EP4357472A1 - Tôles d'acier revêtues à chaud et laminées au dressage avec une couche d'oxyde intacte sur le revêtement métallique - Google Patents

Tôles d'acier revêtues à chaud et laminées au dressage avec une couche d'oxyde intacte sur le revêtement métallique Download PDF

Info

Publication number
EP4357472A1
EP4357472A1 EP23203496.7A EP23203496A EP4357472A1 EP 4357472 A1 EP4357472 A1 EP 4357472A1 EP 23203496 A EP23203496 A EP 23203496A EP 4357472 A1 EP4357472 A1 EP 4357472A1
Authority
EP
European Patent Office
Prior art keywords
steel sheet
skin
hot
content
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP23203496.7A
Other languages
German (de)
English (en)
Inventor
Jennifer Schulz
Fabian JUNGE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP4357472A1 publication Critical patent/EP4357472A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/227Surface roughening or texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/228Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length skin pass rolling or temper rolling

Definitions

  • the invention relates to a steel sheet which is hot-dip refined and skin-passed, the steel sheet comprising a steel substrate made of a carbon-containing alloy and a metallic coating arranged on one or both sides of the steel substrate, which, in addition to zinc and unavoidable impurities, contains additional elements such as aluminum with a content of 0.5 to 8.0 wt.% and magnesium with a content of 0.5 to 8.0 wt.% in the coating, with an oxide layer formed on the side facing away from the steel substrate within the coating.
  • the invention further relates to a method for producing a hot-dip refined and skin-passed steel sheet and to a use.
  • Coatings made of zinc, aluminum and magnesium oxidize in air and form a covering oxide layer on the surface, which is predominantly rich in magnesium.
  • This oxide layer has different chemical properties than established pure zinc or zinc-aluminum coatings. It is chemically inert and passivates the underlying (coating) surface. It is precisely because of these properties that the magnesium-rich oxide layer can interfere with known post-treatment processes and lead to wetting and adhesion problems, e.g. during activation and phosphating and/or in coil coating, so it can be useful to remove the magnesium-rich oxide layer, especially mechanically, before further treatment, cf. for example EP 2 841 614 B1 .
  • Textured skin-pass rollers transfer their texture to the surface of the steel sheets to be processed as a negative during a skin-pass process, i.e. elevations on the roller surface result in depressions in the steel sheet surface and vice versa.
  • the skin-pass impressions (depressions) introduced into the steel sheet surface in this way so-called closed empty volumes, generally serve as lubricant pockets that hold a lubricant applied to the steel sheet surface and can carry it along during the forming process.
  • steel sheets skin-passed with a stochastic surface structure are known as examples from the patent specification EP 2 006 037 B1 and steel sheets with a deterministic surface structure, for example from the patent specification EP 2 892 663 B1 known.
  • hot-dip coated coatings are constructed in such a way that that a layer of alloying elements with a higher affinity for oxygen forms on the zinc that is primarily in the coating.
  • the mechanical stress during skin-passing can ensure that the zinc is exposed at the contact points between the skin-pass roller and the steel sheet instead of the alloying elements such as magnesium and/or aluminum.
  • Hot-dip coated steel sheets that have been skin-passed with a stochastic surface structure have a different surface chemistry in the skin-pass impressions of the coated steel sheet than on the raised areas of the coated steel sheet. While the chemical composition in the skin-pass impressions is richer in zinc, the raised areas have high proportions of the oxygen-affine alloying elements (Al, Mg, etc.), cf. EN 10 2019 215 051 A1 .
  • the task is therefore to essentially retain the surface of the hot-dip coated and tempered steel sheet in order to provide excellent corrosion protection.
  • the object is achieved with respect to a steel sheet having the features of claim 1 and with respect to a method for producing a steel sheet having the features of claim 8.
  • the oxide layer and thus the advantageous properties in terms of corrosion protection can be retained if the surface or surface chemistry is only slightly or insignificantly changed during skin-passing after hot-dip coating.
  • the contact of shaping elements of the skin-passing roller with the surface of the hot-dip coated steel sheet should only exert a low mechanical stress in order to essentially maintain or only slightly change the oxide layer, which is predominantly rich in magnesium.
  • the magnesium concentration should not fall below the minimum value of 65% in order to essentially maintain the inert and passivated magnesium-rich oxide layer and thus ensure excellent corrosion protection.
  • the relative concentration of zinc, magnesium and aluminium is determined by determining the absolute concentration of these elements and then normalising to 100%.
