Prótesis ortopédicas
ES15150842.1T Active ES2614051T3 (es) 2008-06-30 2009-06-30 Prótesis ortopédicas

Family Applications After (1)

Application Number Title Priority Date Filing Date
ES15150842.1T Active ES2614051T3 (es) 2008-06-30 2009-06-30 Prótesis ortopédicas

Country Status (7)

Country Link
US (3) US8206451B2 (es)
EP (2) EP2149354B1 (es)
JP (1) JP5535533B2 (es)
CN (1) CN101683289B (es)
AU (1) AU2009202627B2 (es)
DK (1) DK2149354T3 (es)
ES (2) ES2534653T3 (es)

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8735773B2 (en) 2007-02-14 2014-05-27 Conformis, Inc. Implant device and method for manufacture
US8480754B2 (en) 2001-05-25 2013-07-09 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US8545569B2 (en) 2001-05-25 2013-10-01 Conformis, Inc. Patient selectable knee arthroplasty devices
US7534263B2 (en) 2001-05-25 2009-05-19 Conformis, Inc. Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
US9603711B2 (en) 2001-05-25 2017-03-28 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US8882847B2 (en) 2001-05-25 2014-11-11 Conformis, Inc. Patient selectable knee joint arthroplasty devices
US7468075B2 (en) 2001-05-25 2008-12-23 Conformis, Inc. Methods and compositions for articular repair
US8083745B2 (en) 2001-05-25 2011-12-27 Conformis, Inc. Surgical tools for arthroplasty
US8556983B2 (en) 2001-05-25 2013-10-15 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
US8771365B2 (en) 2009-02-25 2014-07-08 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs, and related tools
US6558426B1 (en) 2000-11-28 2003-05-06 Medidea, Llc Multiple-cam, posterior-stabilized knee prosthesis
US6485519B2 (en) 2001-01-29 2002-11-26 Bristol-Myers Squibb Company Constrained prosthetic knee with rotating bearing
US6719800B2 (en) 2001-01-29 2004-04-13 Zimmer Technology, Inc. Constrained prosthetic knee with rotating bearing
US9308091B2 (en) 2001-05-25 2016-04-12 Conformis, Inc. Devices and methods for treatment of facet and other joints
US8439926B2 (en) 2001-05-25 2013-05-14 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
EP1389980B1 (en) 2001-05-25 2011-04-06 Conformis, Inc. Methods and compositions for articular resurfacing
US8951260B2 (en) 2001-05-25 2015-02-10 Conformis, Inc. Surgical cutting guide
EP1555962B1 (en) 2002-10-07 2011-02-09 Conformis, Inc. Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces
AU2003290757A1 (en) 2002-11-07 2004-06-03 Conformis, Inc. Methods for determing meniscal size and shape and for devising treatment
US9301845B2 (en) 2005-06-15 2016-04-05 P Tech, Llc Implant for knee replacement
CN101222886B (zh) * 2005-07-14 2012-05-30 国立大学法人佐贺大学 人工膝关节
AU2006325787B2 (en) * 2005-12-15 2013-07-18 Sergio Romagnoli Distal femoral knee prostheses
US8623026B2 (en) 2006-02-06 2014-01-07 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools incorporating anatomical relief
EP1981409B1 (en) 2006-02-06 2017-01-11 ConforMIS, Inc. Patient selectable joint arthroplasty devices and surgical tools
US8029574B2 (en) 2006-11-07 2011-10-04 Biomedflex Llc Prosthetic knee joint
US8512413B2 (en) 2006-11-07 2013-08-20 Biomedflex, Llc Prosthetic knee joint
US9005306B2 (en) 2006-11-07 2015-04-14 Biomedflex, Llc Medical Implants With Compliant Wear-Resistant Surfaces
US20110166671A1 (en) 2006-11-07 2011-07-07 Kellar Franz W Prosthetic joint
US8308812B2 (en) 2006-11-07 2012-11-13 Biomedflex, Llc Prosthetic joint assembly and joint member therefor
US8070823B2 (en) 2006-11-07 2011-12-06 Biomedflex Llc Prosthetic ball-and-socket joint
US9005307B2 (en) 2006-11-07 2015-04-14 Biomedflex, Llc Prosthetic ball-and-socket joint
EP2114312B1 (en) 2007-02-14 2014-01-08 ConforMIS, Inc. Method for manufacture of an implant device
US8128703B2 (en) 2007-09-28 2012-03-06 Depuy Products, Inc. Fixed-bearing knee prosthesis having interchangeable components
US8632600B2 (en) 2007-09-25 2014-01-21 Depuy (Ireland) Prosthesis with modular extensions
US9204967B2 (en) 2007-09-28 2015-12-08 Depuy (Ireland) Fixed-bearing knee prosthesis having interchangeable components
US8682052B2 (en) 2008-03-05 2014-03-25 Conformis, Inc. Implants for altering wear patterns of articular surfaces
US8236061B2 (en) 2008-06-30 2012-08-07 Depuy Products, Inc. Orthopaedic knee prosthesis having controlled condylar curvature
US9119723B2 (en) 2008-06-30 2015-09-01 Depuy (Ireland) Posterior stabilized orthopaedic prosthesis assembly
US8192498B2 (en) 2008-06-30 2012-06-05 Depuy Products, Inc. Posterior cructiate-retaining orthopaedic knee prosthesis having controlled condylar curvature
US9168145B2 (en) 2008-06-30 2015-10-27 Depuy (Ireland) Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature
US8187335B2 (en) 2008-06-30 2012-05-29 Depuy Products, Inc. Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature
US8828086B2 (en) 2008-06-30 2014-09-09 Depuy (Ireland) Orthopaedic femoral component having controlled condylar curvature
US8206451B2 (en) 2008-06-30 2012-06-26 Depuy Products, Inc. Posterior stabilized orthopaedic prosthesis
EP2405865B1 (en) 2009-02-24 2019-04-17 ConforMIS, Inc. Automated systems for manufacturing patient-specific orthopedic implants and instrumentation
US9078755B2 (en) 2009-02-25 2015-07-14 Zimmer, Inc. Ethnic-specific orthopaedic implants and custom cutting jigs
BRPI1014917A2 (pt) 2009-04-16 2016-04-19 Conformis Inc "dispositivos de artroplastia de junta específica para páciente para reparo de ligamento"
US9101476B2 (en) 2009-05-21 2015-08-11 Depuy (Ireland) Prosthesis with surfaces having different textures and method of making the prosthesis
US11213397B2 (en) 2009-05-21 2022-01-04 Depuy Ireland Unlimited Company Prosthesis with surfaces having different textures and method of making the prosthesis
US8998997B2 (en) 2009-08-11 2015-04-07 Michael D. Ries Implantable mobile bearing prosthetics
US8496666B2 (en) 2009-08-11 2013-07-30 Imds Corporation Instrumentation for mobile bearing prosthetics
US8382848B2 (en) * 2009-08-11 2013-02-26 Imds Corporation Position adjustable trial systems for prosthetic implants
US9095453B2 (en) * 2009-08-11 2015-08-04 Michael D. Ries Position adjustable trial systems for prosthetic implants
US8568485B2 (en) * 2009-08-11 2013-10-29 Imds Corporation Articulating trials for prosthetic implants
EP2316384B1 (en) 2009-10-30 2013-04-03 DePuy Products, Inc. Prosthesis with modular extensions
EP2316382B1 (en) 2009-10-30 2014-03-05 DePuy (Ireland) Prosthesis for cementless fixation
EP2606857A1 (en) 2009-10-30 2013-06-26 DePuy Products, Inc. Prosthesis with composite component
ES2532826T3 (es) 2009-10-30 2015-04-01 DePuy Synthes Products, LLC Prótesis con superficies de texturas diferentes
EP2319460A1 (en) 2009-10-30 2011-05-11 DePuy Products, Inc. Prosthesis with cut-off pegs
US8900315B2 (en) * 2009-11-16 2014-12-02 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Constrained condylar knee device