  • the sum of the concentration of zinc, magnesium and aluminium is equal to 100 and the proportion of the respective element in this 100% is evaluated or weighted as a relative concentration, i.e. related to 100%.
  • the relative concentration of an element Al, Mg, Zn
  • Al, Mg, Zn therefore refers to the sum of the concentrations or the sum of the signal intensities of the elements Mg, Zn and Al, with this sum representing 100%. Since the absolute concentration of the elements Zn, Mg and Al can vary from coating to coating, the information is given as a relative concentration in percentage points in order to define changes precisely.
  • the relative concentration differences are determined for magnesium, aluminum and zinc on the surface of the coating, i.e. on the "native" (magnesium-rich) oxide layer, by recording the local distribution of the signals for these alloying elements using a time -of - flight secondary ion mass spectrometer (ToF-SIMS) in imaging mode or in a similar way using Auger electron or photoelectron spectroscopy.
  • ToF-SIMS is an analytical method for determining the chemical surface composition of the top 1-3 monolayers.
  • ToF-SIMS is used to measure certain relative concentration differences by scanning the surface to be analyzed within a representative measuring area. A spectrum in positive polarity is recorded at each position of the grid and the raw signals for the main components (alloying elements) are recorded.
  • the relative concentration of element X which in this case represents one of the alloying elements in the hot-dip coated and tempered coating, is calculated from the quotient [X raw signal integral / (Zn raw signal integral + Mg raw signal integral + Al raw signal integral)], with the denominator of the quotient being the sum of the raw signal integrals of all alloying elements in the coating.
  • Raw signal of element X in this definition is the intensity or peak area of element X in the mass spectrum or "raw signal integral" of element X is the integrated intensity, which is represented over a defined connected area of grid positions and assigned to the respective element X.
  • the internal ToF-SIMS measurements were carried out using a TOF.SIMS 5 device from ION-TOF GmbH.
  • the surface of the hot-dip coated and skin-rolled steel sheet has a standardized Mg content of at least 65%.
  • the standardized Mg content can in particular be at least 66%, 67%, 68%, preferably at least 69%, 70%, 71%, 72%, preferably at least 73%, 74%, 75%.
  • the standardized content corresponds in particular to the determined mean value, although fluctuations may occur within the scope of measurement tolerances (standard deviation). The sum of the standardized content of magnesium, aluminum and zinc is always 100%.
  • Steel sheet is generally understood to mean a hot-rolled flat steel product which can be provided in sheet form, in blank form or in strip form.
  • the thickness of the steel sheet can be between 0.45 and 8.0 mm, in particular at least 0.5 mm, preferably at least 1.0 mm and in particular a maximum of 7.0 mm, preferably a maximum of 6.0 mm.
  • the metallic coating has magnesium with a content of at least 0.5% by weight, in particular of at least 0.8% by weight, preferably of at least 1.1% by weight.
  • aluminum is also present with a content of at least 0.5% by weight, in particular of at least 0.8% by weight, preferably of at least 1.1% by weight, in order to improve the bonding of the coating to the steel sheet and in particular to essentially prevent the diffusion of iron from the steel sheet into the coating during heat treatment of the coated steel sheet, so that the positive corrosion properties are retained.
  • the magnesium and aluminum contents can each be limited to a maximum of 8.0% by weight, in particular to a maximum of 6.5% by weight, preferably to a maximum of 5.0% by weight, preferably to a maximum of 4.0% by weight.
  • the thickness of the coating can be between 5 and 50 ⁇ m, in particular between 10 and 45 ⁇ m, preferably between 15 and 40 ⁇ m per side.
  • the steel sheet according to the invention is preferably intended for so-called blank applications, i.e. applications in which no paint or similar is applied. This produces a hot-dip coated and tempered steel sheet with the highest possible intact native oxide layer acts as an additional barrier and thus provides additional corrosion protection.
  • the steel sheet can also be stretched (additionally). Stretched means that the steel sheet is drawn off during the skin-passing process with a higher strip tension than in the conventional process.
  • the steel substrates in question here are carbon-containing steel alloys, which can be, for example, structural steels in accordance with DIN EN 10025.
  • Structural steels are used in steel and mechanical engineering. Structural steel can be unalloyed, see DIN EN 10025-2, normalized, see DIN EN 10025, or low-alloyed fine-grain structural steel, see DIN EN 10025-4, depending on the intended use. Examples of steels of this type are available under the standard designation S235, S275, S355(N), S420(N), S460MC. These are hot-rolled steels.
  • the surface of the steel sheet can have a stochastic surface structure. This is created using skin-pass rollers, the surfaces of which are textured in a so-called EDT process.
  • the surface of the steel sheet can have a deterministic surface structure. This is created using skin-pass rollers whose surfaces are textured with a laser.
  • a surface with a pseudo-stochastic surface structure would also be conceivable. These surface structures have a (quasi-)stochastic appearance, consisting of stochastic elements with a recurring structure.
  • the invention relates to a method for producing a hot-dip coated and skin-passed steel sheet, comprising the following steps: - providing a steel substrate made of a carbon-containing alloy, - hot-dip coating the steel substrate on one or both sides with a metallic coating which, in addition to zinc and unavoidable impurities, contains additional elements such as aluminum with a content of 0.5 to 8.0 wt.% and magnesium with a content of 0.5 to 8.0 wt.% in the coating, - skin-passing the hot-dip coated steel sheet, wherein the skin-passing is carried out in such a way that a standardized Mg content of at least 65% remains on the surface of the hot-dip coated and skin-passed steel sheet.
  • the surface (positive form) of the skin-pass roller forms a surface structure by applying force to the surface of the steel sheet, which defines depressions (negative form) and essentially corresponds to the surface with elevations (positive form) of the skin-pass roller.
  • the mechanical and possibly optical properties of the steel sheet can be influenced, but usually also the surface chemistry.
  • magnesium has a higher affinity for oxygen than aluminum, a magnesium-rich oxide layer forms on or near the surface of the coating during hot-dip finishing or after solidification and cooling.
  • the skin-passing process must essentially be designed in such a way that mechanical and optical properties can be adjusted while the oxide layer is damaged as little as possible.
  • a stochastic surface structure can be skin-passed according to one embodiment, with the skin-pass degree being selected between 0.2% and less than 1.0%.
  • the skin-pass degree can in particular be less than or equal to 0.90%, preferably less than or equal to 0.80%, preferably less than or equal to 0.70%.
  • the skin-pass degree expresses the ratio of the thickness reduction (input thickness to output thickness in the skin-pass stand) of the skin-passed steel sheet to the input thickness, in particular the thickness reduction is taken into account.
  • a deterministic surface structure can be skin-passed, using a skin-pass roller or a pair of skin-pass rollers with a smooth surface texture, the surface texture having an arithmetic mean roughness R a of less than 1.0 ⁇ m.
  • a smooth surface texture with an arithmetic mean roughness R a of less than 1.0 ⁇ m, in particular less than 0.950 ⁇ m, preferably less than 0.90 ⁇ m, preferably less than 0.850 ⁇ m, particularly preferably less than 0.80 ⁇ m, more preferably less than 0.750 ⁇ m, but greater than 0 ⁇ m, can preferably be provided, wherein the design of the texture can be represented individually, in particular taking into account the arithmetic mean roughness.
  • the method for determining the R a value is specified in DIN ISO EN 4287. If a skin-pass roll or a pair of skin-pass rolls with a smooth surface texture is used, the degree of skin-passing plays only a minor role compared to the stochastic surface texture.
  • the invention relates to a use of the steel sheet according to the invention, in particular produced according to the method according to the invention, as a frame and/or as a support for a solar panel, a facade, a silo, a wheelbarrow.
  • Other applications, in particular in which no painting is required, are also conceivable.
  • Samples 1 to 12 were skin-passed with a pair of skin-pass rolls with a stochastic surface texture
  • samples 13 to 16 were skin-passed with a pair of skin-pass rolls with a deterministic surface texture, whereby the arithmetic mean roughness value R a was less than 1.0 ⁇ m
  • sample 17 was skin-passed with a pair of skin-pass rolls with a pseudo-deterministic surface texture.
  • the determination of the chemical composition close to the surface is carried out, for example, by means of X-ray photoelectron spectroscopy (XPS), whereby the procedure for determining the individual chemical compositions is familiar from the state of the art.
  • XPS X-ray photoelectron spectroscopy
  • the measurement can be carried out, for example, with the Phi Quantera II SXM Scanning XPS Microprobe device from Physical Electronics GmbH.
  • the values measured by means of XPS Element concentrations can be taken from overview spectra that are recorded at, for example, a transmission energy of 280 eV over at least 7 cycles and can refer to a measuring area of 100 ⁇ 100 ⁇ m 2 .
  • the determination of the standardized concentrations using ToF-SIMS has already been described.
  • Table 1 sample Dressing degree [%] Coating [wt.%], balance Zn and impurities.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating With Molten Metal (AREA)
EP23203496.7A 2022-10-19 2023-10-13 Tôles d'acier revêtues à chaud et laminées au dressage avec une couche d'oxyde intacte sur le revêtement métallique Pending EP4357472A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102022127491.8A DE102022127491A1 (de) 2022-10-19 2022-10-19 Dressiertes Stahlblech mit intakter Oxidschicht auf einem metallischen Überzug