US8870964B2 (en) * 2009-11-16 2014-10-28 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Prosthetic condylar joints with articulating bearing surfaces having a translating contact point during rotation thereof
CA2782137A1 (en) 2009-12-11 2011-06-16 Conformis, Inc. Patient-specific and patient-engineered orthopedic implants
US20110178606A1 (en) 2010-01-21 2011-07-21 Depuy Products, Inc. Tibial components for a knee prosthesis system
US9011547B2 (en) 2010-01-21 2015-04-21 Depuy (Ireland) Knee prosthesis system
EP3034042B1 (en) * 2010-07-24 2017-06-28 Zimmer, Inc. Asymmetric tibial components for a knee prosthesis
US9381090B2 (en) 2010-07-24 2016-07-05 Zimmer, Inc. Asymmetric tibial components for a knee prosthesis
US8764840B2 (en) 2010-07-24 2014-07-01 Zimmer, Inc. Tibial prosthesis
US8591594B2 (en) 2010-09-10 2013-11-26 Zimmer, Inc. Motion facilitating tibial components for a knee prosthesis
CA2993979A1 (en) 2010-09-10 2012-03-15 Zimmer Gmbh Femoral prosthesis with medialized patellar groove
US8317870B2 (en) 2010-09-30 2012-11-27 Depuy Products, Inc. Tibial component of a knee prosthesis having an angled cement pocket
US8287601B2 (en) 2010-09-30 2012-10-16 Depuy Products, Inc. Femoral component of a knee prosthesis having an angled cement pocket
ES2443827T3 (es) 2010-10-05 2014-02-20 Aesculap Ag Endoprótesis de articulación de rodilla
JP5688281B2 (ja) * 2010-12-10 2015-03-25 京セラメディカル株式会社 人工膝関節
US8603101B2 (en) 2010-12-17 2013-12-10 Zimmer, Inc. Provisional tibial prosthesis system
EP4000563A1 (en) * 2011-01-27 2022-05-25 Smith & Nephew, Inc. Constrained knee prosthesis
EP2754419B1 (en) 2011-02-15 2024-02-07 ConforMIS, Inc. Patient-adapted and improved orthopedic implants
US8551179B2 (en) 2011-06-16 2013-10-08 Zimmer, Inc. Femoral prosthesis system having provisional component with visual indicators
US9308095B2 (en) 2011-06-16 2016-04-12 Zimmer, Inc. Femoral component for a knee prosthesis with improved articular characteristics
US8932365B2 (en) 2011-06-16 2015-01-13 Zimmer, Inc. Femoral component for a knee prosthesis with improved articular characteristics
US9060868B2 (en) 2011-06-16 2015-06-23 Zimmer, Inc. Femoral component for a knee prosthesis with bone compacting ridge
CN103796617B (zh) * 2011-06-30 2016-08-24 德普伊(爱尔兰)有限公司 具有可控髁曲率的后稳定型整形外科膝关节假体
WO2013003435A1 (en) 2011-06-30 2013-01-03 Depuy Products, Inc. Posterior stabilized orthopaedic prosthesis assembly
US9005299B2 (en) * 2011-07-13 2015-04-14 The General Hospital Corporation Methods and devices for knee joint replacement with anterior cruciate ligament substitution
DK2758004T3 (en) * 2011-09-19 2015-10-19 Tecres Spa Temporary modular distance device for led the human body
US8409293B1 (en) * 2011-10-26 2013-04-02 Sevika Holding AG Knee prosthesis
CN104066402B (zh) 2011-11-18 2016-05-04 捷迈有限公司 用于膝关节假体的带有改进的关节联接特征的胫骨支撑件
ES2585838T3 (es) 2011-11-21 2016-10-10 Zimmer, Inc. Placa de base tibial con la colocación asimétrica de estructuras de fijación
FR2989568B1 (fr) * 2012-04-19 2014-09-05 Teknimed Implant espaceur de remplacement temporaire d'une prothese de genou
US9675471B2 (en) 2012-06-11 2017-06-13 Conformis, Inc. Devices, techniques and methods for assessing joint spacing, balancing soft tissues and obtaining desired kinematics for joint implant components
IN2014DE00549A (es) * 2013-03-07 2015-06-12 Depuy Ireland
US9237953B2 (en) 2013-03-15 2016-01-19 Depuy (Ireland) Mechanical assembly of pegs to prosthesis
US9925052B2 (en) 2013-08-30 2018-03-27 Zimmer, Inc. Method for optimizing implant designs
US9144499B2 (en) 2013-12-17 2015-09-29 Depuy (Ireland) Low profile mobile/fixed prosthetic knee systems
FR3016284B1 (fr) * 2014-01-14 2019-08-16 Evolutis Prothese postero stabilisee du genou
EP3104813B1 (en) * 2014-02-10 2018-07-25 Limacorporate SPA Artificial knee joint
US10130375B2 (en) 2014-07-31 2018-11-20 Zimmer, Inc. Instruments and methods in performing kinematically-aligned total knee arthroplasty
KR101696608B1 (ko) * 2014-11-07 2017-01-17 주식회사 코렌텍 대퇴골 결합부재의 탈구를 방지할 수 있는 인공 슬관절
CN104887354B (zh) * 2015-02-10 2017-06-30 江苏奥康尼医疗科技发展有限公司 一种组合式有机高分子材料人工膝关节
CN105030382A (zh) * 2015-02-10 2015-11-11 江苏奥康尼医疗科技发展有限公司 一种有机高分子材料双滑动人工膝关节
CN108135701B (zh) 2015-09-21 2019-12-24 捷迈有限公司 包括胫骨承载组件的假体系统
EP3355834B1 (en) 2015-09-29 2023-01-04 Zimmer, Inc. Tibial prosthesis for tibia with varus resection
CN105213071A (zh) * 2015-10-21 2016-01-06 苏州锐进医疗科技有限公司 一种骨保留型膝关节假体
CN106580524B (zh) * 2016-12-12 2018-08-07 上海昕健医疗技术有限公司 后稳定型膝关节假体
US10675153B2 (en) 2017-03-10 2020-06-09 Zimmer, Inc. Tibial prosthesis with tibial bearing component securing feature
CA3063415C (en) 2017-05-12 2021-10-19 Zimmer, Inc. Femoral prostheses with upsizing and downsizing capabilities
CN107280812A (zh) * 2017-07-18 2017-10-24 优适医疗科技(苏州)有限公司 一种人工膝关节假体
CN107468381A (zh) * 2017-08-02 2017-12-15 浙江德康医疗器械有限公司 一种膝关节系统
US11426282B2 (en) 2017-11-16 2022-08-30 Zimmer, Inc. Implants for adding joint inclination to a knee arthroplasty
US10835380B2 (en) 2018-04-30 2020-11-17 Zimmer, Inc. Posterior stabilized prosthesis system
US11357634B1 (en) * 2020-01-15 2022-06-14 Lento Medical, Inc. Posterior-stabilized symmetric knee prosthesis
US11382757B1 (en) * 2020-01-15 2022-07-12 Lento Medical, Inc. Condylar asymmetry knee prosthesis

Family Cites Families (341)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1065354A (en) 1964-04-13 1967-04-12 Gen Electric Improvements in fortification of anodized surfaces
CA962806A (en) 1970-06-04 1975-02-18 Ontario Research Foundation Surgical prosthetic device
US3765033A (en) * 1971-01-19 1973-10-16 D Goldberg Prosthetic knee joint assembly with mutually slidable and rollable joint sections
US3852045A (en) 1972-08-14 1974-12-03 Battelle Memorial Institute Void metal composite material and method
GB1448818A (en) * 1972-09-18 1976-09-08 Nat Res Dev Prosthetic knee joint devices
US3869731A (en) * 1973-02-14 1975-03-11 Univ California Articulated two-part prosthesis replacing the knee joint
US3938226A (en) * 1974-03-13 1976-02-17 Kling-Tecs, Inc. Apparatus for crimping yarn
GB1550010A (en) 1976-12-15 1979-08-08 Ontario Research Foundation Surgical prosthetic device or implant having pure metal porous coating
US4081866A (en) 1977-02-02 1978-04-04 Howmedica, Inc. Total anatomical knee prosthesis
US4156943A (en) 1977-08-24 1979-06-05 Collier John P High-strength porous prosthetic device and process for making the same
US4209861A (en) 1978-02-22 1980-07-01 Howmedica, Inc. Joint prosthesis
DE2965891D1 (en) 1978-03-10 1983-08-25 Biomedical Eng Corp Improved joint endoprosthesis
US4470158A (en) * 1978-03-10 1984-09-11 Biomedical Engineering Corp. Joint endoprosthesis
CH632151A5 (de) * 1978-10-06 1982-09-30 Sulzer Ag Endoprothese fuer ein kniegelenk.
US4215439A (en) * 1978-10-16 1980-08-05 Zimmer, USA Semi-restraining knee prosthesis
US4257129A (en) 1979-05-21 1981-03-24 Volz Robert G Prosthetic knee joint tibial implant
US4340978A (en) * 1979-07-02 1982-07-27 Biomedical Engineering Corp. New Jersey meniscal bearing knee replacement
US4262368A (en) * 1979-09-24 1981-04-21 Wright Manufacturing Company Rotating and hinged knee prosthesis
US5037423A (en) * 1983-10-26 1991-08-06 Pfizer Hospital Products Group, Inc. Method and instrumentation for the replacement of a knee prosthesis
US4944760A (en) * 1983-10-26 1990-07-31 Pfizer Hospital Products Group, Inc. Method and instrumentation for the replacement of a knee prosthesis
US4612160A (en) 1984-04-02 1986-09-16 Dynamet, Inc. Porous metal coating process and mold therefor
SE450336B (sv) 1984-11-28 1987-06-22 Branemark Per Ingvar Ledprotes for permanent forankring i benvevnaden
US4673407A (en) 1985-02-20 1987-06-16 Martin Daniel L Joint-replacement prosthetic device
US5201766A (en) 1985-09-11 1993-04-13 Smith & Nephew Richards Inc. Prosthetic device with porous matrix and method of manufacture
US4808185A (en) * 1986-02-07 1989-02-28 Penenberg Brad L Tibial prosthesis, template and reamer
US4714474A (en) 1986-05-12 1987-12-22 Dow Corning Wright Corporation Tibial knee joint prosthesis with removable articulating surface insert
US4963152A (en) 1986-10-27 1990-10-16 Intermedics Orthopedics, Inc. Asymmetric prosthetic tibial component
US4822362A (en) 1987-05-19 1989-04-18 Walker Peter S Process and apparatus for tibial plateau compenent
FR2621243A1 (fr) 1987-10-06 1989-04-07 Cuilleron J Prothese totale du genou
US4795468A (en) 1987-12-23 1989-01-03 Zimmer, Inc. Mechanism and method for locking a bearing insert to the base of a prosthetic implant
US5011496A (en) * 1988-02-02 1991-04-30 Joint Medical Products Corporation Prosthetic joint
US4888021A (en) * 1988-02-02 1989-12-19 Joint Medical Products Corporation Knee and patellar prosthesis
US4950298A (en) * 1988-04-08 1990-08-21 Gustilo Ramon B Modular knee joint prosthesis
US4944757A (en) 1988-11-07 1990-07-31 Martinez David M Modulator knee prosthesis system
US5007933A (en) * 1989-01-31 1991-04-16 Osteonics Corp. Modular knee prosthesis system
US4990163A (en) 1989-02-06 1991-02-05 Trustees Of The University Of Pennsylvania Method of depositing calcium phosphate cermamics for bone tissue calcification enhancement
US4938769A (en) * 1989-05-31 1990-07-03 Shaw James A Modular tibial prosthesis
GB8912682D0 (en) 1989-06-02 1989-07-19 Thackray Chas F Improvements in and relating to knee prosthesis
US5171283A (en) 1989-07-11 1992-12-15 Biomedical Engineering Trust Compound shape rotating bearing
FR2653992B1 (fr) 1989-11-09 1998-01-23 Richard Berakassa Prothese totale du genou a glissement.
US5019103A (en) 1990-02-05 1991-05-28 Boehringer Mannheim Corporation Tibial wedge system
US5147405A (en) * 1990-02-07 1992-09-15 Boehringer Mannheim Corporation Knee prosthesis
GB9005496D0 (en) 1990-03-12 1990-05-09 Howmedica Tibial component for a replacement knee prosthesis and total knee prosthesis incorporating such a component
US5358531A (en) 1990-06-12 1994-10-25 British Technology Group Limited Prosthetic knee joint devices
US5116375A (en) * 1990-08-27 1992-05-26 Hofmann Aaron A Knee prosthesis
US5104410A (en) 1990-10-22 1992-04-14 Intermedics Orthopedics, Inc Surgical implant having multiple layers of sintered porous coating and method
US5071438A (en) 1990-11-07 1991-12-10 Intermedics Orthopedics, Inc. Tibial prothesis with pivoting articulating surface
CA2078228C (en) * 1990-11-14 2000-04-11 Lawrence Pottenger Improved floating bearing prosthetic knee
EP0495340A1 (de) 1991-01-18 1992-07-22 Gebrüder Sulzer Aktiengesellschaft Modularer Bausatz für den Tibiateil einer Kniegelenkprothese
GB9314839D0 (en) 1993-07-16 1993-09-01 Walker Peter S Prosthesis for knee replacement
GB9102348D0 (en) 1991-02-04 1991-03-20 Inst Of Orthopaedics The Prosthesis for knee replacement
US5609639A (en) * 1991-02-04 1997-03-11 Walker; Peter S. Prosthesis for knee replacement
GB9102633D0 (en) 1991-02-07 1991-03-27 Finsbury Instr Ltd Knee prosthesis
US5358527A (en) 1991-03-22 1994-10-25 Forte Mark R Total knee prosthesis with resurfacing and posterior stabilization capability
US5236461A (en) * 1991-03-22 1993-08-17 Forte Mark R Totally posterior stabilized knee prosthesis
US5108442A (en) 1991-05-09 1992-04-28 Boehringer Mannheim Corporation Prosthetic implant locking assembly
US5395401A (en) * 1991-06-17 1995-03-07 Bahler; Andre Prosthetic device for a complex joint
US5133758A (en) * 1991-09-16 1992-07-28 Research And Education Institute, Inc. Harbor-Ucla Medical Center Total knee endoprosthesis with fixed flexion-extension axis of rotation
US5258044A (en) 1992-01-30 1993-11-02 Etex Corporation Electrophoretic deposition of calcium phosphate material on implants
US5330534A (en) * 1992-02-10 1994-07-19 Biomet, Inc. Knee joint prosthesis with interchangeable components
US5236457A (en) 1992-02-27 1993-08-17 Zimmer, Inc. Method of making an implant having a metallic porous surface
US5282861A (en) 1992-03-11 1994-02-01 Ultramet Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
US5496372A (en) 1992-04-17 1996-03-05 Kyocera Corporation Hard tissue prosthesis including porous thin metal sheets
NZ243181A (en) 1992-04-23 1994-10-26 Michael John Pappas Prosthetic joint with guide means to limit articulation of a first element and bearing means to two degrees of freedom
US5824102A (en) 1992-06-19 1998-10-20 Buscayret; Christian Total knee prosthesis
US5271737A (en) 1992-09-04 1993-12-21 U.S. Medical Products, Inc. Tibial prosthetic implant with offset stem
US5344460A (en) * 1992-10-30 1994-09-06 Encore Orthopedics, Inc. Prosthesis system
US5658342A (en) * 1992-11-16 1997-08-19 Arch Development Stabilized prosthetic knee
US5309639A (en) 1992-11-23 1994-05-10 The Timken Company Method of making a machine component with lubricated wear surface
US5251468A (en) 1992-12-14 1993-10-12 Zimmer, Inc. Method of surface finishing orthopaedic implant devices using a bioactive blasting medium
US5413604A (en) * 1992-12-24 1995-05-09 Osteonics Corp. Prosthetic knee implant for an anterior cruciate ligament deficient total knee replacement
US5344494A (en) 1993-01-21 1994-09-06 Smith & Nephew Richards, Inc. Method for cleaning porous and roughened surfaces on medical implants
US5370699A (en) 1993-01-21 1994-12-06 Orthomet, Inc. Modular knee joint prosthesis
US5344461A (en) * 1993-02-12 1994-09-06 Zimmer, Inc. Modular implant provisional
US5308556A (en) 1993-02-23 1994-05-03 Corning Incorporated Method of making extrusion dies from powders
DE4308563A1 (de) 1993-03-18 1994-09-22 Alphanorm Medizintechnik Gmbh Kniegelenkprothese
GB9310193D0 (en) 1993-05-18 1993-06-30 Walker Peter S Knee prosthesis with femoral,tibial conformity
US5414049A (en) 1993-06-01 1995-05-09 Howmedica Inc. Non-oxidizing polymeric medical implant
US5368881A (en) 1993-06-10 1994-11-29 Depuy, Inc. Prosthesis with highly convoluted surface
US5405396A (en) 1993-07-01 1995-04-11 Zimmer, Inc. Tibial prosthesis
GB9314832D0 (en) 1993-07-16 1993-09-01 Walker Peter S Prostheses for knee replacement
DE59408909D1 (de) * 1993-10-13 1999-12-16 Ciba Sc Holding Ag Neue Fluoreszenzfarbstoffe
US5549686A (en) * 1994-06-06 1996-08-27 Zimmer, Inc. Knee prosthesis having a tapered cam
SE504971C2 (sv) 1994-07-11 1997-06-02 Sandvik Ab Sågsvärd med vätskeutsprutning
US5755803A (en) * 1994-09-02 1998-05-26 Hudson Surgical Design Prosthetic implant
GB9418492D0 (en) 1994-09-14 1994-11-02 Goodfellow John W Prosthetic knee joint device
US5571194A (en) 1994-11-14 1996-11-05 Johnson & Johnson Professional, Inc. Femoral augmentation system for artificial knee joint
US5458637A (en) 1994-11-21 1995-10-17 Zimmer, Inc. Orthopaedic base component with modular augmentation block
US5702458A (en) 1994-12-09 1997-12-30 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Joint prosthesis
US5824096A (en) 1994-12-12 1998-10-20 Biomedical Engineering Trust I Hinged knee prosthesis with condylar bearing
CA2166450C (en) 1995-01-20 2008-03-25 Ronald Salovey Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
AUPN089495A0 (en) 1995-02-03 1995-03-02 Denupo Pty. Ltd. Knee prosthesis
US5639279A (en) * 1995-02-09 1997-06-17 Intermedics Orthopedics, Inc. Posteriorly-stabilized prosthetic knee
US5609643A (en) * 1995-03-13 1997-03-11 Johnson & Johnson Professional, Inc. Knee joint prosthesis
US5683468A (en) 1995-03-13 1997-11-04 Pappas; Michael J. Mobile bearing total joint replacement
AU701181B2 (en) 1995-06-01 1999-01-21 Depuy Orthopaedics, Inc. Augmentation device for joint prostheses
US5984969A (en) 1995-06-01 1999-11-16 Johnson & Johnson Professional, Inc. Joint prosthesis augmentation system
DE19529824A1 (de) 1995-08-14 1997-02-20 Bodo Gnutzmann Bikondyläre Knie-Endoprothese
US5871546A (en) 1995-09-29 1999-02-16 Johnson & Johnson Professional, Inc. Femoral component condyle design for knee prosthesis
US5776201A (en) * 1995-10-02 1998-07-07 Johnson & Johnson Professional, Inc. Modular femoral trial system
US5989027A (en) 1995-12-08 1999-11-23 Sulzer Calcitek Inc. Dental implant having multiple textured surfaces
US5658344A (en) * 1995-12-29 1997-08-19 Johnson & Johnson Professional, Inc. Tibial insert reinforcement pin
US5843289A (en) 1996-01-22 1998-12-01 Etex Corporation Surface modification of medical implants
US5879400A (en) 1996-02-13 1999-03-09 Massachusetts Institute Of Technology Melt-irradiated ultra high molecular weight polyethylene prosthetic devices
US5702463A (en) 1996-02-20 1997-12-30 Smith & Nephew Inc. Tibial prosthesis with polymeric liner and liner insertion/removal instrument
US5702464A (en) 1996-02-20 1997-12-30 Smith & Nephew Inc. Modular trial tibial insert
US5681354A (en) 1996-02-20 1997-10-28 Board Of Regents, University Of Colorado Asymmetrical femoral component for knee prosthesis
US5871543A (en) * 1996-02-23 1999-02-16 Hofmann; Aaron A. Tibial prosthesis with mobile bearing member
HU219444B (hu) 1996-02-26 2001-04-28 Gábor Krakovits Felületpótló térdprotézis
GB9611059D0 (en) 1996-05-28 1996-07-31 Howmedica Tibial element for a replacement knee prosthesis
US6228900B1 (en) 1996-07-09 2001-05-08 The Orthopaedic Hospital And University Of Southern California Crosslinking of polyethylene for low wear using radiation and thermal treatments
US5964808A (en) 1996-07-11 1999-10-12 Wright Medical Technology, Inc. Knee prosthesis
US5765095A (en) 1996-08-19 1998-06-09 Smith International, Inc. Polycrystalline diamond bit manufacturing
US5906644A (en) * 1996-08-30 1999-05-25 Powell; Douglas Hunter Adjustable modular orthopedic implant
DK0927010T3 (da) 1996-09-11 2003-02-10 Plus Endoprothetik Ag Tibia-del af en knæledsendoprotese
US6004351A (en) 1996-09-14 1999-12-21 Mizuho Ika Kogyo Kabushiki Kaisha Prosthetic knee joint
US6017975A (en) 1996-10-02 2000-01-25 Saum; Kenneth Ashley Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance
US5824100A (en) 1996-10-30 1998-10-20 Osteonics Corp. Knee prosthesis with increased balance and reduced bearing stress
US5755800A (en) 1996-12-23 1998-05-26 Johnson & Johnson Professional, Inc. Modular joint prosthesis augmentation system
US5766257A (en) * 1997-01-28 1998-06-16 Implant Manufacturing And Testing Corporation Artificial joint having natural load transfer
GB2323034B (en) 1997-03-13 2001-07-25 Zimmer Ltd Prosthesis for knee replacement
US6210612B1 (en) 1997-03-31 2001-04-03 Pouvair Corporation Method for the manufacture of porous ceramic articles
GB9707717D0 (en) * 1997-04-16 1997-06-04 Walker Peter S Knee prosthesis having guide surfaces for control of anterior-posterior translation
US6059949A (en) 1997-04-23 2000-05-09 Cerel (Ceramic Technologies) Ltd. Method of electrophoretic deposition of ceramic bodies for use in manufacturing dental appliances
US5824103A (en) 1997-05-12 1998-10-20 Howmedica Inc. Tibial prosthesis
US6139581A (en) 1997-06-06 2000-10-31 Depuy Orthopaedics, Inc. Posterior compensation tibial tray
US5976147A (en) 1997-07-11 1999-11-02 Johnson & Johnson Professional, Inc Modular instrumentation for bone preparation and implant trial reduction of orthopedic implants
US6039764A (en) * 1997-08-18 2000-03-21 Arch Development Corporation Prosthetic knee with adjusted center of internal/external rotation
US6123728A (en) * 1997-09-17 2000-09-26 Smith & Nephew, Inc. Mobile bearing knee prosthesis
FR2768613B1 (fr) 1997-09-23 1999-12-17 Tornier Sa Prothese de genou a plateau rotatoire
US6010534A (en) * 1997-09-25 2000-01-04 Johnson & Johnson Professional, Inc. Rotatable tibial prosthesis with keyed axial securement
US5951603A (en) * 1997-09-25 1999-09-14 Johnson & Johnson Professional, Inc. Rotatable joint prosthesis with axial securement
US6053945A (en) * 1997-09-25 2000-04-25 Johnson & Johnson Professional, Inc. Joint prosthesis having controlled rotation
US6206926B1 (en) * 1997-10-06 2001-03-27 Biomedical Engineering Trust I Prosthetic knee joint with enhanced posterior stabilization and dislocation prevention features
FR2769495B1 (fr) 1997-10-14 1999-12-31 Michel Timoteo Prothese de genou
US6325828B1 (en) 1997-12-02 2001-12-04 Rose Biomedical Research Apparatus for knee prosthesis
FR2772259B1 (fr) * 1997-12-12 2000-03-03 Tornier Sa Perfectionnements apportes aux protheses totales de genou comportant un element femoral et un plateau tibial
US5957979A (en) 1997-12-12 1999-09-28 Bristol-Myers Squibb Company Mobile bearing knee with metal on metal interface
US6135857A (en) 1998-03-02 2000-10-24 General Electric Company Method for surface enhancement by fluid jet impact
US6123729A (en) 1998-03-10 2000-09-26 Bristol-Myers Squibb Company Four compartment knee
US6090144A (en) 1998-05-12 2000-07-18 Letot; Patrick Synthetic knee system
DE69918894T2 (de) 1998-05-13 2005-08-11 Depuy Products, Inc., Warsaw Tibiaplattform mit einstellbarem Schaft
US6660039B1 (en) 1998-05-20 2003-12-09 Smith & Nephew, Inc. Mobile bearing knee prosthesis
US6428577B1 (en) * 1998-05-20 2002-08-06 Smith & Nephew, Inc. Mobile bearing knee prosthesis
US6126692A (en) 1998-06-25 2000-10-03 New York Society For The Relief Of The Ruptured And Crippled Maintaining The Hospital For Special Surgery Retaining mechanism for a modular tibial component of a knee prosthesis
FR2780636B1 (fr) 1998-07-06 2000-10-06 Merck Biomaterial France Prothese de genou modulable
US6080195A (en) * 1998-07-08 2000-06-27 Johnson & Johnson Professional, Inc. Rotatable and translatable joint prosthesis with posterior stabilization
CA2279660C (en) 1998-08-05 2004-02-24 Biomedical Engineering Trust I Knee joint prosthesis with spinout prevention
US6443991B1 (en) 1998-09-21 2002-09-03 Depuy Orthopaedics, Inc. Posterior stabilized mobile bearing knee
US6152960A (en) 1998-10-13 2000-11-28 Biomedical Engineering Trust I Femoral component for knee endoprosthesis
US6500208B1 (en) * 1998-10-16 2002-12-31 Biomet, Inc. Nonmodular joint prosthesis convertible in vivo to a modular prosthesis
US6280476B1 (en) 1998-10-16 2001-08-28 Biomet Inc. Hip joint prosthesis convertible in vivo to a modular prosthesis
FR2787012A1 (fr) 1998-12-11 2000-06-16 Bex Anne Marie Endo-prothese de genou
US6042780A (en) 1998-12-15 2000-03-28 Huang; Xiaodi Method for manufacturing high performance components
US6623526B1 (en) 1999-01-08 2003-09-23 Corin Limited Knee prosthesis
US6123896A (en) 1999-01-29 2000-09-26 Ceracon, Inc. Texture free ballistic grade tantalum product and production method
US6361564B1 (en) 1999-02-02 2002-03-26 Aesculap Total knee joint comprising an insert movable relative to a tenon
US6972039B2 (en) 1999-03-01 2005-12-06 Biomet, Inc. Floating bearing knee joint prosthesis with a fixed tibial post
US7341602B2 (en) * 1999-05-10 2008-03-11 Fell Barry M Proportioned surgically implantable knee prosthesis
US6245276B1 (en) 1999-06-08 2001-06-12 Depuy Orthopaedics, Inc. Method for molding a cross-linked preform
US6319283B1 (en) 1999-07-02 2001-11-20 Bristol-Myers Squibb Company Tibial knee component with a mobile bearing
FR2796836B1 (fr) 1999-07-26 2002-03-22 Michel Bercovy Nouvelle prothese du genou
KR100626409B1 (ko) 1999-09-14 2006-09-20 스트라테크 메디칼 아게 더욱 높은 온도에서 소결될 수 있는 그린 컴팩(green compact)의 생산에 사용되는 두개의 미립자 상들의 혼합물 및 그 혼합물로 구성되는 성형체를 생산하는 방법
US6620198B2 (en) * 1999-10-07 2003-09-16 Exactech, Inc. Composite bearing inserts for total knee joints
US6217618B1 (en) 1999-10-26 2001-04-17 Bristol-Myers Squibb Company Tibial knee component with a mobile bearing
US6210445B1 (en) 1999-10-26 2001-04-03 Bristol-Myers Squibb Company Tibial knee component with a mobile bearing
US6210444B1 (en) 1999-10-26 2001-04-03 Bristol-Myers Squibb Company Tibial knee component with a mobile bearing
US6379388B1 (en) * 1999-12-08 2002-04-30 Ortho Development Corporation Tibial prosthesis locking system and method of repairing knee joint
US7104996B2 (en) * 2000-01-14 2006-09-12 Marctec. Llc Method of performing surgery
US6702821B2 (en) * 2000-01-14 2004-03-09 The Bonutti 2003 Trust A Instrumentation for minimally invasive joint replacement and methods for using same
US6770078B2 (en) * 2000-01-14 2004-08-03 Peter M. Bonutti Movable knee implant and methods therefor
US7635390B1 (en) * 2000-01-14 2009-12-22 Marctec, Llc Joint replacement component having a modular articulating surface
FR2805455B1 (fr) 2000-02-24 2002-04-19 Aesculap Sa Composant femoral d'une prothese du genou a trois rayons de courbure
US6491726B2 (en) 2000-03-08 2002-12-10 Biomedical Engineering Trust I Posterior stabilized prosthetic knee replacement with bearing translation and dislocation prevention features
US6475241B2 (en) 2000-03-13 2002-11-05 Biomedical Engineering Trust I Posterior stabilized knee replacement with bearing translation for knees with retained collateral ligaments
US8796347B2 (en) 2000-04-27 2014-08-05 Orthopaedic Hospital Oxidation-resistant and wear-resistant polyethylenes for human joint replacements and methods for making them
US7618462B2 (en) 2000-05-01 2009-11-17 Arthrosurface Incorporated System and method for joint resurface repair
US7678151B2 (en) * 2000-05-01 2010-03-16 Ek Steven W System and method for joint resurface repair
FR2809302B1 (fr) 2000-05-23 2003-03-21 Didier Baert Implants orthopediques et plus particulierement des protheses du genou
IT1320381B1 (it) * 2000-05-29 2003-11-26 Olivetti Lexikon Spa Metodo per la fabbricazione di una testina di eiezione di gocce diliquido particolarmente adatta per operare con liquidi chimicamente
GB0017148D0 (en) 2000-07-12 2000-08-30 Isis Innovation An improved bone-implant prosthesis
FR2812540B1 (fr) 2000-08-01 2002-10-31 Jean Manuel Aubaniac Prothese bicompartimentale du genou
US6558426B1 (en) * 2000-11-28 2003-05-06 Medidea, Llc Multiple-cam, posterior-stabilized knee prosthesis
US6494914B2 (en) 2000-12-05 2002-12-17 Biomet, Inc. Unicondylar femoral prosthesis and instruments
US6503280B2 (en) * 2000-12-26 2003-01-07 John A. Repicci Prosthetic knee and method of inserting
US6942670B2 (en) * 2000-12-27 2005-09-13 Depuy Orthopaedics, Inc. Prosthesis evaluation assembly and associated method
WO2002056513A1 (fr) 2000-12-27 2002-07-18 Fujitsu Limited Procede de detection d'erreurs de voie et dispositif correspondant
DE20100962U1 (de) 2001-01-19 2001-05-03 Keramed Medizintechnik Gmbh Inlay für eine Knie-Endoprothese
US6645251B2 (en) 2001-01-22 2003-11-11 Smith & Nephew, Inc. Surfaces and processes for wear reducing in orthopaedic implants
US6485519B2 (en) 2001-01-29 2002-11-26 Bristol-Myers Squibb Company Constrained prosthetic knee with rotating bearing
US6773461B2 (en) * 2001-01-29 2004-08-10 Zimmer Technology, Inc. Constrained prosthetic knee with rotating bearing
US6719800B2 (en) * 2001-01-29 2004-04-13 Zimmer Technology, Inc. Constrained prosthetic knee with rotating bearing
US7597715B2 (en) 2005-04-21 2009-10-06 Biomet Manufacturing Corp. Method and apparatus for use of porous implants
US20020120340A1 (en) * 2001-02-23 2002-08-29 Metzger Robert G. Knee joint prosthesis
US6797005B2 (en) * 2001-02-28 2004-09-28 Biomedical Engineering Trust Deep flexion posterior stabilized knee replacement with bearing translation
US6524522B2 (en) 2001-03-07 2003-02-25 Advanced Ceramics Research, Inc. Method for preparation of metallic foam products and products made
US6852272B2 (en) 2001-03-07 2005-02-08 Advanced Ceramics Research, Inc. Method for preparation of metallic and ceramic foam products and products made
ES2278716T3 (es) 2001-03-26 2007-08-16 Zimmer Gmbh Protesis de rodilla.
US6569202B2 (en) 2001-04-02 2003-05-27 Whiteside Biomechanics, Inc. Tray and liner for joint replacement system
AU2002307332A1 (en) * 2001-04-16 2002-10-28 Exactech, Inc. Prosthetic knee joint
EP1252869A1 (de) 2001-04-25 2002-10-30 Waldemar Link (GmbH & Co.) Knieprothese mit Rotationslager
US7776085B2 (en) 2001-05-01 2010-08-17 Amedica Corporation Knee prosthesis with ceramic tibial component
EP1389978B1 (en) 2001-05-01 2009-01-07 Amedica Corporation Radiolucent bone graft
US6589283B1 (en) * 2001-05-15 2003-07-08 Biomet, Inc. Elongated femoral component
US6482209B1 (en) 2001-06-14 2002-11-19 Gerard A. Engh Apparatus and method for sculpting the surface of a joint
US6630101B2 (en) 2001-08-16 2003-10-07 Keystone Investment Corporation Method for producing powder metal gears
US6660224B2 (en) 2001-08-16 2003-12-09 National Research Council Of Canada Method of making open cell material
US7708741B1 (en) * 2001-08-28 2010-05-04 Marctec, Llc Method of preparing bones for knee replacement surgery
US7326274B2 (en) 2001-10-18 2008-02-05 Praxis Powder Technology, Inc. Binder compositions and methods for binder assisted forming
GB0126467D0 (en) 2001-11-03 2002-01-02 Accentus Plc Deposition of coatings on substrates
FR2831794B1 (fr) 2001-11-05 2004-02-13 Depuy France Procede de selection d'elements de prothese de genou et dispositif pour sa mise en oeuvre
DE10161827A1 (de) 2001-12-15 2003-06-26 Dot Gmbh Verfahren zur Beschichtung eines Substrats mit Calciumphosphat
US6669618B2 (en) 2001-12-21 2003-12-30 The Procter & Gamble Company Method of dynamically pre-fastening a disposable absorbent article having a slot-and-tab fastening system
WO2003059203A1 (en) * 2001-12-21 2003-07-24 Smith & Nephew, Inc. Hinged joint system
DE10200263B4 (de) 2002-01-07 2007-01-25 Plus Orthopedics Ag Tibiakomponente einer Kniegelenkendoprothese
GB0201149D0 (en) * 2002-01-18 2002-03-06 Finsbury Dev Ltd Prosthesis
FR2835178B1 (fr) 2002-01-31 2004-12-03 Jacques Marie Rousseau Ensemble prothetique tibial pour prothese du genou a glissement
US7458991B2 (en) 2002-02-08 2008-12-02 Howmedica Osteonics Corp. Porous metallic scaffold for tissue ingrowth
FR2835738B1 (fr) 2002-02-14 2004-10-01 Jacques Afriat Prothese totale du genou
GB0204381D0 (en) * 2002-02-26 2002-04-10 Mcminn Derek J W Knee prosthesis
US6923832B1 (en) 2002-03-21 2005-08-02 Trigon Incorporated Revision tibial component
DE10220591B4 (de) 2002-05-08 2004-03-18 Mathys Medizinaltechnik Ag Gelenkprothese mit Zwischenelement mit unterschiedlichen Krümmungsradien
US7048741B2 (en) * 2002-05-10 2006-05-23 Swanson Todd V Method and apparatus for minimally invasive knee arthroplasty
DE10224671C1 (de) 2002-06-03 2003-10-16 Forschungszentrum Juelich Gmbh Verfahren zur endkonturnahen Herstellung von hochporösen metallischen Formkörpern
US20040002767A1 (en) * 2002-06-28 2004-01-01 Joseph Wyss Modular knee joint prosthesis
US7070622B1 (en) 2002-07-03 2006-07-04 Biomet, Inc. Prosthesis having a modular soft tissue fixation mechanism
US6827739B2 (en) 2002-08-26 2004-12-07 Zimmer Technology, Inc. Easily assembled provisional orthopaedic implant
US6905513B1 (en) * 2002-08-30 2005-06-14 Biomet, Inc. Knee prosthesis with graft ligaments
US7175665B2 (en) 2002-09-09 2007-02-13 Depuy Products, Inc. Universal tibial augment
US6976999B2 (en) 2002-11-19 2005-12-20 Zimmer Technology, Inc. Prosthetic device and method of making the same
US6770099B2 (en) * 2002-11-19 2004-08-03 Zimmer Technology, Inc. Femoral prosthesis
US20040102852A1 (en) 2002-11-22 2004-05-27 Johnson Erin M. Modular knee prosthesis
AU2003299851B2 (en) * 2002-12-20 2009-12-10 Smith & Nephew, Inc. High performance knee prostheses
US7160330B2 (en) 2003-01-21 2007-01-09 Howmedica Osteonics Corp. Emulating natural knee kinematics in a knee prosthesis
WO2004067808A2 (de) 2003-01-24 2004-08-12 Universität des Saarlandes Verfahren zum herstellen von metallischen formkörpern mit einer keramischen schicht, metallischer formkörper und dessen verwendung
US7033397B2 (en) 2003-02-03 2006-04-25 Zimmer Technology, Inc. Mobile bearing unicondylar tibial knee prosthesis
EP1601316A1 (en) 2003-02-04 2005-12-07 Zimmer Austin, Inc. Rotating/non-rotating tibia plate/insert system
ATE393612T1 (de) 2003-02-08 2008-05-15 Depuy Int Ltd Kniegelenkprothese
US20040167632A1 (en) 2003-02-24 2004-08-26 Depuy Products, Inc. Metallic implants having roughened surfaces and methods for producing the same
WO2004093747A1 (en) 2003-04-02 2004-11-04 Ortho Development Corporation Tibial augment connector
US6986791B1 (en) 2003-04-15 2006-01-17 Biomet Manufacturing Corp. Knee prosthesis with moveable post
FR2854060B1 (fr) 2003-04-24 2006-02-24 Aesculap Sa Prothese postero-stabilisee a plot tibial anti-basculement
FR2854792B1 (fr) 2003-05-12 2005-09-09 Tornier Sa Jeu d'elements prothetiques pour un ensemble prothetique tibial
US7081137B1 (en) * 2003-06-23 2006-07-25 Howmedica Osteonics Corp. Knee prosthesis with extended range of motion
US7708782B2 (en) 2003-07-17 2010-05-04 Exactech, Inc. Mobile bearing knee prosthesis
US7422605B2 (en) * 2003-07-17 2008-09-09 Exactech, Inc. Mobile bearing knee prosthesis
EP1648348B1 (en) 2003-07-24 2015-06-17 Tecomet Inc. Assembled non-random foams
US7094259B2 (en) 2003-07-24 2006-08-22 Samih Tarabichi Physiological total knee implant
WO2005037147A1 (en) 2003-10-17 2005-04-28 Smith & Nephew, Inc. High flexion articular insert
US7261740B2 (en) * 2003-10-29 2007-08-28 Wright Medical Technology, Inc. Tibial knee prosthesis
US20050100578A1 (en) 2003-11-06 2005-05-12 Schmid Steven R. Bone and tissue scaffolding and method for producing same
US7427296B2 (en) 2003-11-14 2008-09-23 Richard Parker Evans Total knee joint mold and methods
US7001672B2 (en) 2003-12-03 2006-02-21 Medicine Lodge, Inc. Laser based metal deposition of implant structures
US20090210066A1 (en) 2004-01-23 2009-08-20 The General Hospital Corporation Dba Massachusetts General Hospital Anterior cruciate ligament substituting knee replacement prosthesis
DE202004003133U1 (de) * 2004-02-26 2004-07-29 Aap Implantate Ag Gelenkersatz-Tibiaplateau
US7753960B2 (en) * 2004-02-26 2010-07-13 Omni Life Science, Inc. Modular knee prosthesis
US7608079B1 (en) 2004-03-05 2009-10-27 Biomet Manufacturing Corp. Unicondylar knee apparatus and system
EP1574185B1 (en) 2004-03-09 2012-05-23 Zimmer Technology, Inc. Tibial knee component with a mobile bearing
US20050203632A1 (en) 2004-03-09 2005-09-15 Daniels Michael E. Tibial implant with a through post
EP1722705A2 (en) 2004-03-10 2006-11-22 Depuy International Limited Orthopaedic operating systems, methods, implants and instruments
JP3915989B2 (ja) * 2004-03-17 2007-05-16 徹 勝呂 人工膝関節
US7731755B2 (en) * 2004-06-11 2010-06-08 Depuy Products, Inc. Posterior stabilized mobile bearing knee
US7674426B2 (en) 2004-07-02 2010-03-09 Praxis Powder Technology, Inc. Porous metal articles having a predetermined pore character
US8500843B2 (en) 2004-07-02 2013-08-06 Praxis Powder Technology, Inc. Controlled porosity article
US7160329B2 (en) 2004-12-01 2007-01-09 Mayo Foundation For Medical Research And Education Radial-capitellar implant
US7776044B2 (en) 2004-12-21 2010-08-17 Zimmer Technology, Inc. Tibial tray inserter
US7214151B1 (en) 2004-12-22 2007-05-08 J Debeer & Son, Inc. Lacrosse head with cushioned sidewalls
CN100469337C (zh) * 2005-01-11 2009-03-18 郑诚功 改良构造的人工膝关节
US20060178749A1 (en) 2005-02-10 2006-08-10 Zimmer Technology, Inc. Modular porous implant
US7578850B2 (en) * 2005-04-18 2009-08-25 Uni-Knee, Llc Unicondylar knee implant
US8021432B2 (en) 2005-12-05 2011-09-20 Biomet Manufacturing Corp. Apparatus for use of porous implants
US8066778B2 (en) 2005-04-21 2011-11-29 Biomet Manufacturing Corp. Porous metal cup with cobalt bearing surface
US20060257358A1 (en) 2005-05-13 2006-11-16 Depuy Products, Inc. Suspension of calcium phosphate particulates for local delivery of therapeutic agents
US7357817B2 (en) 2005-05-19 2008-04-15 Howmedica Osteonics Corp. Modular keel tibial component
EP1726320A1 (en) 2005-05-26 2006-11-29 Doxa AB Coated implant system with chemically bonded ceramic material
CN1872009A (zh) * 2005-05-30 2006-12-06 贝特曼医疗技术有限公司 多功能支撑人工关节
US7368065B2 (en) 2005-06-23 2008-05-06 Depuy Products, Inc. Implants with textured surface and methods for producing the same
DE102005044044B3 (de) 2005-09-14 2007-06-14 Hjs Gelenk System Gmbh Vorrichtung und Verfahren zur Bestimmung und Einstellung der optimalen Relativposition einer Funktionsfläche und dementsprechend gestalteten Implantat-Komponenten eines künstlichen Gelenkes
US20070078521A1 (en) 2005-09-30 2007-04-05 Depuy Products, Inc. Aluminum oxide coated implants and components
EP1779812A1 (en) 2005-10-26 2007-05-02 Etervind AB An osseointegration implant
JP5265372B2 (ja) 2005-10-31 2013-08-14 デピュイ・プロダクツ・インコーポレイテッド モジュラー固定式および可動式ベアリングプロテーゼシステム
US8211181B2 (en) * 2005-12-14 2012-07-03 New York University Surface guided knee replacement
US7635447B2 (en) 2006-02-17 2009-12-22 Biomet Manufacturing Corp. Method and apparatus for forming porous metal implants
US7771484B2 (en) 2006-02-28 2010-08-10 Howmedica Osteonics Corp. Modular tibial implant
JP2009529954A (ja) 2006-03-14 2009-08-27 マコ サージカル コーポレーション 補綴装置ならびに補綴装置を埋め込むためのシステムおよび方法
EP1996122B1 (en) 2006-03-21 2012-11-21 DePuy (Ireland) Moment induced total arthroplasty prosthetic
GB0607544D0 (en) 2006-04-13 2006-05-24 Pinskerova Vera Knee prothesis
US7658767B2 (en) * 2006-06-30 2010-02-09 Depuy Products, Inc. Hinged orthopaedic prosthesis
US7842093B2 (en) 2006-07-18 2010-11-30 Biomet Manufacturing Corp. Method and apparatus for a knee implant
US7875081B2 (en) * 2006-09-25 2011-01-25 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Posterior stabilized knee prosthesis
US7740662B2 (en) 2006-10-13 2010-06-22 Depuy Products, Inc. Mobile/fixed prosthetic knee systems
US20080091272A1 (en) 2006-10-13 2008-04-17 Aram Luke J Mobile/fixed prosthetic knee systems
US20080161927A1 (en) 2006-10-18 2008-07-03 Warsaw Orthopedic, Inc. Intervertebral Implant with Porous Portions
US7947082B2 (en) 2006-11-09 2011-05-24 Consensus Orthopedics, Inc. System and method for joint arthroplasty
GB2443797A (en) 2006-11-16 2008-05-21 Biomet Uk Ltd Prosthesis
US8187280B2 (en) 2007-10-10 2012-05-29 Biomet Manufacturing Corp. Knee joint prosthesis system and method for implantation
US8313530B2 (en) 2007-02-12 2012-11-20 Jmea Corporation Total knee arthroplasty system
US20080199720A1 (en) 2007-02-21 2008-08-21 Depuy Products, Inc. Porous metal foam structures and methods
WO2008106625A2 (en) 2007-02-28 2008-09-04 University Of Notre Dame Du Lac Porous composite biomaterials and related methods
DE102007037154B4 (de) 2007-08-07 2011-05-19 Aequos Endoprothetik Gmbh Künstliches Gelenk und ein zu diesem Einsatz bestimmtes Gelenkteil
EP2194922A4 (en) 2007-08-27 2012-11-21 Vladimir Shur KNEE PROSTHESIS
US8366783B2 (en) 2007-08-27 2013-02-05 Samuelson Kent M Systems and methods for providing deeper knee flexion capabilities for knee prosthesis patients
US20110035017A1 (en) 2007-09-25 2011-02-10 Depuy Products, Inc. Prosthesis with cut-off pegs and surgical method
US8470047B2 (en) 2007-09-25 2013-06-25 Depuy (Ireland) Fixed-bearing knee prosthesis
US8128703B2 (en) 2007-09-28 2012-03-06 Depuy Products, Inc. Fixed-bearing knee prosthesis having interchangeable components
US7628818B2 (en) 2007-09-28 2009-12-08 Depuy Products, Inc. Fixed-bearing knee prosthesis having interchangeable components
US20110035018A1 (en) 2007-09-25 2011-02-10 Depuy Products, Inc. Prosthesis with composite component
US8632600B2 (en) 2007-09-25 2014-01-21 Depuy (Ireland) Prosthesis with modular extensions
US8715359B2 (en) 2009-10-30 2014-05-06 Depuy (Ireland) Prosthesis for cemented fixation and method for making the prosthesis
EP2205188B1 (en) 2007-09-25 2014-04-09 Biomet Manufacturing Corp. Cementless tibial tray
US8323322B2 (en) 2007-10-05 2012-12-04 Zimmer Spine, Inc. Medical implant formed from porous metal and method
AU2009209158B2 (en) 2008-01-30 2013-09-19 Zimmer, Inc. Orthopedic component of low stiffness
WO2009128943A2 (en) 2008-04-17 2009-10-22 Mandell Steven L Artificial knee joint
US8696755B2 (en) 2008-04-17 2014-04-15 Steven L. Mandell Tibial component of an artificial knee joint
US8871142B2 (en) 2008-05-22 2014-10-28 DePuy Synthes Products, LLC Implants with roughened surfaces
US8298288B2 (en) 2008-06-24 2012-10-30 New York University Recess-ramp knee joint prosthesis
US8187335B2 (en) 2008-06-30 2012-05-29 Depuy Products, Inc. Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature
US9168145B2 (en) 2008-06-30 2015-10-27 Depuy (Ireland) Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature
US8828086B2 (en) 2008-06-30 2014-09-09 Depuy (Ireland) Orthopaedic femoral component having controlled condylar curvature
US8075626B2 (en) 2008-06-30 2011-12-13 Depuy Products, Inc. Orthopaedic knee prosthesis having increased axial-rotation
US20090326674A1 (en) 2008-06-30 2009-12-31 Depuy Products, Inc. Open Celled Metal Implants With Roughened Surfaces and Method for Roughening Open Celled Metal Implants
US8206451B2 (en) 2008-06-30 2012-06-26 Depuy Products, Inc. Posterior stabilized orthopaedic prosthesis
US8236061B2 (en) 2008-06-30 2012-08-07 Depuy Products, Inc. Orthopaedic knee prosthesis having controlled condylar curvature
US8192498B2 (en) 2008-06-30 2012-06-05 Depuy Products, Inc. Posterior cructiate-retaining orthopaedic knee prosthesis having controlled condylar curvature
US9119723B2 (en) 2008-06-30 2015-09-01 Depuy (Ireland) Posterior stabilized orthopaedic prosthesis assembly
US8202323B2 (en) 2008-07-16 2012-06-19 Depuy Products, Inc. Knee prostheses with enhanced kinematics
US20100098574A1 (en) 2008-08-27 2010-04-22 Liu Hengda D Mixtures For Forming Porous Constructs
US8078440B2 (en) 2008-09-19 2011-12-13 Smith & Nephew, Inc. Operatively tuning implants for increased performance
US20100076564A1 (en) 2008-09-23 2010-03-25 Schilling Eric M Tibial tuberosity advancement implant
JP2012504470A (ja) 2008-10-02 2012-02-23 マコ サージカル コーポレーション 膝関節のための人工関節の装置ならびにその移植方法および除去方法
US20100100191A1 (en) 2008-10-17 2010-04-22 Biomet Manufacturing Corp. Tibial Tray Having a Reinforcing Member
US8771364B2 (en) 2008-10-17 2014-07-08 Biomet Manufacturing, Llc Tibial tray having a reinforcing member
US8012216B2 (en) 2008-10-17 2011-09-06 Biomet Manufacturing Corp. High flexion tibial tray
US9017414B2 (en) 2008-11-18 2015-04-28 Howmedica Osteonics Corp. Trial implant and method of use
US20100161067A1 (en) 2008-12-23 2010-06-24 Aesculap Ag Knee prosthesis
WO2010088263A1 (en) 2009-01-28 2010-08-05 Zimmer, Inc. Lateral condyle with posteriorly located inflection point for total knee implant
US8915965B2 (en) 2009-05-07 2014-12-23 Depuy (Ireland) Anterior stabilized knee implant
US9101476B2 (en) 2009-05-21 2015-08-11 Depuy (Ireland) Prosthesis with surfaces having different textures and method of making the prosthesis
US20100305710A1 (en) 2009-05-28 2010-12-02 Biomet Manufacturing Corp. Knee Prosthesis
US8357202B2 (en) * 2009-12-22 2013-01-22 Zimmer, Gmbh J-curve for a femoral prosthesis component
JP5688281B2 (ja) * 2010-12-10 2015-03-25 京セラメディカル株式会社 人工膝関節

Also Published As

Publication number Publication date
EP2149354A1 (en) 2010-02-03
US20090326666A1 (en) 2009-12-31
JP5535533B2 (ja) 2014-07-02
EP2878283B1 (en) 2016-11-09
AU2009202627A1 (en) 2010-01-14
JP2010012256A (ja) 2010-01-21
EP2149354B1 (en) 2015-01-14
EP2878283A1 (en) 2015-06-03
ES2614051T3 (es) 2017-05-29
CN101683289B (zh) 2014-08-13
EP2878283B8 (en) 2016-12-28
US9204968B2 (en) 2015-12-08
AU2009202627B2 (en) 2015-07-02
CN101683289A (zh) 2010-03-31
US20140228965A1 (en) 2014-08-14
US20120259417A1 (en) 2012-10-11
US8734522B2 (en) 2014-05-27
DK2149354T3 (en) 2015-03-09
US8206451B2 (en) 2012-06-26

Similar Documents

Publication Publication Date Title
ES2534653T3 (es) Prótesis ortopédicas
ES2456337T3 (es) Prótesis de rodilla
ES2596506T3 (es) Prótesis femoral
US7387644B2 (en) Knee joint prosthesis with a femoral component which links the tibiofemoral axis of rotation with the patellofemoral axis of rotation
US20180064543A1 (en) Knee prosthesis assembly having proportional trochlear groove geometry
AU2004281743B2 (en) High flexion articular insert
EP2140838B1 (en) Tibial bearing for a knee joint prosthesis
EP1974693B1 (en) Mobile tibial bearing assembly
ES2375255T3 (es) Prótesis de articulación de la rodilla.
ES2546876T3 (es) Componente femoral de una prótesis de articulación de la rodilla
EP2726021B1 (en) Posterior stabilized orthopaedic prosthesis assembly
US20090036992A1 (en) Total Knee Arthroplasty Endoprothesis with Third Condyle and Rotating Polyethylene Insert
CA2596776A1 (en) Prosthetic knee
US9119723B2 (en) Posterior stabilized orthopaedic prosthesis assembly
US9138322B2 (en) Knee prosthesis having cross-compatible dome and anatomic patella components
CN114040733A (zh) 具有骨保护特征部的整形外科植入物系统