Publications (1)

Publication Number Publication Date
EP4357472A1 true EP4357472A1 (fr) 2024-04-24

Family

ID=88412138

Family Applications (1)

Application Number Title Priority Date Filing Date
EP23203496.7A Pending EP4357472A1 (fr) 2022-10-19 2023-10-13 Tôles d'acier revêtues à chaud et laminées au dressage avec une couche d'oxyde intacte sur le revêtement métallique

Country Status (2)

Country Link
EP (1) EP4357472A1 (fr)
DE (1) DE102022127491A1 (fr)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371345A (ja) * 2001-06-13 2002-12-26 Sumitomo Metal Ind Ltd 溶融Zn−Al−Mg合金めっき鋼板の製造方法
EP2006037B1 (fr) 2007-06-22 2010-08-11 ThyssenKrupp Steel Europe AG Produit plat en métal, en particulier en acier, utilisation d'un tel produit plat tout comme presse et procédé de fabrication de tels produits plats
US20150125714A1 (en) * 2012-04-25 2015-05-07 ArcelorMittal Investigación y Desarrollo, S.L. Method for producing a metal sheet having oiled zn-al-mg coatings, and corresponding metal sheet
EP2892663B1 (fr) 2012-09-07 2016-11-09 Daetwyler Graphics AG Produit plat constitué d'un matériau métallique, en particulier d'un matériau acier, utilisation dudit produit plat, ainsi que cylindre et procédé de fabrication dudit produit plat
US9523139B2 (en) * 2011-07-06 2016-12-20 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet
EP2841614B1 (fr) 2012-04-25 2019-02-06 ArcelorMittal Procédé de réalisation d'une tôle à revêtements znalmg comprenant l'application d'efforts mécaniques sur les revêtements et d'un adhésif, tôle et assemblage correspondants
DE102019215051A1 (de) 2019-09-30 2021-04-01 Thyssenkrupp Steel Europe Ag Stahlblech mit einer deterministischen Oberflächenstruktur
WO2021144192A1 (fr) * 2020-01-13 2021-07-22 Thyssenkrupp Steel Europe Ag Procédé de fabrication d'une tôle d'acier traitée en surface et conditionnée en surface
WO2021165088A1 (fr) * 2020-02-20 2021-08-26 Thyssenkrupp Steel Europe Ag Procédé de fabrication d'une tôle d'acier traitée en surface, et tôle d'acier traitée en surface
US11453923B2 (en) * 2016-09-20 2022-09-27 Thyssenkrupp Steel Europe Ag Method for manufacturing flat steel products and flat steel product

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371345A (ja) * 2001-06-13 2002-12-26 Sumitomo Metal Ind Ltd 溶融Zn−Al−Mg合金めっき鋼板の製造方法
EP2006037B1 (fr) 2007-06-22 2010-08-11 ThyssenKrupp Steel Europe AG Produit plat en métal, en particulier en acier, utilisation d'un tel produit plat tout comme presse et procédé de fabrication de tels produits plats
US9523139B2 (en) * 2011-07-06 2016-12-20 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet
US20150125714A1 (en) * 2012-04-25 2015-05-07 ArcelorMittal Investigación y Desarrollo, S.L. Method for producing a metal sheet having oiled zn-al-mg coatings, and corresponding metal sheet
EP2841614B1 (fr) 2012-04-25 2019-02-06 ArcelorMittal Procédé de réalisation d'une tôle à revêtements znalmg comprenant l'application d'efforts mécaniques sur les revêtements et d'un adhésif, tôle et assemblage correspondants
EP2892663B1 (fr) 2012-09-07 2016-11-09 Daetwyler Graphics AG Produit plat constitué d'un matériau métallique, en particulier d'un matériau acier, utilisation dudit produit plat, ainsi que cylindre et procédé de fabrication dudit produit plat
US11453923B2 (en) * 2016-09-20 2022-09-27 Thyssenkrupp Steel Europe Ag Method for manufacturing flat steel products and flat steel product
DE102019215051A1 (de) 2019-09-30 2021-04-01 Thyssenkrupp Steel Europe Ag Stahlblech mit einer deterministischen Oberflächenstruktur
WO2021144192A1 (fr) * 2020-01-13 2021-07-22 Thyssenkrupp Steel Europe Ag Procédé de fabrication d'une tôle d'acier traitée en surface et conditionnée en surface
WO2021165088A1 (fr) * 2020-02-20 2021-08-26 Thyssenkrupp Steel Europe Ag Procédé de fabrication d'une tôle d'acier traitée en surface, et tôle d'acier traitée en surface

Also Published As

Publication number Publication date
DE102022127491A1 (de) 2024-04-25

Similar Documents

Publication Publication Date Title
DE60006068T2 (de) Feuerverzinktes galvanisiertes stahlblech mit hervorragendem gleichgewicht zwischen festigkeit und dehnbarkeit und adhäsion zwischen stahl und beschichtung
EP1658390B1 (fr) Procede de production d'un element constitutif en acier trempe
EP2092090B1 (fr) Solution de phosphatage à base de zr/ti utilisée pour passiver des surfaces composites métalliques
DE69201881T2 (de) Mit einer Nickellegierung plattiertes Stahlblech mit hervorragenden Eigenschaften in Bezug auf Pressbarkeit und Phosphatierung sowie Verfahren zu dessen Herstellung.
EP4253592A2 (fr) Bande d'acier revêtue par immersion dans une masse fondue, présentant un aspect de surface amélioré et procédé pour sa fabrication
DE69103152T2 (de) Zusammensetzung und verfahren zur chromatierung von metallen.
DE102019134298A1 (de) Verfahren zum Herstellen eines Stahlflachprodukts mit einer metallischen Schutzschicht auf Basis von Zink und einer auf einer Oberfläche der metallischen Schutzschicht erzeugten Phosphatierschicht und derartiges Stahlflachprodukt
DE69520350T2 (de) Galvanisiertes stahlblech und verfahren zur herstellung
DE102018216317A1 (de) Verfahren zur Modifikation von feuerverzinkten Oberflächen
EP3775299B1 (fr) Procédé destiné à fabriquer un module en acier pourvu d'une housse à partir d'un produit plat en acier
DE69919660T2 (de) Geglühtes Stahlblech und Verfahren zu dessen Herstellung
DE69011461T2 (de) Verfahren zur Herstellung eines Stahlbleches, das beschichtet ist mit Haftung einer Zn-Mg-Legierung, die sowohl einen höheren Plattierungs- als einen höheren Korrosionswiderstand aufweist, und damit plattiertes Stahlblech.
EP4107297A1 (fr) Procédé de fabrication d'une tôle d'acier traitée en surface, et tôle d'acier traitée en surface
DE102020107653A1 (de) Verfahren zum Erzeugen einer Phosphatierschicht und mit einer Phosphatierschicht versehenes Stahlflachprodukt
WO2020193637A1 (fr) Procédé de modification de la surface d'une couche de protection métallique à base de zn-al-mg déposée sur un produit plat en acier et produit plat en acier
DE60003331T2 (de) Galvanisiertes stahlblech zur verwendung in einem karosserieteil
DE69909305T2 (de) Ultraniedriggekohlte Stahlzusammensetzung, Verfahren zur Herstellung dieses einbrennhärtbaren Stahls, und das hergestellte Produkt
EP4357472A1 (fr) Tôles d'acier revêtues à chaud et laminées au dressage avec une couche d'oxyde intacte sur le revêtement métallique
EP4045314B1 (fr) Procédé de production d'un produit d'acier plat et procédé de production d'un composant à partir de celui-ci
EP3356572A1 (fr) Produit plat en acier pourvu d'un revêtement de protection recuit après galvanisation et procédé de production de celui-ci
DE102022122771A1 (de) Stahlblech für fleckenfreie Phosphatierung
DE69003191T2 (de) Elektroplattiertes mehrfach beschichtetes Stahlblech mit ausgezeichneter Kaltverformbarkeit, Korrosionswiderstand und Haftvermögen für wasserfeste Lacke.
WO2024052447A1 (fr) Tôle d'acier pour procédé de revêtement de phosphate sans coloration
WO2024052448A1 (fr) Feuille d'acier pour procédé de revêtement de phosphate sans tâche
DE102022122775A1 (de) Stahlblech für fleckenfreie Phosphatierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE